1 /*
2  * Copyright (c) 2008, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.lang.invoke;
27 
28 import jdk.internal.access.JavaLangAccess;
29 import jdk.internal.access.SharedSecrets;
30 import jdk.internal.misc.Unsafe;
31 import jdk.internal.misc.VM;
32 import jdk.internal.module.IllegalAccessLogger;
33 import jdk.internal.org.objectweb.asm.ClassReader;
34 import jdk.internal.org.objectweb.asm.Opcodes;
35 import jdk.internal.org.objectweb.asm.Type;
36 import jdk.internal.reflect.CallerSensitive;
37 import jdk.internal.reflect.Reflection;
38 import jdk.internal.vm.annotation.ForceInline;
39 import sun.invoke.util.ValueConversions;
40 import sun.invoke.util.VerifyAccess;
41 import sun.invoke.util.Wrapper;
42 import sun.reflect.misc.ReflectUtil;
43 import sun.security.util.SecurityConstants;
44 
45 import java.lang.invoke.LambdaForm.BasicType;
46 import java.lang.reflect.Constructor;
47 import java.lang.reflect.Field;
48 import java.lang.reflect.Member;
49 import java.lang.reflect.Method;
50 import java.lang.reflect.Modifier;
51 import java.lang.reflect.ReflectPermission;
52 import java.nio.ByteOrder;
53 import java.security.ProtectionDomain;
54 import java.util.ArrayList;
55 import java.util.Arrays;
56 import java.util.BitSet;
57 import java.util.Iterator;
58 import java.util.List;
59 import java.util.Objects;
60 import java.util.Set;
61 import java.util.concurrent.ConcurrentHashMap;
62 import java.util.stream.Collectors;
63 import java.util.stream.Stream;
64 
65 import static java.lang.invoke.MethodHandleImpl.Intrinsic;
66 import static java.lang.invoke.MethodHandleNatives.Constants.*;
67 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
68 import static java.lang.invoke.MethodType.methodType;
69 
70 /**
71  * This class consists exclusively of static methods that operate on or return
72  * method handles. They fall into several categories:
73  * <ul>
74  * <li>Lookup methods which help create method handles for methods and fields.
75  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
76  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
77  * </ul>
78  * A lookup, combinator, or factory method will fail and throw an
79  * {@code IllegalArgumentException} if the created method handle's type
80  * would have <a href="MethodHandle.html#maxarity">too many parameters</a>.
81  *
82  * @author John Rose, JSR 292 EG
83  * @since 1.7
84  */
85 public class MethodHandles {
86 
MethodHandles()87     private MethodHandles() { }  // do not instantiate
88 
89     static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
90 
91     // See IMPL_LOOKUP below.
92 
93     //// Method handle creation from ordinary methods.
94 
95     /**
96      * Returns a {@link Lookup lookup object} with
97      * full capabilities to emulate all supported bytecode behaviors of the caller.
98      * These capabilities include {@linkplain Lookup#hasFullPrivilegeAccess() full privilege access} to the caller.
99      * Factory methods on the lookup object can create
100      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
101      * for any member that the caller has access to via bytecodes,
102      * including protected and private fields and methods.
103      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
104      * Do not store it in place where untrusted code can access it.
105      * <p>
106      * This method is caller sensitive, which means that it may return different
107      * values to different callers.
108      * @return a lookup object for the caller of this method, with
109      * {@linkplain Lookup#hasFullPrivilegeAccess() full privilege access}
110      */
111     @CallerSensitive
112     @ForceInline // to ensure Reflection.getCallerClass optimization
lookup()113     public static Lookup lookup() {
114         return new Lookup(Reflection.getCallerClass());
115     }
116 
117     /**
118      * This reflected$lookup method is the alternate implementation of
119      * the lookup method when being invoked by reflection.
120      */
121     @CallerSensitive
reflected$lookup()122     private static Lookup reflected$lookup() {
123         Class<?> caller = Reflection.getCallerClass();
124         if (caller.getClassLoader() == null) {
125             throw newIllegalArgumentException("illegal lookupClass: "+caller);
126         }
127         return new Lookup(caller);
128     }
129 
130     /**
131      * Returns a {@link Lookup lookup object} which is trusted minimally.
132      * The lookup has the {@code UNCONDITIONAL} mode.
133      * It can only be used to create method handles to public members of
134      * public classes in packages that are exported unconditionally.
135      * <p>
136      * As a matter of pure convention, the {@linkplain Lookup#lookupClass() lookup class}
137      * of this lookup object will be {@link java.lang.Object}.
138      *
139      * @apiNote The use of Object is conventional, and because the lookup modes are
140      * limited, there is no special access provided to the internals of Object, its package
141      * or its module.  This public lookup object or other lookup object with
142      * {@code UNCONDITIONAL} mode assumes readability. Consequently, the lookup class
143      * is not used to determine the lookup context.
144      *
145      * <p style="font-size:smaller;">
146      * <em>Discussion:</em>
147      * The lookup class can be changed to any other class {@code C} using an expression of the form
148      * {@link Lookup#in publicLookup().in(C.class)}.
149      * A public lookup object is always subject to
150      * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
151      * Also, it cannot access
152      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
153      * @return a lookup object which is trusted minimally
154      *
155      * @revised 9
156      * @spec JPMS
157      */
publicLookup()158     public static Lookup publicLookup() {
159         return Lookup.PUBLIC_LOOKUP;
160     }
161 
162     /**
163      * Returns a {@link Lookup lookup} object on a target class to emulate all supported
164      * bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc">private access</a>.
165      * The returned lookup object can provide access to classes in modules and packages,
166      * and members of those classes, outside the normal rules of Java access control,
167      * instead conforming to the more permissive rules for modular <em>deep reflection</em>.
168      * <p>
169      * A caller, specified as a {@code Lookup} object, in module {@code M1} is
170      * allowed to do deep reflection on module {@code M2} and package of the target class
171      * if and only if all of the following conditions are {@code true}:
172      * <ul>
173      * <li>If there is a security manager, its {@code checkPermission} method is
174      * called to check {@code ReflectPermission("suppressAccessChecks")} and
175      * that must return normally.
176      * <li>The caller lookup object must have {@linkplain Lookup#hasFullPrivilegeAccess()
177      * full privilege access}.  Specifically:
178      *   <ul>
179      *     <li>The caller lookup object must have the {@link Lookup#MODULE MODULE} lookup mode.
180      *         (This is because otherwise there would be no way to ensure the original lookup
181      *         creator was a member of any particular module, and so any subsequent checks
182      *         for readability and qualified exports would become ineffective.)
183      *     <li>The caller lookup object must have {@link Lookup#PRIVATE PRIVATE} access.
184      *         (This is because an application intending to share intra-module access
185      *         using {@link Lookup#MODULE MODULE} alone will inadvertently also share
186      *         deep reflection to its own module.)
187      *   </ul>
188      * <li>The target class must be a proper class, not a primitive or array class.
189      * (Thus, {@code M2} is well-defined.)
190      * <li>If the caller module {@code M1} differs from
191      * the target module {@code M2} then both of the following must be true:
192      *   <ul>
193      *     <li>{@code M1} {@link Module#canRead reads} {@code M2}.</li>
194      *     <li>{@code M2} {@link Module#isOpen(String,Module) opens} the package
195      *         containing the target class to at least {@code M1}.</li>
196      *   </ul>
197      * </ul>
198      * <p>
199      * If any of the above checks is violated, this method fails with an
200      * exception.
201      * <p>
202      * Otherwise, if {@code M1} and {@code M2} are the same module, this method
203      * returns a {@code Lookup} on {@code targetClass} with
204      * {@linkplain Lookup#hasFullPrivilegeAccess() full privilege access} and
205      * {@code null} previous lookup class.
206      * <p>
207      * Otherwise, {@code M1} and {@code M2} are two different modules.  This method
208      * returns a {@code Lookup} on {@code targetClass} that records
209      * the lookup class of the caller as the new previous lookup class and
210      * drops {@code MODULE} access from the full privilege access.
211      *
212      * @param targetClass the target class
213      * @param caller the caller lookup object
214      * @return a lookup object for the target class, with private access
215      * @throws IllegalArgumentException if {@code targetClass} is a primitive type or void or array class
216      * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null}
217      * @throws SecurityException if denied by the security manager
218      * @throws IllegalAccessException if any of the other access checks specified above fails
219      * @since 9
220      * @spec JPMS
221      * @see Lookup#dropLookupMode
222      * @see <a href="MethodHandles.Lookup.html#cross-module-lookup">Cross-module lookups</a>
223      */
privateLookupIn(Class<?> targetClass, Lookup caller)224     public static Lookup privateLookupIn(Class<?> targetClass, Lookup caller) throws IllegalAccessException {
225         if (caller.allowedModes == Lookup.TRUSTED) {
226             return new Lookup(targetClass);
227         }
228 
229         SecurityManager sm = System.getSecurityManager();
230         if (sm != null) sm.checkPermission(ACCESS_PERMISSION);
231         if (targetClass.isPrimitive())
232             throw new IllegalArgumentException(targetClass + " is a primitive class");
233         if (targetClass.isArray())
234             throw new IllegalArgumentException(targetClass + " is an array class");
235         // Ensure that we can reason accurately about private and module access.
236         if (!caller.hasFullPrivilegeAccess())
237             throw new IllegalAccessException("caller does not have PRIVATE and MODULE lookup mode");
238 
239         // previous lookup class is never set if it has MODULE access
240         assert caller.previousLookupClass() == null;
241 
242         Class<?> callerClass = caller.lookupClass();
243         Module callerModule = callerClass.getModule();  // M1
244         Module targetModule = targetClass.getModule();  // M2
245         Class<?> newPreviousClass = null;
246         int newModes = Lookup.FULL_POWER_MODES;
247 
248         if (targetModule != callerModule) {
249             if (!callerModule.canRead(targetModule))
250                 throw new IllegalAccessException(callerModule + " does not read " + targetModule);
251             if (targetModule.isNamed()) {
252                 String pn = targetClass.getPackageName();
253                 assert !pn.isEmpty() : "unnamed package cannot be in named module";
254                 if (!targetModule.isOpen(pn, callerModule))
255                     throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule);
256             }
257 
258             // M2 != M1, set previous lookup class to M1 and drop MODULE access
259             newPreviousClass = callerClass;
260             newModes &= ~Lookup.MODULE;
261 
262             if (!callerModule.isNamed() && targetModule.isNamed()) {
263                 IllegalAccessLogger logger = IllegalAccessLogger.illegalAccessLogger();
264                 if (logger != null) {
265                     logger.logIfOpenedForIllegalAccess(caller, targetClass);
266                 }
267             }
268         }
269         return Lookup.newLookup(targetClass, newPreviousClass, newModes);
270     }
271 
272     /**
273      * Returns the <em>class data</em> associated with the lookup class
274      * of the specified {@code Lookup} object, or {@code null}.
275      *
276      * <p> Classes can be created with class data by calling
277      * {@link Lookup#defineHiddenClassWithClassData(byte[], Object, Lookup.ClassOption...)
278      * Lookup::defineHiddenClassWithClassData}.
279      * A hidden class with a class data behaves as if the hidden class
280      * has a private static final unnamed field pre-initialized with
281      * the class data and this method is equivalent as if calling
282      * {@link ConstantBootstraps#getStaticFinal(Lookup, String, Class)} to
283      * obtain the value of such field corresponding to the class data.
284      *
285      * <p> The {@linkplain Lookup#lookupModes() lookup modes} for this lookup
286      * must have {@link Lookup#ORIGINAL ORIGINAL} access in order to retrieve
287      * the class data.
288      *
289      * @apiNote
290      * This method can be called as a bootstrap method for a dynamically computed
291      * constant.  A framework can create a hidden class with class data, for
292      * example that can be {@code List.of(o1, o2, o3....)} containing more than
293      * one live object.  The class data is accessible only to the lookup object
294      * created by the original caller but inaccessible to other members
295      * in the same nest.  If a framework passes security sensitive live objects
296      * to a hidden class via class data, it is recommended to load the value
297      * of class data as a dynamically computed constant instead of storing
298      * the live objects in private fields which are accessible to other
299      * nestmates.
300      *
301      * @param <T> the type to cast the class data object to
302      * @param caller the lookup context describing the class performing the
303      * operation (normally stacked by the JVM)
304      * @param name ignored
305      * @param type the type of the class data
306      * @return the value of the class data if present in the lookup class;
307      * otherwise {@code null}
308      * @throws IllegalAccessException if the lookup context does not have
309      * original caller access
310      * @throws ClassCastException if the class data cannot be converted to
311      * the specified {@code type}
312      * @see Lookup#defineHiddenClassWithClassData(byte[], Object, Lookup.ClassOption...)
313      * @since 15
314      */
classData(Lookup caller, String name, Class<T> type)315     static <T> T classData(Lookup caller, String name, Class<T> type) throws IllegalAccessException {
316         if (!caller.hasFullPrivilegeAccess()) {
317             throw new IllegalAccessException(caller + " does not have full privilege access");
318         }
319         Object classData = MethodHandleNatives.classData(caller.lookupClass);
320         return type.cast(classData);
321     }
322 
323     /**
324      * Performs an unchecked "crack" of a
325      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
326      * The result is as if the user had obtained a lookup object capable enough
327      * to crack the target method handle, called
328      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
329      * on the target to obtain its symbolic reference, and then called
330      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
331      * to resolve the symbolic reference to a member.
332      * <p>
333      * If there is a security manager, its {@code checkPermission} method
334      * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
335      * @param <T> the desired type of the result, either {@link Member} or a subtype
336      * @param target a direct method handle to crack into symbolic reference components
337      * @param expected a class object representing the desired result type {@code T}
338      * @return a reference to the method, constructor, or field object
339      * @throws    SecurityException if the caller is not privileged to call {@code setAccessible}
340      * @throws    NullPointerException if either argument is {@code null}
341      * @throws    IllegalArgumentException if the target is not a direct method handle
342      * @throws    ClassCastException if the member is not of the expected type
343      * @since 1.8
344      */
reflectAs(Class<T> expected, MethodHandle target)345     public static <T extends Member> T reflectAs(Class<T> expected, MethodHandle target) {
346         SecurityManager smgr = System.getSecurityManager();
347         if (smgr != null)  smgr.checkPermission(ACCESS_PERMISSION);
348         Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
349         return lookup.revealDirect(target).reflectAs(expected, lookup);
350     }
351     // Copied from AccessibleObject, as used by Method.setAccessible, etc.:
352     private static final java.security.Permission ACCESS_PERMISSION =
353         new ReflectPermission("suppressAccessChecks");
354 
355     /**
356      * A <em>lookup object</em> is a factory for creating method handles,
357      * when the creation requires access checking.
358      * Method handles do not perform
359      * access checks when they are called, but rather when they are created.
360      * Therefore, method handle access
361      * restrictions must be enforced when a method handle is created.
362      * The caller class against which those restrictions are enforced
363      * is known as the {@linkplain #lookupClass() lookup class}.
364      * <p>
365      * A lookup class which needs to create method handles will call
366      * {@link MethodHandles#lookup() MethodHandles.lookup} to create a factory for itself.
367      * When the {@code Lookup} factory object is created, the identity of the lookup class is
368      * determined, and securely stored in the {@code Lookup} object.
369      * The lookup class (or its delegates) may then use factory methods
370      * on the {@code Lookup} object to create method handles for access-checked members.
371      * This includes all methods, constructors, and fields which are allowed to the lookup class,
372      * even private ones.
373      *
374      * <h2><a id="lookups"></a>Lookup Factory Methods</h2>
375      * The factory methods on a {@code Lookup} object correspond to all major
376      * use cases for methods, constructors, and fields.
377      * Each method handle created by a factory method is the functional
378      * equivalent of a particular <em>bytecode behavior</em>.
379      * (Bytecode behaviors are described in section {@jvms 5.4.3.5} of
380      * the Java Virtual Machine Specification.)
