1 /*
2  * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "opto/addnode.hpp"
27 #include "opto/callnode.hpp"
28 #include "opto/castnode.hpp"
29 #include "opto/connode.hpp"
30 #include "opto/matcher.hpp"
31 #include "opto/phaseX.hpp"
32 #include "opto/subnode.hpp"
33 #include "opto/type.hpp"
34 
35 //=============================================================================
36 // If input is already higher or equal to cast type, then this is an identity.
Identity(PhaseGVN * phase)37 Node* ConstraintCastNode::Identity(PhaseGVN* phase) {
38   Node* dom = dominating_cast(phase, phase);
39   if (dom != NULL) {
40     return dom;
41   }
42   if (_carry_dependency) {
43     return this;
44   }
45   return phase->type(in(1))->higher_equal_speculative(_type) ? in(1) : this;
46 }
47 
48 //------------------------------Value------------------------------------------
49 // Take 'join' of input and cast-up type
Value(PhaseGVN * phase) const50 const Type* ConstraintCastNode::Value(PhaseGVN* phase) const {
51   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
52   const Type* ft = phase->type(in(1))->filter_speculative(_type);
53 
54 #ifdef ASSERT
55   // Previous versions of this function had some special case logic,
56   // which is no longer necessary.  Make sure of the required effects.
57   switch (Opcode()) {
58     case Op_CastII:
59     {
60       const Type* t1 = phase->type(in(1));
61       if( t1 == Type::TOP )  assert(ft == Type::TOP, "special case #1");
62       const Type* rt = t1->join_speculative(_type);
63       if (rt->empty())       assert(ft == Type::TOP, "special case #2");
64       break;
65     }
66     case Op_CastPP:
67     if (phase->type(in(1)) == TypePtr::NULL_PTR &&
68         _type->isa_ptr() && _type->is_ptr()->_ptr == TypePtr::NotNull)
69     assert(ft == Type::TOP, "special case #3");
70     break;
71   }
72 #endif //ASSERT
73 
74   return ft;
75 }
76 
77 //------------------------------Ideal------------------------------------------
78 // Return a node which is more "ideal" than the current node.  Strip out
79 // control copies
Ideal(PhaseGVN * phase,bool can_reshape)80 Node *ConstraintCastNode::Ideal(PhaseGVN *phase, bool can_reshape) {
81   return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
82 }
83 
cmp(const Node & n) const84 bool ConstraintCastNode::cmp(const Node &n) const {
85   return TypeNode::cmp(n) && ((ConstraintCastNode&)n)._carry_dependency == _carry_dependency;
86 }
87 
size_of() const88 uint ConstraintCastNode::size_of() const {
89   return sizeof(*this);
90 }
91 
make_cast(int opcode,Node * c,Node * n,const Type * t,bool carry_dependency)92 Node* ConstraintCastNode::make_cast(int opcode, Node* c, Node *n, const Type *t, bool carry_dependency) {
93   switch(opcode) {
94   case Op_CastII: {
95     Node* cast = new CastIINode(n, t, carry_dependency);
96     cast->set_req(0, c);
97     return cast;
98   }
99   case Op_CastPP: {
100     Node* cast = new CastPPNode(n, t, carry_dependency);
101     cast->set_req(0, c);
102     return cast;
103   }
104   case Op_CheckCastPP: return new CheckCastPPNode(c, n, t, carry_dependency);
105   default:
106     fatal("Bad opcode %d", opcode);
107   }
108   return NULL;
109 }
110 
dominating_cast(PhaseGVN * gvn,PhaseTransform * pt) const111 TypeNode* ConstraintCastNode::dominating_cast(PhaseGVN* gvn, PhaseTransform* pt) const {
112   Node* val = in(1);
113   Node* ctl = in(0);
114   int opc = Opcode();
115   if (ctl == NULL) {
116     return NULL;
117   }
118   // Range check CastIIs may all end up under a single range check and
119   // in that case only the narrower CastII would be kept by the code
120   // below which would be incorrect.
