1 /*
2 * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_UTILITIES_BITMAP_INLINE_HPP
26 #define SHARE_UTILITIES_BITMAP_INLINE_HPP
27
28 #include "runtime/atomic.hpp"
29 #include "utilities/align.hpp"
30 #include "utilities/bitMap.hpp"
31 #include "utilities/count_trailing_zeros.hpp"
32
set_bit(idx_t bit)33 inline void BitMap::set_bit(idx_t bit) {
34 verify_index(bit);
35 *word_addr(bit) |= bit_mask(bit);
36 }
37
clear_bit(idx_t bit)38 inline void BitMap::clear_bit(idx_t bit) {
39 verify_index(bit);
40 *word_addr(bit) &= ~bit_mask(bit);
41 }
42
load_word_ordered(const volatile bm_word_t * const addr,atomic_memory_order memory_order)43 inline const BitMap::bm_word_t BitMap::load_word_ordered(const volatile bm_word_t* const addr, atomic_memory_order memory_order) {
44 if (memory_order == memory_order_relaxed || memory_order == memory_order_release) {
45 return Atomic::load(addr);
46 } else {
47 assert(memory_order == memory_order_acq_rel ||
48 memory_order == memory_order_acquire ||
49 memory_order == memory_order_conservative,
50 "unexpected memory ordering");
51 return Atomic::load_acquire(addr);
52 }
53 }
54
par_at(idx_t index,atomic_memory_order memory_order) const55 inline bool BitMap::par_at(idx_t index, atomic_memory_order memory_order) const {
56 verify_index(index);
57 assert(memory_order == memory_order_acquire ||
58 memory_order == memory_order_relaxed,
59 "unexpected memory ordering");
60 const volatile bm_word_t* const addr = word_addr(index);
61 return (load_word_ordered(addr, memory_order) & bit_mask(index)) != 0;
62 }
63
par_set_bit(idx_t bit,atomic_memory_order memory_order)64 inline bool BitMap::par_set_bit(idx_t bit, atomic_memory_order memory_order) {
65 verify_index(bit);
66 volatile bm_word_t* const addr = word_addr(bit);
67 const bm_word_t mask = bit_mask(bit);
68 bm_word_t old_val = load_word_ordered(addr, memory_order);
69
70 do {
71 const bm_word_t new_val = old_val | mask;
72 if (new_val == old_val) {
73 return false; // Someone else beat us to it.
74 }
75 const bm_word_t cur_val = Atomic::cmpxchg(addr, old_val, new_val, memory_order);
76 if (cur_val == old_val) {
77 return true; // Success.
78 }
79 old_val = cur_val; // The value changed, try again.
80 } while (true);
81 }
82
par_clear_bit(idx_t bit,atomic_memory_order memory_order)83 inline bool BitMap::par_clear_bit(idx_t bit, atomic_memory_order memory_order) {
84 verify_index(bit);
85 volatile bm_word_t* const addr = word_addr(bit);
86 const bm_word_t mask = ~bit_mask(bit);
87 bm_word_t old_val = load_word_ordered(addr, memory_order);
88
89 do {
90 const bm_word_t new_val = old_val & mask;
91 if (new_val == old_val) {
92 return false; // Someone else beat us to it.
93 }
94 const bm_word_t cur_val = Atomic::cmpxchg(addr, old_val, new_val, memory_order);
95 if (cur_val == old_val) {
96 return true; // Success.
97 }
98 old_val = cur_val; // The value changed, try again.