381      * Here is a summary of the correspondence between these factory methods and
382      * the behavior of the resulting method handles:
383      * <table class="striped">
384      * <caption style="display:none">lookup method behaviors</caption>
385      * <thead>
386      * <tr>
387      *     <th scope="col"><a id="equiv"></a>lookup expression</th>
388      *     <th scope="col">member</th>
389      *     <th scope="col">bytecode behavior</th>
390      * </tr>
391      * </thead>
392      * <tbody>
393      * <tr>
394      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</th>
395      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
396      * </tr>
397      * <tr>
398      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</th>
399      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (FT) C.f;}</td>
400      * </tr>
401      * <tr>
402      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</th>
403      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
404      * </tr>
405      * <tr>
406      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</th>
407      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
408      * </tr>
409      * <tr>
410      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</th>
411      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
412      * </tr>
413      * <tr>
414      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</th>
415      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
416      * </tr>
417      * <tr>
418      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</th>
419      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
420      * </tr>
421      * <tr>
422      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</th>
423      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
424      * </tr>
425      * <tr>
426      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</th>
427      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
428      * </tr>
429      * <tr>
430      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</th>
431      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
432      * </tr>
433      * <tr>
434      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</th>
435      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
436      * </tr>
437      * <tr>
438      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</th>
439      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
440      * </tr>
441      * <tr>
442      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSpecial lookup.unreflectSpecial(aMethod,this.class)}</th>
443      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
444      * </tr>
445      * <tr>
446      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findClass lookup.findClass("C")}</th>
447      *     <td>{@code class C { ... }}</td><td>{@code C.class;}</td>
448      * </tr>
449      * </tbody>
450      * </table>
451      *
452      * Here, the type {@code C} is the class or interface being searched for a member,
453      * documented as a parameter named {@code refc} in the lookup methods.
454      * The method type {@code MT} is composed from the return type {@code T}
455      * and the sequence of argument types {@code A*}.
456      * The constructor also has a sequence of argument types {@code A*} and
457      * is deemed to return the newly-created object of type {@code C}.
458      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
459      * The formal parameter {@code this} stands for the self-reference of type {@code C};
460      * if it is present, it is always the leading argument to the method handle invocation.
461      * (In the case of some {@code protected} members, {@code this} may be
462      * restricted in type to the lookup class; see below.)
463      * The name {@code arg} stands for all the other method handle arguments.
464      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
465      * stands for a null reference if the accessed method or field is static,
466      * and {@code this} otherwise.
467      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
468      * for reflective objects corresponding to the given members declared in type {@code C}.
469      * <p>
470      * The bytecode behavior for a {@code findClass} operation is a load of a constant class,
471      * as if by {@code ldc CONSTANT_Class}.
472      * The behavior is represented, not as a method handle, but directly as a {@code Class} constant.
473      * <p>
474      * In cases where the given member is of variable arity (i.e., a method or constructor)
475      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
476      * In all other cases, the returned method handle will be of fixed arity.
477      * <p style="font-size:smaller;">
478      * <em>Discussion:</em>
479      * The equivalence between looked-up method handles and underlying
480      * class members and bytecode behaviors
481      * can break down in a few ways:
482      * <ul style="font-size:smaller;">
483      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
484      * the lookup can still succeed, even when there is no equivalent
485      * Java expression or bytecoded constant.
486      * <li>Likewise, if {@code T} or {@code MT}
487      * is not symbolically accessible from the lookup class's loader,
488      * the lookup can still succeed.
489      * For example, lookups for {@code MethodHandle.invokeExact} and
490      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
491      * <li>If there is a security manager installed, it can forbid the lookup
492      * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
493      * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
494      * constant is not subject to security manager checks.
495      * <li>If the looked-up method has a
496      * <a href="MethodHandle.html#maxarity">very large arity</a>,
497      * the method handle creation may fail with an
498      * {@code IllegalArgumentException}, due to the method handle type having
499      * <a href="MethodHandle.html#maxarity">too many parameters.</a>
500      * </ul>
501      *
502      * <h2><a id="access"></a>Access checking</h2>
503      * Access checks are applied in the factory methods of {@code Lookup},
504      * when a method handle is created.
505      * This is a key difference from the Core Reflection API, since
506      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
507      * performs access checking against every caller, on every call.
508      * <p>
509      * All access checks start from a {@code Lookup} object, which
510      * compares its recorded lookup class against all requests to
511      * create method handles.
512      * A single {@code Lookup} object can be used to create any number
513      * of access-checked method handles, all checked against a single
514      * lookup class.
515      * <p>
516      * A {@code Lookup} object can be shared with other trusted code,
517      * such as a metaobject protocol.
518      * A shared {@code Lookup} object delegates the capability
519      * to create method handles on private members of the lookup class.
520      * Even if privileged code uses the {@code Lookup} object,
521      * the access checking is confined to the privileges of the
522      * original lookup class.
523      * <p>
524      * A lookup can fail, because
525      * the containing class is not accessible to the lookup class, or
526      * because the desired class member is missing, or because the
527      * desired class member is not accessible to the lookup class, or
528      * because the lookup object is not trusted enough to access the member.
529      * In the case of a field setter function on a {@code final} field,
530      * finality enforcement is treated as a kind of access control,
531      * and the lookup will fail, except in special cases of
532      * {@link Lookup#unreflectSetter Lookup.unreflectSetter}.
533      * In any of these cases, a {@code ReflectiveOperationException} will be
534      * thrown from the attempted lookup.  The exact class will be one of
535      * the following:
536      * <ul>
537      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
538      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
539      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
540      * </ul>
541      * <p>
542      * In general, the conditions under which a method handle may be
543      * looked up for a method {@code M} are no more restrictive than the conditions
544      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
545      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
546      * a method handle lookup will generally raise a corresponding
547      * checked exception, such as {@code NoSuchMethodException}.
548      * And the effect of invoking the method handle resulting from the lookup
549      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
550      * to executing the compiled, verified, and resolved call to {@code M}.
551      * The same point is true of fields and constructors.
552      * <p style="font-size:smaller;">
553      * <em>Discussion:</em>
554      * Access checks only apply to named and reflected methods,
555      * constructors, and fields.
556      * Other method handle creation methods, such as
557      * {@link MethodHandle#asType MethodHandle.asType},
558      * do not require any access checks, and are used
559      * independently of any {@code Lookup} object.
560      * <p>
561      * If the desired member is {@code protected}, the usual JVM rules apply,
562      * including the requirement that the lookup class must either be in the
563      * same package as the desired member, or must inherit that member.
564      * (See the Java Virtual Machine Specification, sections {@jvms
565      * 4.9.2}, {@jvms 5.4.3.5}, and {@jvms 6.4}.)
566      * In addition, if the desired member is a non-static field or method
567      * in a different package, the resulting method handle may only be applied
568      * to objects of the lookup class or one of its subclasses.
569      * This requirement is enforced by narrowing the type of the leading
570      * {@code this} parameter from {@code C}
571      * (which will necessarily be a superclass of the lookup class)
572      * to the lookup class itself.
573      * <p>
574      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
575      * that the receiver argument must match both the resolved method <em>and</em>
576      * the current class.  Again, this requirement is enforced by narrowing the
577      * type of the leading parameter to the resulting method handle.
578      * (See the Java Virtual Machine Specification, section {@jvms 4.10.1.9}.)
579      * <p>
580      * The JVM represents constructors and static initializer blocks as internal methods
581      * with special names ({@code "<init>"} and {@code "<clinit>"}).
582      * The internal syntax of invocation instructions allows them to refer to such internal
583      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
584      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
585      * <p>
586      * If the relationship between nested types is expressed directly through the
587      * {@code NestHost} and {@code NestMembers} attributes
588      * (see the Java Virtual Machine Specification, sections {@jvms
589      * 4.7.28} and {@jvms 4.7.29}),
590      * then the associated {@code Lookup} object provides direct access to
591      * the lookup class and all of its nestmates
592      * (see {@link java.lang.Class#getNestHost Class.getNestHost}).
593      * Otherwise, access between nested classes is obtained by the Java compiler creating
594      * a wrapper method to access a private method of another class in the same nest.
595      * For example, a nested class {@code C.D}
596      * can access private members within other related classes such as
597      * {@code C}, {@code C.D.E}, or {@code C.B},
598      * but the Java compiler may need to generate wrapper methods in
599      * those related classes.  In such cases, a {@code Lookup} object on
600      * {@code C.E} would be unable to access those private members.
601      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
602      * which can transform a lookup on {@code C.E} into one on any of those other
603      * classes, without special elevation of privilege.
604      * <p>
605      * The accesses permitted to a given lookup object may be limited,
606      * according to its set of {@link #lookupModes lookupModes},
607      * to a subset of members normally accessible to the lookup class.
608      * For example, the {@link MethodHandles#publicLookup publicLookup}
609      * method produces a lookup object which is only allowed to access
610      * public members in public classes of exported packages.
611      * The caller sensitive method {@link MethodHandles#lookup lookup}
612      * produces a lookup object with full capabilities relative to
613      * its caller class, to emulate all supported bytecode behaviors.
614      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
615      * with fewer access modes than the original lookup object.
616      *
617      * <p style="font-size:smaller;">
618      * <a id="privacc"></a>
619      * <em>Discussion of private and module access:</em>
620      * We say that a lookup has <em>private access</em>
621      * if its {@linkplain #lookupModes lookup modes}
622      * include the possibility of accessing {@code private} members
623      * (which includes the private members of nestmates).
624      * As documented in the relevant methods elsewhere,
625      * only lookups with private access possess the following capabilities:
626      * <ul style="font-size:smaller;">
627      * <li>access private fields, methods, and constructors of the lookup class and its nestmates
628      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
629      * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
630      *     for classes accessible to the lookup class
631      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
632      *     within the same package member
633      * </ul>
634      * <p style="font-size:smaller;">
635      * Similarly, a lookup with module access ensures that the original lookup creator was
636      * a member in the same module as the lookup class.
637      * <p style="font-size:smaller;">
638      * Private and module access are independently determined modes; a lookup may have
639      * either or both or neither.  A lookup which possesses both access modes is said to
640      * possess {@linkplain #hasFullPrivilegeAccess() full privilege access}.  Such a lookup has
641      * the following additional capability:
642      * <ul style="font-size:smaller;">
643      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
644      *     such as {@code Class.forName}
645      * </ul>
646      * <p style="font-size:smaller;">
647      * Each of these permissions is a consequence of the fact that a lookup object
648      * with private access can be securely traced back to an originating class,
649      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
650      * can be reliably determined and emulated by method handles.
651      *
652      * <h2><a id="cross-module-lookup"></a>Cross-module lookups</h2>
653      * When a lookup class in one module {@code M1} accesses a class in another module
654      * {@code M2}, extra access checking is performed beyond the access mode bits.
655      * A {@code Lookup} with {@link #PUBLIC} mode and a lookup class in {@code M1}
656      * can access public types in {@code M2} when {@code M2} is readable to {@code M1}
657      * and when the type is in a package of {@code M2} that is exported to
658      * at least {@code M1}.
659      * <p>
660      * A {@code Lookup} on {@code C} can also <em>teleport</em> to a target class
661      * via {@link #in(Class) Lookup.in} and {@link MethodHandles#privateLookupIn(Class, Lookup)
662      * MethodHandles.privateLookupIn} methods.
663      * Teleporting across modules will always record the original lookup class as
664      * the <em>{@linkplain #previousLookupClass() previous lookup class}</em>
665      * and drops {@link Lookup#MODULE MODULE} access.
666      * If the target class is in the same module as the lookup class {@code C},
667      * then the target class becomes the new lookup class
668      * and there is no change to the previous lookup class.
669      * If the target class is in a different module from {@code M1} ({@code C}'s module),
670      * {@code C} becomes the new previous lookup class
671      * and the target class becomes the new lookup class.
672      * In that case, if there was already a previous lookup class in {@code M0},
673      * and it differs from {@code M1} and {@code M2}, then the resulting lookup
674      * drops all privileges.
675      * For example,
676      * <blockquote><pre>
677      * {@code
678      * Lookup lookup = MethodHandles.lookup();   // in class C
679      * Lookup lookup2 = lookup.in(D.class);
680      * MethodHandle mh = lookup2.findStatic(E.class, "m", MT);
681      * }</pre></blockquote>
682      * <p>
683      * The {@link #lookup()} factory method produces a {@code Lookup} object
684      * with {@code null} previous lookup class.
685      * {@link Lookup#in lookup.in(D.class)} transforms the {@code lookup} on class {@code C}
686      * to class {@code D} without elevation of privileges.
687      * If {@code C} and {@code D} are in the same module,
688      * {@code lookup2} records {@code D} as the new lookup class and keeps the
689      * same previous lookup class as the original {@code lookup}, or
690      * {@code null} if not present.
691      * <p>
692      * When a {@code Lookup} teleports from a class
693      * in one nest to another nest, {@code PRIVATE} access is dropped.
694      * When a {@code Lookup} teleports from a class in one package to
695      * another package, {@code PACKAGE} access is dropped.
696      * When a {@code Lookup} teleports from a class in one module to another module,
697      * {@code MODULE} access is dropped.
698      * Teleporting across modules drops the ability to access non-exported classes
699      * in both the module of the new lookup class and the module of the old lookup class
700      * and the resulting {@code Lookup} remains only {@code PUBLIC} access.
701      * A {@code Lookup} can teleport back and forth to a class in the module of
702      * the lookup class and the module of the previous class lookup.
703      * Teleporting across modules can only decrease access but cannot increase it.
704      * Teleporting to some third module drops all accesses.
705      * <p>
706      * In the above example, if {@code C} and {@code D} are in different modules,
707      * {@code lookup2} records {@code D} as its lookup class and
708      * {@code C} as its previous lookup class and {@code lookup2} has only
709      * {@code PUBLIC} access. {@code lookup2} can teleport to other class in
710      * {@code C}'s module and {@code D}'s module.
711      * If class {@code E} is in a third module, {@code lookup2.in(E.class)} creates
712      * a {@code Lookup} on {@code E} with no access and {@code lookup2}'s lookup
713      * class {@code D} is recorded as its previous lookup class.
714      * <p>
715      * Teleporting across modules restricts access to the public types that
716      * both the lookup class and the previous lookup class can equally access
717      * (see below).
718      * <p>
719      * {@link MethodHandles#privateLookupIn(Class, Lookup) MethodHandles.privateLookupIn(T.class, lookup)}
720      * can be used to teleport a {@code lookup} from class {@code C} to class {@code T}
721      * and create a new {@code Lookup} with <a href="#privacc">private access</a>
722      * if the lookup class is allowed to do <em>deep reflection</em> on {@code T}.
723      * The {@code lookup} must have {@link #MODULE} and {@link #PRIVATE} access
724      * to call {@code privateLookupIn}.
725      * A {@code lookup} on {@code C} in module {@code M1} is allowed to do deep reflection
726      * on all classes in {@code M1}.  If {@code T} is in {@code M1}, {@code privateLookupIn}
727      * produces a new {@code Lookup} on {@code T} with full capabilities.
728      * A {@code lookup} on {@code C} is also allowed
729      * to do deep reflection on {@code T} in another module {@code M2} if
730      * {@code M1} reads {@code M2} and {@code M2} {@link Module#isOpen(String,Module) opens}
731      * the package containing {@code T} to at least {@code M1}.
732      * {@code T} becomes the new lookup class and {@code C} becomes the new previous
733      * lookup class and {@code MODULE} access is dropped from the resulting {@code Lookup}.
734      * The resulting {@code Lookup} can be used to do member lookup or teleport
735      * to another lookup class by calling {@link #in Lookup::in}.  But
736      * it cannot be used to obtain another private {@code Lookup} by calling
737      * {@link MethodHandles#privateLookupIn(Class, Lookup) privateLookupIn}
738      * because it has no {@code MODULE} access.
739      *
740      * <h2><a id="module-access-check"></a>Cross-module access checks</h2>
741      *
742      * A {@code Lookup} with {@link #PUBLIC} or with {@link #UNCONDITIONAL} mode
743      * allows cross-module access. The access checking is performed with respect
744      * to both the lookup class and the previous lookup class if present.
745      * <p>
746      * A {@code Lookup} with {@link #UNCONDITIONAL} mode can access public type
747      * in all modules when the type is in a package that is {@linkplain Module#isExported(String)
748      * exported unconditionally}.
749      * <p>
750      * If a {@code Lookup} on {@code LC} in {@code M1} has no previous lookup class,
751      * the lookup with {@link #PUBLIC} mode can access all public types in modules
752      * that are readable to {@code M1} and the type is in a package that is exported
753      * at least to {@code M1}.
754      * <p>
755      * If a {@code Lookup} on {@code LC} in {@code M1} has a previous lookup class
756      * {@code PLC} on {@code M0}, the lookup with {@link #PUBLIC} mode can access
757      * the intersection of all public types that are accessible to {@code M1}
758      * with all public types that are accessible to {@code M0}. {@code M0}
759      * reads {@code M1} and hence the set of accessible types includes:
760      *
761      * <table class="striped">
762      * <caption style="display:none">
763      * Public types in the following packages are accessible to the
764      * lookup class and the previous lookup class.
