1 /*
2  * Copyright (c) 2007, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  */
23 
24 #include "precompiled.hpp"
25 #include "compiler/compileLog.hpp"
26 #include "libadt/vectset.hpp"
27 #include "memory/allocation.inline.hpp"
28 #include "memory/resourceArea.hpp"
29 #include "opto/addnode.hpp"
30 #include "opto/callnode.hpp"
31 #include "opto/castnode.hpp"
32 #include "opto/convertnode.hpp"
33 #include "opto/divnode.hpp"
34 #include "opto/matcher.hpp"
35 #include "opto/memnode.hpp"
36 #include "opto/mulnode.hpp"
37 #include "opto/opcodes.hpp"
38 #include "opto/opaquenode.hpp"
39 #include "opto/superword.hpp"
40 #include "opto/vectornode.hpp"
41 #include "opto/movenode.hpp"
42 #include "utilities/powerOfTwo.hpp"
43 
44 //
45 //                  S U P E R W O R D   T R A N S F O R M
46 //=============================================================================
47 
48 //------------------------------SuperWord---------------------------
SuperWord(PhaseIdealLoop * phase)49 SuperWord::SuperWord(PhaseIdealLoop* phase) :
50   _phase(phase),
51   _arena(phase->C->comp_arena()),
52   _igvn(phase->_igvn),
53   _packset(arena(), 8,  0, NULL),         // packs for the current block
54   _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
55   _block(arena(), 8,  0, NULL),           // nodes in current block
56   _post_block(arena(), 8, 0, NULL),       // nodes common to current block which are marked as post loop vectorizable
57   _data_entry(arena(), 8,  0, NULL),      // nodes with all inputs from outside
58   _mem_slice_head(arena(), 8,  0, NULL),  // memory slice heads
59   _mem_slice_tail(arena(), 8,  0, NULL),  // memory slice tails
60   _node_info(arena(), 8,  0, SWNodeInfo::initial), // info needed per node
61   _clone_map(phase->C->clone_map()),      // map of nodes created in cloning
62   _cmovev_kit(_arena, this),              // map to facilitate CMoveV creation
63   _align_to_ref(NULL),                    // memory reference to align vectors to
64   _disjoint_ptrs(arena(), 8,  0, OrderedPair::initial), // runtime disambiguated pointer pairs
65   _dg(_arena),                            // dependence graph
66   _visited(arena()),                      // visited node set
67   _post_visited(arena()),                 // post visited node set
68   _n_idx_list(arena(), 8),                // scratch list of (node,index) pairs
69   _nlist(arena(), 8, 0, NULL),            // scratch list of nodes
70   _stk(arena(), 8, 0, NULL),              // scratch stack of nodes
71   _lpt(NULL),                             // loop tree node
72   _lp(NULL),                              // LoopNode
73   _bb(NULL),                              // basic block
74   _iv(NULL),                              // induction var
75   _race_possible(false),                  // cases where SDMU is true
76   _early_return(true),                    // analysis evaluations routine
77   _do_vector_loop(phase->C->do_vector_loop()),  // whether to do vectorization/simd style
78   _do_reserve_copy(DoReserveCopyInSuperWord),
79   _num_work_vecs(0),                      // amount of vector work we have
80   _num_reductions(0),                     // amount of reduction work we have
81   _ii_first(-1),                          // first loop generation index - only if do_vector_loop()
82   _ii_last(-1),                           // last loop generation index - only if do_vector_loop()
83   _ii_order(arena(), 8, 0, 0)
84 {
85 #ifndef PRODUCT
86   _vector_loop_debug = 0;
87   if (_phase->C->method() != NULL) {
88     _vector_loop_debug = phase->C->directive()->VectorizeDebugOption;
89   }
90 
91 #endif
92 }
93 
94 //------------------------------transform_loop---------------------------
transform_loop(IdealLoopTree * lpt,bool do_optimization)95 void SuperWord::transform_loop(IdealLoopTree* lpt, bool do_optimization) {
96   assert(UseSuperWord, "should be");
97   // Do vectors exist on this architecture?
98   if (Matcher::vector_width_in_bytes(T_BYTE) < 2) return;
99 
100   assert(lpt->_head->is_CountedLoop(), "must be");
101   CountedLoopNode *cl = lpt->_head->as_CountedLoop();
102 
103   if (!cl->is_valid_counted_loop()) return; // skip malformed counted loop
104 
105   bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
106   if (post_loop_allowed) {
107     if (cl->is_reduction_loop()) return; // no predication mapping
108     Node *limit = cl->limit();
109     if (limit->is_Con()) return; // non constant limits only
110     // Now check the limit for expressions we do not handle
111     if (limit->is_Add()) {
112       Node *in2 = limit->in(2);
113       if (in2->is_Con()) {
114         int val = in2->get_int();
115         // should not try to program these cases
116         if (val < 0) return;
117       }
118     }
119   }
120 
121   // skip any loop that has not been assigned max unroll by analysis
122   if (do_optimization) {
123     if (SuperWordLoopUnrollAnalysis && cl->slp_max_unroll() == 0) return;
124   }
125 
126   // Check for no control flow in body (other than exit)
127   Node *cl_exit = cl->loopexit();
128   if (cl->is_main_loop() && (cl_exit->in(0) != lpt->_head)) {
129     #ifndef PRODUCT
130       if (TraceSuperWord) {
131         tty->print_cr("SuperWord::transform_loop: loop too complicated, cl_exit->in(0) != lpt->_head");
132         tty->print("cl_exit %d", cl_exit->_idx); cl_exit->dump();
133         tty->print("cl_exit->in(0) %d", cl_exit->in(0)->_idx); cl_exit->in(0)->dump();
134         tty->print("lpt->_head %d", lpt->_head->_idx); lpt->_head->dump();
135         lpt->dump_head();
136       }
137     #endif
138     return;
139   }
140 
141   // Make sure the are no extra control users of the loop backedge
142   if (cl->back_control()->outcnt() != 1) {
143     return;
144   }
145 
146   // Skip any loops already optimized by slp
147   if (cl->is_vectorized_loop()) return;
148 
149   if (cl->is_unroll_only()) return;
150 
151   if (cl->is_main_loop()) {
152     // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
153     CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
154     if (pre_end == NULL) return;
155     Node *pre_opaq1 = pre_end->limit();
156     if (pre_opaq1->Opcode() != Op_Opaque1) return;
157   }
158 
159   init(); // initialize data structures
160 
161   set_lpt(lpt);
162   set_lp(cl);
163 
164   // For now, define one block which is the entire loop body
165   set_bb(cl);
166 
167   if (do_optimization) {
168     assert(_packset.length() == 0, "packset must be empty");
169     SLP_extract();
170     if (PostLoopMultiversioning && Matcher::has_predicated_vectors()) {
171       if (cl->is_vectorized_loop() && cl->is_main_loop() && !cl->is_reduction_loop()) {
172         IdealLoopTree *lpt_next = lpt->_next;
173         CountedLoopNode *cl_next = lpt_next->_head->as_CountedLoop();
174         _phase->has_range_checks(lpt_next);
175         if (cl_next->is_post_loop() && !cl_next->range_checks_present()) {
176           if (!cl_next->is_vectorized_loop()) {
177             int slp_max_unroll_factor = cl->slp_max_unroll();
178             cl_next->set_slp_max_unroll(slp_max_unroll_factor);
179           }
180         }
181       }
182     }
183   }
184 }
185 
186 //------------------------------early unrolling analysis------------------------------
unrolling_analysis(int & local_loop_unroll_factor)187 void SuperWord::unrolling_analysis(int &local_loop_unroll_factor) {
188   bool is_slp = true;
189   ResourceMark rm;
190   size_t ignored_size = lpt()->_body.size();
191   int *ignored_loop_nodes = NEW_RESOURCE_ARRAY(int, ignored_size);
192   Node_Stack nstack((int)ignored_size);
193   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
194   Node *cl_exit = cl->loopexit_or_null();
195   int rpo_idx = _post_block.length();
196 
197   assert(rpo_idx == 0, "post loop block is empty");
198 
199   // First clear the entries
200   for (uint i = 0; i < lpt()->_body.size(); i++) {
201     ignored_loop_nodes[i] = -1;
202   }
203 
204   int max_vector = Matcher::max_vector_size(T_BYTE);
205   bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
206 
207   // Process the loop, some/all of the stack entries will not be in order, ergo
208   // need to preprocess the ignored initial state before we process the loop
209   for (uint i = 0; i < lpt()->_body.size(); i++) {
210     Node* n = lpt()->_body.at(i);
211     if (n == cl->incr() ||
212       n->is_reduction() ||
213       n->is_AddP() ||
214       n->is_Cmp() ||
215       n->is_IfTrue() ||
216       n->is_CountedLoop() ||
217       (n == cl_exit)) {
218       ignored_loop_nodes[i] = n->_idx;
219       continue;
220     }
221 
222     if (n->is_If()) {
223       IfNode *iff = n->as_If();
224       if (iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN) {
225         if (lpt()->is_loop_exit(iff)) {
226           ignored_loop_nodes[i] = n->_idx;
227           continue;
228         }
229       }
230     }
231 
232     if (n->is_Phi() && (n->bottom_type() == Type::MEMORY)) {
233       Node* n_tail = n->in(LoopNode::LoopBackControl);
234       if (n_tail != n->in(LoopNode::EntryControl)) {
235         if (!n_tail->is_Mem()) {
236           is_slp = false;
237           break;
238         }
239       }
240     }
241 
242     // This must happen after check of phi/if
243     if (n->is_Phi() || n->is_If()) {
244       ignored_loop_nodes[i] = n->_idx;
245       continue;
246     }
247 
248     if (n->is_LoadStore() || n->is_MergeMem() ||
249       (n->is_Proj() && !n->as_Proj()->is_CFG())) {
250       is_slp = false;
251       break;
252     }
253 
254     // Ignore nodes with non-primitive type.
255     BasicType bt;
256     if (n->is_Mem()) {
257       bt = n->as_Mem()->memory_type();
258     } else {
259       bt = n->bottom_type()->basic_type();
260     }
261     if (is_java_primitive(bt) == false) {
262       ignored_loop_nodes[i] = n->_idx;
263       continue;
264     }
265 
266     if (n->is_Mem()) {
267       MemNode* current = n->as_Mem();
268       Node* adr = n->in(MemNode::Address);
269       Node* n_ctrl = _phase->get_ctrl(adr);
270 
271       // save a queue of post process nodes
272       if (n_ctrl != NULL && lpt()->is_member(_phase->get_loop(n_ctrl))) {
273         // Process the memory expression
274         int stack_idx = 0;
275         bool have_side_effects = true;
276         if (adr->is_AddP() == false) {
277           nstack.push(adr, stack_idx++);
278         } else {
279           // Mark the components of the memory operation in nstack
280           SWPointer p1(current, this, &nstack, true);
281           have_side_effects = p1.node_stack()->is_nonempty();
282         }
283 
284         // Process the pointer stack
285         while (have_side_effects) {
286           Node* pointer_node = nstack.node();
287           for (uint j = 0; j < lpt()->_body.size(); j++) {
288             Node* cur_node = lpt()->_body.at(j);
289             if (cur_node == pointer_node) {
290               ignored_loop_nodes[j] = cur_node->_idx;
291               break;
292             }
293           }
294           nstack.pop();
295           have_side_effects = nstack.is_nonempty();
296         }
297       }
298     }
299   }
300 
301   if (is_slp) {
302     // Now we try to find the maximum supported consistent vector which the machine
303     // description can use
304     bool small_basic_type = false;
305     bool flag_small_bt = false;
306     for (uint i = 0; i < lpt()->_body.size(); i++) {
307       if (ignored_loop_nodes[i] != -1) continue;
308 
309       BasicType bt;
310       Node* n = lpt()->_body.at(i);
311       if (n->is_Mem()) {
312         bt = n->as_Mem()->memory_type();
313       } else {
314         bt = n->bottom_type()->basic_type();
315       }
316 
317       if (post_loop_allowed) {
318         if (!small_basic_type) {
319           switch (bt) {
320           case T_CHAR:
321           case T_BYTE:
322           case T_SHORT:
323             small_basic_type = true;
324             break;
325 
326           case T_LONG:
327             // TODO: Remove when support completed for mask context with LONG.
328             //       Support needs to be augmented for logical qword operations, currently we map to dword
329             //       buckets for vectors on logicals as these were legacy.
330             small_basic_type = true;
331             break;
332 
333           default:
334             break;
335           }
336         }
337       }
338 
339       if (is_java_primitive(bt) == false) continue;
340 
341          int cur_max_vector = Matcher::max_vector_size(bt);
342 
343       // If a max vector exists which is not larger than _local_loop_unroll_factor
344       // stop looking, we already have the max vector to map to.
345       if (cur_max_vector < local_loop_unroll_factor) {
346         is_slp = false;
347         if (TraceSuperWordLoopUnrollAnalysis) {
348           tty->print_cr("slp analysis fails: unroll limit greater than max vector\n");
349         }
350         break;
351       }
352 
353       // Map the maximal common vector
354       if (VectorNode::implemented(n->Opcode(), cur_max_vector, bt)) {
355         if (cur_max_vector < max_vector && !flag_small_bt) {
356           max_vector = cur_max_vector;
357         } else if (cur_max_vector > max_vector && UseSubwordForMaxVector) {
358           // Analyse subword in the loop to set maximum vector size to take advantage of full vector width for subword types.
359           // Here we analyze if narrowing is likely to happen and if it is we set vector size more aggressively.
360           // We check for possibility of narrowing by looking through chain operations using subword types.
361           if (is_subword_type(bt)) {
362             uint start, end;
363             VectorNode::vector_operands(n, &start, &end);
364 
365             for (uint j = start; j < end; j++) {
366               Node* in = n->in(j);
367               // Don't propagate through a memory
368               if (!in->is_Mem() && in_bb(in) && in->bottom_type()->basic_type() == T_INT) {
369                 bool same_type = true;
370                 for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
371                   Node *use = in->fast_out(k);
372                   if (!in_bb(use) && use->bottom_type()->basic_type() != bt) {
373                     same_type = false;
374                     break;
375                   }
376                 }
377                 if (same_type) {
378                   max_vector = cur_max_vector;
379                   flag_small_bt = true;
380                   cl->mark_subword_loop();
381                 }
382               }
383             }
384           }
385         }
386         // We only process post loops on predicated targets where we want to
387         // mask map the loop to a single iteration
388         if (post_loop_allowed) {
389           _post_block.at_put_grow(rpo_idx++, n);
390         }
391       }
392     }
393     if (is_slp) {
394       local_loop_unroll_factor = max_vector;
395       cl->mark_passed_slp();
396     }
397     cl->mark_was_slp();
398     if (cl->is_main_loop()) {
399       cl->set_slp_max_unroll(local_loop_unroll_factor);
400     } else if (post_loop_allowed) {
401       if (!small_basic_type) {
402         // avoid replication context for small basic types in programmable masked loops
403         cl->set_slp_max_unroll(local_loop_unroll_factor);
404       }
405     }
406   }
407 }
408 
409 //------------------------------SLP_extract---------------------------
410 // Extract the superword level parallelism
411 //
412 // 1) A reverse post-order of nodes in the block is constructed.  By scanning
413 //    this list from first to last, all definitions are visited before their uses.
414 //
415 // 2) A point-to-point dependence graph is constructed between memory references.
416 //    This simplies the upcoming "independence" checker.
417 //
418 // 3) The maximum depth in the node graph from the beginning of the block
419 //    to each node is computed.  This is used to prune the graph search
420 //    in the independence checker.
421 //
422 // 4) For integer types, the necessary bit width is propagated backwards
423 //    from stores to allow packed operations on byte, char, and short
424 //    integers.  This reverses the promotion to type "int" that javac
425 //    did for operations like: char c1,c2,c3;  c1 = c2 + c3.
426 //
427 // 5) One of the memory references is picked to be an aligned vector reference.
428 //    The pre-loop trip count is adjusted to align this reference in the
429 //    unrolled body.
430 //
431 // 6) The initial set of pack pairs is seeded with memory references.
432 //
433 // 7) The set of pack pairs is extended by following use->def and def->use links.
434 //
435 // 8) The pairs are combined into vector sized packs.
436 //
437 // 9) Reorder the memory slices to co-locate members of the memory packs.
438 //
439 // 10) Generate ideal vector nodes for the final set of packs and where necessary,
440 //    inserting scalar promotion, vector creation from multiple scalars, and
441 //    extraction of scalar values from vectors.
442 //
SLP_extract()443 void SuperWord::SLP_extract() {
444 
445 #ifndef PRODUCT
446   if (_do_vector_loop && TraceSuperWord) {
447     tty->print("SuperWord::SLP_extract\n");
448     tty->print("input loop\n");
449     _lpt->dump_head();
450     _lpt->dump();
451     for (uint i = 0; i < _lpt->_body.size(); i++) {
452       _lpt->_body.at(i)->dump();
453     }
454   }
455 #endif
456   // Ready the block
457   if (!construct_bb()) {
458     return; // Exit if no interesting nodes or complex graph.
459   }
460 
461   // build    _dg, _disjoint_ptrs
462   dependence_graph();
463 
464   // compute function depth(Node*)
465   compute_max_depth();
466 
467   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
468   bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
469   if (cl->is_main_loop()) {
470     if (_do_vector_loop) {
471       if (mark_generations() != -1) {
472         hoist_loads_in_graph(); // this only rebuild the graph; all basic structs need rebuild explicitly
473 
474         if (!construct_bb()) {
475           return; // Exit if no interesting nodes or complex graph.
476         }
477         dependence_graph();
478         compute_max_depth();
479       }
480 
481 #ifndef PRODUCT
482       if (TraceSuperWord) {
483         tty->print_cr("\nSuperWord::_do_vector_loop: graph after hoist_loads_in_graph");
484         _lpt->dump_head();
485         for (int j = 0; j < _block.length(); j++) {
486           Node* n = _block.at(j);
487           int d = depth(n);
488           for (int i = 0; i < d; i++) tty->print("%s", "  ");
489           tty->print("%d :", d);
490           n->dump();
491         }
492       }
493 #endif
494     }
495 
496     compute_vector_element_type();
497 
498     // Attempt vectorization
499 
500     find_adjacent_refs();
501 
502     extend_packlist();
503 
504     if (_do_vector_loop) {
505       if (_packset.length() == 0) {
506         if (TraceSuperWord) {
507           tty->print_cr("\nSuperWord::_do_vector_loop DFA could not build packset, now trying to build anyway");
508         }
509         pack_parallel();
510       }
511     }
512 
513     combine_packs();
514 
515     construct_my_pack_map();
516     if (UseVectorCmov) {
517       merge_packs_to_cmovd();
518     }
519 
520     filter_packs();
521 
522     schedule();
523   } else if (post_loop_allowed) {
524     int saved_mapped_unroll_factor = cl->slp_max_unroll();
525     if (saved_mapped_unroll_factor) {
526       int vector_mapped_unroll_factor = saved_mapped_unroll_factor;
527 
528       // now reset the slp_unroll_factor so that we can check the analysis mapped
529       // what the vector loop was mapped to
530       cl->set_slp_max_unroll(0);
531 
532       // do the analysis on the post loop
533       unrolling_analysis(vector_mapped_unroll_factor);
534 
535       // if our analyzed loop is a canonical fit, start processing it
536       if (vector_mapped_unroll_factor == saved_mapped_unroll_factor) {
537         // now add the vector nodes to packsets
538         for (int i = 0; i < _post_block.length(); i++) {
539           Node* n = _post_block.at(i);
540           Node_List* singleton = new Node_List();
541           singleton->push(n);
542           _packset.append(singleton);
543           set_my_pack(n, singleton);
544         }
545 
546         // map base types for vector usage
547         compute_vector_element_type();
548       } else {
549         return;
550       }
551     } else {
552       // for some reason we could not map the slp analysis state of the vectorized loop
553       return;
554     }
555   }
556 
557   output();
558 }
559 
560 //------------------------------find_adjacent_refs---------------------------
561 // Find the adjacent memory references and create pack pairs for them.
562 // This is the initial set of packs that will then be extended by
563 // following use->def and def->use links.  The align positions are
564 // assigned relative to the reference "align_to_ref"
find_adjacent_refs()565 void SuperWord::find_adjacent_refs() {
566   // Get list of memory operations
567   Node_List memops;
568   for (int i = 0; i < _block.length(); i++) {
569     Node* n = _block.at(i);
570     if (n->is_Mem() && !n->is_LoadStore() && in_bb(n) &&
571         is_java_primitive(n->as_Mem()->memory_type())) {
572       int align = memory_alignment(n->as_Mem(), 0);
573       if (align != bottom_align) {
574         memops.push(n);
575       }
576     }
577   }
578 
579   Node_List align_to_refs;
580   int max_idx;
581   int best_iv_adjustment = 0;
582   MemNode* best_align_to_mem_ref = NULL;
583 
584   while (memops.size() != 0) {
585     // Find a memory reference to align to.
586     MemNode* mem_ref = find_align_to_ref(memops, max_idx);
587     if (mem_ref == NULL) break;
588     align_to_refs.push(mem_ref);
589     int iv_adjustment = get_iv_adjustment(mem_ref);
590 
591     if (best_align_to_mem_ref == NULL) {
592       // Set memory reference which is the best from all memory operations
593       // to be used for alignment. The pre-loop trip count is modified to align
594       // this reference to a vector-aligned address.
595       best_align_to_mem_ref = mem_ref;
596       best_iv_adjustment = iv_adjustment;
597       NOT_PRODUCT(find_adjacent_refs_trace_1(best_align_to_mem_ref, best_iv_adjustment);)
598     }
599 
600     SWPointer align_to_ref_p(mem_ref, this, NULL, false);
601     // Set alignment relative to "align_to_ref" for all related memory operations.
602     for (int i = memops.size() - 1; i >= 0; i--) {
603       MemNode* s = memops.at(i)->as_Mem();
604       if (isomorphic(s, mem_ref) &&
605            (!_do_vector_loop || same_origin_idx(s, mem_ref))) {
606         SWPointer p2(s, this, NULL, false);
607         if (p2.comparable(align_to_ref_p)) {
608           int align = memory_alignment(s, iv_adjustment);
609           set_alignment(s, align);
610         }
611       }
612     }
613 
614     // Create initial pack pairs of memory operations for which
615     // alignment is set and vectors will be aligned.
616     bool create_pack = true;
617     if (memory_alignment(mem_ref, best_iv_adjustment) == 0 || _do_vector_loop) {
618       if (vectors_should_be_aligned()) {
619         int vw = vector_width(mem_ref);
620         int vw_best = vector_width(best_align_to_mem_ref);
621         if (vw > vw_best) {
622           // Do not vectorize a memory access with more elements per vector
623           // if unaligned memory access is not allowed because number of
624           // iterations in pre-loop will be not enough to align it.
625           create_pack = false;
626         } else {
627           SWPointer p2(best_align_to_mem_ref, this, NULL, false);
628           if (align_to_ref_p.invar() != p2.invar()) {
629             // Do not vectorize memory accesses with different invariants
630             // if unaligned memory accesses are not allowed.
631             create_pack = false;
632           }
633         }
634       }
635     } else {
636       if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
637         // Can't allow vectorization of unaligned memory accesses with the
638         // same type since it could be overlapped accesses to the same array.
639         create_pack = false;
640       } else {
641         // Allow independent (different type) unaligned memory operations
642         // if HW supports them.
643         if (vectors_should_be_aligned()) {
644           create_pack = false;
645         } else {
646           // Check if packs of the same memory type but
647           // with a different alignment were created before.
648           for (uint i = 0; i < align_to_refs.size(); i++) {
649             MemNode* mr = align_to_refs.at(i)->as_Mem();
650             if (mr == mem_ref) {
651               // Skip when we are looking at same memory operation.
652               continue;
653             }
654             if (same_velt_type(mr, mem_ref) &&
655                 memory_alignment(mr, iv_adjustment) != 0)
656               create_pack = false;
657           }
658         }
659       }
660     }
661     if (create_pack) {
662       for (uint i = 0; i < memops.size(); i++) {
663         Node* s1 = memops.at(i);
664         int align = alignment(s1);
665         if (align == top_align) continue;
666         for (uint j = 0; j < memops.size(); j++) {
667           Node* s2 = memops.at(j);
668           if (alignment(s2) == top_align) continue;
669           if (s1 != s2 && are_adjacent_refs(s1, s2)) {
670             if (stmts_can_pack(s1, s2, align)) {
671               Node_List* pair = new Node_List();
672               pair->push(s1);
673               pair->push(s2);
674               if (!_do_vector_loop || same_origin_idx(s1, s2)) {
675                 _packset.append(pair);
676               }
677             }
678           }
679         }
680       }
681     } else { // Don't create unaligned pack
682       // First, remove remaining memory ops of the same type from the list.