99 } while (true);
100 }
101
set_range(idx_t beg,idx_t end,RangeSizeHint hint)102 inline void BitMap::set_range(idx_t beg, idx_t end, RangeSizeHint hint) {
103 if (hint == small_range && end - beg == 1) {
104 set_bit(beg);
105 } else {
106 if (hint == large_range) {
107 set_large_range(beg, end);
108 } else {
109 set_range(beg, end);
110 }
111 }
112 }
113
clear_range(idx_t beg,idx_t end,RangeSizeHint hint)114 inline void BitMap::clear_range(idx_t beg, idx_t end, RangeSizeHint hint) {
115 if (end - beg == 1) {
116 clear_bit(beg);
117 } else {
118 if (hint == large_range) {
119 clear_large_range(beg, end);
120 } else {
121 clear_range(beg, end);
122 }
123 }
124 }
125
par_set_range(idx_t beg,idx_t end,RangeSizeHint hint)126 inline void BitMap::par_set_range(idx_t beg, idx_t end, RangeSizeHint hint) {
127 if (hint == small_range && end - beg == 1) {
128 par_at_put(beg, true);
129 } else {
130 if (hint == large_range) {
131 par_at_put_large_range(beg, end, true);
132 } else {
133 par_at_put_range(beg, end, true);
134 }
135 }
136 }
137
set_range_of_words(idx_t beg,idx_t end)138 inline void BitMap::set_range_of_words(idx_t beg, idx_t end) {
139 bm_word_t* map = _map;
140 for (idx_t i = beg; i < end; ++i) map[i] = ~(bm_word_t)0;
141 }
142
clear_range_of_words(bm_word_t * map,idx_t beg,idx_t end)143 inline void BitMap::clear_range_of_words(bm_word_t* map, idx_t beg, idx_t end) {
144 for (idx_t i = beg; i < end; ++i) map[i] = 0;
145 }
146
clear_range_of_words(idx_t beg,idx_t end)147 inline void BitMap::clear_range_of_words(idx_t beg, idx_t end) {
148 clear_range_of_words(_map, beg, end);
149 }
150
clear()151 inline void BitMap::clear() {
152 clear_range_of_words(0, size_in_words());
153 }
154
par_clear_range(idx_t beg,idx_t end,RangeSizeHint hint)155 inline void BitMap::par_clear_range(idx_t beg, idx_t end, RangeSizeHint hint) {
156 if (hint == small_range && end - beg == 1) {
157 par_at_put(beg, false);
158 } else {
159 if (hint == large_range) {
160 par_at_put_large_range(beg, end, false);
161 } else {
162 par_at_put_range(beg, end, false);
163 }
164 }
165 }
166
167 template<BitMap::bm_word_t flip, bool aligned_right>
get_next_bit_impl(idx_t l_index,idx_t r_index) const168 inline BitMap::idx_t BitMap::get_next_bit_impl(idx_t l_index, idx_t r_index) const {
169 STATIC_ASSERT(flip == find_ones_flip || flip == find_zeros_flip);
170 verify_range(l_index, r_index);
171 assert(!aligned_right || is_aligned(r_index, BitsPerWord), "r_index not aligned");
172
173 // The first word often contains an interesting bit, either due to
174 // density or because of features of the calling algorithm. So it's
175 // important to examine that first word with a minimum of fuss,
176 // minimizing setup time for later words that will be wasted if the
177 // first word is indeed interesting.
178
179 // The benefit from aligned_right being true is relatively small.
180 // It saves an operation in the setup for the word search loop.
181 // It also eliminates the range check on the final result.
182 // However, callers often have a comparison with r_index, and
183 // inlining often allows the two comparisons to be combined; it is
184 // important when !aligned_right that return paths either return
185 // r_index or a value dominated by a comparison with r_index.
186 // aligned_right is still helpful when the caller doesn't have a
187 // range check because features of the calling algorithm guarantee
188 // an interesting bit will be present.
189
190 if (l_index < r_index) {
191 // Get the word containing l_index, and shift out low bits.
192 idx_t index = to_words_align_down(l_index);
193 bm_word_t cword = (map(index) ^ flip) >> bit_in_word(l_index);
194 if ((cword & 1) != 0) {
195 // The first bit is similarly often interesting. When it matters
196 // (density or features of the calling algorithm make it likely
197 // the first bit is set), going straight to the next clause compares
198 // poorly with doing this check first; count_trailing_zeros can be
199 // relatively expensive, plus there is the additional range check.
200 // But when the first bit isn't set, the cost of having tested for
201 // it is relatively small compared to the rest of the search.
202 return l_index;
203 } else if (cword != 0) {
204 // Flipped and shifted first word is non-zero.
205 idx_t result = l_index + count_trailing_zeros(cword);
206 if (aligned_right || (result < r_index)) return result;
207 // Result is beyond range bound; return r_index.
208 } else {
209 // Flipped and shifted first word is zero. Word search through
210 // aligned up r_index for a non-zero flipped word.
211 idx_t limit = aligned_right
212 ? to_words_align_down(r_index) // Miniscule savings when aligned.
213 : to_words_align_up(r_index);
214 while (++index < limit) {
215 cword = map(index) ^ flip;
216 if (cword != 0) {
217 idx_t result = bit_index(index) + count_trailing_zeros(cword);
218 if (aligned_right || (result < r_index)) return result;
219 // Result is beyond range bound; return r_index.
220 assert((index + 1) == limit, "invariant");
221 break;
222 }
223 }
224 // No bits in range; return r_index.
