1 /*
2  * Copyright (c) 2014, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "opto/addnode.hpp"
27 #include "opto/castnode.hpp"
28 #include "opto/convertnode.hpp"
29 #include "opto/matcher.hpp"
30 #include "opto/phaseX.hpp"
31 #include "opto/subnode.hpp"
32 #include "runtime/sharedRuntime.hpp"
33 
34 //=============================================================================
35 //------------------------------Identity---------------------------------------
Identity(PhaseGVN * phase)36 Node* Conv2BNode::Identity(PhaseGVN* phase) {
37   const Type *t = phase->type( in(1) );
38   if( t == Type::TOP ) return in(1);
39   if( t == TypeInt::ZERO ) return in(1);
40   if( t == TypeInt::ONE ) return in(1);
41   if( t == TypeInt::BOOL ) return in(1);
42   return this;
43 }
44 
45 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const46 const Type* Conv2BNode::Value(PhaseGVN* phase) const {
47   const Type *t = phase->type( in(1) );
48   if( t == Type::TOP ) return Type::TOP;
49   if( t == TypeInt::ZERO ) return TypeInt::ZERO;
50   if( t == TypePtr::NULL_PTR ) return TypeInt::ZERO;
51   const TypePtr *tp = t->isa_ptr();
52   if( tp != NULL ) {
53     if( tp->ptr() == TypePtr::AnyNull ) return Type::TOP;
54     if( tp->ptr() == TypePtr::Constant) return TypeInt::ONE;
55     if (tp->ptr() == TypePtr::NotNull)  return TypeInt::ONE;
56     return TypeInt::BOOL;
57   }
58   if (t->base() != Type::Int) return TypeInt::BOOL;
59   const TypeInt *ti = t->is_int();
60   if( ti->_hi < 0 || ti->_lo > 0 ) return TypeInt::ONE;
61   return TypeInt::BOOL;
62 }
63 
64 
65 // The conversions operations are all Alpha sorted.  Please keep it that way!
66 //=============================================================================
67 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const68 const Type* ConvD2FNode::Value(PhaseGVN* phase) const {
69   const Type *t = phase->type( in(1) );
70   if( t == Type::TOP ) return Type::TOP;
71   if( t == Type::DOUBLE ) return Type::FLOAT;
72   const TypeD *td = t->is_double_constant();
73   return TypeF::make( (float)td->getd() );
74 }
75 
76 //------------------------------Ideal------------------------------------------
77 // If we see pattern ConvF2D SomeDoubleOp ConvD2F, do operation as float.
Ideal(PhaseGVN * phase,bool can_reshape)78 Node *ConvD2FNode::Ideal(PhaseGVN *phase, bool can_reshape) {
79   if ( in(1)->Opcode() == Op_SqrtD ) {
80     Node* sqrtd = in(1);
81     if ( sqrtd->in(1)->Opcode() == Op_ConvF2D ) {
82       if ( Matcher::match_rule_supported(Op_SqrtF) ) {
83         Node* convf2d = sqrtd->in(1);
84         return new SqrtFNode(phase->C, sqrtd->in(0), convf2d->in(1));
85       }
86     }
87   }
88   return NULL;
89 }
90 
91 //------------------------------Identity---------------------------------------
92 // Float's can be converted to doubles with no loss of bits.  Hence
93 // converting a float to a double and back to a float is a NOP.
Identity(PhaseGVN * phase)94 Node* ConvD2FNode::Identity(PhaseGVN* phase) {
95   return (in(1)->Opcode() == Op_ConvF2D) ? in(1)->in(1) : this;
96 }
97 
98 //=============================================================================
99 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const100 const Type* ConvD2INode::Value(PhaseGVN* phase) const {
101   const Type *t = phase->type( in(1) );
102   if( t == Type::TOP ) return Type::TOP;
103   if( t == Type::DOUBLE ) return TypeInt::INT;
104   const TypeD *td = t->is_double_constant();
105   return TypeInt::make( SharedRuntime::d2i( td->getd() ) );
106 }
107 
108 //------------------------------Ideal------------------------------------------
109 // If converting to an int type, skip any rounding nodes
Ideal(PhaseGVN * phase,bool can_reshape)110 Node *ConvD2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
111   if( in(1)->Opcode() == Op_RoundDouble )
112   set_req(1,in(1)->in(1));
113   return NULL;
114 }
115 
116 //------------------------------Identity---------------------------------------
117 // Int's can be converted to doubles with no loss of bits.  Hence
118 // converting an integer to a double and back to an integer is a NOP.