683       for (int i = memops.size() - 1; i >= 0; i--) {
684         MemNode* s = memops.at(i)->as_Mem();
685         if (same_velt_type(s, mem_ref)) {
686           memops.remove(i);
687         }
688       }
689 
690       // Second, remove already constructed packs of the same type.
691       for (int i = _packset.length() - 1; i >= 0; i--) {
692         Node_List* p = _packset.at(i);
693         MemNode* s = p->at(0)->as_Mem();
694         if (same_velt_type(s, mem_ref)) {
695           remove_pack_at(i);
696         }
697       }
698 
699       // If needed find the best memory reference for loop alignment again.
700       if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
701         // Put memory ops from remaining packs back on memops list for
702         // the best alignment search.
703         uint orig_msize = memops.size();
704         for (int i = 0; i < _packset.length(); i++) {
705           Node_List* p = _packset.at(i);
706           MemNode* s = p->at(0)->as_Mem();
707           assert(!same_velt_type(s, mem_ref), "sanity");
708           memops.push(s);
709         }
710         best_align_to_mem_ref = find_align_to_ref(memops, max_idx);
711         if (best_align_to_mem_ref == NULL) {
712           if (TraceSuperWord) {
713             tty->print_cr("SuperWord::find_adjacent_refs(): best_align_to_mem_ref == NULL");
714           }
715           // best_align_to_mem_ref will be used for adjusting the pre-loop limit in
716           // SuperWord::align_initial_loop_index. Find one with the biggest vector size,
717           // smallest data size and smallest iv offset from memory ops from remaining packs.
718           if (_packset.length() > 0) {
719             if (orig_msize == 0) {
720               best_align_to_mem_ref = memops.at(max_idx)->as_Mem();
721             } else {
722               for (uint i = 0; i < orig_msize; i++) {
723                 memops.remove(0);
724               }
725               best_align_to_mem_ref = find_align_to_ref(memops, max_idx);
726               assert(best_align_to_mem_ref == NULL, "sanity");
727               best_align_to_mem_ref = memops.at(max_idx)->as_Mem();
728             }
729             assert(best_align_to_mem_ref != NULL, "sanity");
730           }
731           break;
732         }
733         best_iv_adjustment = get_iv_adjustment(best_align_to_mem_ref);
734         NOT_PRODUCT(find_adjacent_refs_trace_1(best_align_to_mem_ref, best_iv_adjustment);)
735         // Restore list.
736         while (memops.size() > orig_msize)
737           (void)memops.pop();
738       }
739     } // unaligned memory accesses
740 
741     // Remove used mem nodes.
742     for (int i = memops.size() - 1; i >= 0; i--) {
743       MemNode* m = memops.at(i)->as_Mem();
744       if (alignment(m) != top_align) {
745         memops.remove(i);
746       }
747     }
748 
749   } // while (memops.size() != 0
750   set_align_to_ref(best_align_to_mem_ref);
751 
752   if (TraceSuperWord) {
753     tty->print_cr("\nAfter find_adjacent_refs");
754     print_packset();
755   }
756 }
757 
758 #ifndef PRODUCT
find_adjacent_refs_trace_1(Node * best_align_to_mem_ref,int best_iv_adjustment)759 void SuperWord::find_adjacent_refs_trace_1(Node* best_align_to_mem_ref, int best_iv_adjustment) {
760   if (is_trace_adjacent()) {
761     tty->print("SuperWord::find_adjacent_refs best_align_to_mem_ref = %d, best_iv_adjustment = %d",
762        best_align_to_mem_ref->_idx, best_iv_adjustment);
763        best_align_to_mem_ref->dump();
764   }
765 }
766 #endif
767 
768 //------------------------------find_align_to_ref---------------------------
769 // Find a memory reference to align the loop induction variable to.
770 // Looks first at stores then at loads, looking for a memory reference
771 // with the largest number of references similar to it.
find_align_to_ref(Node_List & memops,int & idx)772 MemNode* SuperWord::find_align_to_ref(Node_List &memops, int &idx) {
773   GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
774 
775   // Count number of comparable memory ops
776   for (uint i = 0; i < memops.size(); i++) {
777     MemNode* s1 = memops.at(i)->as_Mem();
778     SWPointer p1(s1, this, NULL, false);
779     // Only discard unalignable memory references if vector memory references
780     // should be aligned on this platform.
781     if (vectors_should_be_aligned() && !ref_is_alignable(p1)) {
782       *cmp_ct.adr_at(i) = 0;
783       continue;
784     }
785     for (uint j = i+1; j < memops.size(); j++) {
786       MemNode* s2 = memops.at(j)->as_Mem();
787       if (isomorphic(s1, s2)) {
788         SWPointer p2(s2, this, NULL, false);
789         if (p1.comparable(p2)) {
790           (*cmp_ct.adr_at(i))++;
791           (*cmp_ct.adr_at(j))++;
792         }
793       }
794     }
795   }
796 
797   // Find Store (or Load) with the greatest number of "comparable" references,
798   // biggest vector size, smallest data size and smallest iv offset.
799   int max_ct        = 0;
800   int max_vw        = 0;
801   int max_idx       = -1;
802   int min_size      = max_jint;
803   int min_iv_offset = max_jint;
804   for (uint j = 0; j < memops.size(); j++) {
805     MemNode* s = memops.at(j)->as_Mem();
806     if (s->is_Store()) {
807       int vw = vector_width_in_bytes(s);
808       assert(vw > 1, "sanity");
809       SWPointer p(s, this, NULL, false);
810       if ( cmp_ct.at(j) >  max_ct ||
811           (cmp_ct.at(j) == max_ct &&
812             ( vw >  max_vw ||
813              (vw == max_vw &&
814               ( data_size(s) <  min_size ||
815                (data_size(s) == min_size &&
816                 p.offset_in_bytes() < min_iv_offset)))))) {
817         max_ct = cmp_ct.at(j);
818         max_vw = vw;
819         max_idx = j;
820         min_size = data_size(s);
821         min_iv_offset = p.offset_in_bytes();
822       }
823     }
824   }
825   // If no stores, look at loads
826   if (max_ct == 0) {
827     for (uint j = 0; j < memops.size(); j++) {
828       MemNode* s = memops.at(j)->as_Mem();
829       if (s->is_Load()) {
830         int vw = vector_width_in_bytes(s);
831         assert(vw > 1, "sanity");
832         SWPointer p(s, this, NULL, false);
833         if ( cmp_ct.at(j) >  max_ct ||
834             (cmp_ct.at(j) == max_ct &&
835               ( vw >  max_vw ||
836                (vw == max_vw &&
837                 ( data_size(s) <  min_size ||
838                  (data_size(s) == min_size &&
839                   p.offset_in_bytes() < min_iv_offset)))))) {
840           max_ct = cmp_ct.at(j);
841           max_vw = vw;
842           max_idx = j;
843           min_size = data_size(s);
844           min_iv_offset = p.offset_in_bytes();
845         }
846       }
847     }
848   }
849 
850 #ifdef ASSERT
851   if (TraceSuperWord && Verbose) {
852     tty->print_cr("\nVector memops after find_align_to_ref");
853     for (uint i = 0; i < memops.size(); i++) {
854       MemNode* s = memops.at(i)->as_Mem();
855       s->dump();
856     }
857   }
858 #endif
859 
860   idx = max_idx;
861   if (max_ct > 0) {
862 #ifdef ASSERT
863     if (TraceSuperWord) {
864       tty->print("\nVector align to node: ");
865       memops.at(max_idx)->as_Mem()->dump();
866     }
867 #endif
868     return memops.at(max_idx)->as_Mem();
869   }
870   return NULL;
871 }
872 
873 //------------------span_works_for_memory_size-----------------------------
span_works_for_memory_size(MemNode * mem,int span,int mem_size,int offset)874 static bool span_works_for_memory_size(MemNode* mem, int span, int mem_size, int offset) {
875   bool span_matches_memory = false;
876   if ((mem_size == type2aelembytes(T_BYTE) || mem_size == type2aelembytes(T_SHORT))
877     && ABS(span) == type2aelembytes(T_INT)) {
878     // There is a mismatch on span size compared to memory.
879     for (DUIterator_Fast jmax, j = mem->fast_outs(jmax); j < jmax; j++) {
880       Node* use = mem->fast_out(j);
881       if (!VectorNode::is_type_transition_to_int(use)) {
882         return false;
883       }
884     }
885     // If all uses transition to integer, it means that we can successfully align even on mismatch.
886     return true;
887   }
888   else {
889     span_matches_memory = ABS(span) == mem_size;
890   }
891   return span_matches_memory && (ABS(offset) % mem_size) == 0;
892 }
893 
894 //------------------------------ref_is_alignable---------------------------
895 // Can the preloop align the reference to position zero in the vector?
ref_is_alignable(SWPointer & p)896 bool SuperWord::ref_is_alignable(SWPointer& p) {
897   if (!p.has_iv()) {
898     return true;   // no induction variable
899   }
900   CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
901   assert(pre_end != NULL, "we must have a correct pre-loop");
902   assert(pre_end->stride_is_con(), "pre loop stride is constant");
903   int preloop_stride = pre_end->stride_con();
904 
905   int span = preloop_stride * p.scale_in_bytes();
906   int mem_size = p.memory_size();
907   int offset   = p.offset_in_bytes();
908   // Stride one accesses are alignable if offset is aligned to memory operation size.
909   // Offset can be unaligned when UseUnalignedAccesses is used.
910   if (span_works_for_memory_size(p.mem(), span, mem_size, offset)) {
911     return true;
912   }
913   // If the initial offset from start of the object is computable,
914   // check if the pre-loop can align the final offset accordingly.
915   //
916   // In other words: Can we find an i such that the offset
917   // after i pre-loop iterations is aligned to vw?
918   //   (init_offset + pre_loop) % vw == 0              (1)
919   // where
920   //   pre_loop = i * span
921   // is the number of bytes added to the offset by i pre-loop iterations.
922   //
923   // For this to hold we need pre_loop to increase init_offset by
924   //   pre_loop = vw - (init_offset % vw)
925   //
926   // This is only possible if pre_loop is divisible by span because each
927   // pre-loop iteration increases the initial offset by 'span' bytes:
928   //   (vw - (init_offset % vw)) % span == 0
929   //
930   int vw = vector_width_in_bytes(p.mem());
931   assert(vw > 1, "sanity");
932   Node* init_nd = pre_end->init_trip();
933   if (init_nd->is_Con() && p.invar() == NULL) {
934     int init = init_nd->bottom_type()->is_int()->get_con();
935     int init_offset = init * p.scale_in_bytes() + offset;
936     if (init_offset < 0) { // negative offset from object start?
937       return false;        // may happen in dead loop
938     }
939     if (vw % span == 0) {
940       // If vm is a multiple of span, we use formula (1).
941       if (span > 0) {
942         return (vw - (init_offset % vw)) % span == 0;
943       } else {
944         assert(span < 0, "nonzero stride * scale");
945         return (init_offset % vw) % -span == 0;
946       }
947     } else if (span % vw == 0) {
948       // If span is a multiple of vw, we can simplify formula (1) to:
949       //   (init_offset + i * span) % vw == 0
950       //     =>
951       //   (init_offset % vw) + ((i * span) % vw) == 0
952       //     =>
953       //   init_offset % vw == 0
954       //
955       // Because we add a multiple of vw to the initial offset, the final
956       // offset is a multiple of vw if and only if init_offset is a multiple.
957       //
958       return (init_offset % vw) == 0;
959     }
960   }
961   return false;
962 }
963 //---------------------------get_vw_bytes_special------------------------
get_vw_bytes_special(MemNode * s)964 int SuperWord::get_vw_bytes_special(MemNode* s) {
965   // Get the vector width in bytes.
966   int vw = vector_width_in_bytes(s);
967 
968   // Check for special case where there is an MulAddS2I usage where short vectors are going to need combined.
969   BasicType btype = velt_basic_type(s);
970   if (type2aelembytes(btype) == 2) {
971     bool should_combine_adjacent = true;
972     for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
973       Node* user = s->fast_out(i);
974       if (!VectorNode::is_muladds2i(user)) {
975         should_combine_adjacent = false;
976       }
977     }
978     if (should_combine_adjacent) {
979       vw = MIN2(Matcher::max_vector_size(btype)*type2aelembytes(btype), vw * 2);
980     }
981   }
982 
983   return vw;
984 }
985 
986 //---------------------------get_iv_adjustment---------------------------
987 // Calculate loop's iv adjustment for this memory ops.
get_iv_adjustment(MemNode * mem_ref)988 int SuperWord::get_iv_adjustment(MemNode* mem_ref) {
989   SWPointer align_to_ref_p(mem_ref, this, NULL, false);
990   int offset = align_to_ref_p.offset_in_bytes();
991   int scale  = align_to_ref_p.scale_in_bytes();
992   int elt_size = align_to_ref_p.memory_size();
993   int vw       = get_vw_bytes_special(mem_ref);
994   assert(vw > 1, "sanity");
995   int iv_adjustment;
996   if (scale != 0) {
997     int stride_sign = (scale * iv_stride()) > 0 ? 1 : -1;
998     // At least one iteration is executed in pre-loop by default. As result
999     // several iterations are needed to align memory operations in main-loop even
1000     // if offset is 0.
1001     int iv_adjustment_in_bytes = (stride_sign * vw - (offset % vw));
1002     // iv_adjustment_in_bytes must be a multiple of elt_size if vector memory
1003     // references should be aligned on this platform.
1004     assert((ABS(iv_adjustment_in_bytes) % elt_size) == 0 || !vectors_should_be_aligned(),
1005            "(%d) should be divisible by (%d)", iv_adjustment_in_bytes, elt_size);
1006     iv_adjustment = iv_adjustment_in_bytes/elt_size;
1007   } else {
1008     // This memory op is not dependent on iv (scale == 0)
1009     iv_adjustment = 0;
1010   }
1011 
1012 #ifndef PRODUCT
1013   if (TraceSuperWord) {
1014     tty->print("SuperWord::get_iv_adjustment: n = %d, noffset = %d iv_adjust = %d elt_size = %d scale = %d iv_stride = %d vect_size %d: ",
1015       mem_ref->_idx, offset, iv_adjustment, elt_size, scale, iv_stride(), vw);
1016     mem_ref->dump();
1017   }
1018 #endif
1019   return iv_adjustment;
1020 }
1021 
1022 //---------------------------dependence_graph---------------------------
1023 // Construct dependency graph.
1024 // Add dependence edges to load/store nodes for memory dependence
1025 //    A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
dependence_graph()1026 void SuperWord::dependence_graph() {
1027   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
1028   // First, assign a dependence node to each memory node
1029   for (int i = 0; i < _block.length(); i++ ) {
1030     Node *n = _block.at(i);
1031     if (n->is_Mem() || (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
1032       _dg.make_node(n);
1033     }
1034   }
1035 
1036   // For each memory slice, create the dependences
1037   for (int i = 0; i < _mem_slice_head.length(); i++) {
1038     Node* n      = _mem_slice_head.at(i);
1039     Node* n_tail = _mem_slice_tail.at(i);
1040 
1041     // Get slice in predecessor order (last is first)
1042     if (cl->is_main_loop()) {
1043       mem_slice_preds(n_tail, n, _nlist);
1044     }
1045 
1046 #ifndef PRODUCT
1047     if(TraceSuperWord && Verbose) {
1048       tty->print_cr("SuperWord::dependence_graph: built a new mem slice");
1049       for (int j = _nlist.length() - 1; j >= 0 ; j--) {
1050         _nlist.at(j)->dump();
1051       }
1052     }
1053 #endif
1054     // Make the slice dependent on the root
1055     DepMem* slice = _dg.dep(n);
1056     _dg.make_edge(_dg.root(), slice);
1057 
1058     // Create a sink for the slice
1059     DepMem* slice_sink = _dg.make_node(NULL);
1060     _dg.make_edge(slice_sink, _dg.tail());
1061 
1062     // Now visit each pair of memory ops, creating the edges
1063     for (int j = _nlist.length() - 1; j >= 0 ; j--) {
1064       Node* s1 = _nlist.at(j);
1065 
1066       // If no dependency yet, use slice
1067       if (_dg.dep(s1)->in_cnt() == 0) {
1068         _dg.make_edge(slice, s1);
1069       }
1070       SWPointer p1(s1->as_Mem(), this, NULL, false);
1071       bool sink_dependent = true;
1072       for (int k = j - 1; k >= 0; k--) {
1073         Node* s2 = _nlist.at(k);
1074         if (s1->is_Load() && s2->is_Load())
1075           continue;
1076         SWPointer p2(s2->as_Mem(), this, NULL, false);
1077 
1078         int cmp = p1.cmp(p2);
1079         if (SuperWordRTDepCheck &&
1080             p1.base() != p2.base() && p1.valid() && p2.valid()) {
1081           // Create a runtime check to disambiguate
1082           OrderedPair pp(p1.base(), p2.base());
1083           _disjoint_ptrs.append_if_missing(pp);
1084         } else if (!SWPointer::not_equal(cmp)) {
1085           // Possibly same address
1086           _dg.make_edge(s1, s2);
1087           sink_dependent = false;
1088         }
1089       }
1090       if (sink_dependent) {
1091         _dg.make_edge(s1, slice_sink);
1092       }
1093     }
1094 
1095     if (TraceSuperWord) {
1096       tty->print_cr("\nDependence graph for slice: %d", n->_idx);
1097       for (int q = 0; q < _nlist.length(); q++) {
1098         _dg.print(_nlist.at(q));
1099       }
1100       tty->cr();
1101     }
1102 
1103     _nlist.clear();
1104   }
1105 
1106   if (TraceSuperWord) {
1107     tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
1108     for (int r = 0; r < _disjoint_ptrs.length(); r++) {
1109       _disjoint_ptrs.at(r).print();
1110       tty->cr();
1111     }
1112     tty->cr();
1113   }
1114 
1115 }
1116 
1117 //---------------------------mem_slice_preds---------------------------
1118 // Return a memory slice (node list) in predecessor order starting at "start"
mem_slice_preds(Node * start,Node * stop,GrowableArray<Node * > & preds)1119 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
1120   assert(preds.length() == 0, "start empty");
1121   Node* n = start;
1122   Node* prev = NULL;
1123   while (true) {
1124     NOT_PRODUCT( if(is_trace_mem_slice()) tty->print_cr("SuperWord::mem_slice_preds: n %d", n->_idx);)
1125     assert(in_bb(n), "must be in block");
1126     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1127       Node* out = n->fast_out(i);
1128       if (out->is_Load()) {
1129         if (in_bb(out)) {
1130           preds.push(out);
1131           if (TraceSuperWord && Verbose) {
1132             tty->print_cr("SuperWord::mem_slice_preds: added pred(%d)", out->_idx);
1133           }
1134         }
1135       } else {
1136         // FIXME
1137         if (out->is_MergeMem() && !in_bb(out)) {
1138           // Either unrolling is causing a memory edge not to disappear,
1139           // or need to run igvn.optimize() again before SLP
1140         } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
1141           // Ditto.  Not sure what else to check further.
1142         } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
1143           // StoreCM has an input edge used as a precedence edge.
1144           // Maybe an issue when oop stores are vectorized.
1145         } else {
1146           assert(out == prev || prev == NULL, "no branches off of store slice");
1147         }
1148       }//else
1149     }//for
1150     if (n == stop) break;
1151     preds.push(n);
1152     if (TraceSuperWord && Verbose) {
1153       tty->print_cr("SuperWord::mem_slice_preds: added pred(%d)", n->_idx);
1154     }
1155     prev = n;
1156     assert(n->is_Mem(), "unexpected node %s", n->Name());
1157     n = n->in(MemNode::Memory);
1158   }
1159 }
1160 
1161 //------------------------------stmts_can_pack---------------------------
1162 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and
1163 // s1 aligned at "align"
stmts_can_pack(Node * s1,Node * s2,int align)1164 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
1165 
1166   // Do not use superword for non-primitives
1167   BasicType bt1 = velt_basic_type(s1);
1168   BasicType bt2 = velt_basic_type(s2);
1169   if(!is_java_primitive(bt1) || !is_java_primitive(bt2))
1170     return false;
1171   if (Matcher::max_vector_size(bt1) < 2) {
1172     return false; // No vectors for this type
1173   }
1174 
1175   if (isomorphic(s1, s2)) {
1176     if ((independent(s1, s2) && have_similar_inputs(s1, s2)) || reduction(s1, s2)) {
1177       if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
1178         if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
1179           int s1_align = alignment(s1);
1180           int s2_align = alignment(s2);
1181           if (s1_align == top_align || s1_align == align) {
1182             if (s2_align == top_align || s2_align == align + data_size(s1)) {
1183               return true;
1184             }
1185           }
1186         }
1187       }
1188     }
1189   }
1190   return false;
1191 }
1192 
1193 //------------------------------exists_at---------------------------
1194 // Does s exist in a pack at position pos?
exists_at(Node * s,uint pos)1195 bool SuperWord::exists_at(Node* s, uint pos) {
1196   for (int i = 0; i < _packset.length(); i++) {
1197     Node_List* p = _packset.at(i);
1198     if (p->at(pos) == s) {
1199       return true;
1200     }
1201   }
1202   return false;
1203 }
1204 
1205 //------------------------------are_adjacent_refs---------------------------
1206 // Is s1 immediately before s2 in memory?
are_adjacent_refs(Node * s1,Node * s2)1207 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
1208   if (!s1->is_Mem() || !s2->is_Mem()) return false;
1209   if (!in_bb(s1)    || !in_bb(s2))    return false;
1210 
1211   // Do not use superword for non-primitives
1212   if (!is_java_primitive(s1->as_Mem()->memory_type()) ||
1213       !is_java_primitive(s2->as_Mem()->memory_type())) {
1214     return false;
1215   }
1216 
1217   // FIXME - co_locate_pack fails on Stores in different mem-slices, so
1218   // only pack memops that are in the same alias set until that's fixed.
1219   if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
1220       _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
1221     return false;
1222   SWPointer p1(s1->as_Mem(), this, NULL, false);
1223   SWPointer p2(s2->as_Mem(), this, NULL, false);
1224   if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
1225   int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
1226   return diff == data_size(s1);
1227 }
1228 
1229 //------------------------------isomorphic---------------------------
1230 // Are s1 and s2 similar?
isomorphic(Node * s1,Node * s2)1231 bool SuperWord::isomorphic(Node* s1, Node* s2) {
1232   if (s1->Opcode() != s2->Opcode()) return false;
1233   if (s1->req() != s2->req()) return false;
1234   if (!same_velt_type(s1, s2)) return false;
1235   Node* s1_ctrl = s1->in(0);
1236   Node* s2_ctrl = s2->in(0);
1237   // If the control nodes are equivalent, no further checks are required to test for isomorphism.
1238   if (s1_ctrl == s2_ctrl) {
1239     return true;
1240   } else {
1241     bool s1_ctrl_inv = ((s1_ctrl == NULL) ? true : lpt()->is_invariant(s1_ctrl));
1242     bool s2_ctrl_inv = ((s2_ctrl == NULL) ? true : lpt()->is_invariant(s2_ctrl));
1243     // If the control nodes are not invariant for the loop, fail isomorphism test.
1244     if (!s1_ctrl_inv || !s2_ctrl_inv) {
1245       return false;
1246     }
1247     if(s1_ctrl != NULL && s2_ctrl != NULL) {
1248       if (s1_ctrl->is_Proj()) {
1249         s1_ctrl = s1_ctrl->in(0);
1250         assert(lpt()->is_invariant(s1_ctrl), "must be invariant");
1251       }
1252       if (s2_ctrl->is_Proj()) {
1253         s2_ctrl = s2_ctrl->in(0);
1254         assert(lpt()->is_invariant(s2_ctrl), "must be invariant");
1255       }
1256       if (!s1_ctrl->is_RangeCheck() || !s2_ctrl->is_RangeCheck()) {
1257         return false;
1258       }
1259     }
1260     // Control nodes are invariant. However, we have no way of checking whether they resolve
1261     // in an equivalent manner. But, we know that invariant range checks are guaranteed to
1262     // throw before the loop (if they would have thrown). Thus, the loop would not have been reached.
1263     // Therefore, if the control nodes for both are range checks, we accept them to be isomorphic.
