1 /*
2  * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_OPTO_CALLGENERATOR_HPP
26 #define SHARE_OPTO_CALLGENERATOR_HPP
27 
28 #include "compiler/compileBroker.hpp"
29 #include "opto/callnode.hpp"
30 #include "opto/compile.hpp"
31 #include "opto/type.hpp"
32 #include "runtime/deoptimization.hpp"
33 
34 //---------------------------CallGenerator-------------------------------------
35 // The subclasses of this class handle generation of ideal nodes for
36 // call sites and method entry points.
37 
38 class CallGenerator : public ResourceObj {
39  public:
40   enum {
41     xxxunusedxxx
42   };
43 
44  private:
45   ciMethod*             _method;                // The method being called.
46 
47  protected:
CallGenerator(ciMethod * method)48   CallGenerator(ciMethod* method) : _method(method) {}
49 
50  public:
51   // Accessors
method() const52   ciMethod*          method() const             { return _method; }
53 
54   // is_inline: At least some code implementing the method is copied here.
is_inline() const55   virtual bool      is_inline() const           { return false; }
56   // is_intrinsic: There's a method-specific way of generating the inline code.
is_intrinsic() const57   virtual bool      is_intrinsic() const        { return false; }
58   // is_parse: Bytecodes implementing the specific method are copied here.
is_parse() const59   virtual bool      is_parse() const            { return false; }
60   // is_virtual: The call uses the receiver type to select or check the method.
is_virtual() const61   virtual bool      is_virtual() const          { return false; }
62   // is_deferred: The decision whether to inline or not is deferred.
is_deferred() const63   virtual bool      is_deferred() const         { return false; }
64   // is_predicated: Uses an explicit check (predicate).
is_predicated() const65   virtual bool      is_predicated() const       { return false; }
predicates_count() const66   virtual int       predicates_count() const    { return 0; }
67   // is_trap: Does not return to the caller.  (E.g., uncommon trap.)
is_trap() const68   virtual bool      is_trap() const             { return false; }
69   // does_virtual_dispatch: Should try inlining as normal method first.
does_virtual_dispatch() const70   virtual bool      does_virtual_dispatch() const     { return false; }
71 
72   // is_late_inline: supports conversion of call into an inline
is_late_inline() const73   virtual bool      is_late_inline() const      { return false; }
74   // same but for method handle calls
is_mh_late_inline() const75   virtual bool      is_mh_late_inline() const   { return false; }
is_string_late_inline() const76   virtual bool      is_string_late_inline() const{ return false; }
77 
78   // for method handle calls: have we tried inlinining the call already?
already_attempted() const79   virtual bool      already_attempted() const   { ShouldNotReachHere(); return false; }
80 
81   // Replace the call with an inline version of the code
do_late_inline()82   virtual void do_late_inline() { ShouldNotReachHere(); }
83 
call_node() const84   virtual CallStaticJavaNode* call_node() const { ShouldNotReachHere(); return NULL; }
85 
set_unique_id(jlong id)86   virtual void set_unique_id(jlong id)          { fatal("unique id only for late inlines"); };
unique_id() const87   virtual jlong unique_id() const               { fatal("unique id only for late inlines"); return 0; };
88 
89   // Note:  It is possible for a CG to be both inline and virtual.
90   // (The hashCode intrinsic does a vtable check and an inlined fast path.)
91 
92   // Utilities:
93   const TypeFunc*   tf() const;
94 
95   // The given jvms has state and arguments for a call to my method.
96   // Edges after jvms->argoff() carry all (pre-popped) argument values.
97   //
98   // Update the map with state and return values (if any) and return it.
99   // The return values (0, 1, or 2) must be pushed on the map's stack,
100   // and the sp of the jvms incremented accordingly.
101   //
102   // The jvms is returned on success.  Alternatively, a copy of the
103   // given jvms, suitably updated, may be returned, in which case the
104   // caller should discard the original jvms.