121   if (is_CastII() && as_CastII()->has_range_check()) {
122     return NULL;
123   }
124   if (type()->isa_rawptr() && (gvn->type_or_null(val) == NULL || gvn->type(val)->isa_oopptr())) {
125     return NULL;
126   }
127   for (DUIterator_Fast imax, i = val->fast_outs(imax); i < imax; i++) {
128     Node* u = val->fast_out(i);
129     if (u != this &&
130         u->outcnt() > 0 &&
131         u->Opcode() == opc &&
132         u->in(0) != NULL &&
133         u->bottom_type()->higher_equal(type())) {
134       if (pt->is_dominator(u->in(0), ctl)) {
135         return u->as_Type();
136       }
137       if (is_CheckCastPP() && u->in(1)->is_Proj() && u->in(1)->in(0)->is_Allocate() &&
138           u->in(0)->is_Proj() && u->in(0)->in(0)->is_Initialize() &&
139           u->in(1)->in(0)->as_Allocate()->initialization() == u->in(0)->in(0)) {
140         // CheckCastPP following an allocation always dominates all
141         // use of the allocation result
142         return u->as_Type();
143       }
144     }
145   }
146   return NULL;
147 }
148 
149 #ifndef PRODUCT
dump_spec(outputStream * st) const150 void ConstraintCastNode::dump_spec(outputStream *st) const {
151   TypeNode::dump_spec(st);
152   if (_carry_dependency) {
153     st->print(" carry dependency");
154   }
155 }
156 #endif
157 
Value(PhaseGVN * phase) const158 const Type* CastIINode::Value(PhaseGVN* phase) const {
159   const Type *res = ConstraintCastNode::Value(phase);
160 
161   // Try to improve the type of the CastII if we recognize a CmpI/If
162   // pattern.
163   if (_carry_dependency) {
164     if (in(0) != NULL && in(0)->in(0) != NULL && in(0)->in(0)->is_If()) {
165       assert(in(0)->is_IfFalse() || in(0)->is_IfTrue(), "should be If proj");
166       Node* proj = in(0);
167       if (proj->in(0)->in(1)->is_Bool()) {
168         Node* b = proj->in(0)->in(1);
169         if (b->in(1)->Opcode() == Op_CmpI) {
170           Node* cmp = b->in(1);
171           if (cmp->in(1) == in(1) && phase->type(cmp->in(2))->isa_int()) {
172             const TypeInt* in2_t = phase->type(cmp->in(2))->is_int();
173             const Type* t = TypeInt::INT;
174             BoolTest test = b->as_Bool()->_test;
175             if (proj->is_IfFalse()) {
176               test = test.negate();
177             }
178             BoolTest::mask m = test._test;
179             jlong lo_long = min_jint;
180             jlong hi_long = max_jint;
181             if (m == BoolTest::le || m == BoolTest::lt) {
182               hi_long = in2_t->_hi;
183               if (m == BoolTest::lt) {
184                 hi_long -= 1;
185               }
186             } else if (m == BoolTest::ge || m == BoolTest::gt) {
187               lo_long = in2_t->_lo;
188               if (m == BoolTest::gt) {
189                 lo_long += 1;
190               }
191             } else if (m == BoolTest::eq) {
192               lo_long = in2_t->_lo;
193               hi_long = in2_t->_hi;
194             } else if (m == BoolTest::ne) {
195               // can't do any better
196             } else {
197               stringStream ss;
198               test.dump_on(&ss);
199               fatal("unexpected comparison %s", ss.as_string());
200             }
201             int lo_int = (int)lo_long;
202             int hi_int = (int)hi_long;
203 
204             if (lo_long != (jlong)lo_int) {
205               lo_int = min_jint;
206             }
207             if (hi_long != (jlong)hi_int) {
208               hi_int = max_jint;
209             }
210 
211             t = TypeInt::make(lo_int, hi_int, Type::WidenMax);
212 
213             res = res->filter_speculative(t);
214 
215             return res;
216           }
217         }
218       }
219     }
220   }
221   return res;
222 }
223 
Ideal(PhaseGVN * phase,bool can_reshape)224 Node *CastIINode::Ideal(PhaseGVN *phase, bool can_reshape) {
225   Node* progress = ConstraintCastNode::Ideal(phase, can_reshape);
226   if (progress != NULL) {
227     return progress;
228   }
229 
230   // Similar to ConvI2LNode::Ideal() for the same reasons
231   // Do not narrow the type of range check dependent CastIINodes to
232   // avoid corruption of the graph if a CastII is replaced by TOP but
233   // the corresponding range check is not removed.
234   if (can_reshape && !_range_check_dependency && !phase->C->major_progress()) {
235     const TypeInt* this_type = this->type()->is_int();
236     const TypeInt* in_type = phase->type(in(1))->isa_int();
237     if (in_type != NULL && this_type != NULL &&
238         (in_type->_lo != this_type->_lo ||
239          in_type->_hi != this_type->_hi)) {
240       jint lo1 = this_type->_lo;
241       jint hi1 = this_type->_hi;
242       int w1  = this_type->_widen;
243 
244       if (lo1 >= 0) {
245         // Keep a range assertion of >=0.
246         lo1 = 0;        hi1 = max_jint;
247       } else if (hi1 < 0) {
248         // Keep a range assertion of <0.