1264     for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1265       Node* t1 = s1->fast_out(i);
1266       for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
1267         Node* t2 = s2->fast_out(j);
1268         if (VectorNode::is_muladds2i(t1) && VectorNode::is_muladds2i(t2)) {
1269           return true;
1270         }
1271       }
1272     }
1273   }
1274   return false;
1275 }
1276 
1277 //------------------------------independent---------------------------
1278 // Is there no data path from s1 to s2 or s2 to s1?
independent(Node * s1,Node * s2)1279 bool SuperWord::independent(Node* s1, Node* s2) {
1280   //  assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
1281   int d1 = depth(s1);
1282   int d2 = depth(s2);
1283   if (d1 == d2) return s1 != s2;
1284   Node* deep    = d1 > d2 ? s1 : s2;
1285   Node* shallow = d1 > d2 ? s2 : s1;
1286 
1287   visited_clear();
1288 
1289   return independent_path(shallow, deep);
1290 }
1291 
1292 //--------------------------have_similar_inputs-----------------------
1293 // For a node pair (s1, s2) which is isomorphic and independent,
1294 // do s1 and s2 have similar input edges?
have_similar_inputs(Node * s1,Node * s2)1295 bool SuperWord::have_similar_inputs(Node* s1, Node* s2) {
1296   // assert(isomorphic(s1, s2) == true, "check isomorphic");
1297   // assert(independent(s1, s2) == true, "check independent");
1298   if (s1->req() > 1 && !s1->is_Store() && !s1->is_Load()) {
1299     for (uint i = 1; i < s1->req(); i++) {
1300       if (s1->in(i)->Opcode() != s2->in(i)->Opcode()) return false;
1301     }
1302   }
1303   return true;
1304 }
1305 
1306 //------------------------------reduction---------------------------
1307 // Is there a data path between s1 and s2 and the nodes reductions?
reduction(Node * s1,Node * s2)1308 bool SuperWord::reduction(Node* s1, Node* s2) {
1309   bool retValue = false;
1310   int d1 = depth(s1);
1311   int d2 = depth(s2);
1312   if (d1 + 1 == d2) {
1313     if (s1->is_reduction() && s2->is_reduction()) {
1314       // This is an ordered set, so s1 should define s2
1315       for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1316         Node* t1 = s1->fast_out(i);
1317         if (t1 == s2) {
1318           // both nodes are reductions and connected
1319           retValue = true;
1320         }
1321       }
1322     }
1323   }
1324 
1325   return retValue;
1326 }
1327 
1328 //------------------------------independent_path------------------------------
1329 // Helper for independent
independent_path(Node * shallow,Node * deep,uint dp)1330 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
1331   if (dp >= 1000) return false; // stop deep recursion
1332   visited_set(deep);
1333   int shal_depth = depth(shallow);
1334   assert(shal_depth <= depth(deep), "must be");
1335   for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
1336     Node* pred = preds.current();
1337     if (in_bb(pred) && !visited_test(pred)) {
1338       if (shallow == pred) {
1339         return false;
1340       }
1341       if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
1342         return false;
1343       }
1344     }
1345   }
1346   return true;
1347 }
1348 
1349 //------------------------------set_alignment---------------------------
set_alignment(Node * s1,Node * s2,int align)1350 void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
1351   set_alignment(s1, align);
1352   if (align == top_align || align == bottom_align) {
1353     set_alignment(s2, align);
1354   } else {
1355     set_alignment(s2, align + data_size(s1));
1356   }
1357 }
1358 
1359 //------------------------------data_size---------------------------
data_size(Node * s)1360 int SuperWord::data_size(Node* s) {
1361   Node* use = NULL; //test if the node is a candidate for CMoveV optimization, then return the size of CMov
1362   if (UseVectorCmov) {
1363     use = _cmovev_kit.is_Bool_candidate(s);
1364     if (use != NULL) {
1365       return data_size(use);
1366     }
1367     use = _cmovev_kit.is_CmpD_candidate(s);
1368     if (use != NULL) {
1369       return data_size(use);
1370     }
1371   }
1372 
1373   int bsize = type2aelembytes(velt_basic_type(s));
1374   assert(bsize != 0, "valid size");
1375   return bsize;
1376 }
1377 
1378 //------------------------------extend_packlist---------------------------
1379 // Extend packset by following use->def and def->use links from pack members.
extend_packlist()1380 void SuperWord::extend_packlist() {
1381   bool changed;
1382   do {
1383     packset_sort(_packset.length());
1384     changed = false;
1385     for (int i = 0; i < _packset.length(); i++) {
1386       Node_List* p = _packset.at(i);
1387       changed |= follow_use_defs(p);
1388       changed |= follow_def_uses(p);
1389     }
1390   } while (changed);
1391 
1392   if (_race_possible) {
1393     for (int i = 0; i < _packset.length(); i++) {
1394       Node_List* p = _packset.at(i);
1395       order_def_uses(p);
1396     }
1397   }
1398 
1399   if (TraceSuperWord) {
1400     tty->print_cr("\nAfter extend_packlist");
1401     print_packset();
1402   }
1403 }
1404 
1405 //------------------------------follow_use_defs---------------------------
1406 // Extend the packset by visiting operand definitions of nodes in pack p
follow_use_defs(Node_List * p)1407 bool SuperWord::follow_use_defs(Node_List* p) {
1408   assert(p->size() == 2, "just checking");
1409   Node* s1 = p->at(0);
1410   Node* s2 = p->at(1);
1411   assert(s1->req() == s2->req(), "just checking");
1412   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
1413 
1414   if (s1->is_Load()) return false;
1415 
1416   int align = alignment(s1);
1417   NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_use_defs: s1 %d, align %d", s1->_idx, align);)
1418   bool changed = false;
1419   int start = s1->is_Store() ? MemNode::ValueIn   : 1;
1420   int end   = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
1421   for (int j = start; j < end; j++) {
1422     Node* t1 = s1->in(j);
1423     Node* t2 = s2->in(j);
1424     if (!in_bb(t1) || !in_bb(t2))
1425       continue;
1426     if (stmts_can_pack(t1, t2, align)) {
1427       if (est_savings(t1, t2) >= 0) {
1428         Node_List* pair = new Node_List();
1429         pair->push(t1);
1430         pair->push(t2);
1431         _packset.append(pair);
1432         NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_use_defs: set_alignment(%d, %d, %d)", t1->_idx, t2->_idx, align);)
1433         set_alignment(t1, t2, align);
1434         changed = true;
1435       }
1436     }
1437   }
1438   return changed;
1439 }
1440 
1441 //------------------------------follow_def_uses---------------------------
1442 // Extend the packset by visiting uses of nodes in pack p
follow_def_uses(Node_List * p)1443 bool SuperWord::follow_def_uses(Node_List* p) {
1444   bool changed = false;
1445   Node* s1 = p->at(0);
1446   Node* s2 = p->at(1);
1447   assert(p->size() == 2, "just checking");
1448   assert(s1->req() == s2->req(), "just checking");
1449   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
1450 
1451   if (s1->is_Store()) return false;
1452 
1453   int align = alignment(s1);
1454   NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_def_uses: s1 %d, align %d", s1->_idx, align);)
1455   int savings = -1;
1456   int num_s1_uses = 0;
1457   Node* u1 = NULL;
1458   Node* u2 = NULL;
1459   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1460     Node* t1 = s1->fast_out(i);
1461     num_s1_uses++;
1462     if (!in_bb(t1)) continue;
1463     for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
1464       Node* t2 = s2->fast_out(j);
1465       if (!in_bb(t2)) continue;
1466       if (t2->Opcode() == Op_AddI && t2 == _lp->as_CountedLoop()->incr()) continue; // don't mess with the iv
1467       if (!opnd_positions_match(s1, t1, s2, t2))
1468         continue;
1469       if (stmts_can_pack(t1, t2, align)) {
1470         int my_savings = est_savings(t1, t2);
1471         if (my_savings > savings) {
1472           savings = my_savings;
1473           u1 = t1;
1474           u2 = t2;
1475         }
1476       }
1477     }
1478   }
1479   if (num_s1_uses > 1) {
1480     _race_possible = true;
1481   }
1482   if (savings >= 0) {
1483     Node_List* pair = new Node_List();
1484     pair->push(u1);
1485     pair->push(u2);
1486     _packset.append(pair);
1487     NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_def_uses: set_alignment(%d, %d, %d)", u1->_idx, u2->_idx, align);)
1488     set_alignment(u1, u2, align);
1489     changed = true;
1490   }
1491   return changed;
1492 }
1493 
1494 //------------------------------order_def_uses---------------------------
1495 // For extended packsets, ordinally arrange uses packset by major component
order_def_uses(Node_List * p)1496 void SuperWord::order_def_uses(Node_List* p) {
1497   Node* s1 = p->at(0);
1498 
1499   if (s1->is_Store()) return;
1500 
1501   // reductions are always managed beforehand
1502   if (s1->is_reduction()) return;
1503 
1504   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1505     Node* t1 = s1->fast_out(i);
1506 
1507     // Only allow operand swap on commuting operations
1508     if (!t1->is_Add() && !t1->is_Mul() && !VectorNode::is_muladds2i(t1)) {
1509       break;
1510     }
1511 
1512     // Now find t1's packset
1513     Node_List* p2 = NULL;
1514     for (int j = 0; j < _packset.length(); j++) {
1515       p2 = _packset.at(j);
1516       Node* first = p2->at(0);
1517       if (t1 == first) {
1518         break;
1519       }
1520       p2 = NULL;
1521     }
1522     // Arrange all sub components by the major component
1523     if (p2 != NULL) {
1524       for (uint j = 1; j < p->size(); j++) {
1525         Node* d1 = p->at(j);
1526         Node* u1 = p2->at(j);
1527         opnd_positions_match(s1, t1, d1, u1);
1528       }
1529     }
1530   }
1531 }
1532 
1533 //---------------------------opnd_positions_match-------------------------
1534 // Is the use of d1 in u1 at the same operand position as d2 in u2?
opnd_positions_match(Node * d1,Node * u1,Node * d2,Node * u2)1535 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
1536   // check reductions to see if they are marshalled to represent the reduction
1537   // operator in a specified opnd
1538   if (u1->is_reduction() && u2->is_reduction()) {
1539     // ensure reductions have phis and reduction definitions feeding the 1st operand
1540     Node* first = u1->in(2);
1541     if (first->is_Phi() || first->is_reduction()) {
1542       u1->swap_edges(1, 2);
1543     }
1544     // ensure reductions have phis and reduction definitions feeding the 1st operand
1545     first = u2->in(2);
1546     if (first->is_Phi() || first->is_reduction()) {
1547       u2->swap_edges(1, 2);
1548     }
1549     return true;
1550   }
1551 
1552   uint ct = u1->req();
1553   if (ct != u2->req()) return false;
1554   uint i1 = 0;
1555   uint i2 = 0;
1556   do {
1557     for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
1558     for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
1559     if (i1 != i2) {
1560       if ((i1 == (3-i2)) && (u2->is_Add() || u2->is_Mul())) {
1561         // Further analysis relies on operands position matching.
1562         u2->swap_edges(i1, i2);
1563       } else if (VectorNode::is_muladds2i(u2) && u1 != u2) {
1564         if (i1 == 5 - i2) { // ((i1 == 3 && i2 == 2) || (i1 == 2 && i2 == 3) || (i1 == 1 && i2 == 4) || (i1 == 4 && i2 == 1))
1565           u2->swap_edges(1, 2);
1566           u2->swap_edges(3, 4);
1567         }
1568         if (i1 == 3 - i2 || i1 == 7 - i2) { // ((i1 == 1 && i2 == 2) || (i1 == 2 && i2 == 1) || (i1 == 3 && i2 == 4) || (i1 == 4 && i2 == 3))
1569           u2->swap_edges(2, 3);
1570           u2->swap_edges(1, 4);
1571         }
1572         return false; // Just swap the edges, the muladds2i nodes get packed in follow_use_defs
1573       } else {
1574         return false;
1575       }
1576     } else if (i1 == i2 && VectorNode::is_muladds2i(u2) && u1 != u2) {
1577       u2->swap_edges(1, 3);
1578       u2->swap_edges(2, 4);
1579       return false; // Just swap the edges, the muladds2i nodes get packed in follow_use_defs
1580     }
1581   } while (i1 < ct);
1582   return true;
1583 }
1584 
1585 //------------------------------est_savings---------------------------
1586 // Estimate the savings from executing s1 and s2 as a pack
est_savings(Node * s1,Node * s2)1587 int SuperWord::est_savings(Node* s1, Node* s2) {
1588   int save_in = 2 - 1; // 2 operations per instruction in packed form
1589 
1590   // inputs
1591   for (uint i = 1; i < s1->req(); i++) {
1592     Node* x1 = s1->in(i);
1593     Node* x2 = s2->in(i);
1594     if (x1 != x2) {
1595       if (are_adjacent_refs(x1, x2)) {
1596         save_in += adjacent_profit(x1, x2);
1597       } else if (!in_packset(x1, x2)) {
1598         save_in -= pack_cost(2);
1599       } else {
1600         save_in += unpack_cost(2);
1601       }
1602     }
1603   }
1604 
1605   // uses of result
1606   uint ct = 0;
1607   int save_use = 0;
1608   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1609     Node* s1_use = s1->fast_out(i);
1610     for (int j = 0; j < _packset.length(); j++) {
1611       Node_List* p = _packset.at(j);
1612       if (p->at(0) == s1_use) {
1613         for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
1614           Node* s2_use = s2->fast_out(k);
1615           if (p->at(p->size()-1) == s2_use) {
1616             ct++;
1617             if (are_adjacent_refs(s1_use, s2_use)) {
1618               save_use += adjacent_profit(s1_use, s2_use);
1619             }
1620           }
1621         }
1622       }
1623     }
1624   }
1625 
1626   if (ct < s1->outcnt()) save_use += unpack_cost(1);
1627   if (ct < s2->outcnt()) save_use += unpack_cost(1);
1628 
1629   return MAX2(save_in, save_use);
1630 }
1631 
1632 //------------------------------costs---------------------------
adjacent_profit(Node * s1,Node * s2)1633 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
pack_cost(int ct)1634 int SuperWord::pack_cost(int ct)   { return ct; }
unpack_cost(int ct)1635 int SuperWord::unpack_cost(int ct) { return ct; }
1636 
1637 //------------------------------combine_packs---------------------------
1638 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
combine_packs()1639 void SuperWord::combine_packs() {
1640   bool changed = true;
1641   // Combine packs regardless max vector size.
1642   while (changed) {
1643     changed = false;
1644     for (int i = 0; i < _packset.length(); i++) {
1645       Node_List* p1 = _packset.at(i);
1646       if (p1 == NULL) continue;
1647       // Because of sorting we can start at i + 1
1648       for (int j = i + 1; j < _packset.length(); j++) {
1649         Node_List* p2 = _packset.at(j);
1650         if (p2 == NULL) continue;
1651         if (i == j) continue;
1652         if (p1->at(p1->size()-1) == p2->at(0)) {
1653           for (uint k = 1; k < p2->size(); k++) {
1654             p1->push(p2->at(k));
1655           }
1656           _packset.at_put(j, NULL);
1657           changed = true;
1658         }
1659       }
1660     }
1661   }
1662 
1663   // Split packs which have size greater then max vector size.
1664   for (int i = 0; i < _packset.length(); i++) {
1665     Node_List* p1 = _packset.at(i);
1666     if (p1 != NULL) {
1667       BasicType bt = velt_basic_type(p1->at(0));
1668       uint max_vlen = Matcher::max_vector_size(bt); // Max elements in vector
1669       assert(is_power_of_2(max_vlen), "sanity");
1670       uint psize = p1->size();
1671       if (!is_power_of_2(psize)) {
1672         // Skip pack which can't be vector.
1673         // case1: for(...) { a[i] = i; }    elements values are different (i+x)
1674         // case2: for(...) { a[i] = b[i+1]; }  can't align both, load and store
1675         _packset.at_put(i, NULL);
1676         continue;
1677       }
1678       if (psize > max_vlen) {
1679         Node_List* pack = new Node_List();
1680         for (uint j = 0; j < psize; j++) {
1681           pack->push(p1->at(j));
1682           if (pack->size() >= max_vlen) {
1683             assert(is_power_of_2(pack->size()), "sanity");
1684             _packset.append(pack);
1685             pack = new Node_List();
1686           }
1687         }
1688         _packset.at_put(i, NULL);
1689       }
1690     }
1691   }
1692 
1693   // Compress list.
1694   for (int i = _packset.length() - 1; i >= 0; i--) {
1695     Node_List* p1 = _packset.at(i);
1696     if (p1 == NULL) {
1697       _packset.remove_at(i);
1698     }
1699   }
1700 
1701   if (TraceSuperWord) {
1702     tty->print_cr("\nAfter combine_packs");
1703     print_packset();
1704   }
1705 }
1706 
1707 //-----------------------------construct_my_pack_map--------------------------
1708 // Construct the map from nodes to packs.  Only valid after the
1709 // point where a node is only in one pack (after combine_packs).
construct_my_pack_map()1710 void SuperWord::construct_my_pack_map() {
1711   Node_List* rslt = NULL;
1712   for (int i = 0; i < _packset.length(); i++) {
1713     Node_List* p = _packset.at(i);
1714     for (uint j = 0; j < p->size(); j++) {
1715       Node* s = p->at(j);
1716       assert(my_pack(s) == NULL, "only in one pack");
1717       set_my_pack(s, p);
1718     }
1719   }
1720 }
1721 
1722 //------------------------------filter_packs---------------------------
1723 // Remove packs that are not implemented or not profitable.
filter_packs()1724 void SuperWord::filter_packs() {
1725   // Remove packs that are not implemented
1726   for (int i = _packset.length() - 1; i >= 0; i--) {
1727     Node_List* pk = _packset.at(i);
1728     bool impl = implemented(pk);
1729     if (!impl) {
1730 #ifndef PRODUCT
1731       if (TraceSuperWord && Verbose) {
1732         tty->print_cr("Unimplemented");
1733         pk->at(0)->dump();
1734       }
1735 #endif
1736       remove_pack_at(i);
1737     }
1738     Node *n = pk->at(0);
1739     if (n->is_reduction()) {
1740       _num_reductions++;
1741     } else {
1742       _num_work_vecs++;
1743     }
1744   }
1745 
1746   // Remove packs that are not profitable
1747   bool changed;
1748   do {
1749     changed = false;
1750     for (int i = _packset.length() - 1; i >= 0; i--) {
1751       Node_List* pk = _packset.at(i);
1752       bool prof = profitable(pk);
1753       if (!prof) {
1754 #ifndef PRODUCT
1755         if (TraceSuperWord && Verbose) {
1756           tty->print_cr("Unprofitable");
1757           pk->at(0)->dump();
1758         }
1759 #endif
1760         remove_pack_at(i);
1761         changed = true;
1762       }
1763     }
1764   } while (changed);
1765 
1766 #ifndef PRODUCT
1767   if (TraceSuperWord) {
1768     tty->print_cr("\nAfter filter_packs");
1769     print_packset();
1770     tty->cr();
1771   }
1772 #endif
1773 }
1774 
1775 //------------------------------merge_packs_to_cmovd---------------------------
1776 // Merge CMoveD into new vector-nodes
1777 // We want to catch this pattern and subsume CmpD and Bool into CMoveD
1778 //
1779 //                   SubD             ConD
1780 //                  /  |               /
1781 //                 /   |           /   /
1782 //                /    |       /      /
1783 //               /     |   /         /
1784 //              /      /            /
1785 //             /    /  |           /
1786 //            v /      |          /
1787 //         CmpD        |         /
1788 //          |          |        /
1789 //          v          |       /
1790 //         Bool        |      /
1791 //           \         |     /
1792 //             \       |    /
1793 //               \     |   /
1794 //                 \   |  /
1795 //                   \ v /
1796 //                   CMoveD
1797 //
1798 
merge_packs_to_cmovd()1799 void SuperWord::merge_packs_to_cmovd() {
1800   for (int i = _packset.length() - 1; i >= 0; i--) {
1801     _cmovev_kit.make_cmovevd_pack(_packset.at(i));
1802   }
1803   #ifndef PRODUCT
1804     if (TraceSuperWord) {
1805       tty->print_cr("\nSuperWord::merge_packs_to_cmovd(): After merge");
1806       print_packset();
1807       tty->cr();
1808     }
1809   #endif
1810 }
1811 
is_Bool_candidate(Node * def) const1812 Node* CMoveKit::is_Bool_candidate(Node* def) const {
1813   Node* use = NULL;
1814   if (!def->is_Bool() || def->in(0) != NULL || def->outcnt() != 1) {
1815     return NULL;
1816   }
1817   for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
1818     use = def->fast_out(j);
1819     if (!_sw->same_generation(def, use) || !use->is_CMove()) {
1820       return NULL;
1821     }
1822   }
1823   return use;
1824 }
1825 
is_CmpD_candidate(Node * def) const1826 Node* CMoveKit::is_CmpD_candidate(Node* def) const {
1827   Node* use = NULL;
1828   if (!def->is_Cmp() || def->in(0) != NULL || def->outcnt() != 1) {
1829     return NULL;
1830   }
1831   for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
1832     use = def->fast_out(j);
1833     if (!_sw->same_generation(def, use) || (use = is_Bool_candidate(use)) == NULL || !_sw->same_generation(def, use)) {
1834       return NULL;
1835     }
1836   }
1837   return use;
1838 }
1839 
make_cmovevd_pack(Node_List * cmovd_pk)1840 Node_List* CMoveKit::make_cmovevd_pack(Node_List* cmovd_pk) {
1841   Node *cmovd = cmovd_pk->at(0);
1842   if (!cmovd->is_CMove()) {
1843     return NULL;
1844   }
1845   if (cmovd->Opcode() != Op_CMoveF && cmovd->Opcode() != Op_CMoveD) {
1846     return NULL;
1847   }
1848   if (pack(cmovd) != NULL) { // already in the cmov pack
1849     return NULL;
1850   }
1851   if (cmovd->in(0) != NULL) {
1852     NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: CMoveD %d has control flow, escaping...", cmovd->_idx); cmovd->dump();})
1853     return NULL;
1854   }
1855 
1856   Node* bol = cmovd->as_CMove()->in(CMoveNode::Condition);
1857   if (!bol->is_Bool()
1858       || bol->outcnt() != 1
1859       || !_sw->same_generation(bol, cmovd)
1860       || bol->in(0) != NULL  // BoolNode has control flow!!
1861       || _sw->my_pack(bol) == NULL) {
1862       NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: Bool %d does not fit CMoveD %d for building vector, escaping...", bol->_idx, cmovd->_idx); bol->dump();})
1863       return NULL;
1864   }
1865   Node_List* bool_pk = _sw->my_pack(bol);
1866   if (bool_pk->size() != cmovd_pk->size() ) {
1867     return NULL;
1868   }
1869 
1870   Node* cmpd = bol->in(1);
1871   if (!cmpd->is_Cmp()
1872       || cmpd->outcnt() != 1
1873       || !_sw->same_generation(cmpd, cmovd)
1874       || cmpd->in(0) != NULL  // CmpDNode has control flow!!
