1 /*
2  * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_UTILITIES_BITMAP_INLINE_HPP
26 #define SHARE_UTILITIES_BITMAP_INLINE_HPP
27 
28 #include "runtime/atomic.hpp"
29 #include "utilities/align.hpp"
30 #include "utilities/bitMap.hpp"
31 #include "utilities/count_trailing_zeros.hpp"
32 
set_bit(idx_t bit)33 inline void BitMap::set_bit(idx_t bit) {
34   verify_index(bit);
35   *word_addr(bit) |= bit_mask(bit);
36 }
37 
clear_bit(idx_t bit)38 inline void BitMap::clear_bit(idx_t bit) {
39   verify_index(bit);
40   *word_addr(bit) &= ~bit_mask(bit);
41 }
42 
load_word_ordered(const volatile bm_word_t * const addr,atomic_memory_order memory_order)43 inline const BitMap::bm_word_t BitMap::load_word_ordered(const volatile bm_word_t* const addr, atomic_memory_order memory_order) {
44   if (memory_order == memory_order_relaxed || memory_order == memory_order_release) {
45     return Atomic::load(addr);
46   } else {
47     assert(memory_order == memory_order_acq_rel ||
48            memory_order == memory_order_acquire ||
49            memory_order == memory_order_conservative,
50            "unexpected memory ordering");
51     return Atomic::load_acquire(addr);
52   }
53 }
54 
par_at(idx_t index,atomic_memory_order memory_order) const55 inline bool BitMap::par_at(idx_t index, atomic_memory_order memory_order) const {
56   verify_index(index);
57   assert(memory_order == memory_order_acquire ||
58          memory_order == memory_order_relaxed,
59          "unexpected memory ordering");
60   const volatile bm_word_t* const addr = word_addr(index);
61   return (load_word_ordered(addr, memory_order) & bit_mask(index)) != 0;
62 }
63 
par_set_bit(idx_t bit,atomic_memory_order memory_order)64 inline bool BitMap::par_set_bit(idx_t bit, atomic_memory_order memory_order) {
65   verify_index(bit);
66   volatile bm_word_t* const addr = word_addr(bit);
67   const bm_word_t mask = bit_mask(bit);
68   bm_word_t old_val = load_word_ordered(addr, memory_order);
69 
70   do {
71     const bm_word_t new_val = old_val | mask;
72     if (new_val == old_val) {
73       return false;     // Someone else beat us to it.
74     }
75     const bm_word_t cur_val = Atomic::cmpxchg(addr, old_val, new_val, memory_order);
76     if (cur_val == old_val) {
77       return true;      // Success.
78     }
79     old_val = cur_val;  // The value changed, try again.
80   } while (true);
81 }
82 
par_clear_bit(idx_t bit,atomic_memory_order memory_order)83 inline bool BitMap::par_clear_bit(idx_t bit, atomic_memory_order memory_order) {
84   verify_index(bit);
85   volatile bm_word_t* const addr = word_addr(bit);
86   const bm_word_t mask = ~bit_mask(bit);
87   bm_word_t old_val = load_word_ordered(addr, memory_order);
88 
89   do {
90     const bm_word_t new_val = old_val & mask;
91     if (new_val == old_val) {
92       return false;     // Someone else beat us to it.
93     }
94     const bm_word_t cur_val = Atomic::cmpxchg(addr, old_val, new_val, memory_order);
95     if (cur_val == old_val) {
96       return true;      // Success.
97     }
98     old_val = cur_val;  // The value changed, try again.