765      * </caption>
766      * <thead>
767      * <tr>
768      * <th scope="col">Equally accessible types to {@code M0} and {@code M1}</th>
769      * </tr>
770      * </thead>
771      * <tbody>
772      * <tr>
773      * <th scope="row" style="text-align:left">unconditional-exported packages from {@code M1}</th>
774      * </tr>
775      * <tr>
776      * <th scope="row" style="text-align:left">unconditional-exported packages from {@code M0} if {@code M1} reads {@code M0}</th>
777      * </tr>
778      * <tr>
779      * <th scope="row" style="text-align:left">unconditional-exported packages from a third module {@code M2}
780      * if both {@code M0} and {@code M1} read {@code M2}</th>
781      * </tr>
782      * <tr>
783      * <th scope="row" style="text-align:left">qualified-exported packages from {@code M1} to {@code M0}</th>
784      * </tr>
785      * <tr>
786      * <th scope="row" style="text-align:left">qualified-exported packages from {@code M0} to {@code M1}
787      * if {@code M1} reads {@code M0}</th>
788      * </tr>
789      * <tr>
790      * <th scope="row" style="text-align:left">qualified-exported packages from a third module {@code M2} to
791      * both {@code M0} and {@code M1} if both {@code M0} and {@code M1} read {@code M2}</th>
792      * </tr>
793      * </tbody>
794      * </table>
795      *
796      * <h2><a id="access-modes"></a>Access modes</h2>
797      *
798      * The table below shows the access modes of a {@code Lookup} produced by
799      * any of the following factory or transformation methods:
800      * <ul>
801      * <li>{@link #lookup() MethodHandles::lookup}</li>
802      * <li>{@link #publicLookup() MethodHandles::publicLookup}</li>
803      * <li>{@link #privateLookupIn(Class, Lookup) MethodHandles::privateLookupIn}</li>
804      * <li>{@link Lookup#in Lookup::in}</li>
805      * <li>{@link Lookup#dropLookupMode(int) Lookup::dropLookupMode}</li>
806      * </ul>
807      *
808      * <table class="striped">
809      * <caption style="display:none">
810      * Access mode summary
811      * </caption>
812      * <thead>
813      * <tr>
814      * <th scope="col">Lookup object</th>
815      * <th style="text-align:center">protected</th>
816      * <th style="text-align:center">private</th>
817      * <th style="text-align:center">package</th>
818      * <th style="text-align:center">module</th>
819      * <th style="text-align:center">public</th>
820      * </tr>
821      * </thead>
822      * <tbody>
823      * <tr>
824      * <th scope="row" style="text-align:left">{@code CL = MethodHandles.lookup()} in {@code C}</th>
825      * <td style="text-align:center">PRO</td>
826      * <td style="text-align:center">PRI</td>
827      * <td style="text-align:center">PAC</td>
828      * <td style="text-align:center">MOD</td>
829      * <td style="text-align:center">1R</td>
830      * </tr>
831      * <tr>
832      * <th scope="row" style="text-align:left">{@code CL.in(C1)} same package</th>
833      * <td></td>
834      * <td></td>
835      * <td style="text-align:center">PAC</td>
836      * <td style="text-align:center">MOD</td>
837      * <td style="text-align:center">1R</td>
838      * </tr>
839      * <tr>
840      * <th scope="row" style="text-align:left">{@code CL.in(C1)} same module</th>
841      * <td></td>
842      * <td></td>
843      * <td></td>
844      * <td style="text-align:center">MOD</td>
845      * <td style="text-align:center">1R</td>
846      * </tr>
847      * <tr>
848      * <th scope="row" style="text-align:left">{@code CL.in(D)} different module</th>
849      * <td></td>
850      * <td></td>
851      * <td></td>
852      * <td></td>
853      * <td style="text-align:center">2R</td>
854      * </tr>
855      * <tr>
856      * <td>{@code CL.in(D).in(C)} hop back to module</td>
857      * <td></td>
858      * <td></td>
859      * <td></td>
860      * <td></td>
861      * <td style="text-align:center">2R</td>
862      * </tr>
863      * <tr>
864      * <td>{@code PRI1 = privateLookupIn(C1,CL)}</td>
865      * <td style="text-align:center">PRO</td>
866      * <td style="text-align:center">PRI</td>
867      * <td style="text-align:center">PAC</td>
868      * <td style="text-align:center">MOD</td>
869      * <td style="text-align:center">1R</td>
870      * </tr>
871      * <tr>
872      * <td>{@code PRI1a = privateLookupIn(C,PRI1)}</td>
873      * <td style="text-align:center">PRO</td>
874      * <td style="text-align:center">PRI</td>
875      * <td style="text-align:center">PAC</td>
876      * <td style="text-align:center">MOD</td>
877      * <td style="text-align:center">1R</td>
878      * </tr>
879      * <tr>
880      * <td>{@code PRI1.in(C1)} same package</td>
881      * <td></td>
882      * <td></td>
883      * <td style="text-align:center">PAC</td>
884      * <td style="text-align:center">MOD</td>
885      * <td style="text-align:center">1R</td>
886      * </tr>
887      * <tr>
888      * <td>{@code PRI1.in(C1)} different package</td>
889      * <td></td>
890      * <td></td>
891      * <td></td>
892      * <td style="text-align:center">MOD</td>
893      * <td style="text-align:center">1R</td>
894      * </tr>
895      * <tr>
896      * <td>{@code PRI1.in(D)} different module</td>
897      * <td></td>
898      * <td></td>
899      * <td></td>
900      * <td></td>
901      * <td style="text-align:center">2R</td>
902      * </tr>
903      * <tr>
904      * <td>{@code PRI1.dropLookupMode(PROTECTED)}</td>
905      * <td></td>
906      * <td style="text-align:center">PRI</td>
907      * <td style="text-align:center">PAC</td>
908      * <td style="text-align:center">MOD</td>
909      * <td style="text-align:center">1R</td>
910      * </tr>
911      * <tr>
912      * <td>{@code PRI1.dropLookupMode(PRIVATE)}</td>
913      * <td></td>
914      * <td></td>
915      * <td style="text-align:center">PAC</td>
916      * <td style="text-align:center">MOD</td>
917      * <td style="text-align:center">1R</td>
918      * </tr>
919      * <tr>
920      * <td>{@code PRI1.dropLookupMode(PACKAGE)}</td>
921      * <td></td>
922      * <td></td>
923      * <td></td>
924      * <td style="text-align:center">MOD</td>
925      * <td style="text-align:center">1R</td>
926      * </tr>
927      * <tr>
928      * <td>{@code PRI1.dropLookupMode(MODULE)}</td>
929      * <td></td>
930      * <td></td>
931      * <td></td>
932      * <td></td>
933      * <td style="text-align:center">1R</td>
934      * </tr>
935      * <tr>
936      * <td>{@code PRI1.dropLookupMode(PUBLIC)}</td>
937      * <td></td>
938      * <td></td>
939      * <td></td>
940      * <td></td>
941      * <td style="text-align:center">none</td>
942      * <tr>
943      * <td>{@code PRI2 = privateLookupIn(D,CL)}</td>
944      * <td style="text-align:center">PRO</td>
945      * <td style="text-align:center">PRI</td>
946      * <td style="text-align:center">PAC</td>
947      * <td></td>
948      * <td style="text-align:center">2R</td>
949      * </tr>
950      * <tr>
951      * <td>{@code privateLookupIn(D,PRI1)}</td>
952      * <td style="text-align:center">PRO</td>
953      * <td style="text-align:center">PRI</td>
954      * <td style="text-align:center">PAC</td>
955      * <td></td>
956      * <td style="text-align:center">2R</td>
957      * </tr>
958      * <tr>
959      * <td>{@code privateLookupIn(C,PRI2)} fails</td>
960      * <td></td>
961      * <td></td>
962      * <td></td>
963      * <td></td>
964      * <td style="text-align:center">IAE</td>
965      * </tr>
966      * <tr>
967      * <td>{@code PRI2.in(D2)} same package</td>
968      * <td></td>
969      * <td></td>
970      * <td style="text-align:center">PAC</td>
971      * <td></td>
972      * <td style="text-align:center">2R</td>
973      * </tr>
974      * <tr>
975      * <td>{@code PRI2.in(D2)} different package</td>
976      * <td></td>
977      * <td></td>
978      * <td></td>
979      * <td></td>
980      * <td style="text-align:center">2R</td>
981      * </tr>
982      * <tr>
983      * <td>{@code PRI2.in(C1)} hop back to module</td>
984      * <td></td>
985      * <td></td>
986      * <td></td>
987      * <td></td>
988      * <td style="text-align:center">2R</td>
989      * </tr>
990      * <tr>
991      * <td>{@code PRI2.in(E)} hop to third module</td>
992      * <td></td>
993      * <td></td>
994      * <td></td>
995      * <td></td>
996      * <td style="text-align:center">none</td>
997      * </tr>
998      * <tr>
999      * <td>{@code PRI2.dropLookupMode(PROTECTED)}</td>
1000      * <td></td>
1001      * <td style="text-align:center">PRI</td>
1002      * <td style="text-align:center">PAC</td>
1003      * <td></td>
1004      * <td style="text-align:center">2R</td>
1005      * </tr>
1006      * <tr>
1007      * <td>{@code PRI2.dropLookupMode(PRIVATE)}</td>
1008      * <td></td>
1009      * <td></td>
1010      * <td style="text-align:center">PAC</td>
1011      * <td></td>
1012      * <td style="text-align:center">2R</td>
1013      * </tr>
1014      * <tr>
1015      * <td>{@code PRI2.dropLookupMode(PACKAGE)}</td>
1016      * <td></td>
1017      * <td></td>
1018      * <td></td>
1019      * <td></td>
1020      * <td style="text-align:center">2R</td>
1021      * </tr>
1022      * <tr>
1023      * <td>{@code PRI2.dropLookupMode(MODULE)}</td>
1024      * <td></td>
1025      * <td></td>
1026      * <td></td>
1027      * <td></td>
1028      * <td style="text-align:center">2R</td>
1029      * </tr>
1030      * <tr>
1031      * <td>{@code PRI2.dropLookupMode(PUBLIC)}</td>
1032      * <td></td>
1033      * <td></td>
1034      * <td></td>
1035      * <td></td>
1036      * <td style="text-align:center">none</td>
1037      * </tr>
1038      * <tr>
1039      * <td>{@code CL.dropLookupMode(PROTECTED)}</td>
1040      * <td></td>
1041      * <td style="text-align:center">PRI</td>
1042      * <td style="text-align:center">PAC</td>
1043      * <td style="text-align:center">MOD</td>
1044      * <td style="text-align:center">1R</td>
1045      * </tr>
1046      * <tr>
1047      * <td>{@code CL.dropLookupMode(PRIVATE)}</td>
1048      * <td></td>
1049      * <td></td>
1050      * <td style="text-align:center">PAC</td>
1051      * <td style="text-align:center">MOD</td>
1052      * <td style="text-align:center">1R</td>
1053      * </tr>
1054      * <tr>
1055      * <td>{@code CL.dropLookupMode(PACKAGE)}</td>
1056      * <td></td>
1057      * <td></td>
1058      * <td></td>
1059      * <td style="text-align:center">MOD</td>
1060      * <td style="text-align:center">1R</td>
1061      * </tr>
1062      * <tr>
1063      * <td>{@code CL.dropLookupMode(MODULE)}</td>
1064      * <td></td>
1065      * <td></td>
1066      * <td></td>
1067      * <td></td>
1068      * <td style="text-align:center">1R</td>
1069      * </tr>
1070      * <tr>
1071      * <td>{@code CL.dropLookupMode(PUBLIC)}</td>
1072      * <td></td>
1073      * <td></td>
1074      * <td></td>
1075      * <td></td>
1076      * <td style="text-align:center">none</td>
1077      * </tr>
1078      * <tr>
1079      * <td>{@code PUB = publicLookup()}</td>
1080      * <td></td>
1081      * <td></td>
1082      * <td></td>
1083      * <td></td>
1084      * <td style="text-align:center">U</td>
1085      * </tr>
1086      * <tr>
1087      * <td>{@code PUB.in(D)} different module</td>
1088      * <td></td>
1089      * <td></td>
1090      * <td></td>
1091      * <td></td>
1092      * <td style="text-align:center">U</td>
1093      * </tr>
1094      * <tr>
1095      * <td>{@code PUB.in(D).in(E)} third module</td>
1096      * <td></td>
1097      * <td></td>
1098      * <td></td>
1099      * <td></td>
1100      * <td style="text-align:center">U</td>
1101      * </tr>
1102      * <tr>
1103      * <td>{@code PUB.dropLookupMode(UNCONDITIONAL)}</td>
1104      * <td></td>
1105      * <td></td>
1106      * <td></td>
1107      * <td></td>
1108      * <td style="text-align:center">none</td>
1109      * </tr>
1110      * <tr>
1111      * <td>{@code privateLookupIn(C1,PUB)} fails</td>
1112      * <td></td>
1113      * <td></td>
1114      * <td></td>
1115      * <td></td>
1116      * <td style="text-align:center">IAE</td>
1117      * </tr>
1118      * <tr>
1119      * <td>{@code ANY.in(X)}, for inaccessible {@code X}</td>
1120      * <td></td>
1121      * <td></td>
1122      * <td></td>
1123      * <td></td>
1124      * <td style="text-align:center">none</td>
1125      * </tr>
1126      * </tbody>
1127      * </table>
1128      *
1129      * <p>
1130      * Notes:
1131      * <ul>
1132      * <li>Class {@code C} and class {@code C1} are in module {@code M1},
1133      *     but {@code D} and {@code D2} are in module {@code M2}, and {@code E}
1134      *     is in module {@code M3}. {@code X} stands for class which is inaccessible
1135      *     to the lookup. {@code ANY} stands for any of the example lookups.</li>
1136      * <li>{@code PRO} indicates {@link #PROTECTED} bit set,
1137      *     {@code PRI} indicates {@link #PRIVATE} bit set,
1138      *     {@code PAC} indicates {@link #PACKAGE} bit set,
1139      *     {@code MOD} indicates {@link #MODULE} bit set,
1140      *     {@code 1R} and {@code 2R} indicate {@link #PUBLIC} bit set,
1141      *     {@code U} indicates {@link #UNCONDITIONAL} bit set,
1142      *     {@code IAE} indicates {@code IllegalAccessException} thrown.</li>
1143      * <li>Public access comes in three kinds:
1144      * <ul>
1145      * <li>unconditional ({@code U}): the lookup assumes readability.
1146      *     The lookup has {@code null} previous lookup class.
1147      * <li>one-module-reads ({@code 1R}): the module access checking is
1148      *     performed with respect to the lookup class.  The lookup has {@code null}
1149      *     previous lookup class.
1150      * <li>two-module-reads ({@code 2R}): the module access checking is
1151      *     performed with respect to the lookup class and the previous lookup class.
1152      *     The lookup has a non-null previous lookup class which is in a
1153      *     different module from the current lookup class.
1154      * </ul>
1155      * <li>Any attempt to reach a third module loses all access.</li>
1156      * <li>If a target class {@code X} is not accessible to {@code Lookup::in}
1157      * all access modes are dropped.</li>
1158      * </ul>
1159      *
1160      * <h2><a id="secmgr"></a>Security manager interactions</h2>
1161      * Although bytecode instructions can only refer to classes in
1162      * a related class loader, this API can search for methods in any
1163      * class, as long as a reference to its {@code Class} object is
1164      * available.  Such cross-loader references are also possible with the
1165      * Core Reflection API, and are impossible to bytecode instructions
1166      * such as {@code invokestatic} or {@code getfield}.
1167      * There is a {@linkplain java.lang.SecurityManager security manager API}
1168      * to allow applications to check such cross-loader references.
1169      * These checks apply to both the {@code MethodHandles.Lookup} API
1170      * and the Core Reflection API
1171      * (as found on {@link java.lang.Class Class}).
1172      * <p>
1173      * If a security manager is present, member and class lookups are subject to
1174      * additional checks.
1175      * From one to three calls are made to the security manager.
1176      * Any of these calls can refuse access by throwing a
1177      * {@link java.lang.SecurityException SecurityException}.
1178      * Define {@code smgr} as the security manager,
1179      * {@code lookc} as the lookup class of the current lookup object,
1180      * {@code refc} as the containing class in which the member
1181      * is being sought, and {@code defc} as the class in which the
1182      * member is actually defined.
1183      * (If a class or other type is being accessed,
1184      * the {@code refc} and {@code defc} values are the class itself.)
1185      * The value {@code lookc} is defined as <em>not present</em>
1186      * if the current lookup object does not have
1187      * {@linkplain #hasFullPrivilegeAccess() full privilege access}.
1188      * The calls are made according to the following rules:
1189      * <ul>
1190      * <li><b>Step 1:</b>
1191      *     If {@code lookc} is not present, or if its class loader is not
1192      *     the same as or an ancestor of the class loader of {@code refc},
1193      *     then {@link SecurityManager#checkPackageAccess
1194      *     smgr.checkPackageAccess(refcPkg)} is called,
1195      *     where {@code refcPkg} is the package of {@code refc}.