105   //
106   // The non-Parm edges of the returned map will contain updated global state,
107   // and one or two edges before jvms->sp() will carry any return values.
108   // Other map edges may contain locals or monitors, and should not
109   // be changed in meaning.
110   //
111   // If the call traps, the returned map must have a control edge of top.
112   // If the call can throw, the returned map must report has_exceptions().
113   //
114   // If the result is NULL, it means that this CallGenerator was unable
115   // to handle the given call, and another CallGenerator should be consulted.
116   virtual JVMState* generate(JVMState* jvms) = 0;
117 
118   // How to generate a call site that is inlined:
119   static CallGenerator* for_inline(ciMethod* m, float expected_uses = -1);
120   // How to generate code for an on-stack replacement handler.
121   static CallGenerator* for_osr(ciMethod* m, int osr_bci);
122 
123   // How to generate vanilla out-of-line call sites:
124   static CallGenerator* for_direct_call(ciMethod* m, bool separate_io_projs = false);   // static, special
125   static CallGenerator* for_virtual_call(ciMethod* m, int vtable_index);  // virtual, interface
126 
127   static CallGenerator* for_method_handle_call(  JVMState* jvms, ciMethod* caller, ciMethod* callee, bool delayed_forbidden);
128   static CallGenerator* for_method_handle_inline(JVMState* jvms, ciMethod* caller, ciMethod* callee, bool& input_not_const);
129 
130   // How to generate a replace a direct call with an inline version
131   static CallGenerator* for_late_inline(ciMethod* m, CallGenerator* inline_cg);
132   static CallGenerator* for_mh_late_inline(ciMethod* caller, ciMethod* callee, bool input_not_const);
133   static CallGenerator* for_string_late_inline(ciMethod* m, CallGenerator* inline_cg);
134   static CallGenerator* for_boxing_late_inline(ciMethod* m, CallGenerator* inline_cg);
135 
136   // How to make a call but defer the decision whether to inline or not.
137   static CallGenerator* for_warm_call(WarmCallInfo* ci,
138                                       CallGenerator* if_cold,
139                                       CallGenerator* if_hot);
140 
141   // How to make a call that optimistically assumes a receiver type:
142   static CallGenerator* for_predicted_call(ciKlass* predicted_receiver,
143                                            CallGenerator* if_missed,
144                                            CallGenerator* if_hit,
145                                            float hit_prob);
146 
147   static CallGenerator* for_guarded_call(ciKlass* predicted_receiver,
148                                          CallGenerator* if_missed,
149                                          CallGenerator* if_hit);
150 
151   // How to make a call that optimistically assumes a MethodHandle target:
152   static CallGenerator* for_predicted_dynamic_call(ciMethodHandle* predicted_method_handle,
153                                                    CallGenerator* if_missed,
154                                                    CallGenerator* if_hit,
155                                                    float hit_prob);
156 
157   // How to make a call that gives up and goes back to the interpreter:
158   static CallGenerator* for_uncommon_trap(ciMethod* m,
159                                           Deoptimization::DeoptReason reason,
160                                           Deoptimization::DeoptAction action);
161 
162   // Registry for intrinsics:
163   static CallGenerator* for_intrinsic(ciMethod* m);
164   static void register_intrinsic(ciMethod* m, CallGenerator* cg);
165   static CallGenerator* for_predicated_intrinsic(CallGenerator* intrinsic,
166                                                  CallGenerator* cg);
generate_predicate(JVMState * jvms,int predicate)167   virtual Node* generate_predicate(JVMState* jvms, int predicate) { return NULL; };
168 
print_inlining_late(const char * msg)169   virtual void print_inlining_late(const char* msg) { ShouldNotReachHere(); }
170 
print_inlining(Compile * C,ciMethod * callee,int inline_level,int bci,const char * msg)171   static void print_inlining(Compile* C, ciMethod* callee, int inline_level, int bci, const char* msg) {
172     if (C->print_inlining()) {
173       C->print_inlining(callee, inline_level, bci, msg);