249         lo1 = min_jint; hi1 = -1;
250       } else {
251         lo1 = min_jint; hi1 = max_jint;
252       }
253       const TypeInt* wtype = TypeInt::make(MAX2(in_type->_lo, lo1),
254                                            MIN2(in_type->_hi, hi1),
255                                            MAX2((int)in_type->_widen, w1));
256       if (wtype != type()) {
257         set_type(wtype);
258         return this;
259       }
260     }
261   }
262   return NULL;
263 }
264 
cmp(const Node & n) const265 bool CastIINode::cmp(const Node &n) const {
266   return ConstraintCastNode::cmp(n) && ((CastIINode&)n)._range_check_dependency == _range_check_dependency;
267 }
268 
size_of() const269 uint CastIINode::size_of() const {
270   return sizeof(*this);
271 }
272 
273 #ifndef PRODUCT
dump_spec(outputStream * st) const274 void CastIINode::dump_spec(outputStream* st) const {
275   ConstraintCastNode::dump_spec(st);
276   if (_range_check_dependency) {
277     st->print(" range check dependency");
278   }
279 }
280 #endif
281 
282 //=============================================================================
283 //------------------------------Identity---------------------------------------
284 // If input is already higher or equal to cast type, then this is an identity.
Identity(PhaseGVN * phase)285 Node* CheckCastPPNode::Identity(PhaseGVN* phase) {
286   Node* dom = dominating_cast(phase, phase);
287   if (dom != NULL) {
288     return dom;
289   }
290   if (_carry_dependency) {
291     return this;
292   }
293   // Toned down to rescue meeting at a Phi 3 different oops all implementing
294   // the same interface.
295   return (phase->type(in(1)) == phase->type(this)) ? in(1) : this;
296 }
297 
298 //------------------------------Value------------------------------------------
299 // Take 'join' of input and cast-up type, unless working with an Interface
Value(PhaseGVN * phase) const300 const Type* CheckCastPPNode::Value(PhaseGVN* phase) const {
301   if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
302 
303   const Type *inn = phase->type(in(1));
304   if( inn == Type::TOP ) return Type::TOP;  // No information yet
305 
306   const TypePtr *in_type   = inn->isa_ptr();
307   const TypePtr *my_type   = _type->isa_ptr();
308   const Type *result = _type;
309   if( in_type != NULL && my_type != NULL ) {
310     TypePtr::PTR   in_ptr    = in_type->ptr();
311     if (in_ptr == TypePtr::Null) {
312       result = in_type;
313     } else if (in_ptr == TypePtr::Constant) {
314       if (my_type->isa_rawptr()) {
315         result = my_type;
316       } else {
317         const TypeOopPtr *jptr = my_type->isa_oopptr();
318         assert(jptr, "");
319         result = !in_type->higher_equal(_type)
320           ? my_type->cast_to_ptr_type(TypePtr::NotNull)
321           : in_type;
322       }
323     } else {
324       result =  my_type->cast_to_ptr_type( my_type->join_ptr(in_ptr) );
325     }
326   }
327 
328   // This is the code from TypePtr::xmeet() that prevents us from
329   // having 2 ways to represent the same type. We have to replicate it
330   // here because we don't go through meet/join.
331   if (result->remove_speculative() == result->speculative()) {
332     result = result->remove_speculative();
333   }
334 
335   // Same as above: because we don't go through meet/join, remove the
336   // speculative type if we know we won't use it.
337   return result->cleanup_speculative();
338 
339   // JOIN NOT DONE HERE BECAUSE OF INTERFACE ISSUES.
340   // FIX THIS (DO THE JOIN) WHEN UNION TYPES APPEAR!
341 
342   //
343   // Remove this code after overnight run indicates no performance
344   // loss from not performing JOIN at CheckCastPPNode
345   //
346   // const TypeInstPtr *in_oop = in->isa_instptr();
347   // const TypeInstPtr *my_oop = _type->isa_instptr();
348   // // If either input is an 'interface', return destination type
349   // assert (in_oop == NULL || in_oop->klass() != NULL, "");
350   // assert (my_oop == NULL || my_oop->klass() != NULL, "");
351   // if( (in_oop && in_oop->klass()->is_interface())
352   //   ||(my_oop && my_oop->klass()->is_interface()) ) {
353   //   TypePtr::PTR  in_ptr = in->isa_ptr() ? in->is_ptr()->_ptr : TypePtr::BotPTR;
354   //   // Preserve cast away nullness for interfaces
355   //   if( in_ptr == TypePtr::NotNull && my_oop && my_oop->_ptr == TypePtr::BotPTR ) {
356   //     return my_oop->cast_to_ptr_type(TypePtr::NotNull);
357   //   }
358   //   return _type;
359   // }
360   //
361   // // Neither the input nor the destination type is an interface,
362   //
363   // // history: JOIN used to cause weird corner case bugs
364   // //          return (in == TypeOopPtr::NULL_PTR) ? in : _type;
365   // // JOIN picks up NotNull in common instance-of/check-cast idioms, both oops.