Identity(PhaseGVN * phase)119 Node* ConvD2INode::Identity(PhaseGVN* phase) {
120   return (in(1)->Opcode() == Op_ConvI2D) ? in(1)->in(1) : this;
121 }
122 
123 //=============================================================================
124 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const125 const Type* ConvD2LNode::Value(PhaseGVN* phase) const {
126   const Type *t = phase->type( in(1) );
127   if( t == Type::TOP ) return Type::TOP;
128   if( t == Type::DOUBLE ) return TypeLong::LONG;
129   const TypeD *td = t->is_double_constant();
130   return TypeLong::make( SharedRuntime::d2l( td->getd() ) );
131 }
132 
133 //------------------------------Identity---------------------------------------
Identity(PhaseGVN * phase)134 Node* ConvD2LNode::Identity(PhaseGVN* phase) {
135   // Remove ConvD2L->ConvL2D->ConvD2L sequences.
136   if( in(1)       ->Opcode() == Op_ConvL2D &&
137      in(1)->in(1)->Opcode() == Op_ConvD2L )
138   return in(1)->in(1);
139   return this;
140 }
141 
142 //------------------------------Ideal------------------------------------------
143 // If converting to an int type, skip any rounding nodes
Ideal(PhaseGVN * phase,bool can_reshape)144 Node *ConvD2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
145   if( in(1)->Opcode() == Op_RoundDouble )
146   set_req(1,in(1)->in(1));
147   return NULL;
148 }
149 
150 //=============================================================================
151 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const152 const Type* ConvF2DNode::Value(PhaseGVN* phase) const {
153   const Type *t = phase->type( in(1) );
154   if( t == Type::TOP ) return Type::TOP;
155   if( t == Type::FLOAT ) return Type::DOUBLE;
156   const TypeF *tf = t->is_float_constant();
157   return TypeD::make( (double)tf->getf() );
158 }
159 
160 //=============================================================================
161 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const162 const Type* ConvF2INode::Value(PhaseGVN* phase) const {
163   const Type *t = phase->type( in(1) );
164   if( t == Type::TOP )       return Type::TOP;
165   if( t == Type::FLOAT ) return TypeInt::INT;
166   const TypeF *tf = t->is_float_constant();
167   return TypeInt::make( SharedRuntime::f2i( tf->getf() ) );
168 }
169 
170 //------------------------------Identity---------------------------------------
Identity(PhaseGVN * phase)171 Node* ConvF2INode::Identity(PhaseGVN* phase) {
172   // Remove ConvF2I->ConvI2F->ConvF2I sequences.
173   if( in(1)       ->Opcode() == Op_ConvI2F &&
174      in(1)->in(1)->Opcode() == Op_ConvF2I )
175   return in(1)->in(1);
176   return this;
177 }
178 
179 //------------------------------Ideal------------------------------------------
180 // If converting to an int type, skip any rounding nodes
Ideal(PhaseGVN * phase,bool can_reshape)181 Node *ConvF2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
182   if( in(1)->Opcode() == Op_RoundFloat )
183   set_req(1,in(1)->in(1));
184   return NULL;
185 }
186 
187 //=============================================================================
188 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const189 const Type* ConvF2LNode::Value(PhaseGVN* phase) const {
190   const Type *t = phase->type( in(1) );
191   if( t == Type::TOP )       return Type::TOP;
192   if( t == Type::FLOAT ) return TypeLong::LONG;
193   const TypeF *tf = t->is_float_constant();
194   return TypeLong::make( SharedRuntime::f2l( tf->getf() ) );
195 }
196 
197 //------------------------------Identity---------------------------------------
Identity(PhaseGVN * phase)198 Node* ConvF2LNode::Identity(PhaseGVN* phase) {
199   // Remove ConvF2L->ConvL2F->ConvF2L sequences.