1196      * <li><b>Step 2a:</b>
1197      *     If the retrieved member is not public and
1198      *     {@code lookc} is not present, then
1199      *     {@link SecurityManager#checkPermission smgr.checkPermission}
1200      *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
1201      * <li><b>Step 2b:</b>
1202      *     If the retrieved class has a {@code null} class loader,
1203      *     and {@code lookc} is not present, then
1204      *     {@link SecurityManager#checkPermission smgr.checkPermission}
1205      *     with {@code RuntimePermission("getClassLoader")} is called.
1206      * <li><b>Step 3:</b>
1207      *     If the retrieved member is not public,
1208      *     and if {@code lookc} is not present,
1209      *     and if {@code defc} and {@code refc} are different,
1210      *     then {@link SecurityManager#checkPackageAccess
1211      *     smgr.checkPackageAccess(defcPkg)} is called,
1212      *     where {@code defcPkg} is the package of {@code defc}.
1213      * </ul>
1214      * Security checks are performed after other access checks have passed.
1215      * Therefore, the above rules presuppose a member or class that is public,
1216      * or else that is being accessed from a lookup class that has
1217      * rights to access the member or class.
1218      * <p>
1219      * If a security manager is present and the current lookup object does not have
1220      * {@linkplain #hasFullPrivilegeAccess() full privilege access}, then
1221      * {@link #defineClass(byte[]) defineClass}
1222      * calls {@link SecurityManager#checkPermission smgr.checkPermission}
1223      * with {@code RuntimePermission("defineClass")}.
1224      *
1225      * <h2><a id="callsens"></a>Caller sensitive methods</h2>
1226      * A small number of Java methods have a special property called caller sensitivity.
1227      * A <em>caller-sensitive</em> method can behave differently depending on the
1228      * identity of its immediate caller.
1229      * <p>
1230      * If a method handle for a caller-sensitive method is requested,
1231      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
1232      * but they take account of the lookup class in a special way.
1233      * The resulting method handle behaves as if it were called
1234      * from an instruction contained in the lookup class,
1235      * so that the caller-sensitive method detects the lookup class.
1236      * (By contrast, the invoker of the method handle is disregarded.)
1237      * Thus, in the case of caller-sensitive methods,
1238      * different lookup classes may give rise to
1239      * differently behaving method handles.
1240      * <p>
1241      * In cases where the lookup object is
1242      * {@link MethodHandles#publicLookup() publicLookup()},
1243      * or some other lookup object without the
1244      * {@linkplain #hasFullPrivilegeAccess() full privilege access},
1245      * the lookup class is disregarded.
1246      * In such cases, no caller-sensitive method handle can be created,
1247      * access is forbidden, and the lookup fails with an
1248      * {@code IllegalAccessException}.
1249      * <p style="font-size:smaller;">
1250      * <em>Discussion:</em>
1251      * For example, the caller-sensitive method
1252      * {@link java.lang.Class#forName(String) Class.forName(x)}
1253      * can return varying classes or throw varying exceptions,
1254      * depending on the class loader of the class that calls it.
1255      * A public lookup of {@code Class.forName} will fail, because
1256      * there is no reasonable way to determine its bytecode behavior.
1257      * <p style="font-size:smaller;">
1258      * If an application caches method handles for broad sharing,
1259      * it should use {@code publicLookup()} to create them.
1260      * If there is a lookup of {@code Class.forName}, it will fail,
1261      * and the application must take appropriate action in that case.
1262      * It may be that a later lookup, perhaps during the invocation of a
1263      * bootstrap method, can incorporate the specific identity
1264      * of the caller, making the method accessible.
1265      * <p style="font-size:smaller;">
1266      * The function {@code MethodHandles.lookup} is caller sensitive
1267      * so that there can be a secure foundation for lookups.
1268      * Nearly all other methods in the JSR 292 API rely on lookup
1269      * objects to check access requests.
1270      *
1271      * @revised 9
1272      */
1273     public static final
1274     class Lookup {
1275         /** The class on behalf of whom the lookup is being performed. */
1276         private final Class<?> lookupClass;
1277 
1278         /** previous lookup class */
1279         private final Class<?> prevLookupClass;
1280 
1281         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
1282         private final int allowedModes;
1283 
1284         static {
Reflection.registerFieldsToFilter(Lookup.class, Set.of(R, R))1285             Reflection.registerFieldsToFilter(Lookup.class, Set.of("lookupClass", "allowedModes"));
1286         }
1287 
1288         /** A single-bit mask representing {@code public} access,
1289          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1290          *  The value, {@code 0x01}, happens to be the same as the value of the
1291          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
1292          *  <p>
1293          *  A {@code Lookup} with this lookup mode performs cross-module access check
1294          *  with respect to the {@linkplain #lookupClass() lookup class} and
1295          *  {@linkplain #previousLookupClass() previous lookup class} if present.
1296          */
1297         public static final int PUBLIC = Modifier.PUBLIC;
1298 
1299         /** A single-bit mask representing {@code private} access,
1300          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1301          *  The value, {@code 0x02}, happens to be the same as the value of the
1302          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
1303          */
1304         public static final int PRIVATE = Modifier.PRIVATE;
1305 
1306         /** A single-bit mask representing {@code protected} access,
1307          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1308          *  The value, {@code 0x04}, happens to be the same as the value of the
1309          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
1310          */
1311         public static final int PROTECTED = Modifier.PROTECTED;
1312 
1313         /** A single-bit mask representing {@code package} access (default access),
1314          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1315          *  The value is {@code 0x08}, which does not correspond meaningfully to
1316          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1317          */
1318         public static final int PACKAGE = Modifier.STATIC;
1319 
1320         /** A single-bit mask representing {@code module} access,
1321          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1322          *  The value is {@code 0x10}, which does not correspond meaningfully to
1323          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1324          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
1325          *  with this lookup mode can access all public types in the module of the
1326          *  lookup class and public types in packages exported by other modules
1327          *  to the module of the lookup class.
1328          *  <p>
1329          *  If this lookup mode is set, the {@linkplain #previousLookupClass()
1330          *  previous lookup class} is always {@code null}.
1331          *
1332          *  @since 9
1333          *  @spec JPMS
1334          */
1335         public static final int MODULE = PACKAGE << 1;
1336 
1337         /** A single-bit mask representing {@code unconditional} access
1338          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1339          *  The value is {@code 0x20}, which does not correspond meaningfully to
1340          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1341          *  A {@code Lookup} with this lookup mode assumes {@linkplain
1342          *  java.lang.Module#canRead(java.lang.Module) readability}.
1343          *  This lookup mode can access all public members of public types
1344          *  of all modules when the type is in a package that is {@link
1345          *  java.lang.Module#isExported(String) exported unconditionally}.
1346          *
1347          *  <p>
1348          *  If this lookup mode is set, the {@linkplain #previousLookupClass()
1349          *  previous lookup class} is always {@code null}.
1350          *
1351          *  @since 9
1352          *  @spec JPMS
1353          *  @see #publicLookup()
1354          */
1355         public static final int UNCONDITIONAL = PACKAGE << 2;
1356 
1357         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE | MODULE | UNCONDITIONAL);
1358         private static final int FULL_POWER_MODES = (ALL_MODES & ~UNCONDITIONAL);
1359         private static final int TRUSTED   = -1;
1360 
1361         /*
1362          * Adjust PUBLIC => PUBLIC|MODULE|UNCONDITIONAL
1363          * Adjust 0 => PACKAGE
1364          */
fixmods(int mods)1365         private static int fixmods(int mods) {
1366             mods &= (ALL_MODES - PACKAGE - MODULE - UNCONDITIONAL);
1367             if (Modifier.isPublic(mods))
1368                 mods |= UNCONDITIONAL;
1369             return (mods != 0) ? mods : PACKAGE;
1370         }
1371 
1372         /** Tells which class is performing the lookup.  It is this class against
1373          *  which checks are performed for visibility and access permissions.
1374          *  <p>
1375          *  If this lookup object has a {@linkplain #previousLookupClass() previous lookup class},
1376          *  access checks are performed against both the lookup class and the previous lookup class.
1377          *  <p>
1378          *  The class implies a maximum level of access permission,
1379          *  but the permissions may be additionally limited by the bitmask
1380          *  {@link #lookupModes lookupModes}, which controls whether non-public members
1381          *  can be accessed.
1382          *  @return the lookup class, on behalf of which this lookup object finds members
1383          *  @see <a href="#cross-module-lookup">Cross-module lookups</a>
1384          */
lookupClass()1385         public Class<?> lookupClass() {
1386             return lookupClass;
1387         }
1388 
1389         /** Reports a lookup class in another module that this lookup object
1390          * was previously teleported from, or {@code null}.
1391          * <p>
1392          * A {@code Lookup} object produced by the factory methods, such as the
1393          * {@link #lookup() lookup()} and {@link #publicLookup() publicLookup()} method,
1394          * has {@code null} previous lookup class.
1395          * A {@code Lookup} object has a non-null previous lookup class
1396          * when this lookup was teleported from an old lookup class
1397          * in one module to a new lookup class in another module.
1398          *
1399          * @return the lookup class in another module that this lookup object was
1400          *         previously teleported from, or {@code null}
1401          * @since 14
1402          * @see #in(Class)
1403          * @see MethodHandles#privateLookupIn(Class, Lookup)
1404          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
1405          */
previousLookupClass()1406         public Class<?> previousLookupClass() {
1407             return prevLookupClass;
1408         }
1409 
1410         // This is just for calling out to MethodHandleImpl.
lookupClassOrNull()1411         private Class<?> lookupClassOrNull() {
1412             if (allowedModes == TRUSTED) {
1413                 return null;
1414             }
1415             if (allowedModes == UNCONDITIONAL) {
1416                 // use Object as the caller to pass to VM doing resolution
1417                 return Object.class;
1418             }
1419             return lookupClass;
1420         }
1421 
1422         /** Tells which access-protection classes of members this lookup object can produce.
1423          *  The result is a bit-mask of the bits
1424          *  {@linkplain #PUBLIC PUBLIC (0x01)},
1425          *  {@linkplain #PRIVATE PRIVATE (0x02)},
1426          *  {@linkplain #PROTECTED PROTECTED (0x04)},
1427          *  {@linkplain #PACKAGE PACKAGE (0x08)},
1428          *  {@linkplain #MODULE MODULE (0x10)},
1429          *  and {@linkplain #UNCONDITIONAL UNCONDITIONAL (0x20)}.
1430          *  <p>
1431          *  A freshly-created lookup object
1432          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} has
1433          *  all possible bits set, except {@code UNCONDITIONAL}.
1434          *  A lookup object on a new lookup class
1435          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
1436          *  may have some mode bits set to zero.
1437          *  Mode bits can also be
1438          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#dropLookupMode directly cleared}.
1439          *  Once cleared, mode bits cannot be restored from the downgraded lookup object.
1440          *  The purpose of this is to restrict access via the new lookup object,
1441          *  so that it can access only names which can be reached by the original
1442          *  lookup object, and also by the new lookup class.
1443          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
1444          *  @see #in
1445          *  @see #dropLookupMode
1446          *
1447          *  @revised 9
1448          *  @spec JPMS
1449          */
lookupModes()1450         public int lookupModes() {
1451             return allowedModes & ALL_MODES;
1452         }
1453 
1454         /** Embody the current class (the lookupClass) as a lookup class
1455          * for method handle creation.
1456          * Must be called by from a method in this package,
1457          * which in turn is called by a method not in this package.
1458          */
Lookup(Class<?> lookupClass)1459         Lookup(Class<?> lookupClass) {
1460             this(lookupClass, null, FULL_POWER_MODES);
1461         }
1462 
Lookup(Class<?> lookupClass, Class<?> prevLookupClass, int allowedModes)1463         private Lookup(Class<?> lookupClass, Class<?> prevLookupClass, int allowedModes) {
1464             assert prevLookupClass == null || ((allowedModes & MODULE) == 0
1465                     && prevLookupClass.getModule() != lookupClass.getModule());
1466             assert !lookupClass.isArray() && !lookupClass.isPrimitive();
1467             this.lookupClass = lookupClass;
1468             this.prevLookupClass = prevLookupClass;
1469             this.allowedModes = allowedModes;
1470         }
1471 
newLookup(Class<?> lookupClass, Class<?> prevLookupClass, int allowedModes)1472         private static Lookup newLookup(Class<?> lookupClass, Class<?> prevLookupClass, int allowedModes) {
1473             // make sure we haven't accidentally picked up a privileged class:
1474             checkUnprivilegedlookupClass(lookupClass);
1475             return new Lookup(lookupClass, prevLookupClass, allowedModes);
1476         }
1477 
1478         /**
1479          * Creates a lookup on the specified new lookup class.
1480          * The resulting object will report the specified
1481          * class as its own {@link #lookupClass() lookupClass}.
1482          *
1483          * <p>
1484          * However, the resulting {@code Lookup} object is guaranteed
1485          * to have no more access capabilities than the original.
1486          * In particular, access capabilities can be lost as follows:<ul>
1487          * <li>If the new lookup class is in a different module from the old one,
1488          * i.e. {@link #MODULE MODULE} access is lost.
1489          * <li>If the new lookup class is in a different package
1490          * than the old one, protected and default (package) members will not be accessible,
1491          * i.e. {@link #PROTECTED PROTECTED} and {@link #PACKAGE PACKAGE} access are lost.
1492          * <li>If the new lookup class is not within the same package member
1493          * as the old one, private members will not be accessible, and protected members
1494          * will not be accessible by virtue of inheritance,
1495          * i.e. {@link #PRIVATE PRIVATE} access is lost.
1496          * (Protected members may continue to be accessible because of package sharing.)
1497          * <li>If the new lookup class is not
1498          * {@linkplain #accessClass(Class) accessible} to this lookup,
1499          * then no members, not even public members, will be accessible
1500          * i.e. all access modes are lost.
1501          * <li>If the new lookup class, the old lookup class and the previous lookup class
1502          * are all in different modules i.e. teleporting to a third module,
1503          * all access modes are lost.
1504          * </ul>
1505          * <p>
1506          * The new previous lookup class is chosen as follows:
1507          * <ul>
1508          * <li>If the new lookup object has {@link #UNCONDITIONAL UNCONDITIONAL} bit,
1509          * the new previous lookup class is {@code null}.
1510          * <li>If the new lookup class is in the same module as the old lookup class,
1511          * the new previous lookup class is the old previous lookup class.
1512          * <li>If the new lookup class is in a different module from the old lookup class,
1513          * the new previous lookup class is the old lookup class.
1514          *</ul>
1515          * <p>
1516          * The resulting lookup's capabilities for loading classes
1517          * (used during {@link #findClass} invocations)
1518          * are determined by the lookup class' loader,
1519          * which may change due to this operation.
1520          * <p>
1521          * @param requestedLookupClass the desired lookup class for the new lookup object
1522          * @return a lookup object which reports the desired lookup class, or the same object
1523          * if there is no change
1524          * @throws IllegalArgumentException if {@code requestedLookupClass} is a primitive type or void or array class
1525          * @throws NullPointerException if the argument is null
1526          *
1527          * @revised 9
1528          * @spec JPMS
1529          * @see #accessClass(Class)
1530          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
1531          */
in(Class<?> requestedLookupClass)1532         public Lookup in(Class<?> requestedLookupClass) {
1533             Objects.requireNonNull(requestedLookupClass);
1534             if (requestedLookupClass.isPrimitive())
1535                 throw new IllegalArgumentException(requestedLookupClass + " is a primitive class");
1536             if (requestedLookupClass.isArray())
1537                 throw new IllegalArgumentException(requestedLookupClass + " is an array class");
1538 
1539             if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
1540                 return new Lookup(requestedLookupClass, null, FULL_POWER_MODES);
1541             if (requestedLookupClass == this.lookupClass)
1542                 return this;  // keep same capabilities
1543             int newModes = (allowedModes & FULL_POWER_MODES);
1544             Module fromModule = this.lookupClass.getModule();
1545             Module targetModule = requestedLookupClass.getModule();
1546             Class<?> plc = this.previousLookupClass();
1547             if ((this.allowedModes & UNCONDITIONAL) != 0) {
1548                 assert plc == null;
1549                 newModes = UNCONDITIONAL;
1550             } else if (fromModule != targetModule) {
1551                 if (plc != null && !VerifyAccess.isSameModule(plc, requestedLookupClass)) {
1552                     // allow hopping back and forth between fromModule and plc's module
1553                     // but not the third module
1554                     newModes = 0;
1555                 }
1556                 // drop MODULE access
1557                 newModes &= ~(MODULE|PACKAGE|PRIVATE|PROTECTED);
1558                 // teleport from this lookup class
1559                 plc = this.lookupClass;
1560             }
1561             if ((newModes & PACKAGE) != 0
1562                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
1563                 newModes &= ~(PACKAGE|PRIVATE|PROTECTED);
1564             }
1565             // Allow nestmate lookups to be created without special privilege:
1566             if ((newModes & PRIVATE) != 0
1567                     && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
1568                 newModes &= ~(PRIVATE|PROTECTED);
1569             }
1570             if ((newModes & (PUBLIC|UNCONDITIONAL)) != 0
1571                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, this.prevLookupClass, allowedModes)) {
1572                 // The requested class it not accessible from the lookup class.