366   // // JOIN does not preserve NotNull in other cases, e.g. RawPtr vs InstPtr
367   // const Type *join = in->join(_type);
368   // // Check if join preserved NotNull'ness for pointers
369   // if( join->isa_ptr() && _type->isa_ptr() ) {
370   //   TypePtr::PTR join_ptr = join->is_ptr()->_ptr;
371   //   TypePtr::PTR type_ptr = _type->is_ptr()->_ptr;
372   //   // If there isn't any NotNull'ness to preserve
373   //   // OR if join preserved NotNull'ness then return it
374   //   if( type_ptr == TypePtr::BotPTR  || type_ptr == TypePtr::Null ||
375   //       join_ptr == TypePtr::NotNull || join_ptr == TypePtr::Constant ) {
376   //     return join;
377   //   }
378   //   // ELSE return same old type as before
379   //   return _type;
380   // }
381   // // Not joining two pointers
382   // return join;
383 }
384 
385 //=============================================================================
386 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const387 const Type* CastX2PNode::Value(PhaseGVN* phase) const {
388   const Type* t = phase->type(in(1));
389   if (t == Type::TOP) return Type::TOP;
390   if (t->base() == Type_X && t->singleton()) {
391     uintptr_t bits = (uintptr_t) t->is_intptr_t()->get_con();
392     if (bits == 0)   return TypePtr::NULL_PTR;
393     return TypeRawPtr::make((address) bits);
394   }
395   return CastX2PNode::bottom_type();
396 }
397 
398 //------------------------------Idealize---------------------------------------
fits_in_int(const Type * t,bool but_not_min_int=false)399 static inline bool fits_in_int(const Type* t, bool but_not_min_int = false) {
400   if (t == Type::TOP)  return false;
401   const TypeX* tl = t->is_intptr_t();
402   jint lo = min_jint;
403   jint hi = max_jint;
404   if (but_not_min_int)  ++lo;  // caller wants to negate the value w/o overflow
405   return (tl->_lo >= lo) && (tl->_hi <= hi);
406 }
407 
addP_of_X2P(PhaseGVN * phase,Node * base,Node * dispX,bool negate=false)408 static inline Node* addP_of_X2P(PhaseGVN *phase,
409                                 Node* base,
410                                 Node* dispX,
411                                 bool negate = false) {
412   if (negate) {
413     dispX = phase->transform(new SubXNode(phase->MakeConX(0), dispX));
414   }
415   return new AddPNode(phase->C->top(),
416                       phase->transform(new CastX2PNode(base)),
417                       dispX);
418 }
419 
Ideal(PhaseGVN * phase,bool can_reshape)420 Node *CastX2PNode::Ideal(PhaseGVN *phase, bool can_reshape) {
421   // convert CastX2P(AddX(x, y)) to AddP(CastX2P(x), y) if y fits in an int
422   int op = in(1)->Opcode();
423   Node* x;
424   Node* y;
425   switch (op) {
426     case Op_SubX:
427     x = in(1)->in(1);
428     // Avoid ideal transformations ping-pong between this and AddP for raw pointers.
429     if (phase->find_intptr_t_con(x, -1) == 0)
430     break;
431     y = in(1)->in(2);
432     if (fits_in_int(phase->type(y), true)) {
433       return addP_of_X2P(phase, x, y, true);
434     }
435     break;
436     case Op_AddX:
437     x = in(1)->in(1);
438     y = in(1)->in(2);
439     if (fits_in_int(phase->type(y))) {
440       return addP_of_X2P(phase, x, y);
441     }
442     if (fits_in_int(phase->type(x))) {
443       return addP_of_X2P(phase, y, x);
444     }
445     break;
446   }
447   return NULL;
448 }
449 
450 //------------------------------Identity---------------------------------------
Identity(PhaseGVN * phase)451 Node* CastX2PNode::Identity(PhaseGVN* phase) {
452   if (in(1)->Opcode() == Op_CastP2X)  return in(1)->in(1);
453   return this;
454 }
455 
456 //=============================================================================
457 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const458 const Type* CastP2XNode::Value(PhaseGVN* phase) const {
459   const Type* t = phase->type(in(1));
460   if (t == Type::TOP) return Type::TOP;
461   if (t->base() == Type::RawPtr && t->singleton()) {
462     uintptr_t bits = (uintptr_t) t->is_rawptr()->get_con();
463     return TypeX::make(bits);
464   }
465   return CastP2XNode::bottom_type();
466 }
467 
Ideal(PhaseGVN * phase,bool can_reshape)468 Node *CastP2XNode::Ideal(PhaseGVN *phase, bool can_reshape) {
469   return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
470 }
471 
472 //------------------------------Identity---------------------------------------
Identity(PhaseGVN * phase)473 Node* CastP2XNode::Identity(PhaseGVN* phase) {
474   if (in(1)->Opcode() == Op_CastX2P)  return in(1)->in(1);
475   return this;
476 }
477