99   } while (true);
100 }
101 
set_range(idx_t beg,idx_t end,RangeSizeHint hint)102 inline void BitMap::set_range(idx_t beg, idx_t end, RangeSizeHint hint) {
103   if (hint == small_range && end - beg == 1) {
104     set_bit(beg);
105   } else {
106     if (hint == large_range) {
107       set_large_range(beg, end);
108     } else {
109       set_range(beg, end);
110     }
111   }
112 }
113 
clear_range(idx_t beg,idx_t end,RangeSizeHint hint)114 inline void BitMap::clear_range(idx_t beg, idx_t end, RangeSizeHint hint) {
115   if (end - beg == 1) {
116     clear_bit(beg);
117   } else {
118     if (hint == large_range) {
119       clear_large_range(beg, end);
120     } else {
121       clear_range(beg, end);
122     }
123   }
124 }
125 
par_set_range(idx_t beg,idx_t end,RangeSizeHint hint)126 inline void BitMap::par_set_range(idx_t beg, idx_t end, RangeSizeHint hint) {
127   if (hint == small_range && end - beg == 1) {
128     par_at_put(beg, true);
129   } else {
130     if (hint == large_range) {
131       par_at_put_large_range(beg, end, true);
132     } else {
133       par_at_put_range(beg, end, true);
134     }
135   }
136 }
137 
set_range_of_words(idx_t beg,idx_t end)138 inline void BitMap::set_range_of_words(idx_t beg, idx_t end) {
139   bm_word_t* map = _map;
140   for (idx_t i = beg; i < end; ++i) map[i] = ~(bm_word_t)0;
141 }
142 
clear_range_of_words(bm_word_t * map,idx_t beg,idx_t end)143 inline void BitMap::clear_range_of_words(bm_word_t* map, idx_t beg, idx_t end) {
144   for (idx_t i = beg; i < end; ++i) map[i] = 0;
145 }
146 
clear_range_of_words(idx_t beg,idx_t end)147 inline void BitMap::clear_range_of_words(idx_t beg, idx_t end) {
148   clear_range_of_words(_map, beg, end);
149 }
150 
clear()151 inline void BitMap::clear() {
152   clear_range_of_words(0, size_in_words());
153 }
154 
par_clear_range(idx_t beg,idx_t end,RangeSizeHint hint)155 inline void BitMap::par_clear_range(idx_t beg, idx_t end, RangeSizeHint hint) {
156   if (hint == small_range && end - beg == 1) {
157     par_at_put(beg, false);
158   } else {
159     if (hint == large_range) {
160       par_at_put_large_range(beg, end, false);
161     } else {
162       par_at_put_range(beg, end, false);
163     }
164   }
165 }
166 
167 template<BitMap::bm_word_t flip, bool aligned_right>
get_next_bit_impl(idx_t l_index,idx_t r_index) const168 inline BitMap::idx_t BitMap::get_next_bit_impl(idx_t l_index, idx_t r_index) const {
169   STATIC_ASSERT(flip == find_ones_flip || flip == find_zeros_flip);
170   verify_range(l_index, r_index);
171   assert(!aligned_right || is_aligned(r_index, BitsPerWord), "r_index not aligned");
172 
173   // The first word often contains an interesting bit, either due to
174   // density or because of features of the calling algorithm.  So it's
175   // important to examine that first word with a minimum of fuss,
176   // minimizing setup time for later words that will be wasted if the
177   // first word is indeed interesting.
178 
179   // The benefit from aligned_right being true is relatively small.
180   // It saves an operation in the setup for the word search loop.
181   // It also eliminates the range check on the final result.
182   // However, callers often have a comparison with r_index, and
183   // inlining often allows the two comparisons to be combined; it is
184   // important when !aligned_right that return paths either return
185   // r_index or a value dominated by a comparison with r_index.
186   // aligned_right is still helpful when the caller doesn't have a
187   // range check because features of the calling algorithm guarantee
188   // an interesting bit will be present.
189 
190   if (l_index < r_index) {
191     // Get the word containing l_index, and shift out low bits.
192     idx_t index = to_words_align_down(l_index);
193     bm_word_t cword = (map(index) ^ flip) >> bit_in_word(l_index);
194     if ((cword & 1) != 0) {
195       // The first bit is similarly often interesting. When it matters
196       // (density or features of the calling algorithm make it likely
197       // the first bit is set), going straight to the next clause compares
198       // poorly with doing this check first; count_trailing_zeros can be
199       // relatively expensive, plus there is the additional range check.
200       // But when the first bit isn't set, the cost of having tested for
201       // it is relatively small compared to the rest of the search.
202       return l_index;
203     } else if (cword != 0) {
204       // Flipped and shifted first word is non-zero.
205       idx_t result = l_index + count_trailing_zeros(cword);
206       if (aligned_right || (result < r_index)) return result;
207       // Result is beyond range bound; return r_index.
208     } else {
209       // Flipped and shifted first word is zero.  Word search through
210       // aligned up r_index for a non-zero flipped word.
211       idx_t limit = aligned_right
212         ? to_words_align_down(r_index) // Miniscule savings when aligned.
213         : to_words_align_up(r_index);
214       while (++index < limit) {
215         cword = map(index) ^ flip;
216         if (cword != 0) {
217           idx_t result = bit_index(index) + count_trailing_zeros(cword);
218           if (aligned_right || (result < r_index)) return result;
219           // Result is beyond range bound; return r_index.
220           assert((index + 1) == limit, "invariant");
221           break;
222         }
223       }
224       // No bits in range; return r_index.