1875       || _sw->my_pack(cmpd) == NULL) {
1876       NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: CmpD %d does not fit CMoveD %d for building vector, escaping...", cmpd->_idx, cmovd->_idx); cmpd->dump();})
1877       return NULL;
1878   }
1879   Node_List* cmpd_pk = _sw->my_pack(cmpd);
1880   if (cmpd_pk->size() != cmovd_pk->size() ) {
1881     return NULL;
1882   }
1883 
1884   if (!test_cmpd_pack(cmpd_pk, cmovd_pk)) {
1885     NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: cmpd pack for CmpD %d failed vectorization test", cmpd->_idx); cmpd->dump();})
1886     return NULL;
1887   }
1888 
1889   Node_List* new_cmpd_pk = new Node_List();
1890   uint sz = cmovd_pk->size() - 1;
1891   for (uint i = 0; i <= sz; ++i) {
1892     Node* cmov = cmovd_pk->at(i);
1893     Node* bol  = bool_pk->at(i);
1894     Node* cmp  = cmpd_pk->at(i);
1895 
1896     new_cmpd_pk->insert(i, cmov);
1897 
1898     map(cmov, new_cmpd_pk);
1899     map(bol, new_cmpd_pk);
1900     map(cmp, new_cmpd_pk);
1901 
1902     _sw->set_my_pack(cmov, new_cmpd_pk); // and keep old packs for cmp and bool
1903   }
1904   _sw->_packset.remove(cmovd_pk);
1905   _sw->_packset.remove(bool_pk);
1906   _sw->_packset.remove(cmpd_pk);
1907   _sw->_packset.append(new_cmpd_pk);
1908   NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print_cr("CMoveKit::make_cmovevd_pack: added syntactic CMoveD pack"); _sw->print_pack(new_cmpd_pk);})
1909   return new_cmpd_pk;
1910 }
1911 
test_cmpd_pack(Node_List * cmpd_pk,Node_List * cmovd_pk)1912 bool CMoveKit::test_cmpd_pack(Node_List* cmpd_pk, Node_List* cmovd_pk) {
1913   Node* cmpd0 = cmpd_pk->at(0);
1914   assert(cmpd0->is_Cmp(), "CMoveKit::test_cmpd_pack: should be CmpDNode");
1915   assert(cmovd_pk->at(0)->is_CMove(), "CMoveKit::test_cmpd_pack: should be CMoveD");
1916   assert(cmpd_pk->size() == cmovd_pk->size(), "CMoveKit::test_cmpd_pack: should be same size");
1917   Node* in1 = cmpd0->in(1);
1918   Node* in2 = cmpd0->in(2);
1919   Node_List* in1_pk = _sw->my_pack(in1);
1920   Node_List* in2_pk = _sw->my_pack(in2);
1921 
1922   if (  (in1_pk != NULL && in1_pk->size() != cmpd_pk->size())
1923      || (in2_pk != NULL && in2_pk->size() != cmpd_pk->size()) ) {
1924     return false;
1925   }
1926 
1927   // test if "all" in1 are in the same pack or the same node
1928   if (in1_pk == NULL) {
1929     for (uint j = 1; j < cmpd_pk->size(); j++) {
1930       if (cmpd_pk->at(j)->in(1) != in1) {
1931         return false;
1932       }
1933     }//for: in1_pk is not pack but all CmpD nodes in the pack have the same in(1)
1934   }
1935   // test if "all" in2 are in the same pack or the same node
1936   if (in2_pk == NULL) {
1937     for (uint j = 1; j < cmpd_pk->size(); j++) {
1938       if (cmpd_pk->at(j)->in(2) != in2) {
1939         return false;
1940       }
1941     }//for: in2_pk is not pack but all CmpD nodes in the pack have the same in(2)
1942   }
1943   //now check if cmpd_pk may be subsumed in vector built for cmovd_pk
1944   int cmovd_ind1, cmovd_ind2;
1945   if (cmpd_pk->at(0)->in(1) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfFalse)
1946    && cmpd_pk->at(0)->in(2) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfTrue)) {
1947       cmovd_ind1 = CMoveNode::IfFalse;
1948       cmovd_ind2 = CMoveNode::IfTrue;
1949   } else if (cmpd_pk->at(0)->in(2) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfFalse)
1950           && cmpd_pk->at(0)->in(1) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfTrue)) {
1951       cmovd_ind2 = CMoveNode::IfFalse;
1952       cmovd_ind1 = CMoveNode::IfTrue;
1953   }
1954   else {
1955     return false;
1956   }
1957 
1958   for (uint j = 1; j < cmpd_pk->size(); j++) {
1959     if (cmpd_pk->at(j)->in(1) != cmovd_pk->at(j)->as_CMove()->in(cmovd_ind1)
1960         || cmpd_pk->at(j)->in(2) != cmovd_pk->at(j)->as_CMove()->in(cmovd_ind2)) {
1961         return false;
1962     }//if
1963   }
1964   NOT_PRODUCT(if(_sw->is_trace_cmov()) { tty->print("CMoveKit::test_cmpd_pack: cmpd pack for 1st CmpD %d is OK for vectorization: ", cmpd0->_idx); cmpd0->dump(); })
1965   return true;
1966 }
1967 
1968 //------------------------------implemented---------------------------
1969 // Can code be generated for pack p?
implemented(Node_List * p)1970 bool SuperWord::implemented(Node_List* p) {
1971   bool retValue = false;
1972   Node* p0 = p->at(0);
1973   if (p0 != NULL) {
1974     int opc = p0->Opcode();
1975     uint size = p->size();
1976     if (p0->is_reduction()) {
1977       const Type *arith_type = p0->bottom_type();
1978       // Length 2 reductions of INT/LONG do not offer performance benefits
1979       if (((arith_type->basic_type() == T_INT) || (arith_type->basic_type() == T_LONG)) && (size == 2)) {
1980         retValue = false;
1981       } else {
1982         retValue = ReductionNode::implemented(opc, size, arith_type->basic_type());
1983       }
1984     } else {
1985       retValue = VectorNode::implemented(opc, size, velt_basic_type(p0));
1986     }
1987     if (!retValue) {
1988       if (is_cmov_pack(p)) {
1989         NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::implemented: found cmpd pack"); print_pack(p);})
1990         return true;
1991       }
1992     }
1993   }
1994   return retValue;
1995 }
1996 
is_cmov_pack(Node_List * p)1997 bool SuperWord::is_cmov_pack(Node_List* p) {
1998   return _cmovev_kit.pack(p->at(0)) != NULL;
1999 }
2000 //------------------------------same_inputs--------------------------
2001 // For pack p, are all idx operands the same?
same_inputs(Node_List * p,int idx)2002 bool SuperWord::same_inputs(Node_List* p, int idx) {
2003   Node* p0 = p->at(0);
2004   uint vlen = p->size();
2005   Node* p0_def = p0->in(idx);
2006   for (uint i = 1; i < vlen; i++) {
2007     Node* pi = p->at(i);
2008     Node* pi_def = pi->in(idx);
2009     if (p0_def != pi_def) {
2010       return false;
2011     }
2012   }
2013   return true;
2014 }
2015 
2016 //------------------------------profitable---------------------------
2017 // For pack p, are all operands and all uses (with in the block) vector?
profitable(Node_List * p)2018 bool SuperWord::profitable(Node_List* p) {
2019   Node* p0 = p->at(0);
2020   uint start, end;
2021   VectorNode::vector_operands(p0, &start, &end);
2022 
2023   // Return false if some inputs are not vectors or vectors with different
2024   // size or alignment.
2025   // Also, for now, return false if not scalar promotion case when inputs are
2026   // the same. Later, implement PackNode and allow differing, non-vector inputs
2027   // (maybe just the ones from outside the block.)
2028   for (uint i = start; i < end; i++) {
2029     if (!is_vector_use(p0, i)) {
2030       return false;
2031     }
2032   }
2033   // Check if reductions are connected
2034   if (p0->is_reduction()) {
2035     Node* second_in = p0->in(2);
2036     Node_List* second_pk = my_pack(second_in);
2037     if ((second_pk == NULL) || (_num_work_vecs == _num_reductions)) {
2038       // Remove reduction flag if no parent pack or if not enough work
2039       // to cover reduction expansion overhead
2040       p0->remove_flag(Node::Flag_is_reduction);
2041       return false;
2042     } else if (second_pk->size() != p->size()) {
2043       return false;
2044     }
2045   }
2046   if (VectorNode::is_shift(p0)) {
2047     // For now, return false if shift count is vector or not scalar promotion
2048     // case (different shift counts) because it is not supported yet.
2049     Node* cnt = p0->in(2);
2050     Node_List* cnt_pk = my_pack(cnt);
2051     if (cnt_pk != NULL)
2052       return false;
2053     if (!same_inputs(p, 2))
2054       return false;
2055   }
2056   if (!p0->is_Store()) {
2057     // For now, return false if not all uses are vector.
2058     // Later, implement ExtractNode and allow non-vector uses (maybe
2059     // just the ones outside the block.)
2060     for (uint i = 0; i < p->size(); i++) {
2061       Node* def = p->at(i);
2062       if (is_cmov_pack_internal_node(p, def)) {
2063         continue;
2064       }
2065       for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
2066         Node* use = def->fast_out(j);
2067         for (uint k = 0; k < use->req(); k++) {
2068           Node* n = use->in(k);
2069           if (def == n) {
2070             // Reductions should only have a Phi use at the loop head or a non-phi use
2071             // outside of the loop if it is the last element of the pack (e.g. SafePoint).
2072             if (def->is_reduction() &&
2073                 ((use->is_Phi() && use->in(0) == _lpt->_head) ||
2074                  (!_lpt->is_member(_phase->get_loop(_phase->ctrl_or_self(use))) && i == p->size()-1))) {
2075               continue;
2076             }
2077             if (!is_vector_use(use, k)) {
2078               return false;
2079             }
2080           }
2081         }
2082       }
2083     }
2084   }
2085   return true;
2086 }
2087 
2088 //------------------------------schedule---------------------------
2089 // Adjust the memory graph for the packed operations
schedule()2090 void SuperWord::schedule() {
2091 
2092   // Co-locate in the memory graph the members of each memory pack
2093   for (int i = 0; i < _packset.length(); i++) {
2094     co_locate_pack(_packset.at(i));
2095   }
2096 }
2097 
2098 //-------------------------------remove_and_insert-------------------
2099 // Remove "current" from its current position in the memory graph and insert
2100 // it after the appropriate insertion point (lip or uip).
remove_and_insert(MemNode * current,MemNode * prev,MemNode * lip,Node * uip,Unique_Node_List & sched_before)2101 void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
2102                                   Node *uip, Unique_Node_List &sched_before) {
2103   Node* my_mem = current->in(MemNode::Memory);
2104   bool sched_up = sched_before.member(current);
2105 
2106   // remove current_store from its current position in the memmory graph
2107   for (DUIterator i = current->outs(); current->has_out(i); i++) {
2108     Node* use = current->out(i);
2109     if (use->is_Mem()) {
2110       assert(use->in(MemNode::Memory) == current, "must be");
2111       if (use == prev) { // connect prev to my_mem
2112           _igvn.replace_input_of(use, MemNode::Memory, my_mem);
2113           --i; //deleted this edge; rescan position
2114       } else if (sched_before.member(use)) {
2115         if (!sched_up) { // Will be moved together with current
2116           _igvn.replace_input_of(use, MemNode::Memory, uip);
2117           --i; //deleted this edge; rescan position
2118         }
2119       } else {
2120         if (sched_up) { // Will be moved together with current
2121           _igvn.replace_input_of(use, MemNode::Memory, lip);
2122           --i; //deleted this edge; rescan position
2123         }
2124       }
2125     }
2126   }
2127 
2128   Node *insert_pt =  sched_up ?  uip : lip;
2129 
2130   // all uses of insert_pt's memory state should use current's instead
2131   for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
2132     Node* use = insert_pt->out(i);
2133     if (use->is_Mem()) {
2134       assert(use->in(MemNode::Memory) == insert_pt, "must be");
2135       _igvn.replace_input_of(use, MemNode::Memory, current);
2136       --i; //deleted this edge; rescan position
2137     } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
2138       uint pos; //lip (lower insert point) must be the last one in the memory slice
2139       for (pos=1; pos < use->req(); pos++) {
2140         if (use->in(pos) == insert_pt) break;
2141       }
2142       _igvn.replace_input_of(use, pos, current);
2143       --i;
2144     }
2145   }
2146 
2147   //connect current to insert_pt
2148   _igvn.replace_input_of(current, MemNode::Memory, insert_pt);
2149 }
2150 
2151 //------------------------------co_locate_pack----------------------------------
2152 // To schedule a store pack, we need to move any sandwiched memory ops either before
2153 // or after the pack, based upon dependence information:
2154 // (1) If any store in the pack depends on the sandwiched memory op, the
2155 //     sandwiched memory op must be scheduled BEFORE the pack;
2156 // (2) If a sandwiched memory op depends on any store in the pack, the
2157 //     sandwiched memory op must be scheduled AFTER the pack;
2158 // (3) If a sandwiched memory op (say, memA) depends on another sandwiched
2159 //     memory op (say memB), memB must be scheduled before memA. So, if memA is
2160 //     scheduled before the pack, memB must also be scheduled before the pack;
2161 // (4) If there is no dependence restriction for a sandwiched memory op, we simply
2162 //     schedule this store AFTER the pack
2163 // (5) We know there is no dependence cycle, so there in no other case;
2164 // (6) Finally, all memory ops in another single pack should be moved in the same direction.
2165 //
2166 // To schedule a load pack, we use the memory state of either the first or the last load in
2167 // the pack, based on the dependence constraint.
co_locate_pack(Node_List * pk)2168 void SuperWord::co_locate_pack(Node_List* pk) {
2169   if (pk->at(0)->is_Store()) {
2170     MemNode* first     = executed_first(pk)->as_Mem();
2171     MemNode* last      = executed_last(pk)->as_Mem();
2172     Unique_Node_List schedule_before_pack;
2173     Unique_Node_List memops;
2174 
2175     MemNode* current   = last->in(MemNode::Memory)->as_Mem();
2176     MemNode* previous  = last;
2177     while (true) {
2178       assert(in_bb(current), "stay in block");
2179       memops.push(previous);
2180       for (DUIterator i = current->outs(); current->has_out(i); i++) {
2181         Node* use = current->out(i);
2182         if (use->is_Mem() && use != previous)
2183           memops.push(use);
2184       }
2185       if (current == first) break;
2186       previous = current;
2187       current  = current->in(MemNode::Memory)->as_Mem();
2188     }
2189 
2190     // determine which memory operations should be scheduled before the pack
2191     for (uint i = 1; i < memops.size(); i++) {
2192       Node *s1 = memops.at(i);
2193       if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
2194         for (uint j = 0; j< i; j++) {
2195           Node *s2 = memops.at(j);
2196           if (!independent(s1, s2)) {
2197             if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
2198               schedule_before_pack.push(s1); // s1 must be scheduled before
2199               Node_List* mem_pk = my_pack(s1);
2200               if (mem_pk != NULL) {
2201                 for (uint ii = 0; ii < mem_pk->size(); ii++) {
2202                   Node* s = mem_pk->at(ii);  // follow partner
2203                   if (memops.member(s) && !schedule_before_pack.member(s))
2204                     schedule_before_pack.push(s);
2205                 }
2206               }
2207               break;
2208             }
2209           }
2210         }
2211       }
2212     }
2213 
2214     Node*    upper_insert_pt = first->in(MemNode::Memory);
2215     // Following code moves loads connected to upper_insert_pt below aliased stores.
2216     // Collect such loads here and reconnect them back to upper_insert_pt later.
2217     memops.clear();
2218     for (DUIterator i = upper_insert_pt->outs(); upper_insert_pt->has_out(i); i++) {
2219       Node* use = upper_insert_pt->out(i);
2220       if (use->is_Mem() && !use->is_Store()) {
2221         memops.push(use);
2222       }
2223     }
2224 
2225     MemNode* lower_insert_pt = last;
2226     previous                 = last; //previous store in pk
2227     current                  = last->in(MemNode::Memory)->as_Mem();
2228 
2229     // start scheduling from "last" to "first"
2230     while (true) {
2231       assert(in_bb(current), "stay in block");
2232       assert(in_pack(previous, pk), "previous stays in pack");
2233       Node* my_mem = current->in(MemNode::Memory);
2234 
2235       if (in_pack(current, pk)) {
2236         // Forward users of my memory state (except "previous) to my input memory state
2237         for (DUIterator i = current->outs(); current->has_out(i); i++) {
2238           Node* use = current->out(i);
2239           if (use->is_Mem() && use != previous) {
2240             assert(use->in(MemNode::Memory) == current, "must be");
2241             if (schedule_before_pack.member(use)) {
2242               _igvn.replace_input_of(use, MemNode::Memory, upper_insert_pt);
2243             } else {
2244               _igvn.replace_input_of(use, MemNode::Memory, lower_insert_pt);
2245             }
2246             --i; // deleted this edge; rescan position
2247           }
2248         }
2249         previous = current;
2250       } else { // !in_pack(current, pk) ==> a sandwiched store
2251         remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
2252       }
2253 
2254       if (current == first) break;
2255       current = my_mem->as_Mem();
2256     } // end while
2257 
2258     // Reconnect loads back to upper_insert_pt.
2259     for (uint i = 0; i < memops.size(); i++) {
2260       Node *ld = memops.at(i);
2261       if (ld->in(MemNode::Memory) != upper_insert_pt) {
2262         _igvn.replace_input_of(ld, MemNode::Memory, upper_insert_pt);
2263       }
2264     }
2265   } else if (pk->at(0)->is_Load()) { // Load pack
2266     // All loads in the pack should have the same memory state. By default,
2267     // we use the memory state of the last load. However, if any load could
2268     // not be moved down due to the dependence constraint, we use the memory
2269     // state of the first load.
2270     Node* mem_input = pick_mem_state(pk);
2271     _igvn.hash_delete(mem_input);
2272     // Give each load the same memory state
2273     for (uint i = 0; i < pk->size(); i++) {
2274       LoadNode* ld = pk->at(i)->as_Load();
2275       _igvn.replace_input_of(ld, MemNode::Memory, mem_input);
2276     }
2277   }
2278 }
2279 
2280 // Finds the first and last memory state and then picks either of them by checking dependence constraints.
2281 // If a store is dependent on an earlier load then we need to pick the memory state of the first load and cannot
2282 // pick the memory state of the last load.
pick_mem_state(Node_List * pk)2283 Node* SuperWord::pick_mem_state(Node_List* pk) {
2284   Node* first_mem = find_first_mem_state(pk);
2285   Node* last_mem  = find_last_mem_state(pk, first_mem);
2286 
2287   for (uint i = 0; i < pk->size(); i++) {
2288     Node* ld = pk->at(i);
2289     for (Node* current = last_mem; current != ld->in(MemNode::Memory); current = current->in(MemNode::Memory)) {
2290       assert(current->is_Mem() && in_bb(current), "unexpected memory");
2291       assert(current != first_mem, "corrupted memory graph");
2292       if (!independent(current, ld)) {
2293 #ifdef ASSERT
2294         // Added assertion code since no case has been observed that should pick the first memory state.
2295         // Remove the assertion code whenever we find a (valid) case that really needs the first memory state.
2296         pk->dump();
2297         first_mem->dump();
2298         last_mem->dump();
2299         current->dump();
2300         ld->dump();
2301         ld->in(MemNode::Memory)->dump();
2302         assert(false, "never observed that first memory should be picked");
2303 #endif
2304         return first_mem; // A later store depends on this load, pick memory state of first load
2305       }
2306     }
2307   }
2308   return last_mem;
2309 }
2310 
2311 // Walk the memory graph from the current first load until the
2312 // start of the loop and check if nodes on the way are memory
2313 // edges of loads in the pack. The last one we encounter is the
2314 // first load.
find_first_mem_state(Node_List * pk)2315 Node* SuperWord::find_first_mem_state(Node_List* pk) {
2316   Node* first_mem = pk->at(0)->in(MemNode::Memory);
2317   for (Node* current = first_mem; in_bb(current); current = current->is_Phi() ? current->in(LoopNode::EntryControl) : current->in(MemNode::Memory)) {
2318     assert(current->is_Mem() || (current->is_Phi() && current->in(0) == bb()), "unexpected memory");
2319     for (uint i = 1; i < pk->size(); i++) {
2320       Node* ld = pk->at(i);
2321       if (ld->in(MemNode::Memory) == current) {
2322         first_mem = current;
2323         break;
2324       }
2325     }
2326   }
2327   return first_mem;
2328 }
2329 
2330 // Find the last load by going over the pack again and walking
2331 // the memory graph from the loads of the pack to the memory of
2332 // the first load. If we encounter the memory of the current last
2333 // load, then we started from further down in the memory graph and
2334 // the load we started from is the last load.
find_last_mem_state(Node_List * pk,Node * first_mem)2335 Node* SuperWord::find_last_mem_state(Node_List* pk, Node* first_mem) {
2336   Node* last_mem = pk->at(0)->in(MemNode::Memory);
2337   for (uint i = 0; i < pk->size(); i++) {
2338     Node* ld = pk->at(i);
2339     for (Node* current = ld->in(MemNode::Memory); current != first_mem; current = current->in(MemNode::Memory)) {
2340       assert(current->is_Mem() && in_bb(current), "unexpected memory");
2341       if (current->in(MemNode::Memory) == last_mem) {
2342         last_mem = ld->in(MemNode::Memory);
2343       }
2344     }
2345   }
2346   return last_mem;
2347 }
2348 
2349 #ifndef PRODUCT
print_loop(bool whole)2350 void SuperWord::print_loop(bool whole) {
2351   Node_Stack stack(_arena, _phase->C->unique() >> 2);
2352   Node_List rpo_list;
2353   VectorSet visited(_arena);
2354   visited.set(lpt()->_head->_idx);
2355   _phase->rpo(lpt()->_head, stack, visited, rpo_list);
2356   _phase->dump(lpt(), rpo_list.size(), rpo_list );
2357   if(whole) {
2358     tty->print_cr("\n Whole loop tree");
2359     _phase->dump();
2360     tty->print_cr(" End of whole loop tree\n");
2361   }
2362 }
2363 #endif
2364 
2365 //------------------------------output---------------------------
2366 // Convert packs into vector node operations
output()2367 void SuperWord::output() {
2368   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
2369   Compile* C = _phase->C;
2370   if (_packset.length() == 0) {
2371     if (cl->is_main_loop()) {
2372       // Instigate more unrolling for optimization when vectorization fails.
2373       C->set_major_progress();
2374       cl->set_notpassed_slp();
2375       cl->mark_do_unroll_only();
2376     }
2377     return;
2378   }
2379 
2380 #ifndef PRODUCT
2381   if (TraceLoopOpts) {
2382     tty->print("SuperWord::output    ");
2383     lpt()->dump_head();
2384   }
2385 #endif
2386 
2387   if (cl->is_main_loop()) {
2388     // MUST ENSURE main loop's initial value is properly aligned:
2389     //  (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
2390 
2391     align_initial_loop_index(align_to_ref());
2392 
2393     // Insert extract (unpack) operations for scalar uses
2394     for (int i = 0; i < _packset.length(); i++) {
2395       insert_extracts(_packset.at(i));
2396     }
2397   }
2398 
2399   uint max_vlen_in_bytes = 0;
2400   uint max_vlen = 0;
2401   bool can_process_post_loop = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
2402 
2403   NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("SWPointer::output: print loop before create_reserve_version_of_loop"); print_loop(true);})
2404 
2405   CountedLoopReserveKit make_reversable(_phase, _lpt, do_reserve_copy());
2406 
2407   NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("SWPointer::output: print loop after create_reserve_version_of_loop"); print_loop(true);})
2408 
2409   if (do_reserve_copy() && !make_reversable.has_reserved()) {
2410     NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: loop was not reserved correctly, exiting SuperWord");})
2411     return;
2412   }
2413 
2414   for (int i = 0; i < _block.length(); i++) {
2415     Node* n = _block.at(i);
2416     Node_List* p = my_pack(n);
2417     if (p && n == executed_last(p)) {
2418       uint vlen = p->size();
2419       uint vlen_in_bytes = 0;
2420       Node* vn = NULL;
2421       Node* low_adr = p->at(0);
2422       Node* first   = executed_first(p);
2423       if (can_process_post_loop) {
2424         // override vlen with the main loops vector length
2425         vlen = cl->slp_max_unroll();
2426       }
2427       NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: %d executed first, %d executed last in pack", first->_idx, n->_idx); print_pack(p);})
2428       int   opc = n->Opcode();
2429       if (n->is_Load()) {
2430         Node* ctl = n->in(MemNode::Control);
2431         Node* mem = first->in(MemNode::Memory);
2432         SWPointer p1(n->as_Mem(), this, NULL, false);
2433         // Identify the memory dependency for the new loadVector node by
2434         // walking up through memory chain.
2435         // This is done to give flexibility to the new loadVector node so that
2436         // it can move above independent storeVector nodes.