1573                 // No permissions.
1574                 newModes = 0;
1575             }
1576             return newLookup(requestedLookupClass, plc, newModes);
1577         }
1578 
1579         /**
1580          * Creates a lookup on the same lookup class which this lookup object
1581          * finds members, but with a lookup mode that has lost the given lookup mode.
1582          * The lookup mode to drop is one of {@link #PUBLIC PUBLIC}, {@link #MODULE
1583          * MODULE}, {@link #PACKAGE PACKAGE}, {@link #PROTECTED PROTECTED},
1584          * {@link #PRIVATE PRIVATE}, or {@link #UNCONDITIONAL UNCONDITIONAL}.
1585          *
1586          * <p> If this lookup is a {@linkplain MethodHandles#publicLookup() public lookup},
1587          * this lookup has {@code UNCONDITIONAL} mode set and it has no other mode set.
1588          * When dropping {@code UNCONDITIONAL} on a public lookup then the resulting
1589          * lookup has no access.
1590          *
1591          * <p> If this lookup is not a public lookup, then the following applies
1592          * regardless of its {@linkplain #lookupModes() lookup modes}.
1593          * {@link #PROTECTED PROTECTED} is always dropped and so the resulting lookup
1594          * mode will never have this access capability. When dropping {@code PACKAGE}
1595          * then the resulting lookup will not have {@code PACKAGE} or {@code PRIVATE}
1596          * access. When dropping {@code MODULE} then the resulting lookup will not
1597          * have {@code MODULE}, {@code PACKAGE}, or {@code PRIVATE} access.
1598          * When dropping {@code PUBLIC} then the resulting lookup has no access.
1599          *
1600          * @apiNote
1601          * A lookup with {@code PACKAGE} but not {@code PRIVATE} mode can safely
1602          * delegate non-public access within the package of the lookup class without
1603          * conferring  <a href="MethodHandles.Lookup.html#privacc">private access</a>.
1604          * A lookup with {@code MODULE} but not
1605          * {@code PACKAGE} mode can safely delegate {@code PUBLIC} access within
1606          * the module of the lookup class without conferring package access.
1607          * A lookup with a {@linkplain #previousLookupClass() previous lookup class}
1608          * (and {@code PUBLIC} but not {@code MODULE} mode) can safely delegate access
1609          * to public classes accessible to both the module of the lookup class
1610          * and the module of the previous lookup class.
1611          *
1612          * @param modeToDrop the lookup mode to drop
1613          * @return a lookup object which lacks the indicated mode, or the same object if there is no change
1614          * @throws IllegalArgumentException if {@code modeToDrop} is not one of {@code PUBLIC},
1615          * {@code MODULE}, {@code PACKAGE}, {@code PROTECTED}, {@code PRIVATE} or {@code UNCONDITIONAL}
1616          * @see MethodHandles#privateLookupIn
1617          * @since 9
1618          */
dropLookupMode(int modeToDrop)1619         public Lookup dropLookupMode(int modeToDrop) {
1620             int oldModes = lookupModes();
1621             int newModes = oldModes & ~(modeToDrop | PROTECTED);
1622             switch (modeToDrop) {
1623                 case PUBLIC: newModes &= ~(FULL_POWER_MODES); break;
1624                 case MODULE: newModes &= ~(PACKAGE | PRIVATE); break;
1625                 case PACKAGE: newModes &= ~(PRIVATE); break;
1626                 case PROTECTED:
1627                 case PRIVATE:
1628                 case UNCONDITIONAL: break;
1629                 default: throw new IllegalArgumentException(modeToDrop + " is not a valid mode to drop");
1630             }
1631             if (newModes == oldModes) return this;  // return self if no change
1632             return newLookup(lookupClass(), previousLookupClass(), newModes);
1633         }
1634 
1635         /**
1636          * Creates and links a class or interface from {@code bytes}
1637          * with the same class loader and in the same runtime package and
1638          * {@linkplain java.security.ProtectionDomain protection domain} as this lookup's
1639          * {@linkplain #lookupClass() lookup class} as if calling
1640          * {@link ClassLoader#defineClass(String,byte[],int,int,ProtectionDomain)
1641          * ClassLoader::defineClass}.
1642          *
1643          * <p> The {@linkplain #lookupModes() lookup modes} for this lookup must include
1644          * {@link #PACKAGE PACKAGE} access as default (package) members will be
1645          * accessible to the class. The {@code PACKAGE} lookup mode serves to authenticate
1646          * that the lookup object was created by a caller in the runtime package (or derived
1647          * from a lookup originally created by suitably privileged code to a target class in
1648          * the runtime package). </p>
1649          *
1650          * <p> The {@code bytes} parameter is the class bytes of a valid class file (as defined
1651          * by the <em>The Java Virtual Machine Specification</em>) with a class name in the
1652          * same package as the lookup class. </p>
1653          *
1654          * <p> This method does not run the class initializer. The class initializer may
1655          * run at a later time, as detailed in section 12.4 of the <em>The Java Language
1656          * Specification</em>. </p>
1657          *
1658          * <p> If there is a security manager and this lookup does not have {@linkplain
1659          * #hasFullPrivilegeAccess() full privilege access}, its {@code checkPermission} method
1660          * is first called to check {@code RuntimePermission("defineClass")}. </p>
1661          *
1662          * @param bytes the class bytes
1663          * @return the {@code Class} object for the class
1664          * @throws IllegalAccessException if this lookup does not have {@code PACKAGE} access
1665          * @throws ClassFormatError if {@code bytes} is not a {@code ClassFile} structure
1666          * @throws IllegalArgumentException if {@code bytes} denotes a class in a different package
1667          * than the lookup class or {@code bytes} is not a class or interface
1668          * ({@code ACC_MODULE} flag is set in the value of the {@code access_flags} item)
1669          * @throws VerifyError if the newly created class cannot be verified
1670          * @throws LinkageError if the newly created class cannot be linked for any other reason
1671          * @throws SecurityException if a security manager is present and it
1672          *                           <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1673          * @throws NullPointerException if {@code bytes} is {@code null}
1674          * @since 9
1675          * @spec JPMS
1676          * @see Lookup#privateLookupIn
1677          * @see Lookup#dropLookupMode
1678          * @see ClassLoader#defineClass(String,byte[],int,int,ProtectionDomain)
1679          */
defineClass(byte[] bytes)1680         public Class<?> defineClass(byte[] bytes) throws IllegalAccessException {
1681             ensureDefineClassPermission();
1682             if ((lookupModes() & PACKAGE) == 0)
1683                 throw new IllegalAccessException("Lookup does not have PACKAGE access");
1684             return makeClassDefiner(bytes.clone()).defineClass(false);
1685         }
1686 
ensureDefineClassPermission()1687         private void ensureDefineClassPermission() {
1688             if (allowedModes == TRUSTED)  return;
1689 
1690             if (!hasFullPrivilegeAccess()) {
1691                 SecurityManager sm = System.getSecurityManager();
1692                 if (sm != null)
1693                     sm.checkPermission(new RuntimePermission("defineClass"));
1694             }
1695         }
1696 
1697         /**
1698          * The set of class options that specify whether a hidden class created by
1699          * {@link Lookup#defineHiddenClass(byte[], boolean, ClassOption...)
1700          * Lookup::defineHiddenClass} method is dynamically added as a new member
1701          * to the nest of a lookup class and/or whether a hidden class has
1702          * a strong relationship with the class loader marked as its defining loader.
1703          *
1704          * @since 15
1705          */
1706         public enum ClassOption {
1707             /**
1708              * Specifies that a hidden class be added to {@linkplain Class#getNestHost nest}
1709              * of a lookup class as a nestmate.
1710              *
1711              * <p> A hidden nestmate class has access to the private members of all
1712              * classes and interfaces in the same nest.
1713              *
1714              * @see Class#getNestHost()
1715              */
1716             NESTMATE(NESTMATE_CLASS),
1717 
1718             /**
1719              * Specifies that a hidden class has a <em>strong</em>
1720              * relationship with the class loader marked as its defining loader,
1721              * as a normal class or interface has with its own defining loader.
1722              * This means that the hidden class may be unloaded if and only if
1723              * its defining loader is not reachable and thus may be reclaimed
1724              * by a garbage collector (JLS 12.7).
1725              *
1726              * <p> By default, a hidden class or interface may be unloaded
1727              * even if the class loader that is marked as its defining loader is
1728              * <a href="../ref/package.html#reachability">reachable</a>.
1729 
1730              *
1731              * @jls 12.7 Unloading of Classes and Interfaces
1732              */
1733             STRONG(STRONG_LOADER_LINK);
1734 
1735             /* the flag value is used by VM at define class time */
1736             private final int flag;
ClassOption(int flag)1737             ClassOption(int flag) {
1738                 this.flag = flag;
1739             }
1740 
optionsToFlag(Set<ClassOption> options)1741             static int optionsToFlag(Set<ClassOption> options) {
1742                 int flags = 0;
1743                 for (ClassOption cp : options) {
1744                     flags |= cp.flag;
1745                 }
1746                 return flags;
1747             }
1748         }
1749 
1750         /**
1751          * Creates a <em>hidden</em> class or interface from {@code bytes},
1752          * returning a {@code Lookup} on the newly created class or interface.
1753          *
1754          * <p> Ordinarily, a class or interface {@code C} is created by a class loader,
1755          * which either defines {@code C} directly or delegates to another class loader.
1756          * A class loader defines {@code C} directly by invoking
1757          * {@link ClassLoader#defineClass(String, byte[], int, int, ProtectionDomain)
1758          * ClassLoader::defineClass}, which causes the Java Virtual Machine
1759          * to derive {@code C} from a purported representation in {@code class} file format.
1760          * In situations where use of a class loader is undesirable, a class or interface
1761          * {@code C} can be created by this method instead. This method is capable of
1762          * defining {@code C}, and thereby creating it, without invoking
1763          * {@code ClassLoader::defineClass}.
1764          * Instead, this method defines {@code C} as if by arranging for
1765          * the Java Virtual Machine to derive a nonarray class or interface {@code C}
1766          * from a purported representation in {@code class} file format
1767          * using the following rules:
1768          *
1769          * <ol>
1770          * <li> The {@linkplain #lookupModes() lookup modes} for this {@code Lookup}
1771          * must include {@linkplain #hasFullPrivilegeAccess() full privilege} access.
1772          * This level of access is needed to create {@code C} in the module
1773          * of the lookup class of this {@code Lookup}.</li>
1774          *
1775          * <li> The purported representation in {@code bytes} must be a {@code ClassFile}
1776          * structure of a supported major and minor version. The major and minor version
1777          * may differ from the {@code class} file version of the lookup class of this
1778          * {@code Lookup}.</li>
1779          *
1780          * <li> The value of {@code this_class} must be a valid index in the
1781          * {@code constant_pool} table, and the entry at that index must be a valid
1782          * {@code CONSTANT_Class_info} structure. Let {@code N} be the binary name
1783          * encoded in internal form that is specified by this structure. {@code N} must
1784          * denote a class or interface in the same package as the lookup class.</li>
1785          *
1786          * <li> Let {@code CN} be the string {@code N + "." + <suffix>},
1787          * where {@code <suffix>} is an unqualified name.
1788          *
1789          * <p> Let {@code newBytes} be the {@code ClassFile} structure given by
1790          * {@code bytes} with an additional entry in the {@code constant_pool} table,
1791          * indicating a {@code CONSTANT_Utf8_info} structure for {@code CN}, and
1792          * where the {@code CONSTANT_Class_info} structure indicated by {@code this_class}
1793          * refers to the new {@code CONSTANT_Utf8_info} structure.
1794          *
1795          * <p> Let {@code L} be the defining class loader of the lookup class of this {@code Lookup}.
1796          *
1797          * <p> {@code C} is derived with name {@code CN}, class loader {@code L}, and
1798          * purported representation {@code newBytes} as if by the rules of JVMS {@jvms 5.3.5},
1799          * with the following adjustments:
1800          * <ul>
1801          * <li> The constant indicated by {@code this_class} is permitted to specify a name
1802          * that includes a single {@code "."} character, even though this is not a valid
1803          * binary class or interface name in internal form.</li>
1804          *
1805          * <li> The Java Virtual Machine marks {@code L} as the defining class loader of {@code C},
1806          * but no class loader is recorded as an initiating class loader of {@code C}.</li>
1807          *
1808          * <li> {@code C} is considered to have the same runtime
1809          * {@linkplain Class#getPackage() package}, {@linkplain Class#getModule() module}
1810          * and {@linkplain java.security.ProtectionDomain protection domain}
1811          * as the lookup class of this {@code Lookup}.
1812          * <li> Let {@code GN} be the binary name obtained by taking {@code N}
1813          * (a binary name encoded in internal form) and replacing ASCII forward slashes with
1814          * ASCII periods. For the instance of {@link java.lang.Class} representing {@code C}:
1815          * <ul>
1816          * <li> {@link Class#getName()} returns the string {@code GN + "/" + <suffix>},
1817          *      even though this is not a valid binary class or interface name.</li>
1818          * <li> {@link Class#descriptorString()} returns the string
1819          *      {@code "L" + N + "." + <suffix> + ";"},
1820          *      even though this is not a valid type descriptor name.</li>
1821          * <li> {@link Class#describeConstable()} returns an empty optional as {@code C}
1822          *      cannot be described in {@linkplain java.lang.constant.ClassDesc nominal form}.</li>
1823          * </ul>
1824          * </ul>
1825          * </li>
1826          * </ol>
1827          *
1828          * <p> After {@code C} is derived, it is linked by the Java Virtual Machine.
1829          * Linkage occurs as specified in JVMS {@jvms 5.4.3}, with the following adjustments:
1830          * <ul>
1831          * <li> During verification, whenever it is necessary to load the class named
1832          * {@code CN}, the attempt succeeds, producing class {@code C}. No request is
1833          * made of any class loader.</li>
1834          *
1835          * <li> On any attempt to resolve the entry in the run-time constant pool indicated
1836          * by {@code this_class}, the symbolic reference is considered to be resolved to
1837          * {@code C} and resolution always succeeds immediately.</li>
1838          * </ul>
1839          *
1840          * <p> If the {@code initialize} parameter is {@code true},
1841          * then {@code C} is initialized by the Java Virtual Machine.
1842          *
1843          * <p> The newly created class or interface {@code C} serves as the
1844          * {@linkplain #lookupClass() lookup class} of the {@code Lookup} object
1845          * returned by this method. {@code C} is <em>hidden</em> in the sense that
1846          * no other class or interface can refer to {@code C} via a constant pool entry.
1847          * That is, a hidden class or interface cannot be named as a supertype, a field type,
1848          * a method parameter type, or a method return type by any other class.
1849          * This is because a hidden class or interface does not have a binary name, so
1850          * there is no internal form available to record in any class's constant pool.
1851          * A hidden class or interface is not discoverable by {@link Class#forName(String, boolean, ClassLoader)},
1852          * {@link ClassLoader#loadClass(String, boolean)}, or {@link #findClass(String)}, and
1853          * is not {@linkplain java.lang.instrument.Instrumentation#isModifiableClass(Class)
1854          * modifiable} by Java agents or tool agents using the <a href="{@docRoot}/../specs/jvmti.html">
1855          * JVM Tool Interface</a>.
1856          *
1857          * <p> A class or interface created by
1858          * {@linkplain ClassLoader#defineClass(String, byte[], int, int, ProtectionDomain)
1859          * a class loader} has a strong relationship with that class loader.
1860          * That is, every {@code Class} object contains a reference to the {@code ClassLoader}
1861          * that {@linkplain Class#getClassLoader() defined it}.
1862          * This means that a class created by a class loader may be unloaded if and
1863          * only if its defining loader is not reachable and thus may be reclaimed
1864          * by a garbage collector (JLS 12.7).