200   if( in(1)       ->Opcode() == Op_ConvL2F &&
201      in(1)->in(1)->Opcode() == Op_ConvF2L )
202   return in(1)->in(1);
203   return this;
204 }
205 
206 //------------------------------Ideal------------------------------------------
207 // If converting to an int type, skip any rounding nodes
Ideal(PhaseGVN * phase,bool can_reshape)208 Node *ConvF2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
209   if( in(1)->Opcode() == Op_RoundFloat )
210   set_req(1,in(1)->in(1));
211   return NULL;
212 }
213 
214 //=============================================================================
215 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const216 const Type* ConvI2DNode::Value(PhaseGVN* phase) const {
217   const Type *t = phase->type( in(1) );
218   if( t == Type::TOP ) return Type::TOP;
219   const TypeInt *ti = t->is_int();
220   if( ti->is_con() ) return TypeD::make( (double)ti->get_con() );
221   return bottom_type();
222 }
223 
224 //=============================================================================
225 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const226 const Type* ConvI2FNode::Value(PhaseGVN* phase) const {
227   const Type *t = phase->type( in(1) );
228   if( t == Type::TOP ) return Type::TOP;
229   const TypeInt *ti = t->is_int();
230   if( ti->is_con() ) return TypeF::make( (float)ti->get_con() );
231   return bottom_type();
232 }
233 
234 //------------------------------Identity---------------------------------------
Identity(PhaseGVN * phase)235 Node* ConvI2FNode::Identity(PhaseGVN* phase) {
236   // Remove ConvI2F->ConvF2I->ConvI2F sequences.
237   if( in(1)       ->Opcode() == Op_ConvF2I &&
238      in(1)->in(1)->Opcode() == Op_ConvI2F )
239   return in(1)->in(1);
240   return this;
241 }
242 
243 //=============================================================================
244 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const245 const Type* ConvI2LNode::Value(PhaseGVN* phase) const {
246   const Type *t = phase->type( in(1) );
247   if( t == Type::TOP ) return Type::TOP;
248   const TypeInt *ti = t->is_int();
249   const Type* tl = TypeLong::make(ti->_lo, ti->_hi, ti->_widen);
250   // Join my declared type against my incoming type.
251   tl = tl->filter(_type);
252   return tl;
253 }
254 
255 #ifdef _LP64
long_ranges_overlap(jlong lo1,jlong hi1,jlong lo2,jlong hi2)256 static inline bool long_ranges_overlap(jlong lo1, jlong hi1,
257                                        jlong lo2, jlong hi2) {
258   // Two ranges overlap iff one range's low point falls in the other range.
259   return (lo2 <= lo1 && lo1 <= hi2) || (lo1 <= lo2 && lo2 <= hi1);
260 }
261 #endif
262 
263 //------------------------------Ideal------------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)264 Node *ConvI2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
265   const TypeLong* this_type = this->type()->is_long();
266   Node* this_changed = NULL;
267 
268   // If _major_progress, then more loop optimizations follow.  Do NOT
269   // remove this node's type assertion until no more loop ops can happen.
270   // The progress bit is set in the major loop optimizations THEN comes the
271   // call to IterGVN and any chance of hitting this code.  Cf. Opaque1Node.
272   if (can_reshape && !phase->C->major_progress()) {
273     const TypeInt* in_type = phase->type(in(1))->isa_int();
274     if (in_type != NULL && this_type != NULL &&
275         (in_type->_lo != this_type->_lo ||
276          in_type->_hi != this_type->_hi)) {
277           // Although this WORSENS the type, it increases GVN opportunities,
278           // because I2L nodes with the same input will common up, regardless
279           // of slightly differing type assertions.  Such slight differences
280           // arise routinely as a result of loop unrolling, so this is a
281           // post-unrolling graph cleanup.  Choose a type which depends only
282           // on my input.  (Exception:  Keep a range assertion of >=0 or <0.)
283           jlong lo1 = this_type->_lo;
284           jlong hi1 = this_type->_hi;
285           int   w1  = this_type->_widen;
286           if (lo1 != (jint)lo1 ||
287               hi1 != (jint)hi1 ||
288               lo1 > hi1) {
289             // Overflow leads to wraparound, wraparound leads to range saturation.