2437         while (mem->is_StoreVector()) {
2438           SWPointer p2(mem->as_Mem(), this, NULL, false);
2439           int cmp = p1.cmp(p2);
2440           if (SWPointer::not_equal(cmp) || !SWPointer::comparable(cmp)) {
2441             mem = mem->in(MemNode::Memory);
2442           } else {
2443             break; // dependent memory
2444           }
2445         }
2446         Node* adr = low_adr->in(MemNode::Address);
2447         const TypePtr* atyp = n->adr_type();
2448         vn = LoadVectorNode::make(opc, ctl, mem, adr, atyp, vlen, velt_basic_type(n), control_dependency(p));
2449         vlen_in_bytes = vn->as_LoadVector()->memory_size();
2450       } else if (n->is_Store()) {
2451         // Promote value to be stored to vector
2452         Node* val = vector_opd(p, MemNode::ValueIn);
2453         if (val == NULL) {
2454           if (do_reserve_copy()) {
2455             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: val should not be NULL, exiting SuperWord");})
2456             return; //and reverse to backup IG
2457           }
2458           ShouldNotReachHere();
2459         }
2460 
2461         Node* ctl = n->in(MemNode::Control);
2462         Node* mem = first->in(MemNode::Memory);
2463         Node* adr = low_adr->in(MemNode::Address);
2464         const TypePtr* atyp = n->adr_type();
2465         vn = StoreVectorNode::make(opc, ctl, mem, adr, atyp, val, vlen);
2466         vlen_in_bytes = vn->as_StoreVector()->memory_size();
2467       } else if (VectorNode::is_roundopD(n)) {
2468         Node* in1 = vector_opd(p, 1);
2469         Node* in2 = low_adr->in(2);
2470         assert(in2->is_Con(), "Constant rounding mode expected.");
2471         vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n));
2472         vlen_in_bytes = vn->as_Vector()->length_in_bytes();
2473       } else if (VectorNode::is_muladds2i(n)) {
2474         assert(n->req() == 5u, "MulAddS2I should have 4 operands.");
2475         Node* in1 = vector_opd(p, 1);
2476         Node* in2 = vector_opd(p, 2);
2477         vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n));
2478         vlen_in_bytes = vn->as_Vector()->length_in_bytes();
2479       } else if (n->req() == 3 && !is_cmov_pack(p)) {
2480         // Promote operands to vector
2481         Node* in1 = NULL;
2482         bool node_isa_reduction = n->is_reduction();
2483         if (node_isa_reduction) {
2484           // the input to the first reduction operation is retained
2485           in1 = low_adr->in(1);
2486         } else {
2487           in1 = vector_opd(p, 1);
2488           if (in1 == NULL) {
2489             if (do_reserve_copy()) {
2490               NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: in1 should not be NULL, exiting SuperWord");})
2491               return; //and reverse to backup IG
2492             }
2493             ShouldNotReachHere();
2494           }
2495         }
2496         Node* in2 = vector_opd(p, 2);
2497         if (in2 == NULL) {
2498           if (do_reserve_copy()) {
2499             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: in2 should not be NULL, exiting SuperWord");})
2500             return; //and reverse to backup IG
2501           }
2502           ShouldNotReachHere();
2503         }
2504         if (VectorNode::is_invariant_vector(in1) && (node_isa_reduction == false) && (n->is_Add() || n->is_Mul())) {
2505           // Move invariant vector input into second position to avoid register spilling.
2506           Node* tmp = in1;
2507           in1 = in2;
2508           in2 = tmp;
2509         }
2510         if (node_isa_reduction) {
2511           const Type *arith_type = n->bottom_type();
2512           vn = ReductionNode::make(opc, NULL, in1, in2, arith_type->basic_type());
2513           if (in2->is_Load()) {
2514             vlen_in_bytes = in2->as_LoadVector()->memory_size();
2515           } else {
2516             vlen_in_bytes = in2->as_Vector()->length_in_bytes();
2517           }
2518         } else {
2519           vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n));
2520           vlen_in_bytes = vn->as_Vector()->length_in_bytes();
2521         }
2522       } else if (opc == Op_SqrtF || opc == Op_SqrtD ||
2523                  opc == Op_AbsF || opc == Op_AbsD ||
2524                  opc == Op_AbsI || opc == Op_AbsL ||
2525                  opc == Op_NegF || opc == Op_NegD ||
2526                  opc == Op_PopCountI) {
2527         assert(n->req() == 2, "only one input expected");
2528         Node* in = vector_opd(p, 1);
2529         vn = VectorNode::make(opc, in, NULL, vlen, velt_basic_type(n));
2530         vlen_in_bytes = vn->as_Vector()->length_in_bytes();
2531       } else if (is_cmov_pack(p)) {
2532         if (can_process_post_loop) {
2533           // do not refactor of flow in post loop context
2534           return;
2535         }
2536         if (!n->is_CMove()) {
2537           continue;
2538         }
2539         // place here CMoveVDNode
2540         NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: print before CMove vectorization"); print_loop(false);})
2541         Node* bol = n->in(CMoveNode::Condition);
2542         if (!bol->is_Bool() && bol->Opcode() == Op_ExtractI && bol->req() > 1 ) {
2543           NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: %d is not Bool node, trying its in(1) node %d", bol->_idx, bol->in(1)->_idx); bol->dump(); bol->in(1)->dump();})
2544           bol = bol->in(1); //may be ExtractNode
2545         }
2546 
2547         assert(bol->is_Bool(), "should be BoolNode - too late to bail out!");
2548         if (!bol->is_Bool()) {
2549           if (do_reserve_copy()) {
2550             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: expected %d bool node, exiting SuperWord", bol->_idx); bol->dump();})
2551             return; //and reverse to backup IG
2552           }
2553           ShouldNotReachHere();
2554         }
2555 
2556         int cond = (int)bol->as_Bool()->_test._test;
2557         Node* in_cc  = _igvn.intcon(cond);
2558         NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created intcon in_cc node %d", in_cc->_idx); in_cc->dump();})
2559         Node* cc = bol->clone();
2560         cc->set_req(1, in_cc);
2561         NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created bool cc node %d", cc->_idx); cc->dump();})
2562 
2563         Node* src1 = vector_opd(p, 2); //2=CMoveNode::IfFalse
2564         if (src1 == NULL) {
2565           if (do_reserve_copy()) {
2566             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: src1 should not be NULL, exiting SuperWord");})
2567             return; //and reverse to backup IG
2568           }
2569           ShouldNotReachHere();
2570         }
2571         Node* src2 = vector_opd(p, 3); //3=CMoveNode::IfTrue
2572         if (src2 == NULL) {
2573           if (do_reserve_copy()) {
2574             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: src2 should not be NULL, exiting SuperWord");})
2575             return; //and reverse to backup IG
2576           }
2577           ShouldNotReachHere();
2578         }
2579         BasicType bt = velt_basic_type(n);
2580         const TypeVect* vt = TypeVect::make(bt, vlen);
2581         assert(bt == T_FLOAT || bt == T_DOUBLE, "Only vectorization for FP cmovs is supported");
2582         if (bt == T_FLOAT) {
2583           vn = new CMoveVFNode(cc, src1, src2, vt);
2584         } else {
2585           assert(bt == T_DOUBLE, "Expected double");
2586           vn = new CMoveVDNode(cc, src1, src2, vt);
2587         }
2588         NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created new CMove node %d: ", vn->_idx); vn->dump();})
2589       } else if (opc == Op_FmaD || opc == Op_FmaF) {
2590         // Promote operands to vector
2591         Node* in1 = vector_opd(p, 1);
2592         Node* in2 = vector_opd(p, 2);
2593         Node* in3 = vector_opd(p, 3);
2594         vn = VectorNode::make(opc, in1, in2, in3, vlen, velt_basic_type(n));
2595         vlen_in_bytes = vn->as_Vector()->length_in_bytes();
2596       } else {
2597         if (do_reserve_copy()) {
2598           NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: ShouldNotReachHere, exiting SuperWord");})
2599           return; //and reverse to backup IG
2600         }
2601         ShouldNotReachHere();
2602       }
2603 
2604       assert(vn != NULL, "sanity");
2605       if (vn == NULL) {
2606         if (do_reserve_copy()){
2607           NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: got NULL node, cannot proceed, exiting SuperWord");})
2608           return; //and reverse to backup IG
2609         }
2610         ShouldNotReachHere();
2611       }
2612 
2613       _block.at_put(i, vn);
2614       _igvn.register_new_node_with_optimizer(vn);
2615       _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
2616       for (uint j = 0; j < p->size(); j++) {
2617         Node* pm = p->at(j);
2618         _igvn.replace_node(pm, vn);
2619       }
2620       _igvn._worklist.push(vn);
2621 
2622       if (can_process_post_loop) {
2623         // first check if the vector size if the maximum vector which we can use on the machine,
2624         // other vector size have reduced values for predicated data mapping.
2625         if (vlen_in_bytes != (uint)MaxVectorSize) {
2626           return;
2627         }
2628       }
2629 
2630       if (vlen > max_vlen) {
2631         max_vlen = vlen;
2632       }
2633       if (vlen_in_bytes > max_vlen_in_bytes) {
2634         max_vlen_in_bytes = vlen_in_bytes;
2635       }
2636 #ifdef ASSERT
2637       if (TraceNewVectors) {
2638         tty->print("new Vector node: ");
2639         vn->dump();
2640       }
2641 #endif
2642     }
2643   }//for (int i = 0; i < _block.length(); i++)
2644 
2645   if (max_vlen_in_bytes > C->max_vector_size()) {
2646     C->set_max_vector_size(max_vlen_in_bytes);
2647   }
2648   if (max_vlen_in_bytes > 0) {
2649     cl->mark_loop_vectorized();
2650   }
2651 
2652   if (SuperWordLoopUnrollAnalysis) {
2653     if (cl->has_passed_slp()) {
2654       uint slp_max_unroll_factor = cl->slp_max_unroll();
2655       if (slp_max_unroll_factor == max_vlen) {
2656         if (TraceSuperWordLoopUnrollAnalysis) {
2657           tty->print_cr("vector loop(unroll=%d, len=%d)\n", max_vlen, max_vlen_in_bytes*BitsPerByte);
2658         }
2659 
2660         // For atomic unrolled loops which are vector mapped, instigate more unrolling
2661         cl->set_notpassed_slp();
2662         if (cl->is_main_loop()) {
2663           // if vector resources are limited, do not allow additional unrolling, also
2664           // do not unroll more on pure vector loops which were not reduced so that we can
2665           // program the post loop to single iteration execution.
2666           if (FLOATPRESSURE > 8) {
2667             C->set_major_progress();
2668             cl->mark_do_unroll_only();
2669           }
2670         }
2671 
2672         if (do_reserve_copy()) {
2673           if (can_process_post_loop) {
2674             // Now create the difference of trip and limit and use it as our mask index.
2675             // Note: We limited the unroll of the vectorized loop so that
2676             //       only vlen-1 size iterations can remain to be mask programmed.
2677             Node *incr = cl->incr();
2678             SubINode *index = new SubINode(cl->limit(), cl->init_trip());
2679             _igvn.register_new_node_with_optimizer(index);
2680             SetVectMaskINode  *mask = new SetVectMaskINode(_phase->get_ctrl(cl->init_trip()), index);
2681             _igvn.register_new_node_with_optimizer(mask);
2682             // make this a single iteration loop
2683             AddINode *new_incr = new AddINode(incr->in(1), mask);
2684             _igvn.register_new_node_with_optimizer(new_incr);
2685             _phase->set_ctrl(new_incr, _phase->get_ctrl(incr));
2686             _igvn.replace_node(incr, new_incr);
2687             cl->mark_is_multiversioned();
2688             cl->loopexit()->add_flag(Node::Flag_has_vector_mask_set);
2689           }
2690         }
2691       }
2692     }
2693   }
2694 
2695   if (do_reserve_copy()) {
2696     make_reversable.use_new();
2697   }
2698   NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("\n Final loop after SuperWord"); print_loop(true);})
2699   return;
2700 }
2701 
2702 //------------------------------vector_opd---------------------------
2703 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
vector_opd(Node_List * p,int opd_idx)2704 Node* SuperWord::vector_opd(Node_List* p, int opd_idx) {
2705   Node* p0 = p->at(0);
2706   uint vlen = p->size();
2707   Node* opd = p0->in(opd_idx);
2708   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
2709 
2710   if (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop()) {
2711     // override vlen with the main loops vector length
2712     vlen = cl->slp_max_unroll();
2713   }
2714 
2715   if (same_inputs(p, opd_idx)) {
2716     if (opd->is_Vector() || opd->is_LoadVector()) {
2717       assert(((opd_idx != 2) || !VectorNode::is_shift(p0)), "shift's count can't be vector");
2718       if (opd_idx == 2 && VectorNode::is_shift(p0)) {
2719         NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("shift's count can't be vector");})
2720         return NULL;
2721       }
2722       return opd; // input is matching vector
2723     }
2724     if ((opd_idx == 2) && VectorNode::is_shift(p0)) {
2725       Compile* C = _phase->C;
2726       Node* cnt = opd;
2727       // Vector instructions do not mask shift count, do it here.
2728       juint mask = (p0->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
2729       const TypeInt* t = opd->find_int_type();
2730       if (t != NULL && t->is_con()) {
2731         juint shift = t->get_con();
2732         if (shift > mask) { // Unsigned cmp
2733           cnt = ConNode::make(TypeInt::make(shift & mask));
2734         }
2735       } else {
2736         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
2737           cnt = ConNode::make(TypeInt::make(mask));
2738           _igvn.register_new_node_with_optimizer(cnt);
2739           cnt = new AndINode(opd, cnt);
2740           _igvn.register_new_node_with_optimizer(cnt);
2741           _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
2742         }
2743         assert(opd->bottom_type()->isa_int(), "int type only");
2744         if (!opd->bottom_type()->isa_int()) {
2745           NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("Should be int type only");})
2746           return NULL;
2747         }
2748       }
2749       // Move shift count into vector register.
2750       cnt = VectorNode::shift_count(p0, cnt, vlen, velt_basic_type(p0));
2751       _igvn.register_new_node_with_optimizer(cnt);
2752       _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
2753       return cnt;
2754     }
2755     assert(!opd->is_StoreVector(), "such vector is not expected here");
2756     if (opd->is_StoreVector()) {
2757       NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("StoreVector is not expected here");})
2758       return NULL;
2759     }
2760     // Convert scalar input to vector with the same number of elements as
2761     // p0's vector. Use p0's type because size of operand's container in
2762     // vector should match p0's size regardless operand's size.
2763     const Type* p0_t = velt_type(p0);
2764     VectorNode* vn = VectorNode::scalar2vector(opd, vlen, p0_t);
2765 
2766     _igvn.register_new_node_with_optimizer(vn);
2767     _phase->set_ctrl(vn, _phase->get_ctrl(opd));
2768 #ifdef ASSERT
2769     if (TraceNewVectors) {
2770       tty->print("new Vector node: ");
2771       vn->dump();
2772     }
2773 #endif
2774     return vn;
2775   }
2776 
2777   // Insert pack operation
2778   BasicType bt = velt_basic_type(p0);
2779   PackNode* pk = PackNode::make(opd, vlen, bt);
2780   DEBUG_ONLY( const BasicType opd_bt = opd->bottom_type()->basic_type(); )
2781 
2782   for (uint i = 1; i < vlen; i++) {
2783     Node* pi = p->at(i);
2784     Node* in = pi->in(opd_idx);
2785     assert(my_pack(in) == NULL, "Should already have been unpacked");
2786     if (my_pack(in) != NULL) {
2787       NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("Should already have been unpacked");})
2788       return NULL;
2789     }
2790     assert(opd_bt == in->bottom_type()->basic_type(), "all same type");
2791     pk->add_opd(in);
2792     if (VectorNode::is_muladds2i(pi)) {
2793       Node* in2 = pi->in(opd_idx + 2);
2794       assert(my_pack(in2) == NULL, "Should already have been unpacked");
2795       if (my_pack(in2) != NULL) {
2796         NOT_PRODUCT(if (is_trace_loop_reverse() || TraceLoopOpts) { tty->print_cr("Should already have been unpacked"); })
2797           return NULL;
2798       }
2799       assert(opd_bt == in2->bottom_type()->basic_type(), "all same type");
2800       pk->add_opd(in2);
2801     }
2802   }
2803   _igvn.register_new_node_with_optimizer(pk);
2804   _phase->set_ctrl(pk, _phase->get_ctrl(opd));
2805 #ifdef ASSERT
2806   if (TraceNewVectors) {
2807     tty->print("new Vector node: ");
2808     pk->dump();
2809   }
2810 #endif
2811   return pk;
2812 }
2813 
2814 //------------------------------insert_extracts---------------------------
2815 // If a use of pack p is not a vector use, then replace the
2816 // use with an extract operation.
insert_extracts(Node_List * p)2817 void SuperWord::insert_extracts(Node_List* p) {
2818   if (p->at(0)->is_Store()) return;
2819   assert(_n_idx_list.is_empty(), "empty (node,index) list");
2820 
2821   // Inspect each use of each pack member.  For each use that is
2822   // not a vector use, replace the use with an extract operation.
2823 
2824   for (uint i = 0; i < p->size(); i++) {
2825     Node* def = p->at(i);
2826     for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
2827       Node* use = def->fast_out(j);
2828       for (uint k = 0; k < use->req(); k++) {
2829         Node* n = use->in(k);
2830         if (def == n) {
2831           Node_List* u_pk = my_pack(use);
2832           if ((u_pk == NULL || !is_cmov_pack(u_pk) || use->is_CMove()) && !is_vector_use(use, k)) {
2833               _n_idx_list.push(use, k);
2834           }
2835         }
2836       }
2837     }
2838   }
2839 
2840   while (_n_idx_list.is_nonempty()) {
2841     Node* use = _n_idx_list.node();
2842     int   idx = _n_idx_list.index();
2843     _n_idx_list.pop();
2844     Node* def = use->in(idx);
2845 
2846     if (def->is_reduction()) continue;
2847 
2848     // Insert extract operation
2849     _igvn.hash_delete(def);
2850     int def_pos = alignment(def) / data_size(def);
2851 
2852     Node* ex = ExtractNode::make(def, def_pos, velt_basic_type(def));
2853     _igvn.register_new_node_with_optimizer(ex);
2854     _phase->set_ctrl(ex, _phase->get_ctrl(def));
2855     _igvn.replace_input_of(use, idx, ex);
2856     _igvn._worklist.push(def);
2857 
2858     bb_insert_after(ex, bb_idx(def));
2859     set_velt_type(ex, velt_type(def));
2860   }
2861 }
2862 
2863 //------------------------------is_vector_use---------------------------
2864 // Is use->in(u_idx) a vector use?
is_vector_use(Node * use,int u_idx)2865 bool SuperWord::is_vector_use(Node* use, int u_idx) {
2866   Node_List* u_pk = my_pack(use);
2867   if (u_pk == NULL) return false;
2868   if (use->is_reduction()) return true;
2869   Node* def = use->in(u_idx);
2870   Node_List* d_pk = my_pack(def);
2871   if (d_pk == NULL) {
2872     // check for scalar promotion
2873     Node* n = u_pk->at(0)->in(u_idx);
2874     for (uint i = 1; i < u_pk->size(); i++) {
2875       if (u_pk->at(i)->in(u_idx) != n) return false;
2876     }
2877     return true;
2878   }
2879   if (VectorNode::is_muladds2i(use)) {
2880     // MulAddS2I takes shorts and produces ints - hence the special checks
2881     // on alignment and size.
2882     if (u_pk->size() * 2 != d_pk->size()) {
2883       return false;
2884     }
2885     for (uint i = 0; i < MIN2(d_pk->size(), u_pk->size()); i++) {
2886       Node* ui = u_pk->at(i);
2887       Node* di = d_pk->at(i);
2888       if (alignment(ui) != alignment(di) * 2) {
2889         return false;
2890       }
2891     }
2892     return true;
2893   }
2894   if (u_pk->size() != d_pk->size())
2895     return false;
2896   for (uint i = 0; i < u_pk->size(); i++) {
2897     Node* ui = u_pk->at(i);
2898     Node* di = d_pk->at(i);
2899     if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
2900       return false;
2901   }
2902   return true;
2903 }
2904 
2905 //------------------------------construct_bb---------------------------
2906 // Construct reverse postorder list of block members
construct_bb()2907 bool SuperWord::construct_bb() {
2908   Node* entry = bb();
2909 
2910   assert(_stk.length() == 0,            "stk is empty");
2911   assert(_block.length() == 0,          "block is empty");
2912   assert(_data_entry.length() == 0,     "data_entry is empty");
2913   assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
2914   assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
2915 
2916   // Find non-control nodes with no inputs from within block,
2917   // create a temporary map from node _idx to bb_idx for use
2918   // by the visited and post_visited sets,
2919   // and count number of nodes in block.
2920   int bb_ct = 0;
2921   for (uint i = 0; i < lpt()->_body.size(); i++) {
2922     Node *n = lpt()->_body.at(i);
2923     set_bb_idx(n, i); // Create a temporary map
2924     if (in_bb(n)) {
2925       if (n->is_LoadStore() || n->is_MergeMem() ||
2926           (n->is_Proj() && !n->as_Proj()->is_CFG())) {
2927         // Bailout if the loop has LoadStore, MergeMem or data Proj
2928         // nodes. Superword optimization does not work with them.
2929         return false;
2930       }
2931       bb_ct++;
2932       if (!n->is_CFG()) {
2933         bool found = false;
2934         for (uint j = 0; j < n->req(); j++) {
2935           Node* def = n->in(j);
2936           if (def && in_bb(def)) {
2937             found = true;
2938             break;
2939           }
2940         }
2941         if (!found) {
2942           assert(n != entry, "can't be entry");
2943           _data_entry.push(n);
2944         }
2945       }
2946     }
2947   }
2948 
2949   // Find memory slices (head and tail)
2950   for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
2951     Node *n = lp()->fast_out(i);
2952     if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
2953       Node* n_tail  = n->in(LoopNode::LoopBackControl);
2954       if (n_tail != n->in(LoopNode::EntryControl)) {
2955         if (!n_tail->is_Mem()) {
2956           assert(n_tail->is_Mem(), "unexpected node for memory slice: %s", n_tail->Name());
2957           return false; // Bailout
2958         }
2959         _mem_slice_head.push(n);
2960         _mem_slice_tail.push(n_tail);
2961       }
2962     }
2963   }
2964 
2965   // Create an RPO list of nodes in block
2966 
2967   visited_clear();
2968   post_visited_clear();
2969 
2970   // Push all non-control nodes with no inputs from within block, then control entry
2971   for (int j = 0; j < _data_entry.length(); j++) {
2972     Node* n = _data_entry.at(j);
2973     visited_set(n);
2974     _stk.push(n);
2975   }
2976   visited_set(entry);
2977   _stk.push(entry);
2978 
2979   // Do a depth first walk over out edges
2980   int rpo_idx = bb_ct - 1;
2981   int size;
2982   int reduction_uses = 0;
2983   while ((size = _stk.length()) > 0) {
2984     Node* n = _stk.top(); // Leave node on stack
2985     if (!visited_test_set(n)) {
2986       // forward arc in graph
2987     } else if (!post_visited_test(n)) {
2988       // cross or back arc
2989       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2990         Node *use = n->fast_out(i);
2991         if (in_bb(use) && !visited_test(use) &&
2992             // Don't go around backedge
2993             (!use->is_Phi() || n == entry)) {
2994           if (use->is_reduction()) {
2995             // First see if we can map the reduction on the given system we are on, then
2996             // make a data entry operation for each reduction we see.
2997             BasicType bt = use->bottom_type()->basic_type();
2998             if (ReductionNode::implemented(use->Opcode(), Matcher::min_vector_size(bt), bt)) {
2999               reduction_uses++;
3000             }
3001           }
3002           _stk.push(use);
3003         }
3004       }
3005       if (_stk.length() == size) {
3006         // There were no additional uses, post visit node now
3007         _stk.pop(); // Remove node from stack
3008         assert(rpo_idx >= 0, "");
3009         _block.at_put_grow(rpo_idx, n);
3010         rpo_idx--;
3011         post_visited_set(n);
3012         assert(rpo_idx >= 0 || _stk.is_empty(), "");
3013       }
3014     } else {
3015       _stk.pop(); // Remove post-visited node from stack
3016     }
3017   }//while
3018 
3019   int ii_current = -1;
3020   unsigned int load_idx = (unsigned int)-1;
3021   _ii_order.clear();
3022   // Create real map of block indices for nodes
3023   for (int j = 0; j < _block.length(); j++) {
3024     Node* n = _block.at(j);
3025     set_bb_idx(n, j);
3026     if (_do_vector_loop && n->is_Load()) {
3027       if (ii_current == -1) {
3028         ii_current = _clone_map.gen(n->_idx);
3029         _ii_order.push(ii_current);
3030         load_idx = _clone_map.idx(n->_idx);
3031       } else if (_clone_map.idx(n->_idx) == load_idx && _clone_map.gen(n->_idx) != ii_current) {
3032         ii_current = _clone_map.gen(n->_idx);
3033         _ii_order.push(ii_current);
3034       }
3035     }
3036   }//for
3037 
3038   // Ensure extra info is allocated.