174     }
175   }
176 
print_inlining_failure(Compile * C,ciMethod * callee,int inline_level,int bci,const char * msg)177   static void print_inlining_failure(Compile* C, ciMethod* callee, int inline_level, int bci, const char* msg) {
178     print_inlining(C, callee, inline_level, bci, msg);
179     C->log_inline_failure(msg);
180   }
181 
182   static bool is_inlined_method_handle_intrinsic(JVMState* jvms, ciMethod* m);
183   static bool is_inlined_method_handle_intrinsic(ciMethod* caller, int bci, ciMethod* m);
184   static bool is_inlined_method_handle_intrinsic(ciMethod* symbolic_info, ciMethod* m);
185 };
186 
187 
188 //------------------------InlineCallGenerator----------------------------------
189 class InlineCallGenerator : public CallGenerator {
190  protected:
InlineCallGenerator(ciMethod * method)191   InlineCallGenerator(ciMethod* method) : CallGenerator(method) {}
192 
193  public:
is_inline() const194   virtual bool      is_inline() const           { return true; }
195 };
196 
197 
198 //---------------------------WarmCallInfo--------------------------------------
199 // A struct to collect information about a given call site.
200 // Helps sort call sites into "hot", "medium", and "cold".
201 // Participates in the queueing of "medium" call sites for possible inlining.
202 class WarmCallInfo : public ResourceObj {
203  private:
204 
205   CallNode*     _call;   // The CallNode which may be inlined.
206   CallGenerator* _hot_cg;// CG for expanding the call node
207 
208   // These are the metrics we use to evaluate call sites:
209 
210   float         _count;  // How often do we expect to reach this site?
211   float         _profit; // How much time do we expect to save by inlining?
212   float         _work;   // How long do we expect the average call to take?
213   float         _size;   // How big do we expect the inlined code to be?
214 
215   float         _heat;   // Combined score inducing total order on call sites.
216   WarmCallInfo* _next;   // Next cooler call info in pending queue.
217 
218   // Count is the number of times this call site is expected to be executed.
219   // Large count is favorable for inlining, because the extra compilation
220   // work will be amortized more completely.
221 
222   // Profit is a rough measure of the amount of time we expect to save
223   // per execution of this site if we inline it.  (1.0 == call overhead)
224   // Large profit favors inlining.  Negative profit disables inlining.
225 
226   // Work is a rough measure of the amount of time a typical out-of-line
227   // call from this site is expected to take.  (1.0 == call, no-op, return)
228   // Small work is somewhat favorable for inlining, since methods with
229   // short "hot" traces are more likely to inline smoothly.
230 
231   // Size is the number of graph nodes we expect this method to produce,
232   // not counting the inlining of any further warm calls it may include.
233   // Small size favors inlining, since small methods are more likely to
234   // inline smoothly.  The size is estimated by examining the native code
235   // if available.  The method bytecodes are also examined, assuming
236   // empirically observed node counts for each kind of bytecode.
237 
238   // Heat is the combined "goodness" of a site's inlining.  If we were
239   // omniscient, it would be the difference of two sums of future execution
240   // times of code emitted for this site (amortized across multiple sites if
241   // sharing applies).  The two sums are for versions of this call site with
242   // and without inlining.
243 
244   // We approximate this mythical quantity by playing with averages,
245   // rough estimates, and assumptions that history repeats itself.
246   // The basic formula count * profit is heuristically adjusted
247   // by looking at the expected compilation and execution times of
248   // of the inlined call.
249 
250   // Note:  Some of these metrics may not be present in the final product,
251   // but exist in development builds to experiment with inline policy tuning.
252 
253   // This heuristic framework does not model well the very significant
254   // effects of multiple-level inlining.  It is possible to see no immediate
255   // profit from inlining X->Y, but to get great profit from a subsequent
256   // inlining X->Y->Z.