290             lo1 = min_jint; hi1 = max_jint;
291           } else if (lo1 >= 0) {
292             // Keep a range assertion of >=0.
293             lo1 = 0;        hi1 = max_jint;
294           } else if (hi1 < 0) {
295             // Keep a range assertion of <0.
296             lo1 = min_jint; hi1 = -1;
297           } else {
298             lo1 = min_jint; hi1 = max_jint;
299           }
300           const TypeLong* wtype = TypeLong::make(MAX2((jlong)in_type->_lo, lo1),
301                                                  MIN2((jlong)in_type->_hi, hi1),
302                                                  MAX2((int)in_type->_widen, w1));
303           if (wtype != type()) {
304             set_type(wtype);
305             // Note: this_type still has old type value, for the logic below.
306             this_changed = this;
307           }
308         }
309   }
310 
311 #ifdef _LP64
312   // Convert ConvI2L(AddI(x, y)) to AddL(ConvI2L(x), ConvI2L(y))
313   // but only if x and y have subranges that cannot cause 32-bit overflow,
314   // under the assumption that x+y is in my own subrange this->type().
315 
316   // This assumption is based on a constraint (i.e., type assertion)
317   // established in Parse::array_addressing or perhaps elsewhere.
318   // This constraint has been adjoined to the "natural" type of
319   // the incoming argument in(0).  We know (because of runtime
320   // checks) - that the result value I2L(x+y) is in the joined range.
321   // Hence we can restrict the incoming terms (x, y) to values such
322   // that their sum also lands in that range.
323 
324   // This optimization is useful only on 64-bit systems, where we hope
325   // the addition will end up subsumed in an addressing mode.
326   // It is necessary to do this when optimizing an unrolled array
327   // copy loop such as x[i++] = y[i++].
328 
329   // On 32-bit systems, it's better to perform as much 32-bit math as
330   // possible before the I2L conversion, because 32-bit math is cheaper.
331   // There's no common reason to "leak" a constant offset through the I2L.
332   // Addressing arithmetic will not absorb it as part of a 64-bit AddL.
333 
334   Node* z = in(1);
335   int op = z->Opcode();
336   if (op == Op_AddI || op == Op_SubI) {
337     if (!can_reshape) {
338       // Postpone this optimization to after parsing because with deep AddNode
339       // chains a large amount of dead ConvI2L nodes might be created that are
340       // not removed during parsing. As a result, we might hit the node limit.
341       phase->record_for_igvn(this);
342       return this_changed;
343     }
344     Node* x = z->in(1);
345     Node* y = z->in(2);
346     assert (x != z && y != z, "dead loop in ConvI2LNode::Ideal");
347     if (phase->type(x) == Type::TOP)  return this_changed;
348     if (phase->type(y) == Type::TOP)  return this_changed;
349     const TypeInt*  tx = phase->type(x)->is_int();
350     const TypeInt*  ty = phase->type(y)->is_int();
351     const TypeLong* tz = this_type;
352     jlong xlo = tx->_lo;
353     jlong xhi = tx->_hi;
354     jlong ylo = ty->_lo;
355     jlong yhi = ty->_hi;
356     jlong zlo = tz->_lo;
357     jlong zhi = tz->_hi;
358     jlong vbit = CONST64(1) << BitsPerInt;
359     int widen =  MAX2(tx->_widen, ty->_widen);
360     if (op == Op_SubI) {
361       jlong ylo0 = ylo;
362       ylo = -yhi;
363       yhi = -ylo0;
364     }
365     // See if x+y can cause positive overflow into z+2**32
366     if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo+vbit, zhi+vbit)) {
367       return this_changed;
368     }
369     // See if x+y can cause negative overflow into z-2**32
370     if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo-vbit, zhi-vbit)) {
371       return this_changed;
372     }
373     // Now it's always safe to assume x+y does not overflow.
374     // This is true even if some pairs x,y might cause overflow, as long
375     // as that overflow value cannot fall into [zlo,zhi].