1865          *
1866          * By default, however, a hidden class or interface may be unloaded even if
1867          * the class loader that is marked as its defining loader is
1868          * <a href="../ref/package.html#reachability">reachable</a>.
1869          * This behavior is useful when a hidden class or interface serves multiple
1870          * classes defined by arbitrary class loaders.  In other cases, a hidden
1871          * class or interface may be linked to a single class (or a small number of classes)
1872          * with the same defining loader as the hidden class or interface.
1873          * In such cases, where the hidden class or interface must be coterminous
1874          * with a normal class or interface, the {@link ClassOption#STRONG STRONG}
1875          * option may be passed in {@code options}.
1876          * This arranges for a hidden class to have the same strong relationship
1877          * with the class loader marked as its defining loader,
1878          * as a normal class or interface has with its own defining loader.
1879          *
1880          * If {@code STRONG} is not used, then the invoker of {@code defineHiddenClass}
1881          * may still prevent a hidden class or interface from being
1882          * unloaded by ensuring that the {@code Class} object is reachable.
1883          *
1884          * <p> The unloading characteristics are set for each hidden class when it is
1885          * defined, and cannot be changed later.  An advantage of allowing hidden classes
1886          * to be unloaded independently of the class loader marked as their defining loader
1887          * is that a very large number of hidden classes may be created by an application.
1888          * In contrast, if {@code STRONG} is used, then the JVM may run out of memory,
1889          * just as if normal classes were created by class loaders.
1890          *
1891          * <p> Classes and interfaces in a nest are allowed to have mutual access to
1892          * their private members.  The nest relationship is determined by
1893          * the {@code NestHost} attribute (JVMS {@jvms 4.7.28}) and
1894          * the {@code NestMembers} attribute (JVMS {@jvms 4.7.29}) in a {@code class} file.
1895          * By default, a hidden class belongs to a nest consisting only of itself
1896          * because a hidden class has no binary name.
1897          * The {@link ClassOption#NESTMATE NESTMATE} option can be passed in {@code options}
1898          * to create a hidden class or interface {@code C} as a member of a nest.
1899          * The nest to which {@code C} belongs is not based on any {@code NestHost} attribute
1900          * in the {@code ClassFile} structure from which {@code C} was derived.
1901          * Instead, the following rules determine the nest host of {@code C}:
1902          * <ul>
1903          * <li>If the nest host of the lookup class of this {@code Lookup} has previously
1904          *     been determined, then let {@code H} be the nest host of the lookup class.
1905          *     Otherwise, the nest host of the lookup class is determined using the
1906          *     algorithm in JVMS {@jvms 5.4.4}, yielding {@code H}.</li>
1907          * <li>The nest host of {@code C} is determined to be {@code H},
1908          *     the nest host of the lookup class.</li>
1909          * </ul>
1910          *
1911          * <p> A hidden class or interface may be serializable, but this requires a custom
1912          * serialization mechanism in order to ensure that instances are properly serialized
1913          * and deserialized. The default serialization mechanism supports only classes and
1914          * interfaces that are discoverable by their class name.
1915          *
1916          * @param bytes the bytes that make up the class data,
1917          * in the format of a valid {@code class} file as defined by
1918          * <cite>The Java Virtual Machine Specification</cite>.
1919          * @param initialize if {@code true} the class will be initialized.
1920          * @param options {@linkplain ClassOption class options}
1921          * @return the {@code Lookup} object on the hidden class
1922          *
1923          * @throws IllegalAccessException if this {@code Lookup} does not have
1924          * {@linkplain #hasFullPrivilegeAccess() full privilege} access
1925          * @throws SecurityException if a security manager is present and it
1926          * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1927          * @throws ClassFormatError if {@code bytes} is not a {@code ClassFile} structure
1928          * @throws UnsupportedClassVersionError if {@code bytes} is not of a supported major or minor version
1929          * @throws IllegalArgumentException if {@code bytes} denotes a class in a different package
1930          * than the lookup class or {@code bytes} is not a class or interface
1931          * ({@code ACC_MODULE} flag is set in the value of the {@code access_flags} item)
1932          * @throws IncompatibleClassChangeError if the class or interface named as
1933          * the direct superclass of {@code C} is in fact an interface, or if any of the classes
1934          * or interfaces named as direct superinterfaces of {@code C} are not in fact interfaces
1935          * @throws ClassCircularityError if any of the superclasses or superinterfaces of
1936          * {@code C} is {@code C} itself
1937          * @throws VerifyError if the newly created class cannot be verified
1938          * @throws LinkageError if the newly created class cannot be linked for any other reason
1939          * @throws NullPointerException if any parameter is {@code null}
1940          *
1941          * @since 15
1942          * @see Class#isHidden()
1943          * @jvms 4.2.1 Binary Class and Interface Names
1944          * @jvms 4.2.2 Unqualified Names
1945          * @jvms 4.7.28 The {@code NestHost} Attribute
1946          * @jvms 4.7.29 The {@code NestMembers} Attribute
1947          * @jvms 5.4.3.1 Class and Interface Resolution
1948          * @jvms 5.4.4 Access Control
1949          * @jvms 5.3.5 Deriving a {@code Class} from a {@code class} File Representation
1950          * @jvms 5.4 Linking
1951          * @jvms 5.5 Initialization
1952          * @jls 12.7 Unloading of Classes and Interfaces
1953          */
defineHiddenClass(byte[] bytes, boolean initialize, ClassOption... options)1954         public Lookup defineHiddenClass(byte[] bytes, boolean initialize, ClassOption... options)
1955                 throws IllegalAccessException
1956         {
1957             Objects.requireNonNull(bytes);
1958             Objects.requireNonNull(options);
1959 
1960             ensureDefineClassPermission();
1961             if (!hasFullPrivilegeAccess()) {
1962                 throw new IllegalAccessException(this + " does not have full privilege access");
1963             }
1964 
1965             return makeHiddenClassDefiner(bytes.clone(), Set.of(options), false).defineClassAsLookup(initialize);
1966         }
1967 
1968         /**
1969          * Creates a <em>hidden</em> class or interface from {@code bytes} with associated
1970          * {@linkplain MethodHandles#classData(Lookup, String, Class) class data},
1971          * returning a {@code Lookup} on the newly created class or interface.
1972          *
1973          * <p> This method is equivalent to calling
1974          * {@link #defineHiddenClass(byte[], boolean, ClassOption...) defineHiddenClass(bytes, true, options)}
1975          * as if the hidden class has a private static final unnamed field whose value
1976          * is initialized to {@code classData} right before the class initializer is
1977          * executed.  The newly created class is linked and initialized by the Java
1978          * Virtual Machine.
1979          *
1980          * <p> The {@link MethodHandles#classData(Lookup, String, Class) MethodHandles::classData}
1981          * method can be used to retrieve the {@code classData}.
1982          *
1983          * @param bytes     the class bytes
1984          * @param classData pre-initialized class data
1985          * @param options   {@linkplain ClassOption class options}
1986          * @return the {@code Lookup} object on the hidden class
1987          *
1988          * @throws IllegalAccessException if this {@code Lookup} does not have
1989          * {@linkplain #hasFullPrivilegeAccess() full privilege} access
1990          * @throws SecurityException if a security manager is present and it
1991          * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1992          * @throws ClassFormatError if {@code bytes} is not a {@code ClassFile} structure
1993          * @throws UnsupportedClassVersionError if {@code bytes} is not of a supported major or minor version
1994          * @throws IllegalArgumentException if {@code bytes} denotes a class in a different package
1995          * than the lookup class or {@code bytes} is not a class or interface
1996          * ({@code ACC_MODULE} flag is set in the value of the {@code access_flags} item)
1997          * @throws IncompatibleClassChangeError if the class or interface named as
1998          * the direct superclass of {@code C} is in fact an interface, or if any of the classes
1999          * or interfaces named as direct superinterfaces of {@code C} are not in fact interfaces
2000          * @throws ClassCircularityError if any of the superclasses or superinterfaces of
2001          * {@code C} is {@code C} itself
2002          * @throws VerifyError if the newly created class cannot be verified
2003          * @throws LinkageError if the newly created class cannot be linked for any other reason
2004          * @throws NullPointerException if any parameter is {@code null}
2005          *
2006          * @since 15
2007          * @see Lookup#defineHiddenClass(byte[], boolean, ClassOption...)
2008          * @see Class#isHidden()
2009          */
defineHiddenClassWithClassData(byte[] bytes, Object classData, ClassOption... options)2010         /* package-private */ Lookup defineHiddenClassWithClassData(byte[] bytes, Object classData, ClassOption... options)
2011                 throws IllegalAccessException
2012         {
2013             Objects.requireNonNull(bytes);
2014             Objects.requireNonNull(classData);
2015             Objects.requireNonNull(options);
2016 
2017             ensureDefineClassPermission();
2018             if (!hasFullPrivilegeAccess()) {
2019                 throw new IllegalAccessException(this + " does not have full privilege access");
2020             }
2021 
2022             return makeHiddenClassDefiner(bytes.clone(), Set.of(options), false)
2023                        .defineClassAsLookup(true, classData);
2024         }
2025 
2026         static class ClassFile {
2027             final String name;
2028             final int accessFlags;
2029             final byte[] bytes;
ClassFile(String name, int accessFlags, byte[] bytes)2030             ClassFile(String name, int accessFlags, byte[] bytes) {
2031                 this.name = name;
2032                 this.accessFlags = accessFlags;
2033                 this.bytes = bytes;
2034             }
2035 
newInstanceNoCheck(String name, byte[] bytes)2036             static ClassFile newInstanceNoCheck(String name, byte[] bytes) {
2037                 return new ClassFile(name, 0, bytes);
2038             }
2039 
2040             /**
2041              * This method checks the class file version and the structure of `this_class`.
2042              * and checks if the bytes is a class or interface (ACC_MODULE flag not set)
2043              * that is in the named package.
2044              *
2045              * @throws IllegalArgumentException if ACC_MODULE flag is set in access flags
2046              * or the class is not in the given package name.
2047              */
newInstance(byte[] bytes, String pkgName)2048             static ClassFile newInstance(byte[] bytes, String pkgName) {
2049                 int magic = readInt(bytes, 0);
2050                 if (magic != 0xCAFEBABE) {
2051                     throw new ClassFormatError("Incompatible magic value: " + magic);
2052                 }
2053                 int minor = readUnsignedShort(bytes, 4);
2054                 int major = readUnsignedShort(bytes, 6);
2055                 if (!VM.isSupportedClassFileVersion(major, minor)) {
2056                     throw new UnsupportedClassVersionError("Unsupported class file version " + major + "." + minor);
2057                 }
2058 
2059                 String name;
2060                 int accessFlags;
2061                 try {
2062                     ClassReader reader = new ClassReader(bytes);
2063                     // ClassReader::getClassName does not check if `this_class` is CONSTANT_Class_info
2064                     // workaround to read `this_class` using readConst and validate the value
2065                     int thisClass = reader.readUnsignedShort(reader.header + 2);
2066                     Object constant = reader.readConst(thisClass, new char[reader.getMaxStringLength()]);
2067                     if (!(constant instanceof Type)) {
2068                         throw new ClassFormatError("this_class item: #" + thisClass + " not a CONSTANT_Class_info");
2069                     }
2070                     Type type = ((Type) constant);
2071                     if (!type.getDescriptor().startsWith("L")) {
2072                         throw new ClassFormatError("this_class item: #" + thisClass + " not a CONSTANT_Class_info");
2073                     }
2074                     name = type.getClassName();
2075                     accessFlags = reader.readUnsignedShort(reader.header);
2076                 } catch (RuntimeException e) {
2077                     // ASM exceptions are poorly specified
2078                     ClassFormatError cfe = new ClassFormatError();
2079                     cfe.initCause(e);
2080                     throw cfe;
2081                 }
2082 
2083                 // must be a class or interface
2084                 if ((accessFlags & Opcodes.ACC_MODULE) != 0) {
2085                     throw newIllegalArgumentException("Not a class or interface: ACC_MODULE flag is set");
2086                 }
2087 
2088                 // check if it's in the named package
2089                 int index = name.lastIndexOf('.');
2090                 String pn = (index == -1) ? "" : name.substring(0, index);
2091                 if (!pn.equals(pkgName)) {
2092                     throw newIllegalArgumentException(name + " not in same package as lookup class");
2093                 }
2094 
2095                 return new ClassFile(name, accessFlags, bytes);
2096             }
2097 
readInt(byte[] bytes, int offset)2098             private static int readInt(byte[] bytes, int offset) {
2099                 if ((offset+4) > bytes.length) {
2100                     throw new ClassFormatError("Invalid ClassFile structure");
2101                 }
2102                 return ((bytes[offset] & 0xFF) << 24)
2103                         | ((bytes[offset + 1] & 0xFF) << 16)
2104                         | ((bytes[offset + 2] & 0xFF) << 8)
2105                         | (bytes[offset + 3] & 0xFF);
2106             }
2107 
readUnsignedShort(byte[] bytes, int offset)2108             private static int readUnsignedShort(byte[] bytes, int offset) {
2109                 if ((offset+2) > bytes.length) {
2110                     throw new ClassFormatError("Invalid ClassFile structure");
2111                 }
2112                 return ((bytes[offset] & 0xFF) << 8) | (bytes[offset + 1] & 0xFF);
2113             }
2114         }
2115 
2116         /*
2117          * Returns a ClassDefiner that creates a {@code Class} object of a normal class
2118          * from the given bytes.
2119          *
2120          * Caller should make a defensive copy of the arguments if needed
2121          * before calling this factory method.
2122          *
2123          * @throws IllegalArgumentException if {@code bytes} is not a class or interface or
2124          * {@bytes} denotes a class in a different package than the lookup class
2125          */
makeClassDefiner(byte[] bytes)2126         private ClassDefiner makeClassDefiner(byte[] bytes) {
2127             ClassFile cf = ClassFile.newInstance(bytes, lookupClass().getPackageName());
2128             return new ClassDefiner(this, cf, STRONG_LOADER_LINK);
2129         }
2130 
2131         /**
2132          * Returns a ClassDefiner that creates a {@code Class} object of a hidden class
2133          * from the given bytes.  The name must be in the same package as the lookup class.
2134          *
2135          * Caller should make a defensive copy of the arguments if needed
2136          * before calling this factory method.
2137          *
2138          * @param bytes   class bytes
2139          * @return ClassDefiner that defines a hidden class of the given bytes.
2140          *
2141          * @throws IllegalArgumentException if {@code bytes} is not a class or interface or
2142          * {@bytes} denotes a class in a different package than the lookup class
2143          */
makeHiddenClassDefiner(byte[] bytes)2144         ClassDefiner makeHiddenClassDefiner(byte[] bytes) {
2145             ClassFile cf = ClassFile.newInstance(bytes, lookupClass().getPackageName());
2146             return makeHiddenClassDefiner(cf, Set.of(), false);
2147         }
2148 
2149         /**
2150          * Returns a ClassDefiner that creates a {@code Class} object of a hidden class
2151          * from the given bytes and options.
2152          * The name must be in the same package as the lookup class.
2153          *
2154          * Caller should make a defensive copy of the arguments if needed
2155          * before calling this factory method.
2156          *
2157          * @param bytes   class bytes
2158          * @param options class options
2159          * @param accessVmAnnotations true to give the hidden class access to VM annotations
2160          * @return ClassDefiner that defines a hidden class of the given bytes and options
2161          *
2162          * @throws IllegalArgumentException if {@code bytes} is not a class or interface or
2163          * {@bytes} denotes a class in a different package than the lookup class
2164          */
makeHiddenClassDefiner(byte[] bytes, Set<ClassOption> options, boolean accessVmAnnotations)2165         ClassDefiner makeHiddenClassDefiner(byte[] bytes,
2166                                             Set<ClassOption> options,
2167                                             boolean accessVmAnnotations) {
2168             ClassFile cf = ClassFile.newInstance(bytes, lookupClass().getPackageName());
2169             return makeHiddenClassDefiner(cf, options, accessVmAnnotations);
2170         }
2171 
2172         /**
2173          * Returns a ClassDefiner that creates a {@code Class} object of a hidden class
2174          * from the given bytes.  No package name check on the given name.
2175          *
2176          * @param name    fully-qualified name that specifies the prefix of the hidden class
2177          * @param bytes   class bytes
2178          * @return ClassDefiner that defines a hidden class of the given bytes.
2179          */
makeHiddenClassDefiner(String name, byte[] bytes)2180         ClassDefiner makeHiddenClassDefiner(String name, byte[] bytes) {
2181             // skip name and access flags validation
2182             return makeHiddenClassDefiner(ClassFile.newInstanceNoCheck(name, bytes), Set.of(), false);
2183         }
2184 
2185         /**
2186          * Returns a ClassDefiner that creates a {@code Class} object of a hidden class
2187          * from the given class file and options.