225     }
226   }
227   return r_index;
228 }
229 
230 inline BitMap::idx_t
get_next_one_offset(idx_t l_offset,idx_t r_offset) const231 BitMap::get_next_one_offset(idx_t l_offset, idx_t r_offset) const {
232   return get_next_bit_impl<find_ones_flip, false>(l_offset, r_offset);
233 }
234 
235 inline BitMap::idx_t
get_next_zero_offset(idx_t l_offset,idx_t r_offset) const236 BitMap::get_next_zero_offset(idx_t l_offset, idx_t r_offset) const {
237   return get_next_bit_impl<find_zeros_flip, false>(l_offset, r_offset);
238 }
239 
240 inline BitMap::idx_t
get_next_one_offset_aligned_right(idx_t l_offset,idx_t r_offset) const241 BitMap::get_next_one_offset_aligned_right(idx_t l_offset, idx_t r_offset) const {
242   return get_next_bit_impl<find_ones_flip, true>(l_offset, r_offset);
243 }
244 
245 // Returns a bit mask for a range of bits [beg, end) within a single word.  Each
246 // bit in the mask is 0 if the bit is in the range, 1 if not in the range.  The
247 // returned mask can be used directly to clear the range, or inverted to set the
248 // range.  Note:  end must not be 0.
249 inline BitMap::bm_word_t
inverted_bit_mask_for_range(idx_t beg,idx_t end) const250 BitMap::inverted_bit_mask_for_range(idx_t beg, idx_t end) const {
251   assert(end != 0, "does not work when end == 0");
252   assert(beg == end || to_words_align_down(beg) == to_words_align_down(end - 1),
253          "must be a single-word range");
254   bm_word_t mask = bit_mask(beg) - 1;   // low (right) bits
255   if (bit_in_word(end) != 0) {
256     mask |= ~(bit_mask(end) - 1);       // high (left) bits
257   }
258   return mask;
259 }
260 
set_large_range_of_words(idx_t beg,idx_t end)261 inline void BitMap::set_large_range_of_words(idx_t beg, idx_t end) {
262   assert(beg <= end, "underflow");
263   memset(_map + beg, ~(unsigned char)0, (end - beg) * sizeof(bm_word_t));
264 }
265 
clear_large_range_of_words(idx_t beg,idx_t end)266 inline void BitMap::clear_large_range_of_words(idx_t beg, idx_t end) {
267   assert(beg <= end, "underflow");
268   memset(_map + beg, 0, (end - beg) * sizeof(bm_word_t));
269 }
270 
is_valid_index(idx_t slot_index,idx_t bit_within_slot_index)271 inline bool BitMap2D::is_valid_index(idx_t slot_index, idx_t bit_within_slot_index) {
272   verify_bit_within_slot_index(bit_within_slot_index);
273   return (bit_index(slot_index, bit_within_slot_index) < size_in_bits());
274 }
275 
at(idx_t slot_index,idx_t bit_within_slot_index) const276 inline bool BitMap2D::at(idx_t slot_index, idx_t bit_within_slot_index) const {
277   verify_bit_within_slot_index(bit_within_slot_index);
278   return _map.at(bit_index(slot_index, bit_within_slot_index));
279 }
280 
set_bit(idx_t slot_index,idx_t bit_within_slot_index)281 inline void BitMap2D::set_bit(idx_t slot_index, idx_t bit_within_slot_index) {
282   verify_bit_within_slot_index(bit_within_slot_index);
283   _map.set_bit(bit_index(slot_index, bit_within_slot_index));
284 }
285 
clear_bit(idx_t slot_index,idx_t bit_within_slot_index)286 inline void BitMap2D::clear_bit(idx_t slot_index, idx_t bit_within_slot_index) {
287   verify_bit_within_slot_index(bit_within_slot_index);
288   _map.clear_bit(bit_index(slot_index, bit_within_slot_index));
289 }
290 
at_put(idx_t slot_index,idx_t bit_within_slot_index,bool value)291 inline void BitMap2D::at_put(idx_t slot_index, idx_t bit_within_slot_index, bool value) {
292   verify_bit_within_slot_index(bit_within_slot_index);
293   _map.at_put(bit_index(slot_index, bit_within_slot_index), value);
294 }
295 
at_put_grow(idx_t slot_index,idx_t bit_within_slot_index,bool value)296 inline void BitMap2D::at_put_grow(idx_t slot_index, idx_t bit_within_slot_index, bool value) {
297   verify_bit_within_slot_index(bit_within_slot_index);
298 
299   idx_t bit = bit_index(slot_index, bit_within_slot_index);
300   if (bit >= _map.size()) {
301     _map.resize(2 * MAX2(_map.size(), bit));
302   }
303   _map.at_put(bit, value);
304 }
305 
306 #endif // SHARE_UTILITIES_BITMAP_INLINE_HPP
307