376 
377     // Confident that the arithmetic is "as if infinite precision",
378     // we can now use z's range to put constraints on those of x and y.
379     // The "natural" range of x [xlo,xhi] can perhaps be narrowed to a
380     // more "restricted" range by intersecting [xlo,xhi] with the
381     // range obtained by subtracting y's range from the asserted range
382     // of the I2L conversion.  Here's the interval arithmetic algebra:
383     //    x == z-y == [zlo,zhi]-[ylo,yhi] == [zlo,zhi]+[-yhi,-ylo]
384     //    => x in [zlo-yhi, zhi-ylo]
385     //    => x in [zlo-yhi, zhi-ylo] INTERSECT [xlo,xhi]
386     //    => x in [xlo MAX zlo-yhi, xhi MIN zhi-ylo]
387     jlong rxlo = MAX2(xlo, zlo - yhi);
388     jlong rxhi = MIN2(xhi, zhi - ylo);
389     // And similarly, x changing place with y:
390     jlong rylo = MAX2(ylo, zlo - xhi);
391     jlong ryhi = MIN2(yhi, zhi - xlo);
392     if (rxlo > rxhi || rylo > ryhi) {
393       return this_changed;  // x or y is dying; don't mess w/ it
394     }
395     if (op == Op_SubI) {
396       jlong rylo0 = rylo;
397       rylo = -ryhi;
398       ryhi = -rylo0;
399     }
400     assert(rxlo == (int)rxlo && rxhi == (int)rxhi, "x should not overflow");
401     assert(rylo == (int)rylo && ryhi == (int)ryhi, "y should not overflow");
402     Node* cx = phase->C->constrained_convI2L(phase, x, TypeInt::make(rxlo, rxhi, widen), NULL);
403     Node *hook = new Node(1);
404     hook->init_req(0, cx);  // Add a use to cx to prevent him from dying
405     Node* cy = phase->C->constrained_convI2L(phase, y, TypeInt::make(rylo, ryhi, widen), NULL);
406     hook->del_req(0);  // Just yank bogus edge
407     hook->destruct();
408     switch (op) {
409       case Op_AddI:  return new AddLNode(cx, cy);
410       case Op_SubI:  return new SubLNode(cx, cy);
411       default:       ShouldNotReachHere();
412     }
413   }
414 #endif //_LP64
415 
416   return this_changed;
417 }
418 
419 //=============================================================================
420 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const421 const Type* ConvL2DNode::Value(PhaseGVN* phase) const {
422   const Type *t = phase->type( in(1) );
423   if( t == Type::TOP ) return Type::TOP;
424   const TypeLong *tl = t->is_long();
425   if( tl->is_con() ) return TypeD::make( (double)tl->get_con() );
426   return bottom_type();
427 }
428 
429 //=============================================================================
430 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const431 const Type* ConvL2FNode::Value(PhaseGVN* phase) const {
432   const Type *t = phase->type( in(1) );
433   if( t == Type::TOP ) return Type::TOP;
434   const TypeLong *tl = t->is_long();
435   if( tl->is_con() ) return TypeF::make( (float)tl->get_con() );
436   return bottom_type();
437 }
438 
439 //=============================================================================
440 //----------------------------Identity-----------------------------------------
Identity(PhaseGVN * phase)441 Node* ConvL2INode::Identity(PhaseGVN* phase) {
442   // Convert L2I(I2L(x)) => x
443   if (in(1)->Opcode() == Op_ConvI2L)  return in(1)->in(1);
444   return this;
445 }
446 
447 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const448 const Type* ConvL2INode::Value(PhaseGVN* phase) const {
449   const Type *t = phase->type( in(1) );
450   if( t == Type::TOP ) return Type::TOP;
451   const TypeLong *tl = t->is_long();
452   if (tl->is_con())
453   // Easy case.
454   return TypeInt::make((jint)tl->get_con());
455   return bottom_type();
456 }
457 
458 //------------------------------Ideal------------------------------------------
459 // Return a node which is more "ideal" than the current node.