3039   initialize_bb();
3040 
3041 #ifndef PRODUCT
3042   if (_vector_loop_debug && _ii_order.length() > 0) {
3043     tty->print("SuperWord::construct_bb: List of generations: ");
3044     for (int jj = 0; jj < _ii_order.length(); ++jj) {
3045       tty->print("  %d:%d", jj, _ii_order.at(jj));
3046     }
3047     tty->print_cr(" ");
3048   }
3049   if (TraceSuperWord) {
3050     print_bb();
3051     tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
3052     for (int m = 0; m < _data_entry.length(); m++) {
3053       tty->print("%3d ", m);
3054       _data_entry.at(m)->dump();
3055     }
3056     tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
3057     for (int m = 0; m < _mem_slice_head.length(); m++) {
3058       tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
3059       tty->print("    ");    _mem_slice_tail.at(m)->dump();
3060     }
3061   }
3062 #endif
3063   assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
3064   return (_mem_slice_head.length() > 0) || (reduction_uses > 0) || (_data_entry.length() > 0);
3065 }
3066 
3067 //------------------------------initialize_bb---------------------------
3068 // Initialize per node info
initialize_bb()3069 void SuperWord::initialize_bb() {
3070   Node* last = _block.at(_block.length() - 1);
3071   grow_node_info(bb_idx(last));
3072 }
3073 
3074 //------------------------------bb_insert_after---------------------------
3075 // Insert n into block after pos
bb_insert_after(Node * n,int pos)3076 void SuperWord::bb_insert_after(Node* n, int pos) {
3077   int n_pos = pos + 1;
3078   // Make room
3079   for (int i = _block.length() - 1; i >= n_pos; i--) {
3080     _block.at_put_grow(i+1, _block.at(i));
3081   }
3082   for (int j = _node_info.length() - 1; j >= n_pos; j--) {
3083     _node_info.at_put_grow(j+1, _node_info.at(j));
3084   }
3085   // Set value
3086   _block.at_put_grow(n_pos, n);
3087   _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
3088   // Adjust map from node->_idx to _block index
3089   for (int i = n_pos; i < _block.length(); i++) {
3090     set_bb_idx(_block.at(i), i);
3091   }
3092 }
3093 
3094 //------------------------------compute_max_depth---------------------------
3095 // Compute max depth for expressions from beginning of block
3096 // Use to prune search paths during test for independence.
compute_max_depth()3097 void SuperWord::compute_max_depth() {
3098   int ct = 0;
3099   bool again;
3100   do {
3101     again = false;
3102     for (int i = 0; i < _block.length(); i++) {
3103       Node* n = _block.at(i);
3104       if (!n->is_Phi()) {
3105         int d_orig = depth(n);
3106         int d_in   = 0;
3107         for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
3108           Node* pred = preds.current();
3109           if (in_bb(pred)) {
3110             d_in = MAX2(d_in, depth(pred));
3111           }
3112         }
3113         if (d_in + 1 != d_orig) {
3114           set_depth(n, d_in + 1);
3115           again = true;
3116         }
3117       }
3118     }
3119     ct++;
3120   } while (again);
3121 
3122   if (TraceSuperWord && Verbose) {
3123     tty->print_cr("compute_max_depth iterated: %d times", ct);
3124   }
3125 }
3126 
3127 //-------------------------compute_vector_element_type-----------------------
3128 // Compute necessary vector element type for expressions
3129 // This propagates backwards a narrower integer type when the
3130 // upper bits of the value are not needed.
3131 // Example:  char a,b,c;  a = b + c;
3132 // Normally the type of the add is integer, but for packed character
3133 // operations the type of the add needs to be char.
compute_vector_element_type()3134 void SuperWord::compute_vector_element_type() {
3135   if (TraceSuperWord && Verbose) {
3136     tty->print_cr("\ncompute_velt_type:");
3137   }
3138 
3139   // Initial type
3140   for (int i = 0; i < _block.length(); i++) {
3141     Node* n = _block.at(i);
3142     set_velt_type(n, container_type(n));
3143   }
3144 
3145   // Propagate integer narrowed type backwards through operations
3146   // that don't depend on higher order bits
3147   for (int i = _block.length() - 1; i >= 0; i--) {
3148     Node* n = _block.at(i);
3149     // Only integer types need be examined
3150     const Type* vtn = velt_type(n);
3151     if (vtn->basic_type() == T_INT) {
3152       uint start, end;
3153       VectorNode::vector_operands(n, &start, &end);
3154 
3155       for (uint j = start; j < end; j++) {
3156         Node* in  = n->in(j);
3157         // Don't propagate through a memory
3158         if (!in->is_Mem() && in_bb(in) && velt_type(in)->basic_type() == T_INT &&
3159             data_size(n) < data_size(in)) {
3160           bool same_type = true;
3161           for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
3162             Node *use = in->fast_out(k);
3163             if (!in_bb(use) || !same_velt_type(use, n)) {
3164               same_type = false;
3165               break;
3166             }
3167           }
3168           if (same_type) {
3169             // In any Java arithmetic operation, operands of small integer types
3170             // (boolean, byte, char & short) should be promoted to int first. As
3171             // vector elements of small types don't have upper bits of int, for
3172             // RShiftI or AbsI operations, the compiler has to know the precise
3173             // signedness info of the 1st operand. These operations shouldn't be
3174             // vectorized if the signedness info is imprecise.
3175             const Type* vt = vtn;
3176             int op = in->Opcode();
3177             if (VectorNode::is_shift(in) || op == Op_AbsI) {
3178               Node* load = in->in(1);
3179               if (load->is_Load() && in_bb(load) && (velt_type(load)->basic_type() == T_INT)) {
3180                 // Only Load nodes distinguish signed (LoadS/LoadB) and unsigned
3181                 // (LoadUS/LoadUB) values. Store nodes only have one version.
3182                 vt = velt_type(load);
3183               } else if (op != Op_LShiftI) {
3184                 // Widen type to int to avoid the creation of vector nodes. Note
3185                 // that left shifts work regardless of the signedness.
3186                 vt = TypeInt::INT;
3187               }
3188             }
3189             set_velt_type(in, vt);
3190           }
3191         }
3192       }
3193     }
3194   }
3195 #ifndef PRODUCT
3196   if (TraceSuperWord && Verbose) {
3197     for (int i = 0; i < _block.length(); i++) {
3198       Node* n = _block.at(i);
3199       velt_type(n)->dump();
3200       tty->print("\t");
3201       n->dump();
3202     }
3203   }
3204 #endif
3205 }
3206 
3207 //------------------------------memory_alignment---------------------------
3208 // Alignment within a vector memory reference
memory_alignment(MemNode * s,int iv_adjust)3209 int SuperWord::memory_alignment(MemNode* s, int iv_adjust) {
3210   #ifndef PRODUCT
3211     if(TraceSuperWord && Verbose) {
3212       tty->print("SuperWord::memory_alignment within a vector memory reference for %d:  ", s->_idx); s->dump();
3213     }
3214   #endif
3215   NOT_PRODUCT(SWPointer::Tracer::Depth ddd(0);)
3216   SWPointer p(s, this, NULL, false);
3217   if (!p.valid()) {
3218     NOT_PRODUCT(if(is_trace_alignment()) tty->print("SWPointer::memory_alignment: SWPointer p invalid, return bottom_align");)
3219     return bottom_align;
3220   }
3221   int vw = get_vw_bytes_special(s);
3222   if (vw < 2) {
3223     NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SWPointer::memory_alignment: vector_width_in_bytes < 2, return bottom_align");)
3224     return bottom_align; // No vectors for this type
3225   }
3226   int offset  = p.offset_in_bytes();
3227   offset     += iv_adjust*p.memory_size();
3228   int off_rem = offset % vw;
3229   int off_mod = off_rem >= 0 ? off_rem : off_rem + vw;
3230   if (TraceSuperWord && Verbose) {
3231     tty->print_cr("SWPointer::memory_alignment: off_rem = %d, off_mod = %d", off_rem, off_mod);
3232   }
3233   return off_mod;
3234 }
3235 
3236 //---------------------------container_type---------------------------
3237 // Smallest type containing range of values
container_type(Node * n)3238 const Type* SuperWord::container_type(Node* n) {
3239   if (n->is_Mem()) {
3240     BasicType bt = n->as_Mem()->memory_type();
3241     if (n->is_Store() && (bt == T_CHAR)) {
3242       // Use T_SHORT type instead of T_CHAR for stored values because any
3243       // preceding arithmetic operation extends values to signed Int.
3244       bt = T_SHORT;
3245     }
3246     if (n->Opcode() == Op_LoadUB) {
3247       // Adjust type for unsigned byte loads, it is important for right shifts.
3248       // T_BOOLEAN is used because there is no basic type representing type
3249       // TypeInt::UBYTE. Use of T_BOOLEAN for vectors is fine because only
3250       // size (one byte) and sign is important.
3251       bt = T_BOOLEAN;
3252     }
3253     return Type::get_const_basic_type(bt);
3254   }
3255   const Type* t = _igvn.type(n);
3256   if (t->basic_type() == T_INT) {
3257     // A narrow type of arithmetic operations will be determined by
3258     // propagating the type of memory operations.
3259     return TypeInt::INT;
3260   }
3261   return t;
3262 }
3263 
same_velt_type(Node * n1,Node * n2)3264 bool SuperWord::same_velt_type(Node* n1, Node* n2) {
3265   const Type* vt1 = velt_type(n1);
3266   const Type* vt2 = velt_type(n2);
3267   if (vt1->basic_type() == T_INT && vt2->basic_type() == T_INT) {
3268     // Compare vectors element sizes for integer types.
3269     return data_size(n1) == data_size(n2);
3270   }
3271   return vt1 == vt2;
3272 }
3273 
3274 //------------------------------in_packset---------------------------
3275 // Are s1 and s2 in a pack pair and ordered as s1,s2?
in_packset(Node * s1,Node * s2)3276 bool SuperWord::in_packset(Node* s1, Node* s2) {
3277   for (int i = 0; i < _packset.length(); i++) {
3278     Node_List* p = _packset.at(i);
3279     assert(p->size() == 2, "must be");
3280     if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
3281       return true;
3282     }
3283   }
3284   return false;
3285 }
3286 
3287 //------------------------------in_pack---------------------------
3288 // Is s in pack p?
in_pack(Node * s,Node_List * p)3289 Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
3290   for (uint i = 0; i < p->size(); i++) {
3291     if (p->at(i) == s) {
3292       return p;
3293     }
3294   }
3295   return NULL;
3296 }
3297 
3298 //------------------------------remove_pack_at---------------------------
3299 // Remove the pack at position pos in the packset
remove_pack_at(int pos)3300 void SuperWord::remove_pack_at(int pos) {
3301   Node_List* p = _packset.at(pos);
3302   for (uint i = 0; i < p->size(); i++) {
3303     Node* s = p->at(i);
3304     set_my_pack(s, NULL);
3305   }
3306   _packset.remove_at(pos);
3307 }
3308 
packset_sort(int n)3309 void SuperWord::packset_sort(int n) {
3310   // simple bubble sort so that we capitalize with O(n) when its already sorted
3311   while (n != 0) {
3312     bool swapped = false;
3313     for (int i = 1; i < n; i++) {
3314       Node_List* q_low = _packset.at(i-1);
3315       Node_List* q_i = _packset.at(i);
3316 
3317       // only swap when we find something to swap
3318       if (alignment(q_low->at(0)) > alignment(q_i->at(0))) {
3319         Node_List* t = q_i;
3320         *(_packset.adr_at(i)) = q_low;
3321         *(_packset.adr_at(i-1)) = q_i;
3322         swapped = true;
3323       }
3324     }
3325     if (swapped == false) break;
3326     n--;
3327   }
3328 }
3329 
3330 //------------------------------executed_first---------------------------
3331 // Return the node executed first in pack p.  Uses the RPO block list
3332 // to determine order.
executed_first(Node_List * p)3333 Node* SuperWord::executed_first(Node_List* p) {
3334   Node* n = p->at(0);
3335   int n_rpo = bb_idx(n);
3336   for (uint i = 1; i < p->size(); i++) {
3337     Node* s = p->at(i);
3338     int s_rpo = bb_idx(s);
3339     if (s_rpo < n_rpo) {
3340       n = s;
3341       n_rpo = s_rpo;
3342     }
3343   }
3344   return n;
3345 }
3346 
3347 //------------------------------executed_last---------------------------
3348 // Return the node executed last in pack p.
executed_last(Node_List * p)3349 Node* SuperWord::executed_last(Node_List* p) {
3350   Node* n = p->at(0);
3351   int n_rpo = bb_idx(n);
3352   for (uint i = 1; i < p->size(); i++) {
3353     Node* s = p->at(i);
3354     int s_rpo = bb_idx(s);
3355     if (s_rpo > n_rpo) {
3356       n = s;
3357       n_rpo = s_rpo;
3358     }
3359   }
3360   return n;
3361 }
3362 
control_dependency(Node_List * p)3363 LoadNode::ControlDependency SuperWord::control_dependency(Node_List* p) {
3364   LoadNode::ControlDependency dep = LoadNode::DependsOnlyOnTest;
3365   for (uint i = 0; i < p->size(); i++) {
3366     Node* n = p->at(i);
3367     assert(n->is_Load(), "only meaningful for loads");
3368     if (!n->depends_only_on_test()) {
3369       if (n->as_Load()->has_unknown_control_dependency() &&
3370           dep != LoadNode::Pinned) {
3371         // Upgrade to unknown control...
3372         dep = LoadNode::UnknownControl;
3373       } else {
3374         // Otherwise, we must pin it.
3375         dep = LoadNode::Pinned;
3376       }
3377     }
3378   }
3379   return dep;
3380 }
3381 
3382 
3383 //----------------------------align_initial_loop_index---------------------------
3384 // Adjust pre-loop limit so that in main loop, a load/store reference
3385 // to align_to_ref will be a position zero in the vector.
3386 //   (iv + k) mod vector_align == 0
align_initial_loop_index(MemNode * align_to_ref)3387 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
3388   CountedLoopNode *main_head = lp()->as_CountedLoop();
3389   assert(main_head->is_main_loop(), "");
3390   CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
3391   assert(pre_end != NULL, "we must have a correct pre-loop");
3392   Node *pre_opaq1 = pre_end->limit();
3393   assert(pre_opaq1->Opcode() == Op_Opaque1, "");
3394   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
3395   Node *lim0 = pre_opaq->in(1);
3396 
3397   // Where we put new limit calculations
3398   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
3399 
3400   // Ensure the original loop limit is available from the
3401   // pre-loop Opaque1 node.
3402   Node *orig_limit = pre_opaq->original_loop_limit();
3403   assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
3404 
3405   SWPointer align_to_ref_p(align_to_ref, this, NULL, false);
3406   assert(align_to_ref_p.valid(), "sanity");
3407 
3408   // Given:
3409   //     lim0 == original pre loop limit
3410   //     V == v_align (power of 2)
3411   //     invar == extra invariant piece of the address expression
3412   //     e == offset [ +/- invar ]
3413   //
3414   // When reassociating expressions involving '%' the basic rules are:
3415   //     (a - b) % k == 0   =>  a % k == b % k
3416   // and:
3417   //     (a + b) % k == 0   =>  a % k == (k - b) % k
3418   //
3419   // For stride > 0 && scale > 0,
3420   //   Derive the new pre-loop limit "lim" such that the two constraints:
3421   //     (1) lim = lim0 + N           (where N is some positive integer < V)
3422   //     (2) (e + lim) % V == 0
3423   //   are true.
3424   //
3425   //   Substituting (1) into (2),
3426   //     (e + lim0 + N) % V == 0
3427   //   solve for N:
3428   //     N = (V - (e + lim0)) % V
3429   //   substitute back into (1), so that new limit
3430   //     lim = lim0 + (V - (e + lim0)) % V
3431   //
3432   // For stride > 0 && scale < 0
3433   //   Constraints:
3434   //     lim = lim0 + N
3435   //     (e - lim) % V == 0
3436   //   Solving for lim:
3437   //     (e - lim0 - N) % V == 0
3438   //     N = (e - lim0) % V
3439   //     lim = lim0 + (e - lim0) % V
3440   //
3441   // For stride < 0 && scale > 0
3442   //   Constraints:
3443   //     lim = lim0 - N
3444   //     (e + lim) % V == 0
3445   //   Solving for lim:
3446   //     (e + lim0 - N) % V == 0
3447   //     N = (e + lim0) % V
3448   //     lim = lim0 - (e + lim0) % V
3449   //
3450   // For stride < 0 && scale < 0
3451   //   Constraints:
3452   //     lim = lim0 - N
3453   //     (e - lim) % V == 0
3454   //   Solving for lim:
3455   //     (e - lim0 + N) % V == 0
3456   //     N = (V - (e - lim0)) % V
3457   //     lim = lim0 - (V - (e - lim0)) % V
3458 
3459   int vw = vector_width_in_bytes(align_to_ref);
3460   int stride   = iv_stride();
3461   int scale    = align_to_ref_p.scale_in_bytes();
3462   int elt_size = align_to_ref_p.memory_size();
3463   int v_align  = vw / elt_size;
3464   assert(v_align > 1, "sanity");
3465   int offset   = align_to_ref_p.offset_in_bytes() / elt_size;
3466   Node *offsn  = _igvn.intcon(offset);
3467 
3468   Node *e = offsn;
3469   if (align_to_ref_p.invar() != NULL) {
3470     // incorporate any extra invariant piece producing (offset +/- invar) >>> log2(elt)
3471     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
3472     Node* invar = align_to_ref_p.invar();
3473     if (_igvn.type(invar)->isa_long()) {
3474       // Computations are done % (vector width/element size) so it's
3475       // safe to simply convert invar to an int and loose the upper 32
3476       // bit half.
3477       invar = new ConvL2INode(invar);
3478       _igvn.register_new_node_with_optimizer(invar);
3479     }
3480     Node* aref = new URShiftINode(invar, log2_elt);
3481     _igvn.register_new_node_with_optimizer(aref);
3482     _phase->set_ctrl(aref, pre_ctrl);
3483     if (align_to_ref_p.negate_invar()) {
3484       e = new SubINode(e, aref);
3485     } else {
3486       e = new AddINode(e, aref);
3487     }
3488     _igvn.register_new_node_with_optimizer(e);
3489     _phase->set_ctrl(e, pre_ctrl);
3490   }
3491   if (vw > ObjectAlignmentInBytes || align_to_ref_p.base()->is_top()) {
3492     // incorporate base e +/- base && Mask >>> log2(elt)
3493     Node* xbase = new CastP2XNode(NULL, align_to_ref_p.adr());
3494     _igvn.register_new_node_with_optimizer(xbase);
3495 #ifdef _LP64
3496     xbase  = new ConvL2INode(xbase);
3497     _igvn.register_new_node_with_optimizer(xbase);
3498 #endif
3499     Node* mask = _igvn.intcon(vw-1);
3500     Node* masked_xbase  = new AndINode(xbase, mask);
3501     _igvn.register_new_node_with_optimizer(masked_xbase);
3502     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
3503     Node* bref     = new URShiftINode(masked_xbase, log2_elt);
3504     _igvn.register_new_node_with_optimizer(bref);
3505     _phase->set_ctrl(bref, pre_ctrl);
3506     e = new AddINode(e, bref);
3507     _igvn.register_new_node_with_optimizer(e);
3508     _phase->set_ctrl(e, pre_ctrl);
3509   }
3510 
3511   // compute e +/- lim0
3512   if (scale < 0) {
3513     e = new SubINode(e, lim0);
3514   } else {
3515     e = new AddINode(e, lim0);
3516   }
3517   _igvn.register_new_node_with_optimizer(e);
3518   _phase->set_ctrl(e, pre_ctrl);
3519 
3520   if (stride * scale > 0) {
3521     // compute V - (e +/- lim0)
3522     Node* va  = _igvn.intcon(v_align);
3523     e = new SubINode(va, e);
3524     _igvn.register_new_node_with_optimizer(e);
3525     _phase->set_ctrl(e, pre_ctrl);
3526   }
3527   // compute N = (exp) % V
3528   Node* va_msk = _igvn.intcon(v_align - 1);
3529   Node* N = new AndINode(e, va_msk);
3530   _igvn.register_new_node_with_optimizer(N);
3531   _phase->set_ctrl(N, pre_ctrl);
3532 
3533   //   substitute back into (1), so that new limit
3534   //     lim = lim0 + N
3535   Node* lim;
3536   if (stride < 0) {
3537     lim = new SubINode(lim0, N);
3538   } else {
3539     lim = new AddINode(lim0, N);
3540   }
3541   _igvn.register_new_node_with_optimizer(lim);
3542   _phase->set_ctrl(lim, pre_ctrl);
3543   Node* constrained =
3544     (stride > 0) ? (Node*) new MinINode(lim, orig_limit)
3545                  : (Node*) new MaxINode(lim, orig_limit);
3546   _igvn.register_new_node_with_optimizer(constrained);
3547   _phase->set_ctrl(constrained, pre_ctrl);
3548   _igvn.replace_input_of(pre_opaq, 1, constrained);
3549 }
3550 
3551 //----------------------------get_pre_loop_end---------------------------
3552 // Find pre loop end from main loop.  Returns null if none.
get_pre_loop_end(CountedLoopNode * cl)3553 CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode* cl) {
3554   // The loop cannot be optimized if the graph shape at
3555   // the loop entry is inappropriate.
3556   if (!PhaseIdealLoop::is_canonical_loop_entry(cl)) {
3557     return NULL;
3558   }
3559 
3560   Node* p_f = cl->skip_predicates()->in(0)->in(0);
3561   if (!p_f->is_IfFalse()) return NULL;
3562   if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
3563   CountedLoopEndNode* pre_end = p_f->in(0)->as_CountedLoopEnd();
3564   CountedLoopNode* loop_node = pre_end->loopnode();
3565   if (loop_node == NULL || !loop_node->is_pre_loop()) return NULL;
3566   return pre_end;
3567 }
3568 
3569 //------------------------------init---------------------------
init()3570 void SuperWord::init() {
3571   _dg.init();
3572   _packset.clear();
3573   _disjoint_ptrs.clear();
3574   _block.clear();
3575   _post_block.clear();
3576   _data_entry.clear();
3577   _mem_slice_head.clear();
3578   _mem_slice_tail.clear();
3579   _iteration_first.clear();
3580   _iteration_last.clear();
3581   _node_info.clear();
3582   _align_to_ref = NULL;
3583   _lpt = NULL;
3584   _lp = NULL;
3585   _bb = NULL;
3586   _iv = NULL;
3587   _race_possible = 0;
3588   _early_return = false;
3589   _num_work_vecs = 0;
3590   _num_reductions = 0;
3591 }
3592 
3593 //------------------------------restart---------------------------
restart()3594 void SuperWord::restart() {
3595   _dg.init();
3596   _packset.clear();
3597   _disjoint_ptrs.clear();
3598   _block.clear();
3599   _post_block.clear();
3600   _data_entry.clear();
3601   _mem_slice_head.clear();
3602   _mem_slice_tail.clear();
3603   _node_info.clear();
3604 }
3605 
3606 //------------------------------print_packset---------------------------
print_packset()3607 void SuperWord::print_packset() {
3608 #ifndef PRODUCT
3609   tty->print_cr("packset");
3610   for (int i = 0; i < _packset.length(); i++) {
3611     tty->print_cr("Pack: %d", i);
3612     Node_List* p = _packset.at(i);
3613     print_pack(p);
3614   }
3615 #endif
3616 }
3617 
3618 //------------------------------print_pack---------------------------
print_pack(Node_List * p)3619 void SuperWord::print_pack(Node_List* p) {
3620   for (uint i = 0; i < p->size(); i++) {
3621     print_stmt(p->at(i));
3622   }
3623 }
3624 
3625 //------------------------------print_bb---------------------------
print_bb()3626 void SuperWord::print_bb() {
3627 #ifndef PRODUCT
3628   tty->print_cr("\nBlock");
3629   for (int i = 0; i < _block.length(); i++) {
3630     Node* n = _block.at(i);
3631     tty->print("%d ", i);
3632     if (n) {
3633       n->dump();
3634     }
3635   }
3636 #endif
3637 }
3638 
3639 //------------------------------print_stmt---------------------------
print_stmt(Node * s)3640 void SuperWord::print_stmt(Node* s) {
3641 #ifndef PRODUCT
3642   tty->print(" align: %d \t", alignment(s));
3643   s->dump();
3644 #endif
3645 }
3646 
3647 //------------------------------blank---------------------------
blank(uint depth)3648 char* SuperWord::blank(uint depth) {
3649   static char blanks[101];
3650   assert(depth < 101, "too deep");
3651   for (uint i = 0; i < depth; i++) blanks[i] = ' ';
3652   blanks[depth] = '\0';
3653   return blanks;
3654 }
3655 
3656 
3657 //==============================SWPointer===========================
3658 #ifndef PRODUCT
3659 int SWPointer::Tracer::_depth = 0;
3660 #endif
3661 //----------------------------SWPointer------------------------
SWPointer(MemNode * mem,SuperWord * slp,Node_Stack * nstack,bool analyze_only)3662 SWPointer::SWPointer(MemNode* mem, SuperWord* slp, Node_Stack *nstack, bool analyze_only) :
3663   _mem(mem), _slp(slp),  _base(NULL),  _adr(NULL),
3664   _scale(0), _offset(0), _invar(NULL), _negate_invar(false),
3665   _nstack(nstack), _analyze_only(analyze_only),
3666   _stack_idx(0)
3667 #ifndef PRODUCT
3668   , _tracer(slp)
3669 #endif
3670 {
3671   NOT_PRODUCT(_tracer.ctor_1(mem);)
3672 
3673   Node* adr = mem->in(MemNode::Address);
3674   if (!adr->is_AddP()) {
3675     assert(!valid(), "too complex");
3676     return;
3677   }
3678   // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
3679   Node* base = adr->in(AddPNode::Base);
3680   // The base address should be loop invariant
3681   if (!invariant(base)) {
3682     assert(!valid(), "base address is loop variant");
3683     return;
3684   }
3685   // unsafe references require misaligned vector access support
3686   if (base->is_top() && !Matcher::misaligned_vectors_ok()) {
3687     assert(!valid(), "unsafe access");
3688     return;
3689   }
3690 
3691   NOT_PRODUCT(if(_slp->is_trace_alignment()) _tracer.store_depth();)
3692   NOT_PRODUCT(_tracer.ctor_2(adr);)
3693 
3694   int i;
3695   for (i = 0; i < 3; i++) {
3696     NOT_PRODUCT(_tracer.ctor_3(adr, i);)
3697 
3698     if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
3699       assert(!valid(), "too complex");
3700       return;
3701     }
3702     adr = adr->in(AddPNode::Address);
3703     NOT_PRODUCT(_tracer.ctor_4(adr, i);)
3704 
3705     if (base == adr || !adr->is_AddP()) {
3706       NOT_PRODUCT(_tracer.ctor_5(adr, base, i);)
3707       break; // stop looking at addp's
3708     }
3709   }
3710   if (!invariant(adr)) {
3711     assert(!valid(), "adr is loop variant");
3712     return;
3713   }
3714 
3715   if (!base->is_top() && adr != base) {
3716     assert(!valid(), "adr and base differ");
3717     return;
3718   }
3719 
3720   NOT_PRODUCT(if(_slp->is_trace_alignment()) _tracer.restore_depth();)
3721   NOT_PRODUCT(_tracer.ctor_6(mem);)
3722 
3723   _base = base;
3724   _adr  = adr;
3725   assert(valid(), "Usable");
3726 }
3727 
3728 // Following is used to create a temporary object during
3729 // the pattern match of an address expression.