2188          *
2189          * @param cf ClassFile
2190          * @param options class options
2191          * @param accessVmAnnotations true to give the hidden class access to VM annotations
2192          */
makeHiddenClassDefiner(ClassFile cf, Set<ClassOption> options, boolean accessVmAnnotations)2193         private ClassDefiner makeHiddenClassDefiner(ClassFile cf,
2194                                                     Set<ClassOption> options,
2195                                                     boolean accessVmAnnotations) {
2196             int flags = HIDDEN_CLASS | ClassOption.optionsToFlag(options);
2197             if (accessVmAnnotations | VM.isSystemDomainLoader(lookupClass.getClassLoader())) {
2198                 // jdk.internal.vm.annotations are permitted for classes
2199                 // defined to boot loader and platform loader
2200                 flags |= ACCESS_VM_ANNOTATIONS;
2201             }
2202 
2203             return new ClassDefiner(this, cf, flags);
2204         }
2205 
2206         static class ClassDefiner {
2207             private final Lookup lookup;
2208             private final String name;
2209             private final byte[] bytes;
2210             private final int classFlags;
2211 
ClassDefiner(Lookup lookup, ClassFile cf, int flags)2212             private ClassDefiner(Lookup lookup, ClassFile cf, int flags) {
2213                 assert ((flags & HIDDEN_CLASS) != 0 || (flags & STRONG_LOADER_LINK) == STRONG_LOADER_LINK);
2214                 this.lookup = lookup;
2215                 this.bytes = cf.bytes;
2216                 this.name = cf.name;
2217                 this.classFlags = flags;
2218             }
2219 
className()2220             String className() {
2221                 return name;
2222             }
2223 
defineClass(boolean initialize)2224             Class<?> defineClass(boolean initialize) {
2225                 return defineClass(initialize, null);
2226             }
2227 
defineClassAsLookup(boolean initialize)2228             Lookup defineClassAsLookup(boolean initialize) {
2229                 Class<?> c = defineClass(initialize, null);
2230                 return new Lookup(c, null, FULL_POWER_MODES);
2231             }
2232 
2233             /**
2234              * Defines the class of the given bytes and the given classData.
2235              * If {@code initialize} parameter is true, then the class will be initialized.
2236              *
2237              * @param initialize true if the class to be initialized
2238              * @param classData classData or null
2239              * @return the class
2240              *
2241              * @throws LinkageError linkage error
2242              */
defineClass(boolean initialize, Object classData)2243             Class<?> defineClass(boolean initialize, Object classData) {
2244                 Class<?> lookupClass = lookup.lookupClass();
2245                 ClassLoader loader = lookupClass.getClassLoader();
2246                 ProtectionDomain pd = (loader != null) ? lookup.lookupClassProtectionDomain() : null;
2247                 Class<?> c = SharedSecrets.getJavaLangAccess()
2248                         .defineClass(loader, lookupClass, name, bytes, pd, initialize, classFlags, classData);
2249                 assert !isNestmate() || c.getNestHost() == lookupClass.getNestHost();
2250                 return c;
2251             }
2252 
defineClassAsLookup(boolean initialize, Object classData)2253             Lookup defineClassAsLookup(boolean initialize, Object classData) {
2254                 // initialize must be true if classData is non-null
2255                 assert classData == null || initialize == true;
2256                 Class<?> c = defineClass(initialize, classData);
2257                 return new Lookup(c, null, FULL_POWER_MODES);
2258             }
2259 
isNestmate()2260             private boolean isNestmate() {
2261                 return (classFlags & NESTMATE_CLASS) != 0;
2262             }
2263         }
2264 
lookupClassProtectionDomain()2265         private ProtectionDomain lookupClassProtectionDomain() {
2266             ProtectionDomain pd = cachedProtectionDomain;
2267             if (pd == null) {
2268                 cachedProtectionDomain = pd = SharedSecrets.getJavaLangAccess().protectionDomain(lookupClass);
2269             }
2270             return pd;
2271         }
2272 
2273         // cached protection domain
2274         private volatile ProtectionDomain cachedProtectionDomain;
2275 
2276         // Make sure outer class is initialized first.
IMPL_NAMES.getClass()2277         static { IMPL_NAMES.getClass(); }
2278 
2279         /** Package-private version of lookup which is trusted. */
2280         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, null, TRUSTED);
2281 
2282         /** Version of lookup which is trusted minimally.
2283          *  It can only be used to create method handles to publicly accessible
2284          *  members in packages that are exported unconditionally.
2285          */
2286         static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, null, UNCONDITIONAL);
2287 
checkUnprivilegedlookupClass(Class<?> lookupClass)2288         private static void checkUnprivilegedlookupClass(Class<?> lookupClass) {
2289             String name = lookupClass.getName();
2290             if (name.startsWith("java.lang.invoke."))
2291                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
2292         }
2293 
2294         /**
2295          * Displays the name of the class from which lookups are to be made,
2296          * followed by "/" and the name of the {@linkplain #previousLookupClass()
2297          * previous lookup class} if present.
2298          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
2299          * If there are restrictions on the access permitted to this lookup,
2300          * this is indicated by adding a suffix to the class name, consisting
2301          * of a slash and a keyword.  The keyword represents the strongest
2302          * allowed access, and is chosen as follows:
2303          * <ul>
2304          * <li>If no access is allowed, the suffix is "/noaccess".
2305          * <li>If only unconditional access is allowed, the suffix is "/publicLookup".
2306          * <li>If only public access to types in exported packages is allowed, the suffix is "/public".
2307          * <li>If only public and module access are allowed, the suffix is "/module".
2308          * <li>If public and package access are allowed, the suffix is "/package".
2309          * <li>If public, package, and private access are allowed, the suffix is "/private".
2310          * </ul>
2311          * If none of the above cases apply, it is the case that full access
2312          * (public, module, package, private, and protected) is allowed.
2313          * In this case, no suffix is added.
2314          * This is true only of an object obtained originally from
2315          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
2316          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
2317          * always have restricted access, and will display a suffix.
2318          * <p>
2319          * (It may seem strange that protected access should be
2320          * stronger than private access.  Viewed independently from
2321          * package access, protected access is the first to be lost,
2322          * because it requires a direct subclass relationship between
2323          * caller and callee.)
2324          * @see #in
2325          *
2326          * @revised 9
2327          * @spec JPMS
2328          */
2329         @Override
toString()2330         public String toString() {
2331             String cname = lookupClass.getName();
2332             if (prevLookupClass != null)
2333                 cname += "/" + prevLookupClass.getName();
2334             switch (allowedModes) {
2335             case 0:  // no privileges
2336                 return cname + "/noaccess";
2337             case UNCONDITIONAL:
2338                 return cname + "/publicLookup";
2339             case PUBLIC:
2340                 return cname + "/public";
2341             case PUBLIC|MODULE:
2342                 return cname + "/module";
2343             case PUBLIC|PACKAGE:
2344             case PUBLIC|MODULE|PACKAGE:
2345                 return cname + "/package";
2346             case FULL_POWER_MODES & (~PROTECTED):
2347             case FULL_POWER_MODES & ~(PROTECTED|MODULE):
2348                 return cname + "/private";
2349             case FULL_POWER_MODES:
2350             case FULL_POWER_MODES & (~MODULE):
2351                 return cname;
2352             case TRUSTED:
2353                 return "/trusted";  // internal only; not exported
2354             default:  // Should not happen, but it's a bitfield...
2355                 cname = cname + "/" + Integer.toHexString(allowedModes);
2356                 assert(false) : cname;
2357                 return cname;
2358             }
2359         }
2360 
2361         /**
2362          * Produces a method handle for a static method.
2363          * The type of the method handle will be that of the method.
2364          * (Since static methods do not take receivers, there is no
2365          * additional receiver argument inserted into the method handle type,
2366          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
2367          * The method and all its argument types must be accessible to the lookup object.
2368          * <p>
2369          * The returned method handle will have
2370          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2371          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2372          * <p>
2373          * If the returned method handle is invoked, the method's class will
2374          * be initialized, if it has not already been initialized.
2375          * <p><b>Example:</b>
2376          * <blockquote><pre>{@code
2377 import static java.lang.invoke.MethodHandles.*;
2378 import static java.lang.invoke.MethodType.*;
2379 ...
2380 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
2381   "asList", methodType(List.class, Object[].class));
2382 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
2383          * }</pre></blockquote>
2384          * @param refc the class from which the method is accessed
2385          * @param name the name of the method
2386          * @param type the type of the method
2387          * @return the desired method handle
2388          * @throws NoSuchMethodException if the method does not exist
2389          * @throws IllegalAccessException if access checking fails,
2390          *                                or if the method is not {@code static},
2391          *                                or if the method's variable arity modifier bit
2392          *                                is set and {@code asVarargsCollector} fails
2393          * @throws    SecurityException if a security manager is present and it
2394          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2395          * @throws NullPointerException if any argument is null
2396          */
findStatic(Class<?> refc, String name, MethodType type)2397         public MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2398             MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
2399             return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerLookup(method));
2400         }
2401 
2402         /**
2403          * Produces a method handle for a virtual method.
2404          * The type of the method handle will be that of the method,
2405          * with the receiver type (usually {@code refc}) prepended.
2406          * The method and all its argument types must be accessible to the lookup object.
2407          * <p>
2408          * When called, the handle will treat the first argument as a receiver
2409          * and, for non-private methods, dispatch on the receiver's type to determine which method
2410          * implementation to enter.
2411          * For private methods the named method in {@code refc} will be invoked on the receiver.
2412          * (The dispatching action is identical with that performed by an
2413          * {@code invokevirtual} or {@code invokeinterface} instruction.)
2414          * <p>
2415          * The first argument will be of type {@code refc} if the lookup
2416          * class has full privileges to access the member.  Otherwise
2417          * the member must be {@code protected} and the first argument
2418          * will be restricted in type to the lookup class.
2419          * <p>
2420          * The returned method handle will have
2421          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2422          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2423          * <p>
2424          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
2425          * instructions and method handles produced by {@code findVirtual},
2426          * if the class is {@code MethodHandle} and the name string is
2427          * {@code invokeExact} or {@code invoke}, the resulting
2428          * method handle is equivalent to one produced by
2429          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
2430          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
2431          * with the same {@code type} argument.
2432          * <p>
2433          * If the class is {@code VarHandle} and the name string corresponds to
2434          * the name of a signature-polymorphic access mode method, the resulting
2435          * method handle is equivalent to one produced by
2436          * {@link java.lang.invoke.MethodHandles#varHandleInvoker} with
2437          * the access mode corresponding to the name string and with the same
2438          * {@code type} arguments.
2439          * <p>
2440          * <b>Example:</b>
2441          * <blockquote><pre>{@code
2442 import static java.lang.invoke.MethodHandles.*;
2443 import static java.lang.invoke.MethodType.*;
2444 ...
2445 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
2446   "concat", methodType(String.class, String.class));
2447 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
2448   "hashCode", methodType(int.class));
2449 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
2450   "hashCode", methodType(int.class));
2451 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
2452 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
2453 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
2454 // interface method:
2455 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
2456   "subSequence", methodType(CharSequence.class, int.class, int.class));
2457 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
2458 // constructor "internal method" must be accessed differently:
2459 MethodType MT_newString = methodType(void.class); //()V for new String()
2460 try { assertEquals("impossible", lookup()
2461         .findVirtual(String.class, "<init>", MT_newString));
2462  } catch (NoSuchMethodException ex) { } // OK
2463 MethodHandle MH_newString = publicLookup()
2464   .findConstructor(String.class, MT_newString);
2465 assertEquals("", (String) MH_newString.invokeExact());
2466          * }</pre></blockquote>
2467          *
2468          * @param refc the class or interface from which the method is accessed
2469          * @param name the name of the method
2470          * @param type the type of the method, with the receiver argument omitted
2471          * @return the desired method handle
2472          * @throws NoSuchMethodException if the method does not exist
2473          * @throws IllegalAccessException if access checking fails,
2474          *                                or if the method is {@code static},
2475          *                                or if the method's variable arity modifier bit
2476          *                                is set and {@code asVarargsCollector} fails
2477          * @throws    SecurityException if a security manager is present and it
2478          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2479          * @throws NullPointerException if any argument is null
2480          */
findVirtual(Class<?> refc, String name, MethodType type)2481         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2482             if (refc == MethodHandle.class) {
2483                 MethodHandle mh = findVirtualForMH(name, type);
2484                 if (mh != null)  return mh;
2485             } else if (refc == VarHandle.class) {
2486                 MethodHandle mh = findVirtualForVH(name, type);
2487                 if (mh != null)  return mh;
2488             }
2489             byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
2490             MemberName method = resolveOrFail(refKind, refc, name, type);
2491             return getDirectMethod(refKind, refc, method, findBoundCallerLookup(method));
2492         }
findVirtualForMH(String name, MethodType type)2493         private MethodHandle findVirtualForMH(String name, MethodType type) {
2494             // these names require special lookups because of the implicit MethodType argument
2495             if ("invoke".equals(name))
2496                 return invoker(type);
2497             if ("invokeExact".equals(name))
2498                 return exactInvoker(type);
2499             assert(!MemberName.isMethodHandleInvokeName(name));
2500             return null;
2501         }
findVirtualForVH(String name, MethodType type)2502         private MethodHandle findVirtualForVH(String name, MethodType type) {
2503             try {
2504                 return varHandleInvoker(VarHandle.AccessMode.valueFromMethodName(name), type);
2505             } catch (IllegalArgumentException e) {
2506                 return null;
2507             }
2508         }
2509 
2510         /**
2511          * Produces a method handle which creates an object and initializes it, using
2512          * the constructor of the specified type.
2513          * The parameter types of the method handle will be those of the constructor,
2514          * while the return type will be a reference to the constructor's class.
2515          * The constructor and all its argument types must be accessible to the lookup object.
2516          * <p>
2517          * The requested type must have a return type of {@code void}.
2518          * (This is consistent with the JVM's treatment of constructor type descriptors.)
2519          * <p>
2520          * The returned method handle will have
2521          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2522          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
2523          * <p>
2524          * If the returned method handle is invoked, the constructor's class will
2525          * be initialized, if it has not already been initialized.
2526          * <p><b>Example:</b>
2527          * <blockquote><pre>{@code
2528 import static java.lang.invoke.MethodHandles.*;
2529 import static java.lang.invoke.MethodType.*;
2530 ...
2531 MethodHandle MH_newArrayList = publicLookup().findConstructor(
2532   ArrayList.class, methodType(void.class, Collection.class));
2533 Collection orig = Arrays.asList("x", "y");
2534 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
2535 assert(orig != copy);
2536 assertEquals(orig, copy);
2537 // a variable-arity constructor:
2538 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
2539   ProcessBuilder.class, methodType(void.class, String[].class));
2540 ProcessBuilder pb = (ProcessBuilder)
2541   MH_newProcessBuilder.invoke("x", "y", "z");
2542 assertEquals("[x, y, z]", pb.command().toString());
2543          * }</pre></blockquote>
2544          * @param refc the class or interface from which the method is accessed
2545          * @param type the type of the method, with the receiver argument omitted, and a void return type
2546          * @return the desired method handle
2547          * @throws NoSuchMethodException if the constructor does not exist
2548          * @throws IllegalAccessException if access checking fails
2549          *                                or if the method's variable arity modifier bit
2550          *                                is set and {@code asVarargsCollector} fails
2551          * @throws    SecurityException if a security manager is present and it
2552          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2553          * @throws NullPointerException if any argument is null
2554          */
findConstructor(Class<?> refc, MethodType type)2555         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2556             if (refc.isArray()) {
2557                 throw new NoSuchMethodException("no constructor for array class: " + refc.getName());
2558             }
2559             String name = "<init>";
2560             MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
2561             return getDirectConstructor(refc, ctor);
2562         }
2563 
2564         /**
2565          * Looks up a class by name from the lookup context defined by this {@code Lookup} object,
2566          * <a href="MethodHandles.Lookup.html#equiv">as if resolved</a> by an {@code ldc} instruction.
2567          * Such a resolution, as specified in JVMS 5.4.3.1 section, attempts to locate and load the class,
2568          * and then determines whether the class is accessible to this lookup object.
2569          * <p>
2570          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class},
2571          * its class loader, and the {@linkplain #lookupModes() lookup modes}.
2572          *
2573          * @param targetName the fully qualified name of the class to be looked up.
2574          * @return the requested class.
2575          * @throws SecurityException if a security manager is present and it
2576          *                           <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2577          * @throws LinkageError if the linkage fails
2578          * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader.