225 }
226 }
227 return r_index;
228 }
229
230 inline BitMap::idx_t
get_next_one_offset(idx_t l_offset,idx_t r_offset) const231 BitMap::get_next_one_offset(idx_t l_offset, idx_t r_offset) const {
232 return get_next_bit_impl<find_ones_flip, false>(l_offset, r_offset);
233 }
234
235 inline BitMap::idx_t
get_next_zero_offset(idx_t l_offset,idx_t r_offset) const236 BitMap::get_next_zero_offset(idx_t l_offset, idx_t r_offset) const {
237 return get_next_bit_impl<find_zeros_flip, false>(l_offset, r_offset);
238 }
239
240 inline BitMap::idx_t
get_next_one_offset_aligned_right(idx_t l_offset,idx_t r_offset) const241 BitMap::get_next_one_offset_aligned_right(idx_t l_offset, idx_t r_offset) const {
242 return get_next_bit_impl<find_ones_flip, true>(l_offset, r_offset);
243 }
244
245 // Returns a bit mask for a range of bits [beg, end) within a single word. Each
246 // bit in the mask is 0 if the bit is in the range, 1 if not in the range. The
247 // returned mask can be used directly to clear the range, or inverted to set the
248 // range. Note: end must not be 0.
249 inline BitMap::bm_word_t
inverted_bit_mask_for_range(idx_t beg,idx_t end) const250 BitMap::inverted_bit_mask_for_range(idx_t beg, idx_t end) const {
251 assert(end != 0, "does not work when end == 0");
252 assert(beg == end || to_words_align_down(beg) == to_words_align_down(end - 1),
253 "must be a single-word range");
254 bm_word_t mask = bit_mask(beg) - 1; // low (right) bits
255 if (bit_in_word(end) != 0) {
256 mask |= ~(bit_mask(end) - 1); // high (left) bits
257 }
258 return mask;
259 }
260
set_large_range_of_words(idx_t beg,idx_t end)261 inline void BitMap::set_large_range_of_words(idx_t beg, idx_t end) {
262 assert(beg <= end, "underflow");
263 memset(_map + beg, ~(unsigned char)0, (end - beg) * sizeof(bm_word_t));
264 }
265
clear_large_range_of_words(idx_t beg,idx_t end)266 inline void BitMap::clear_large_range_of_words(idx_t beg, idx_t end) {
267 assert(beg <= end, "underflow");
268 memset(_map + beg, 0, (end - beg) * sizeof(bm_word_t));
269 }
270
is_valid_index(idx_t slot_index,idx_t bit_within_slot_index)271 inline bool BitMap2D::is_valid_index(idx_t slot_index, idx_t bit_within_slot_index) {
272 verify_bit_within_slot_index(bit_within_slot_index);
273 return (bit_index(slot_index, bit_within_slot_index) < size_in_bits());
274 }
275
at(idx_t slot_index,idx_t bit_within_slot_index) const276 inline bool BitMap2D::at(idx_t slot_index, idx_t bit_within_slot_index) const {
277 verify_bit_within_slot_index(bit_within_slot_index);
278 return _map.at(bit_index(slot_index, bit_within_slot_index));
279 }
280
set_bit(idx_t slot_index,idx_t bit_within_slot_index)281 inline void BitMap2D::set_bit(idx_t slot_index, idx_t bit_within_slot_index) {
282 verify_bit_within_slot_index(bit_within_slot_index);
283 _map.set_bit(bit_index(slot_index, bit_within_slot_index));
284 }
285
clear_bit(idx_t slot_index,idx_t bit_within_slot_index)286 inline void BitMap2D::clear_bit(idx_t slot_index, idx_t bit_within_slot_index) {
287 verify_bit_within_slot_index(bit_within_slot_index);
288 _map.clear_bit(bit_index(slot_index, bit_within_slot_index));
289 }
290
at_put(idx_t slot_index,idx_t bit_within_slot_index,bool value)291 inline void BitMap2D::at_put(idx_t slot_index, idx_t bit_within_slot_index, bool value) {
292 verify_bit_within_slot_index(bit_within_slot_index);
293 _map.at_put(bit_index(slot_index, bit_within_slot_index), value);
294 }
295
at_put_grow(idx_t slot_index,idx_t bit_within_slot_index,bool value)296 inline void BitMap2D::at_put_grow(idx_t slot_index, idx_t bit_within_slot_index, bool value) {
297 verify_bit_within_slot_index(bit_within_slot_index);
298
299 idx_t bit = bit_index(slot_index, bit_within_slot_index);
300 if (bit >= _map.size()) {
301 _map.resize(2 * MAX2(_map.size(), bit));
302 }
303 _map.at_put(bit, value);
304 }
305
306 #endif // SHARE_UTILITIES_BITMAP_INLINE_HPP
307