257 
258   // This framework does not take well into account the problem of N**2 code
259   // size in a clique of mutually inlinable methods.
260 
next() const261   WarmCallInfo*  next() const          { return _next; }
set_next(WarmCallInfo * n)262   void       set_next(WarmCallInfo* n) { _next = n; }
263 
264   static WarmCallInfo _always_hot;
265   static WarmCallInfo _always_cold;
266 
267   // Constructor intitialization of always_hot and always_cold
WarmCallInfo(float c,float p,float w,float s)268   WarmCallInfo(float c, float p, float w, float s) {
269     _call = NULL;
270     _hot_cg = NULL;
271     _next = NULL;
272     _count = c;
273     _profit = p;
274     _work = w;
275     _size = s;
276     _heat = 0;
277   }
278 
279  public:
280   // Because WarmInfo objects live over the entire lifetime of the
281   // Compile object, they are allocated into the comp_arena, which
282   // does not get resource marked or reset during the compile process
operator new(size_t x,Compile * C)283   void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); }
operator delete(void *)284   void operator delete( void * ) { } // fast deallocation
285 
286   static WarmCallInfo* always_hot();
287   static WarmCallInfo* always_cold();
288 
WarmCallInfo()289   WarmCallInfo() {
290     _call = NULL;
291     _hot_cg = NULL;
292     _next = NULL;
293     _count = _profit = _work = _size = _heat = 0;
294   }
295 
call() const296   CallNode* call() const { return _call; }
count() const297   float count()    const { return _count; }
size() const298   float size()     const { return _size; }
work() const299   float work()     const { return _work; }
profit() const300   float profit()   const { return _profit; }
heat() const301   float heat()     const { return _heat; }
302 
set_count(float x)303   void set_count(float x)     { _count = x; }
set_size(float x)304   void set_size(float x)      { _size = x; }
set_work(float x)305   void set_work(float x)      { _work = x; }
set_profit(float x)306   void set_profit(float x)    { _profit = x; }
set_heat(float x)307   void set_heat(float x)      { _heat = x; }
308 
309   // Load initial heuristics from profiles, etc.
310   // The heuristics can be tweaked further by the caller.
311   void init(JVMState* call_site, ciMethod* call_method, ciCallProfile& profile, float prof_factor);
312 
MAX_VALUE()313   static float MAX_VALUE() { return +1.0e10; }
MIN_VALUE()314   static float MIN_VALUE() { return -1.0e10; }
315 
316   float compute_heat() const;
317 
set_call(CallNode * call)318   void set_call(CallNode* call)      { _call = call; }
set_hot_cg(CallGenerator * cg)319   void set_hot_cg(CallGenerator* cg) { _hot_cg = cg; }
320 
321   // Do not queue very hot or very cold calls.
322   // Make very cold ones out of line immediately.
323   // Inline very hot ones immediately.
324   // These queries apply various tunable limits
325   // to the above metrics in a systematic way.
326   // Test for coldness before testing for hotness.
327   bool is_cold() const;
328   bool is_hot() const;
329 
330   // Force a warm call to be hot.  This worklists the call node for inlining.
331   void make_hot();
332 
333   // Force a warm call to be cold.  This worklists the call node for out-of-lining.
334   void make_cold();
335 
336   // A reproducible total ordering, in which heat is the major key.
337   bool warmer_than(WarmCallInfo* that);
338 
339   // List management.  These methods are called with the list head,
340   // and return the new list head, inserting or removing the receiver.
341   WarmCallInfo* insert_into(WarmCallInfo* head);
342   WarmCallInfo* remove_from(WarmCallInfo* head);
343 
344 #ifndef PRODUCT
345   void print() const;
346   void print_all() const;
347   int count_all() const;
348 #endif
349 };
350 
351 #endif // SHARE_OPTO_CALLGENERATOR_HPP
352