SWPointer(SWPointer * p)3730 SWPointer::SWPointer(SWPointer* p) :
3731   _mem(p->_mem), _slp(p->_slp),  _base(NULL),  _adr(NULL),
3732   _scale(0), _offset(0), _invar(NULL), _negate_invar(false),
3733   _nstack(p->_nstack), _analyze_only(p->_analyze_only),
3734   _stack_idx(p->_stack_idx)
3735   #ifndef PRODUCT
3736   , _tracer(p->_slp)
3737   #endif
3738 {}
3739 
3740 
invariant(Node * n)3741 bool SWPointer::invariant(Node* n) {
3742   NOT_PRODUCT(Tracer::Depth dd;)
3743   Node *n_c = phase()->get_ctrl(n);
3744   NOT_PRODUCT(_tracer.invariant_1(n, n_c);)
3745   return !lpt()->is_member(phase()->get_loop(n_c));
3746 }
3747 //------------------------scaled_iv_plus_offset--------------------
3748 // Match: k*iv + offset
3749 // where: k is a constant that maybe zero, and
3750 //        offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
scaled_iv_plus_offset(Node * n)3751 bool SWPointer::scaled_iv_plus_offset(Node* n) {
3752   NOT_PRODUCT(Tracer::Depth ddd;)
3753   NOT_PRODUCT(_tracer.scaled_iv_plus_offset_1(n);)
3754 
3755   if (scaled_iv(n)) {
3756     NOT_PRODUCT(_tracer.scaled_iv_plus_offset_2(n);)
3757     return true;
3758   }
3759 
3760   if (offset_plus_k(n)) {
3761     NOT_PRODUCT(_tracer.scaled_iv_plus_offset_3(n);)
3762     return true;
3763   }
3764 
3765   int opc = n->Opcode();
3766   if (opc == Op_AddI) {
3767     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
3768       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_4(n);)
3769       return true;
3770     }
3771     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
3772       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_5(n);)
3773       return true;
3774     }
3775   } else if (opc == Op_SubI) {
3776     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
3777       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_6(n);)
3778       return true;
3779     }
3780     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
3781       _scale *= -1;
3782       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_7(n);)
3783       return true;
3784     }
3785   }
3786 
3787   NOT_PRODUCT(_tracer.scaled_iv_plus_offset_8(n);)
3788   return false;
3789 }
3790 
3791 //----------------------------scaled_iv------------------------
3792 // Match: k*iv where k is a constant that's not zero
scaled_iv(Node * n)3793 bool SWPointer::scaled_iv(Node* n) {
3794   NOT_PRODUCT(Tracer::Depth ddd;)
3795   NOT_PRODUCT(_tracer.scaled_iv_1(n);)
3796 
3797   if (_scale != 0) { // already found a scale
3798     NOT_PRODUCT(_tracer.scaled_iv_2(n, _scale);)
3799     return false;
3800   }
3801 
3802   if (n == iv()) {
3803     _scale = 1;
3804     NOT_PRODUCT(_tracer.scaled_iv_3(n, _scale);)
3805     return true;
3806   }
3807   if (_analyze_only && (invariant(n) == false)) {
3808     _nstack->push(n, _stack_idx++);
3809   }
3810 
3811   int opc = n->Opcode();
3812   if (opc == Op_MulI) {
3813     if (n->in(1) == iv() && n->in(2)->is_Con()) {
3814       _scale = n->in(2)->get_int();
3815       NOT_PRODUCT(_tracer.scaled_iv_4(n, _scale);)
3816       return true;
3817     } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
3818       _scale = n->in(1)->get_int();
3819       NOT_PRODUCT(_tracer.scaled_iv_5(n, _scale);)
3820       return true;
3821     }
3822   } else if (opc == Op_LShiftI) {
3823     if (n->in(1) == iv() && n->in(2)->is_Con()) {
3824       _scale = 1 << n->in(2)->get_int();
3825       NOT_PRODUCT(_tracer.scaled_iv_6(n, _scale);)
3826       return true;
3827     }
3828   } else if (opc == Op_ConvI2L) {
3829     if (n->in(1)->Opcode() == Op_CastII &&
3830         n->in(1)->as_CastII()->has_range_check()) {
3831       // Skip range check dependent CastII nodes
3832       n = n->in(1);
3833     }
3834     if (scaled_iv_plus_offset(n->in(1))) {
3835       NOT_PRODUCT(_tracer.scaled_iv_7(n);)
3836       return true;
3837     }
3838   } else if (opc == Op_LShiftL) {
3839     if (!has_iv() && _invar == NULL) {
3840       // Need to preserve the current _offset value, so
3841       // create a temporary object for this expression subtree.
3842       // Hacky, so should re-engineer the address pattern match.
3843       NOT_PRODUCT(Tracer::Depth dddd;)
3844       SWPointer tmp(this);
3845       NOT_PRODUCT(_tracer.scaled_iv_8(n, &tmp);)
3846 
3847       if (tmp.scaled_iv_plus_offset(n->in(1))) {
3848         if (tmp._invar == NULL || _slp->do_vector_loop()) {
3849           int mult = 1 << n->in(2)->get_int();
3850           _scale   = tmp._scale  * mult;
3851           _offset += tmp._offset * mult;
3852           NOT_PRODUCT(_tracer.scaled_iv_9(n, _scale, _offset, mult);)
3853           return true;
3854         }
3855       }
3856     }
3857   }
3858   NOT_PRODUCT(_tracer.scaled_iv_10(n);)
3859   return false;
3860 }
3861 
3862 //----------------------------offset_plus_k------------------------
3863 // Match: offset is (k [+/- invariant])
3864 // where k maybe zero and invariant is optional, but not both.
offset_plus_k(Node * n,bool negate)3865 bool SWPointer::offset_plus_k(Node* n, bool negate) {
3866   NOT_PRODUCT(Tracer::Depth ddd;)
3867   NOT_PRODUCT(_tracer.offset_plus_k_1(n);)
3868 
3869   int opc = n->Opcode();
3870   if (opc == Op_ConI) {
3871     _offset += negate ? -(n->get_int()) : n->get_int();
3872     NOT_PRODUCT(_tracer.offset_plus_k_2(n, _offset);)
3873     return true;
3874   } else if (opc == Op_ConL) {
3875     // Okay if value fits into an int
3876     const TypeLong* t = n->find_long_type();
3877     if (t->higher_equal(TypeLong::INT)) {
3878       jlong loff = n->get_long();
3879       jint  off  = (jint)loff;
3880       _offset += negate ? -off : loff;
3881       NOT_PRODUCT(_tracer.offset_plus_k_3(n, _offset);)
3882       return true;
3883     }
3884     NOT_PRODUCT(_tracer.offset_plus_k_4(n);)
3885     return false;
3886   }
3887   if (_invar != NULL) { // already has an invariant
3888     NOT_PRODUCT(_tracer.offset_plus_k_5(n, _invar);)
3889     return false;
3890   }
3891 
3892   if (_analyze_only && (invariant(n) == false)) {
3893     _nstack->push(n, _stack_idx++);
3894   }
3895   if (opc == Op_AddI) {
3896     if (n->in(2)->is_Con() && invariant(n->in(1))) {
3897       _negate_invar = negate;
3898       _invar = n->in(1);
3899       _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
3900       NOT_PRODUCT(_tracer.offset_plus_k_6(n, _invar, _negate_invar, _offset);)
3901       return true;
3902     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
3903       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
3904       _negate_invar = negate;
3905       _invar = n->in(2);
3906       NOT_PRODUCT(_tracer.offset_plus_k_7(n, _invar, _negate_invar, _offset);)
3907       return true;
3908     }
3909   }
3910   if (opc == Op_SubI) {
3911     if (n->in(2)->is_Con() && invariant(n->in(1))) {
3912       _negate_invar = negate;
3913       _invar = n->in(1);
3914       _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
3915       NOT_PRODUCT(_tracer.offset_plus_k_8(n, _invar, _negate_invar, _offset);)
3916       return true;
3917     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
3918       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
3919       _negate_invar = !negate;
3920       _invar = n->in(2);
3921       NOT_PRODUCT(_tracer.offset_plus_k_9(n, _invar, _negate_invar, _offset);)
3922       return true;
3923     }
3924   }
3925   if (invariant(n)) {
3926     if (opc == Op_ConvI2L) {
3927       n = n->in(1);
3928       if (n->Opcode() == Op_CastII &&
3929           n->as_CastII()->has_range_check()) {
3930         // Skip range check dependent CastII nodes
3931         assert(invariant(n), "sanity");
3932         n = n->in(1);
3933       }
3934     }
3935     _negate_invar = negate;
3936     _invar = n;
3937     NOT_PRODUCT(_tracer.offset_plus_k_10(n, _invar, _negate_invar, _offset);)
3938     return true;
3939   }
3940 
3941   NOT_PRODUCT(_tracer.offset_plus_k_11(n);)
3942   return false;
3943 }
3944 
3945 //----------------------------print------------------------
print()3946 void SWPointer::print() {
3947 #ifndef PRODUCT
3948   tty->print("base: %d  adr: %d  scale: %d  offset: %d  invar: %c%d\n",
3949              _base != NULL ? _base->_idx : 0,
3950              _adr  != NULL ? _adr->_idx  : 0,
3951              _scale, _offset,
3952              _negate_invar?'-':'+',
3953              _invar != NULL ? _invar->_idx : 0);
3954 #endif
3955 }
3956 
3957 //----------------------------tracing------------------------
3958 #ifndef PRODUCT
print_depth()3959 void SWPointer::Tracer::print_depth() {
3960   for (int ii = 0; ii<_depth; ++ii) tty->print("  ");
3961 }
3962 
ctor_1(Node * mem)3963 void SWPointer::Tracer::ctor_1 (Node* mem) {
3964   if(_slp->is_trace_alignment()) {
3965     print_depth(); tty->print(" %d SWPointer::SWPointer: start alignment analysis", mem->_idx); mem->dump();
3966   }
3967 }
3968 
ctor_2(Node * adr)3969 void SWPointer::Tracer::ctor_2(Node* adr) {
3970   if(_slp->is_trace_alignment()) {
3971     //store_depth();
3972     inc_depth();
3973     print_depth(); tty->print(" %d (adr) SWPointer::SWPointer: ", adr->_idx); adr->dump();
3974     inc_depth();
3975     print_depth(); tty->print(" %d (base) SWPointer::SWPointer: ", adr->in(AddPNode::Base)->_idx); adr->in(AddPNode::Base)->dump();
3976   }
3977 }
3978 
ctor_3(Node * adr,int i)3979 void SWPointer::Tracer::ctor_3(Node* adr, int i) {
3980   if(_slp->is_trace_alignment()) {
3981     inc_depth();
3982     Node* offset = adr->in(AddPNode::Offset);
3983     print_depth(); tty->print(" %d (offset) SWPointer::SWPointer: i = %d: ", offset->_idx, i); offset->dump();
3984   }
3985 }
3986 
ctor_4(Node * adr,int i)3987 void SWPointer::Tracer::ctor_4(Node* adr, int i) {
3988   if(_slp->is_trace_alignment()) {
3989     inc_depth();
3990     print_depth(); tty->print(" %d (adr) SWPointer::SWPointer: i = %d: ", adr->_idx, i); adr->dump();
3991   }
3992 }
3993 
ctor_5(Node * adr,Node * base,int i)3994 void SWPointer::Tracer::ctor_5(Node* adr, Node* base, int i) {
3995   if(_slp->is_trace_alignment()) {
3996     inc_depth();
3997     if (base == adr) {
3998       print_depth(); tty->print_cr("  \\ %d (adr) == %d (base) SWPointer::SWPointer: breaking analysis at i = %d", adr->_idx, base->_idx, i);
3999     } else if (!adr->is_AddP()) {
4000       print_depth(); tty->print_cr("  \\ %d (adr) is NOT Addp SWPointer::SWPointer: breaking analysis at i = %d", adr->_idx, i);
4001     }
4002   }
4003 }
4004 
ctor_6(Node * mem)4005 void SWPointer::Tracer::ctor_6(Node* mem) {
4006   if(_slp->is_trace_alignment()) {
4007     //restore_depth();
4008     print_depth(); tty->print_cr(" %d (adr) SWPointer::SWPointer: stop analysis", mem->_idx);
4009   }
4010 }
4011 
invariant_1(Node * n,Node * n_c)4012 void SWPointer::Tracer::invariant_1(Node *n, Node *n_c) {
4013   if (_slp->do_vector_loop() && _slp->is_debug() && _slp->_lpt->is_member(_slp->_phase->get_loop(n_c)) != (int)_slp->in_bb(n)) {
4014     int is_member =  _slp->_lpt->is_member(_slp->_phase->get_loop(n_c));
4015     int in_bb     =  _slp->in_bb(n);
4016     print_depth(); tty->print("  \\ ");  tty->print_cr(" %d SWPointer::invariant  conditions differ: n_c %d", n->_idx, n_c->_idx);
4017     print_depth(); tty->print("  \\ ");  tty->print_cr("is_member %d, in_bb %d", is_member, in_bb);
4018     print_depth(); tty->print("  \\ ");  n->dump();
4019     print_depth(); tty->print("  \\ ");  n_c->dump();
4020   }
4021 }
4022 
scaled_iv_plus_offset_1(Node * n)4023 void SWPointer::Tracer::scaled_iv_plus_offset_1(Node* n) {
4024   if(_slp->is_trace_alignment()) {
4025     print_depth(); tty->print(" %d SWPointer::scaled_iv_plus_offset testing node: ", n->_idx);
4026     n->dump();
4027   }
4028 }
4029 
scaled_iv_plus_offset_2(Node * n)4030 void SWPointer::Tracer::scaled_iv_plus_offset_2(Node* n) {
4031   if(_slp->is_trace_alignment()) {
4032     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: PASSED", n->_idx);
4033   }
4034 }
4035 
scaled_iv_plus_offset_3(Node * n)4036 void SWPointer::Tracer::scaled_iv_plus_offset_3(Node* n) {
4037   if(_slp->is_trace_alignment()) {
4038     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: PASSED", n->_idx);
4039   }
4040 }
4041 
scaled_iv_plus_offset_4(Node * n)4042 void SWPointer::Tracer::scaled_iv_plus_offset_4(Node* n) {
4043   if(_slp->is_trace_alignment()) {
4044     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_AddI PASSED", n->_idx);
4045     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(1) is scaled_iv: ", n->in(1)->_idx); n->in(1)->dump();
4046     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is offset_plus_k: ", n->in(2)->_idx); n->in(2)->dump();
4047   }
4048 }
4049 
scaled_iv_plus_offset_5(Node * n)4050 void SWPointer::Tracer::scaled_iv_plus_offset_5(Node* n) {
4051   if(_slp->is_trace_alignment()) {
4052     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_AddI PASSED", n->_idx);
4053     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is scaled_iv: ", n->in(2)->_idx); n->in(2)->dump();
4054     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(1) is offset_plus_k: ", n->in(1)->_idx); n->in(1)->dump();
4055   }
4056 }
4057 
scaled_iv_plus_offset_6(Node * n)4058 void SWPointer::Tracer::scaled_iv_plus_offset_6(Node* n) {
4059   if(_slp->is_trace_alignment()) {
4060     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_SubI PASSED", n->_idx);
4061     print_depth(); tty->print("  \\  %d SWPointer::scaled_iv_plus_offset: in(1) is scaled_iv: ", n->in(1)->_idx); n->in(1)->dump();
4062     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is offset_plus_k: ", n->in(2)->_idx); n->in(2)->dump();
4063   }
4064 }
4065 
scaled_iv_plus_offset_7(Node * n)4066 void SWPointer::Tracer::scaled_iv_plus_offset_7(Node* n) {
4067   if(_slp->is_trace_alignment()) {
4068     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_SubI PASSED", n->_idx);
4069     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is scaled_iv: ", n->in(2)->_idx); n->in(2)->dump();
4070     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(1) is offset_plus_k: ", n->in(1)->_idx); n->in(1)->dump();
4071   }
4072 }
4073 
scaled_iv_plus_offset_8(Node * n)4074 void SWPointer::Tracer::scaled_iv_plus_offset_8(Node* n) {
4075   if(_slp->is_trace_alignment()) {
4076     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: FAILED", n->_idx);
4077   }
4078 }
4079 
scaled_iv_1(Node * n)4080 void SWPointer::Tracer::scaled_iv_1(Node* n) {
4081   if(_slp->is_trace_alignment()) {
4082     print_depth(); tty->print(" %d SWPointer::scaled_iv: testing node: ", n->_idx); n->dump();
4083   }
4084 }
4085 
scaled_iv_2(Node * n,int scale)4086 void SWPointer::Tracer::scaled_iv_2(Node* n, int scale) {
4087   if(_slp->is_trace_alignment()) {
4088     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: FAILED since another _scale has been detected before", n->_idx);
4089     print_depth(); tty->print_cr("  \\ SWPointer::scaled_iv: _scale (%d) != 0", scale);
4090   }
4091 }
4092 
scaled_iv_3(Node * n,int scale)4093 void SWPointer::Tracer::scaled_iv_3(Node* n, int scale) {
4094   if(_slp->is_trace_alignment()) {
4095     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: is iv, setting _scale = %d", n->_idx, scale);
4096   }
4097 }
4098 
scaled_iv_4(Node * n,int scale)4099 void SWPointer::Tracer::scaled_iv_4(Node* n, int scale) {
4100   if(_slp->is_trace_alignment()) {
4101     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_MulI PASSED, setting _scale = %d", n->_idx, scale);
4102     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(1) is iv: ", n->in(1)->_idx); n->in(1)->dump();
4103     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
4104   }
4105 }
4106 
scaled_iv_5(Node * n,int scale)4107 void SWPointer::Tracer::scaled_iv_5(Node* n, int scale) {
4108   if(_slp->is_trace_alignment()) {
4109     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_MulI PASSED, setting _scale = %d", n->_idx, scale);
4110     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(2) is iv: ", n->in(2)->_idx); n->in(2)->dump();
4111     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
4112   }
4113 }
4114 
scaled_iv_6(Node * n,int scale)4115 void SWPointer::Tracer::scaled_iv_6(Node* n, int scale) {
4116   if(_slp->is_trace_alignment()) {
4117     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_LShiftI PASSED, setting _scale = %d", n->_idx, scale);
4118     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(1) is iv: ", n->in(1)->_idx); n->in(1)->dump();
4119     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
4120   }
4121 }
4122 
scaled_iv_7(Node * n)4123 void SWPointer::Tracer::scaled_iv_7(Node* n) {
4124   if(_slp->is_trace_alignment()) {
4125     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_ConvI2L PASSED", n->_idx);
4126     print_depth(); tty->print_cr("  \\ SWPointer::scaled_iv: in(1) %d is scaled_iv_plus_offset: ", n->in(1)->_idx);
4127     inc_depth(); inc_depth();
4128     print_depth(); n->in(1)->dump();
4129     dec_depth(); dec_depth();
4130   }
4131 }
4132 
scaled_iv_8(Node * n,SWPointer * tmp)4133 void SWPointer::Tracer::scaled_iv_8(Node* n, SWPointer* tmp) {
4134   if(_slp->is_trace_alignment()) {
4135     print_depth(); tty->print(" %d SWPointer::scaled_iv: Op_LShiftL, creating tmp SWPointer: ", n->_idx); tmp->print();
4136   }
4137 }
4138 
scaled_iv_9(Node * n,int scale,int _offset,int mult)4139 void SWPointer::Tracer::scaled_iv_9(Node* n, int scale, int _offset, int mult) {
4140   if(_slp->is_trace_alignment()) {
4141     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_LShiftL PASSED, setting _scale = %d, _offset = %d", n->_idx, scale, _offset);
4142     print_depth(); tty->print_cr("  \\ SWPointer::scaled_iv: in(1) %d is scaled_iv_plus_offset, in(2) %d used to get mult = %d: _scale = %d, _offset = %d",
4143     n->in(1)->_idx, n->in(2)->_idx, mult, scale, _offset);
4144     inc_depth(); inc_depth();
4145     print_depth(); n->in(1)->dump();
4146     print_depth(); n->in(2)->dump();
4147     dec_depth(); dec_depth();
4148   }
4149 }
4150 
scaled_iv_10(Node * n)4151 void SWPointer::Tracer::scaled_iv_10(Node* n) {
4152   if(_slp->is_trace_alignment()) {
4153     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: FAILED", n->_idx);
4154   }
4155 }
4156 
offset_plus_k_1(Node * n)4157 void SWPointer::Tracer::offset_plus_k_1(Node* n) {
4158   if(_slp->is_trace_alignment()) {
4159     print_depth(); tty->print(" %d SWPointer::offset_plus_k: testing node: ", n->_idx); n->dump();
4160   }
4161 }
4162 
offset_plus_k_2(Node * n,int _offset)4163 void SWPointer::Tracer::offset_plus_k_2(Node* n, int _offset) {
4164   if(_slp->is_trace_alignment()) {
4165     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_ConI PASSED, setting _offset = %d", n->_idx, _offset);
4166   }
4167 }
4168 
offset_plus_k_3(Node * n,int _offset)4169 void SWPointer::Tracer::offset_plus_k_3(Node* n, int _offset) {
4170   if(_slp->is_trace_alignment()) {
4171     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_ConL PASSED, setting _offset = %d", n->_idx, _offset);
4172   }
4173 }
4174 
offset_plus_k_4(Node * n)4175 void SWPointer::Tracer::offset_plus_k_4(Node* n) {
4176   if(_slp->is_trace_alignment()) {
4177     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED", n->_idx);
4178     print_depth(); tty->print_cr("  \\ " JLONG_FORMAT " SWPointer::offset_plus_k: Op_ConL FAILED, k is too big", n->get_long());
4179   }
4180 }
4181 
offset_plus_k_5(Node * n,Node * _invar)4182 void SWPointer::Tracer::offset_plus_k_5(Node* n, Node* _invar) {
4183   if(_slp->is_trace_alignment()) {
4184     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED since another invariant has been detected before", n->_idx);
4185     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: _invar != NULL: ", _invar->_idx); _invar->dump();
4186   }
4187 }
4188 
offset_plus_k_6(Node * n,Node * _invar,bool _negate_invar,int _offset)4189 void SWPointer::Tracer::offset_plus_k_6(Node* n, Node* _invar, bool _negate_invar, int _offset) {
4190   if(_slp->is_trace_alignment()) {
4191     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_AddI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
4192     n->_idx, _negate_invar, _invar->_idx, _offset);
4193     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
4194     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is invariant: ", _invar->_idx); _invar->dump();
4195   }
4196 }
4197 
offset_plus_k_7(Node * n,Node * _invar,bool _negate_invar,int _offset)4198 void SWPointer::Tracer::offset_plus_k_7(Node* n, Node* _invar, bool _negate_invar, int _offset) {
4199   if(_slp->is_trace_alignment()) {
4200     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_AddI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
4201     n->_idx, _negate_invar, _invar->_idx, _offset);
4202     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
4203     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is invariant: ", _invar->_idx); _invar->dump();
4204   }
4205 }
4206 
offset_plus_k_8(Node * n,Node * _invar,bool _negate_invar,int _offset)4207 void SWPointer::Tracer::offset_plus_k_8(Node* n, Node* _invar, bool _negate_invar, int _offset) {
4208   if(_slp->is_trace_alignment()) {
4209     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_SubI is PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
4210     n->_idx, _negate_invar, _invar->_idx, _offset);
4211     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
4212     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is invariant: ", _invar->_idx); _invar->dump();
4213   }
4214 }
4215 
offset_plus_k_9(Node * n,Node * _invar,bool _negate_invar,int _offset)4216 void SWPointer::Tracer::offset_plus_k_9(Node* n, Node* _invar, bool _negate_invar, int _offset) {
4217   if(_slp->is_trace_alignment()) {
4218     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_SubI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", n->_idx, _negate_invar, _invar->_idx, _offset);
4219     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
4220     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is invariant: ", _invar->_idx); _invar->dump();
4221   }
4222 }
4223 
offset_plus_k_10(Node * n,Node * _invar,bool _negate_invar,int _offset)4224 void SWPointer::Tracer::offset_plus_k_10(Node* n, Node* _invar, bool _negate_invar, int _offset) {
4225   if(_slp->is_trace_alignment()) {
4226     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", n->_idx, _negate_invar, _invar->_idx, _offset);
4227     print_depth(); tty->print_cr("  \\ %d SWPointer::offset_plus_k: is invariant", n->_idx);
4228   }
4229 }
4230 
offset_plus_k_11(Node * n)4231 void SWPointer::Tracer::offset_plus_k_11(Node* n) {
4232   if(_slp->is_trace_alignment()) {
4233     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED", n->_idx);
4234   }
4235 }
4236 
4237 #endif
4238 // ========================= OrderedPair =====================
4239 
4240 const OrderedPair OrderedPair::initial;
4241 
4242 // ========================= SWNodeInfo =====================
4243 
4244 const SWNodeInfo SWNodeInfo::initial;
4245 
4246 
4247 // ============================ DepGraph ===========================
4248 
4249 //------------------------------make_node---------------------------
4250 // Make a new dependence graph node for an ideal node.