460 // Blow off prior masking to int
Ideal(PhaseGVN * phase,bool can_reshape)461 Node *ConvL2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
462   Node *andl = in(1);
463   uint andl_op = andl->Opcode();
464   if( andl_op == Op_AndL ) {
465     // Blow off prior masking to int
466     if( phase->type(andl->in(2)) == TypeLong::make( 0xFFFFFFFF ) ) {
467       set_req(1,andl->in(1));
468       return this;
469     }
470   }
471 
472   // Swap with a prior add: convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
473   // This replaces an 'AddL' with an 'AddI'.
474   if( andl_op == Op_AddL ) {
475     // Don't do this for nodes which have more than one user since
476     // we'll end up computing the long add anyway.
477     if (andl->outcnt() > 1) return NULL;
478 
479     Node* x = andl->in(1);
480     Node* y = andl->in(2);
481     assert( x != andl && y != andl, "dead loop in ConvL2INode::Ideal" );
482     if (phase->type(x) == Type::TOP)  return NULL;
483     if (phase->type(y) == Type::TOP)  return NULL;
484     Node *add1 = phase->transform(new ConvL2INode(x));
485     Node *add2 = phase->transform(new ConvL2INode(y));
486     return new AddINode(add1,add2);
487   }
488 
489   // Disable optimization: LoadL->ConvL2I ==> LoadI.
490   // It causes problems (sizes of Load and Store nodes do not match)
491   // in objects initialization code and Escape Analysis.
492   return NULL;
493 }
494 
495 
496 
497 //=============================================================================
498 //------------------------------Identity---------------------------------------
499 // Remove redundant roundings
Identity(PhaseGVN * phase)500 Node* RoundFloatNode::Identity(PhaseGVN* phase) {
501   assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
502   // Do not round constants
503   if (phase->type(in(1))->base() == Type::FloatCon)  return in(1);
504   int op = in(1)->Opcode();
505   // Redundant rounding
506   if( op == Op_RoundFloat ) return in(1);
507   // Already rounded
508   if( op == Op_Parm ) return in(1);
509   if( op == Op_LoadF ) return in(1);
510   return this;
511 }
512 
513 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const514 const Type* RoundFloatNode::Value(PhaseGVN* phase) const {
515   return phase->type( in(1) );
516 }
517 
518 //=============================================================================
519 //------------------------------Identity---------------------------------------
520 // Remove redundant roundings.  Incoming arguments are already rounded.
Identity(PhaseGVN * phase)521 Node* RoundDoubleNode::Identity(PhaseGVN* phase) {
522   assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
523   // Do not round constants
524   if (phase->type(in(1))->base() == Type::DoubleCon)  return in(1);
525   int op = in(1)->Opcode();
526   // Redundant rounding
527   if( op == Op_RoundDouble ) return in(1);
528   // Already rounded
529   if( op == Op_Parm ) return in(1);
530   if( op == Op_LoadD ) return in(1);
531   if( op == Op_ConvF2D ) return in(1);
532   if( op == Op_ConvI2D ) return in(1);
533   return this;
534 }
535 
536 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const537 const Type* RoundDoubleNode::Value(PhaseGVN* phase) const {
538   return phase->type( in(1) );
539 }
540 
541 //=============================================================================
make(PhaseGVN & gvn,Node * arg,RoundDoubleModeNode::RoundingMode rmode)542 RoundDoubleModeNode* RoundDoubleModeNode::make(PhaseGVN& gvn, Node* arg, RoundDoubleModeNode::RoundingMode rmode) {
543   ConINode* rm = gvn.intcon(rmode);
544   return new RoundDoubleModeNode(arg, (Node *)rm);
545 }
546 
547 //------------------------------Identity---------------------------------------
548 // Remove redundant roundings.
Identity(PhaseGVN * phase)549 Node* RoundDoubleModeNode::Identity(PhaseGVN* phase) {
550   int op = in(1)->Opcode();
551   // Redundant rounding e.g. floor(ceil(n)) -> ceil(n)
552   if(op == Op_RoundDoubleMode) return in(1);
553   return this;
554 }
Value(PhaseGVN * phase) const555 const Type* RoundDoubleModeNode::Value(PhaseGVN* phase) const {
556   return Type::DOUBLE;
557 }
558 //=============================================================================
559