make_node(Node * node)4251 DepMem* DepGraph::make_node(Node* node) {
4252   DepMem* m = new (_arena) DepMem(node);
4253   if (node != NULL) {
4254     assert(_map.at_grow(node->_idx) == NULL, "one init only");
4255     _map.at_put_grow(node->_idx, m);
4256   }
4257   return m;
4258 }
4259 
4260 //------------------------------make_edge---------------------------
4261 // Make a new dependence graph edge from dpred -> dsucc
make_edge(DepMem * dpred,DepMem * dsucc)4262 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
4263   DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
4264   dpred->set_out_head(e);
4265   dsucc->set_in_head(e);
4266   return e;
4267 }
4268 
4269 // ========================== DepMem ========================
4270 
4271 //------------------------------in_cnt---------------------------
in_cnt()4272 int DepMem::in_cnt() {
4273   int ct = 0;
4274   for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
4275   return ct;
4276 }
4277 
4278 //------------------------------out_cnt---------------------------
out_cnt()4279 int DepMem::out_cnt() {
4280   int ct = 0;
4281   for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
4282   return ct;
4283 }
4284 
4285 //------------------------------print-----------------------------
print()4286 void DepMem::print() {
4287 #ifndef PRODUCT
4288   tty->print("  DepNode %d (", _node->_idx);
4289   for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
4290     Node* pred = p->pred()->node();
4291     tty->print(" %d", pred != NULL ? pred->_idx : 0);
4292   }
4293   tty->print(") [");
4294   for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
4295     Node* succ = s->succ()->node();
4296     tty->print(" %d", succ != NULL ? succ->_idx : 0);
4297   }
4298   tty->print_cr(" ]");
4299 #endif
4300 }
4301 
4302 // =========================== DepEdge =========================
4303 
4304 //------------------------------DepPreds---------------------------
print()4305 void DepEdge::print() {
4306 #ifndef PRODUCT
4307   tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
4308 #endif
4309 }
4310 
4311 // =========================== DepPreds =========================
4312 // Iterator over predecessor edges in the dependence graph.
4313 
4314 //------------------------------DepPreds---------------------------
DepPreds(Node * n,DepGraph & dg)4315 DepPreds::DepPreds(Node* n, DepGraph& dg) {
4316   _n = n;
4317   _done = false;
4318   if (_n->is_Store() || _n->is_Load()) {
4319     _next_idx = MemNode::Address;
4320     _end_idx  = n->req();
4321     _dep_next = dg.dep(_n)->in_head();
4322   } else if (_n->is_Mem()) {
4323     _next_idx = 0;
4324     _end_idx  = 0;
4325     _dep_next = dg.dep(_n)->in_head();
4326   } else {
4327     _next_idx = 1;
4328     _end_idx  = _n->req();
4329     _dep_next = NULL;
4330   }
4331   next();
4332 }
4333 
4334 //------------------------------next---------------------------
next()4335 void DepPreds::next() {
4336   if (_dep_next != NULL) {
4337     _current  = _dep_next->pred()->node();
4338     _dep_next = _dep_next->next_in();
4339   } else if (_next_idx < _end_idx) {
4340     _current  = _n->in(_next_idx++);
4341   } else {
4342     _done = true;
4343   }
4344 }
4345 
4346 // =========================== DepSuccs =========================
4347 // Iterator over successor edges in the dependence graph.
4348 
4349 //------------------------------DepSuccs---------------------------
DepSuccs(Node * n,DepGraph & dg)4350 DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
4351   _n = n;
4352   _done = false;
4353   if (_n->is_Load()) {
4354     _next_idx = 0;
4355     _end_idx  = _n->outcnt();
4356     _dep_next = dg.dep(_n)->out_head();
4357   } else if (_n->is_Mem() || (_n->is_Phi() && _n->bottom_type() == Type::MEMORY)) {
4358     _next_idx = 0;
4359     _end_idx  = 0;
4360     _dep_next = dg.dep(_n)->out_head();
4361   } else {
4362     _next_idx = 0;
4363     _end_idx  = _n->outcnt();
4364     _dep_next = NULL;
4365   }
4366   next();
4367 }
4368 
4369 //-------------------------------next---------------------------
next()4370 void DepSuccs::next() {
4371   if (_dep_next != NULL) {
4372     _current  = _dep_next->succ()->node();
4373     _dep_next = _dep_next->next_out();
4374   } else if (_next_idx < _end_idx) {
4375     _current  = _n->raw_out(_next_idx++);
4376   } else {
4377     _done = true;
4378   }
4379 }
4380 
4381 //
4382 // --------------------------------- vectorization/simd -----------------------------------
4383 //
same_origin_idx(Node * a,Node * b) const4384 bool SuperWord::same_origin_idx(Node* a, Node* b) const {
4385   return a != NULL && b != NULL && _clone_map.same_idx(a->_idx, b->_idx);
4386 }
same_generation(Node * a,Node * b) const4387 bool SuperWord::same_generation(Node* a, Node* b) const {
4388   return a != NULL && b != NULL && _clone_map.same_gen(a->_idx, b->_idx);
4389 }
4390 
find_phi_for_mem_dep(LoadNode * ld)4391 Node*  SuperWord::find_phi_for_mem_dep(LoadNode* ld) {
4392   assert(in_bb(ld), "must be in block");
4393   if (_clone_map.gen(ld->_idx) == _ii_first) {
4394 #ifndef PRODUCT
4395     if (_vector_loop_debug) {
4396       tty->print_cr("SuperWord::find_phi_for_mem_dep _clone_map.gen(ld->_idx)=%d",
4397         _clone_map.gen(ld->_idx));
4398     }
4399 #endif
4400     return NULL; //we think that any ld in the first gen being vectorizable
4401   }
4402 
4403   Node* mem = ld->in(MemNode::Memory);
4404   if (mem->outcnt() <= 1) {
4405     // we don't want to remove the only edge from mem node to load
4406 #ifndef PRODUCT
4407     if (_vector_loop_debug) {
4408       tty->print_cr("SuperWord::find_phi_for_mem_dep input node %d to load %d has no other outputs and edge mem->load cannot be removed",
4409         mem->_idx, ld->_idx);
4410       ld->dump();
4411       mem->dump();
4412     }
4413 #endif
4414     return NULL;
4415   }
4416   if (!in_bb(mem) || same_generation(mem, ld)) {
4417 #ifndef PRODUCT
4418     if (_vector_loop_debug) {
4419       tty->print_cr("SuperWord::find_phi_for_mem_dep _clone_map.gen(mem->_idx)=%d",
4420         _clone_map.gen(mem->_idx));
4421     }
4422 #endif
4423     return NULL; // does not depend on loop volatile node or depends on the same generation
4424   }
4425 
4426   //otherwise first node should depend on mem-phi
4427   Node* first = first_node(ld);
4428   assert(first->is_Load(), "must be Load");
4429   Node* phi = first->as_Load()->in(MemNode::Memory);
4430   if (!phi->is_Phi() || phi->bottom_type() != Type::MEMORY) {
4431 #ifndef PRODUCT
4432     if (_vector_loop_debug) {
4433       tty->print_cr("SuperWord::find_phi_for_mem_dep load is not vectorizable node, since it's `first` does not take input from mem phi");
4434       ld->dump();
4435       first->dump();
4436     }
4437 #endif
4438     return NULL;
4439   }
4440 
4441   Node* tail = 0;
4442   for (int m = 0; m < _mem_slice_head.length(); m++) {
4443     if (_mem_slice_head.at(m) == phi) {
4444       tail = _mem_slice_tail.at(m);
4445     }
4446   }
4447   if (tail == 0) { //test that found phi is in the list  _mem_slice_head
4448 #ifndef PRODUCT
4449     if (_vector_loop_debug) {
4450       tty->print_cr("SuperWord::find_phi_for_mem_dep load %d is not vectorizable node, its phi %d is not _mem_slice_head",
4451         ld->_idx, phi->_idx);
4452       ld->dump();
4453       phi->dump();
4454     }
4455 #endif
4456     return NULL;
4457   }
4458 
4459   // now all conditions are met
4460   return phi;
4461 }
4462 
first_node(Node * nd)4463 Node* SuperWord::first_node(Node* nd) {
4464   for (int ii = 0; ii < _iteration_first.length(); ii++) {
4465     Node* nnn = _iteration_first.at(ii);
4466     if (same_origin_idx(nnn, nd)) {
4467 #ifndef PRODUCT
4468       if (_vector_loop_debug) {
4469         tty->print_cr("SuperWord::first_node: %d is the first iteration node for %d (_clone_map.idx(nnn->_idx) = %d)",
4470           nnn->_idx, nd->_idx, _clone_map.idx(nnn->_idx));
4471       }
4472 #endif
4473       return nnn;
4474     }
4475   }
4476 
4477 #ifndef PRODUCT
4478   if (_vector_loop_debug) {
4479     tty->print_cr("SuperWord::first_node: did not find first iteration node for %d (_clone_map.idx(nd->_idx)=%d)",
4480       nd->_idx, _clone_map.idx(nd->_idx));
4481   }
4482 #endif
4483   return 0;
4484 }
4485 
last_node(Node * nd)4486 Node* SuperWord::last_node(Node* nd) {
4487   for (int ii = 0; ii < _iteration_last.length(); ii++) {
4488     Node* nnn = _iteration_last.at(ii);
4489     if (same_origin_idx(nnn, nd)) {
4490 #ifndef PRODUCT
4491       if (_vector_loop_debug) {
4492         tty->print_cr("SuperWord::last_node _clone_map.idx(nnn->_idx)=%d, _clone_map.idx(nd->_idx)=%d",
4493           _clone_map.idx(nnn->_idx), _clone_map.idx(nd->_idx));
4494       }
4495 #endif
4496       return nnn;
4497     }
4498   }
4499   return 0;
4500 }
4501 
mark_generations()4502 int SuperWord::mark_generations() {
4503   Node *ii_err = NULL, *tail_err = NULL;
4504   for (int i = 0; i < _mem_slice_head.length(); i++) {
4505     Node* phi  = _mem_slice_head.at(i);
4506     assert(phi->is_Phi(), "must be phi");
4507 
4508     Node* tail = _mem_slice_tail.at(i);
4509     if (_ii_last == -1) {
4510       tail_err = tail;
4511       _ii_last = _clone_map.gen(tail->_idx);
4512     }
4513     else if (_ii_last != _clone_map.gen(tail->_idx)) {
4514 #ifndef PRODUCT
4515       if (TraceSuperWord && Verbose) {
4516         tty->print_cr("SuperWord::mark_generations _ii_last error - found different generations in two tail nodes ");
4517         tail->dump();
4518         tail_err->dump();
4519       }
4520 #endif
4521       return -1;
4522     }
4523 
4524     // find first iteration in the loop
4525     for (DUIterator_Fast imax, i = phi->fast_outs(imax); i < imax; i++) {
4526       Node* ii = phi->fast_out(i);
4527       if (in_bb(ii) && ii->is_Store()) { // we speculate that normally Stores of one and one only generation have deps from mem phi
4528         if (_ii_first == -1) {
4529           ii_err = ii;
4530           _ii_first = _clone_map.gen(ii->_idx);
4531         } else if (_ii_first != _clone_map.gen(ii->_idx)) {
4532 #ifndef PRODUCT
4533           if (TraceSuperWord && Verbose) {
4534             tty->print_cr("SuperWord::mark_generations: _ii_first was found before and not equal to one in this node (%d)", _ii_first);
4535             ii->dump();
4536             if (ii_err!= 0) {
4537               ii_err->dump();
4538             }
4539           }
4540 #endif
4541           return -1; // this phi has Stores from different generations of unroll and cannot be simd/vectorized
4542         }
4543       }
4544     }//for (DUIterator_Fast imax,
4545   }//for (int i...
4546 
4547   if (_ii_first == -1 || _ii_last == -1) {
4548     if (TraceSuperWord && Verbose) {
4549       tty->print_cr("SuperWord::mark_generations unknown error, something vent wrong");
4550     }
4551     return -1; // something vent wrong
4552   }
4553   // collect nodes in the first and last generations
4554   assert(_iteration_first.length() == 0, "_iteration_first must be empty");
4555   assert(_iteration_last.length() == 0, "_iteration_last must be empty");
4556   for (int j = 0; j < _block.length(); j++) {
4557     Node* n = _block.at(j);
4558     node_idx_t gen = _clone_map.gen(n->_idx);
4559     if ((signed)gen == _ii_first) {
4560       _iteration_first.push(n);
4561     } else if ((signed)gen == _ii_last) {
4562       _iteration_last.push(n);
4563     }
4564   }
4565 
4566   // building order of iterations
4567   if (_ii_order.length() == 0 && ii_err != 0) {
4568     assert(in_bb(ii_err) && ii_err->is_Store(), "should be Store in bb");
4569     Node* nd = ii_err;
4570     while(_clone_map.gen(nd->_idx) != _ii_last) {
4571       _ii_order.push(_clone_map.gen(nd->_idx));
4572       bool found = false;
4573       for (DUIterator_Fast imax, i = nd->fast_outs(imax); i < imax; i++) {
4574         Node* use = nd->fast_out(i);
4575         if (same_origin_idx(use, nd) && use->as_Store()->in(MemNode::Memory) == nd) {
4576           found = true;
4577           nd = use;
4578           break;
4579         }
4580       }//for
4581 
4582       if (found == false) {
4583         if (TraceSuperWord && Verbose) {
4584           tty->print_cr("SuperWord::mark_generations: Cannot build order of iterations - no dependent Store for %d", nd->_idx);
4585         }
4586         _ii_order.clear();
4587         return -1;
4588       }
4589     } //while
4590     _ii_order.push(_clone_map.gen(nd->_idx));
4591   }
4592 
4593 #ifndef PRODUCT
4594   if (_vector_loop_debug) {
4595     tty->print_cr("SuperWord::mark_generations");
4596     tty->print_cr("First generation (%d) nodes:", _ii_first);
4597     for (int ii = 0; ii < _iteration_first.length(); ii++)  _iteration_first.at(ii)->dump();
4598     tty->print_cr("Last generation (%d) nodes:", _ii_last);
4599     for (int ii = 0; ii < _iteration_last.length(); ii++)  _iteration_last.at(ii)->dump();
4600     tty->print_cr(" ");
4601 
4602     tty->print("SuperWord::List of generations: ");
4603     for (int jj = 0; jj < _ii_order.length(); ++jj) {
4604       tty->print("%d:%d ", jj, _ii_order.at(jj));
4605     }
4606     tty->print_cr(" ");
4607   }
4608 #endif
4609 
4610   return _ii_first;
4611 }
4612 
fix_commutative_inputs(Node * gold,Node * fix)4613 bool SuperWord::fix_commutative_inputs(Node* gold, Node* fix) {
4614   assert(gold->is_Add() && fix->is_Add() || gold->is_Mul() && fix->is_Mul(), "should be only Add or Mul nodes");
4615   assert(same_origin_idx(gold, fix), "should be clones of the same node");
4616   Node* gin1 = gold->in(1);
4617   Node* gin2 = gold->in(2);
4618   Node* fin1 = fix->in(1);
4619   Node* fin2 = fix->in(2);
4620   bool swapped = false;
4621 
4622   if (in_bb(gin1) && in_bb(gin2) && in_bb(fin1) && in_bb(fin1)) {
4623     if (same_origin_idx(gin1, fin1) &&
4624         same_origin_idx(gin2, fin2)) {
4625       return true; // nothing to fix
4626     }
4627     if (same_origin_idx(gin1, fin2) &&
4628         same_origin_idx(gin2, fin1)) {
4629       fix->swap_edges(1, 2);
4630       swapped = true;
4631     }
4632   }
4633   // at least one input comes from outside of bb
4634   if (gin1->_idx == fin1->_idx)  {
4635     return true; // nothing to fix
4636   }
4637   if (!swapped && (gin1->_idx == fin2->_idx || gin2->_idx == fin1->_idx))  { //swapping is expensive, check condition first
4638     fix->swap_edges(1, 2);
4639     swapped = true;
4640   }
4641 
4642   if (swapped) {
4643 #ifndef PRODUCT
4644     if (_vector_loop_debug) {
4645       tty->print_cr("SuperWord::fix_commutative_inputs: fixed node %d", fix->_idx);
4646     }
4647 #endif
4648     return true;
4649   }
4650 
4651   if (TraceSuperWord && Verbose) {
4652     tty->print_cr("SuperWord::fix_commutative_inputs: cannot fix node %d", fix->_idx);
4653   }
4654 
4655   return false;
4656 }
4657 
pack_parallel()4658 bool SuperWord::pack_parallel() {
4659 #ifndef PRODUCT
4660   if (_vector_loop_debug) {
4661     tty->print_cr("SuperWord::pack_parallel: START");
4662   }
4663 #endif
4664 
4665   _packset.clear();
4666 
4667   for (int ii = 0; ii < _iteration_first.length(); ii++) {
4668     Node* nd = _iteration_first.at(ii);
4669     if (in_bb(nd) && (nd->is_Load() || nd->is_Store() || nd->is_Add() || nd->is_Mul())) {
4670       Node_List* pk = new Node_List();
4671       pk->push(nd);
4672       for (int gen = 1; gen < _ii_order.length(); ++gen) {
4673         for (int kk = 0; kk < _block.length(); kk++) {
4674           Node* clone = _block.at(kk);
4675           if (same_origin_idx(clone, nd) &&
4676               _clone_map.gen(clone->_idx) == _ii_order.at(gen)) {
4677             if (nd->is_Add() || nd->is_Mul()) {
4678               fix_commutative_inputs(nd, clone);
4679             }
4680             pk->push(clone);
4681             if (pk->size() == 4) {
4682               _packset.append(pk);
4683 #ifndef PRODUCT
4684               if (_vector_loop_debug) {
4685                 tty->print_cr("SuperWord::pack_parallel: added pack ");
4686                 pk->dump();
4687               }
4688 #endif
4689               if (_clone_map.gen(clone->_idx) != _ii_last) {
4690                 pk = new Node_List();
4691               }
4692             }
4693             break;
4694           }
4695         }
4696       }//for
4697     }//if
4698   }//for
4699 
4700 #ifndef PRODUCT
4701   if (_vector_loop_debug) {
4702     tty->print_cr("SuperWord::pack_parallel: END");
4703   }
4704 #endif
4705 
4706   return true;
4707 }
4708 
hoist_loads_in_graph()4709 bool SuperWord::hoist_loads_in_graph() {
4710   GrowableArray<Node*> loads;
4711 
4712 #ifndef PRODUCT
4713   if (_vector_loop_debug) {
4714     tty->print_cr("SuperWord::hoist_loads_in_graph: total number _mem_slice_head.length() = %d", _mem_slice_head.length());
4715   }
4716 #endif
4717 
4718   for (int i = 0; i < _mem_slice_head.length(); i++) {
4719     Node* n = _mem_slice_head.at(i);
4720     if ( !in_bb(n) || !n->is_Phi() || n->bottom_type() != Type::MEMORY) {
4721       if (TraceSuperWord && Verbose) {
4722         tty->print_cr("SuperWord::hoist_loads_in_graph: skipping unexpected node n=%d", n->_idx);
4723       }
4724       continue;
4725     }
4726 
4727 #ifndef PRODUCT
4728     if (_vector_loop_debug) {
4729       tty->print_cr("SuperWord::hoist_loads_in_graph: processing phi %d  = _mem_slice_head.at(%d);", n->_idx, i);
4730     }
4731 #endif
4732 
4733     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4734       Node* ld = n->fast_out(i);
4735       if (ld->is_Load() && ld->as_Load()->in(MemNode::Memory) == n && in_bb(ld)) {
4736         for (int i = 0; i < _block.length(); i++) {
4737           Node* ld2 = _block.at(i);
4738           if (ld2->is_Load() && same_origin_idx(ld, ld2) &&
4739               !same_generation(ld, ld2)) { // <= do not collect the first generation ld
4740 #ifndef PRODUCT
4741             if (_vector_loop_debug) {
4742               tty->print_cr("SuperWord::hoist_loads_in_graph: will try to hoist load ld2->_idx=%d, cloned from %d (ld->_idx=%d)",
4743                 ld2->_idx, _clone_map.idx(ld->_idx), ld->_idx);
4744             }
4745 #endif
4746             // could not do on-the-fly, since iterator is immutable
4747             loads.push(ld2);
4748           }
4749         }// for
4750       }//if
4751     }//for (DUIterator_Fast imax,
4752   }//for (int i = 0; i
4753 
4754   for (int i = 0; i < loads.length(); i++) {
4755     LoadNode* ld = loads.at(i)->as_Load();
4756     Node* phi = find_phi_for_mem_dep(ld);
4757     if (phi != NULL) {
4758 #ifndef PRODUCT
4759       if (_vector_loop_debug) {
4760         tty->print_cr("SuperWord::hoist_loads_in_graph replacing MemNode::Memory(%d) edge in %d with one from %d",
4761           MemNode::Memory, ld->_idx, phi->_idx);
4762       }
4763 #endif
4764       _igvn.replace_input_of(ld, MemNode::Memory, phi);
4765     }
4766   }//for
4767 
4768   restart(); // invalidate all basic structures, since we rebuilt the graph
4769 
4770   if (TraceSuperWord && Verbose) {
4771     tty->print_cr("\nSuperWord::hoist_loads_in_graph() the graph was rebuilt, all structures invalidated and need rebuild");
4772   }
4773 
4774   return true;
4775 }
4776