2579          * @throws IllegalAccessException if the class is not accessible, using the allowed access
2580          * modes.
2581          * @since 9
2582          * @jvms 5.4.3.1 Class and Interface Resolution
2583          */
findClass(String targetName)2584         public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException {
2585             Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader());
2586             return accessClass(targetClass);
2587         }
2588 
2589         /**
2590          * Ensures that {@code targetClass} has been initialized. The class
2591          * to be initialized must be {@linkplain #accessClass accessible}
2592          * to this {@code Lookup} object.  This method causes {@code targetClass}
2593          * to be initialized if it has not been already initialized,
2594          * as specified in JVMS {@jvms 5.5}.
2595          *
2596          * @param targetClass the class to be initialized
2597          * @return {@code targetClass} that has been initialized
2598          *
2599          * @throws  IllegalArgumentException if {@code targetClass} is a primitive type or {@code void}
2600          *          or array class
2601          * @throws  IllegalAccessException if {@code targetClass} is not
2602          *          {@linkplain #accessClass accessible} to this lookup
2603          * @throws  ExceptionInInitializerError if the class initialization provoked
2604          *          by this method fails
2605          * @throws  SecurityException if a security manager is present and it
2606          *          <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2607          * @since 15
2608          * @jvms 5.5 Initialization
2609          */
ensureInitialized(Class<?> targetClass)2610         public Class<?> ensureInitialized(Class<?> targetClass) throws IllegalAccessException {
2611             if (targetClass.isPrimitive())
2612                 throw new IllegalArgumentException(targetClass + " is a primitive class");
2613             if (targetClass.isArray())
2614                 throw new IllegalArgumentException(targetClass + " is an array class");
2615 
2616             if (!VerifyAccess.isClassAccessible(targetClass, lookupClass, prevLookupClass, allowedModes)) {
2617                 throw new MemberName(targetClass).makeAccessException("access violation", this);
2618             }
2619             checkSecurityManager(targetClass, null);
2620 
2621             // ensure class initialization
2622             Unsafe.getUnsafe().ensureClassInitialized(targetClass);
2623             return targetClass;
2624         }
2625 
2626         /**
2627          * Determines if a class can be accessed from the lookup context defined by
2628          * this {@code Lookup} object. The static initializer of the class is not run.
2629          * <p>
2630          * If the {@code targetClass} is in the same module as the lookup class,
2631          * the lookup class is {@code LC} in module {@code M1} and
2632          * the previous lookup class is in module {@code M0} or
2633          * {@code null} if not present,
2634          * {@code targetClass} is accessible if and only if one of the following is true:
2635          * <ul>
2636          * <li>If this lookup has {@link #PRIVATE} access, {@code targetClass} is
2637          *     {@code LC} or other class in the same nest of {@code LC}.</li>
2638          * <li>If this lookup has {@link #PACKAGE} access, {@code targetClass} is
2639          *     in the same runtime package of {@code LC}.</li>
2640          * <li>If this lookup has {@link #MODULE} access, {@code targetClass} is
2641          *     a public type in {@code M1}.</li>
2642          * <li>If this lookup has {@link #PUBLIC} access, {@code targetClass} is
2643          *     a public type in a package exported by {@code M1} to at least  {@code M0}
2644          *     if the previous lookup class is present; otherwise, {@code targetClass}
2645          *     is a public type in a package exported by {@code M1} unconditionally.</li>
2646          * </ul>
2647          *
2648          * <p>
2649          * Otherwise, if this lookup has {@link #UNCONDITIONAL} access, this lookup
2650          * can access public types in all modules when the type is in a package
2651          * that is exported unconditionally.
2652          * <p>
2653          * Otherwise, the target class is in a different module from {@code lookupClass},
2654          * and if this lookup does not have {@code PUBLIC} access, {@code lookupClass}
2655          * is inaccessible.
2656          * <p>
2657          * Otherwise, if this lookup has no {@linkplain #previousLookupClass() previous lookup class},
2658          * {@code M1} is the module containing {@code lookupClass} and
2659          * {@code M2} is the module containing {@code targetClass},
2660          * then {@code targetClass} is accessible if and only if
2661          * <ul>
2662          * <li>{@code M1} reads {@code M2}, and
2663          * <li>{@code targetClass} is public and in a package exported by
2664          *     {@code M2} at least to {@code M1}.
2665          * </ul>
2666          * <p>
2667          * Otherwise, if this lookup has a {@linkplain #previousLookupClass() previous lookup class},
2668          * {@code M1} and {@code M2} are as before, and {@code M0} is the module
2669          * containing the previous lookup class, then {@code targetClass} is accessible
2670          * if and only if one of the following is true:
2671          * <ul>
2672          * <li>{@code targetClass} is in {@code M0} and {@code M1}
2673          *     {@linkplain Module#reads reads} {@code M0} and the type is
2674          *     in a package that is exported to at least {@code M1}.
2675          * <li>{@code targetClass} is in {@code M1} and {@code M0}
2676          *     {@linkplain Module#reads reads} {@code M1} and the type is
2677          *     in a package that is exported to at least {@code M0}.
2678          * <li>{@code targetClass} is in a third module {@code M2} and both {@code M0}
2679          *     and {@code M1} reads {@code M2} and the type is in a package
2680          *     that is exported to at least both {@code M0} and {@code M2}.
2681          * </ul>
2682          * <p>
2683          * Otherwise, {@code targetClass} is not accessible.
2684          *
2685          * @param targetClass the class to be access-checked
2686          * @return the class that has been access-checked
2687          * @throws IllegalAccessException if the class is not accessible from the lookup class
2688          * and previous lookup class, if present, using the allowed access modes.
2689          * @throws    SecurityException if a security manager is present and it
2690          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2691          * @since 9
2692          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
2693          */
accessClass(Class<?> targetClass)2694         public Class<?> accessClass(Class<?> targetClass) throws IllegalAccessException {
2695             if (!VerifyAccess.isClassAccessible(targetClass, lookupClass, prevLookupClass, allowedModes)) {
2696                 throw new MemberName(targetClass).makeAccessException("access violation", this);
2697             }
2698             checkSecurityManager(targetClass, null);
2699             return targetClass;
2700         }
2701 
2702         /**
2703          * Produces an early-bound method handle for a virtual method.
2704          * It will bypass checks for overriding methods on the receiver,
2705          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
2706          * instruction from within the explicitly specified {@code specialCaller}.
2707          * The type of the method handle will be that of the method,
2708          * with a suitably restricted receiver type prepended.
2709          * (The receiver type will be {@code specialCaller} or a subtype.)
2710          * The method and all its argument types must be accessible
2711          * to the lookup object.
2712          * <p>
2713          * Before method resolution,
2714          * if the explicitly specified caller class is not identical with the
2715          * lookup class, or if this lookup object does not have
2716          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
2717          * privileges, the access fails.
2718          * <p>
2719          * The returned method handle will have
2720          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2721          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2722          * <p style="font-size:smaller;">
2723          * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
2724          * even though the {@code invokespecial} instruction can refer to them
2725          * in special circumstances.  Use {@link #findConstructor findConstructor}
2726          * to access instance initialization methods in a safe manner.)</em>
2727          * <p><b>Example:</b>
2728          * <blockquote><pre>{@code
2729 import static java.lang.invoke.MethodHandles.*;
2730 import static java.lang.invoke.MethodType.*;
2731 ...
2732 static class Listie extends ArrayList {
2733   public String toString() { return "[wee Listie]"; }
2734   static Lookup lookup() { return MethodHandles.lookup(); }
2735 }
2736 ...
2737 // no access to constructor via invokeSpecial:
2738 MethodHandle MH_newListie = Listie.lookup()
2739   .findConstructor(Listie.class, methodType(void.class));
2740 Listie l = (Listie) MH_newListie.invokeExact();
2741 try { assertEquals("impossible", Listie.lookup().findSpecial(
2742         Listie.class, "<init>", methodType(void.class), Listie.class));
2743  } catch (NoSuchMethodException ex) { } // OK
2744 // access to super and self methods via invokeSpecial:
2745 MethodHandle MH_super = Listie.lookup().findSpecial(
2746   ArrayList.class, "toString" , methodType(String.class), Listie.class);
2747 MethodHandle MH_this = Listie.lookup().findSpecial(
2748   Listie.class, "toString" , methodType(String.class), Listie.class);
2749 MethodHandle MH_duper = Listie.lookup().findSpecial(
2750   Object.class, "toString" , methodType(String.class), Listie.class);
2751 assertEquals("[]", (String) MH_super.invokeExact(l));
2752 assertEquals(""+l, (String) MH_this.invokeExact(l));
2753 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
2754 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
2755         String.class, "toString", methodType(String.class), Listie.class));
2756  } catch (IllegalAccessException ex) { } // OK
2757 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
2758 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
2759          * }</pre></blockquote>
2760          *
2761          * @param refc the class or interface from which the method is accessed
2762          * @param name the name of the method (which must not be "&lt;init&gt;")
2763          * @param type the type of the method, with the receiver argument omitted
2764          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
2765          * @return the desired method handle
2766          * @throws NoSuchMethodException if the method does not exist
2767          * @throws IllegalAccessException if access checking fails,
2768          *                                or if the method is {@code static},
2769          *                                or if the method's variable arity modifier bit
2770          *                                is set and {@code asVarargsCollector} fails
2771          * @throws    SecurityException if a security manager is present and it
2772          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2773          * @throws NullPointerException if any argument is null
2774          */
findSpecial(Class<?> refc, String name, MethodType type, Class<?> specialCaller)2775         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
2776                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
2777             checkSpecialCaller(specialCaller, refc);
2778             Lookup specialLookup = this.in(specialCaller);
2779             MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
2780             return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerLookup(method));
2781         }
2782 
2783         /**
2784          * Produces a method handle giving read access to a non-static field.
2785          * The type of the method handle will have a return type of the field's
2786          * value type.
2787          * The method handle's single argument will be the instance containing
2788          * the field.
2789          * Access checking is performed immediately on behalf of the lookup class.
2790          * @param refc the class or interface from which the method is accessed
2791          * @param name the field's name
2792          * @param type the field's type
2793          * @return a method handle which can load values from the field
2794          * @throws NoSuchFieldException if the field does not exist
2795          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
2796          * @throws    SecurityException if a security manager is present and it
2797          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2798          * @throws NullPointerException if any argument is null
2799          * @see #findVarHandle(Class, String, Class)
2800          */
findGetter(Class<?> refc, String name, Class<?> type)2801         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2802             MemberName field = resolveOrFail(REF_getField, refc, name, type);
2803             return getDirectField(REF_getField, refc, field);
2804         }
2805 
2806         /**
2807          * Produces a method handle giving write access to a non-static field.
2808          * The type of the method handle will have a void return type.
2809          * The method handle will take two arguments, the instance containing
2810          * the field, and the value to be stored.
2811          * The second argument will be of the field's value type.
2812          * Access checking is performed immediately on behalf of the lookup class.
2813          * @param refc the class or interface from which the method is accessed
2814          * @param name the field's name
2815          * @param type the field's type
2816          * @return a method handle which can store values into the field
2817          * @throws NoSuchFieldException if the field does not exist
2818          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
2819          *                                or {@code final}
2820          * @throws    SecurityException if a security manager is present and it
2821          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2822          * @throws NullPointerException if any argument is null
2823          * @see #findVarHandle(Class, String, Class)
2824          */
findSetter(Class<?> refc, String name, Class<?> type)2825         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2826             MemberName field = resolveOrFail(REF_putField, refc, name, type);
2827             return getDirectField(REF_putField, refc, field);
2828         }
2829 
2830         /**
2831          * Produces a VarHandle giving access to a non-static field {@code name}
2832          * of type {@code type} declared in a class of type {@code recv}.
2833          * The VarHandle's variable type is {@code type} and it has one
2834          * coordinate type, {@code recv}.
2835          * <p>
2836          * Access checking is performed immediately on behalf of the lookup
2837          * class.
2838          * <p>
2839          * Certain access modes of the returned VarHandle are unsupported under
2840          * the following conditions:
2841          * <ul>
2842          * <li>if the field is declared {@code final}, then the write, atomic
2843          *     update, numeric atomic update, and bitwise atomic update access
2844          *     modes are unsupported.
2845          * <li>if the field type is anything other than {@code byte},
2846          *     {@code short}, {@code char}, {@code int}, {@code long},
2847          *     {@code float}, or {@code double} then numeric atomic update
2848          *     access modes are unsupported.
2849          * <li>if the field type is anything other than {@code boolean},
2850          *     {@code byte}, {@code short}, {@code char}, {@code int} or
2851          *     {@code long} then bitwise atomic update access modes are
2852          *     unsupported.
2853          * </ul>
2854          * <p>
2855          * If the field is declared {@code volatile} then the returned VarHandle
2856          * will override access to the field (effectively ignore the
2857          * {@code volatile} declaration) in accordance to its specified
2858          * access modes.
2859          * <p>
2860          * If the field type is {@code float} or {@code double} then numeric
2861          * and atomic update access modes compare values using their bitwise
2862          * representation (see {@link Float#floatToRawIntBits} and
2863          * {@link Double#doubleToRawLongBits}, respectively).
2864          * @apiNote
2865          * Bitwise comparison of {@code float} values or {@code double} values,
2866          * as performed by the numeric and atomic update access modes, differ
2867          * from the primitive {@code ==} operator and the {@link Float#equals}
2868          * and {@link Double#equals} methods, specifically with respect to
2869          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2870          * Care should be taken when performing a compare and set or a compare
2871          * and exchange operation with such values since the operation may
2872          * unexpectedly fail.
2873          * There are many possible NaN values that are considered to be
2874          * {@code NaN} in Java, although no IEEE 754 floating-point operation
2875          * provided by Java can distinguish between them.  Operation failure can
2876          * occur if the expected or witness value is a NaN value and it is
2877          * transformed (perhaps in a platform specific manner) into another NaN
2878          * value, and thus has a different bitwise representation (see
2879          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2880          * details).
2881          * The values {@code -0.0} and {@code +0.0} have different bitwise
2882          * representations but are considered equal when using the primitive
2883          * {@code ==} operator.  Operation failure can occur if, for example, a
2884          * numeric algorithm computes an expected value to be say {@code -0.0}
2885          * and previously computed the witness value to be say {@code +0.0}.
2886          * @param recv the receiver class, of type {@code R}, that declares the
2887          * non-static field
2888          * @param name the field's name
2889          * @param type the field's type, of type {@code T}
2890          * @return a VarHandle giving access to non-static fields.
2891          * @throws NoSuchFieldException if the field does not exist
2892          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
2893          * @throws    SecurityException if a security manager is present and it
2894          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2895          * @throws NullPointerException if any argument is null
2896          * @since 9
2897          */
findVarHandle(Class<?> recv, String name, Class<?> type)2898         public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2899             MemberName getField = resolveOrFail(REF_getField, recv, name, type);
2900             MemberName putField = resolveOrFail(REF_putField, recv, name, type);
2901             return getFieldVarHandle(REF_getField, REF_putField, recv, getField, putField);
2902         }
2903 
2904         /**
2905          * Produces a method handle giving read access to a static field.
2906          * The type of the method handle will have a return type of the field's
2907          * value type.
2908          * The method handle will take no arguments.
2909          * Access checking is performed immediately on behalf of the lookup class.
2910          * <p>
2911          * If the returned method handle is invoked, the field's class will
2912          * be initialized, if it has not already been initialized.
2913          * @param refc the class or interface from which the method is accessed
2914          * @param name the field's name
2915          * @param type the field's type
2916          * @return a method handle which can load values from the field
2917          * @throws NoSuchFieldException if the field does not exist
2918          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
2919          * @throws    SecurityException if a security manager is present and it
2920          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2921          * @throws NullPointerException if any argument is null
2922          */
findStaticGetter(Class<?> refc, String name, Class<?> type)2923         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2924             MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
2925             return getDirectField(REF_getStatic, refc, field);
2926         }
2927 
2928         /**
2929          * Produces a method handle giving write access to a static field.
2930          * The type of the method handle will have a void return type.
2931          * The method handle will take a single
2932          * argument, of the field's value type, the value to be stored.
2933          * Access checking is performed immediately on behalf of the lookup class.
2934          * <p>
2935          * If the returned method handle is invoked, the field's class will
2936          * be initialized, if it has not already been initialized.
2937          * @param refc the class or interface from which the method is accessed
2938          * @param name the field's name
2939          * @param type the field's type
2940          * @return a method handle which can store values into the field
2941          * @throws NoSuchFieldException if the field does not exist
2942          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
2943          *                                or is {@code final}
2944          * @throws    SecurityException if a security manager is present and it
2945          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2946          * @throws NullPointerException if any argument is null
2947          */
findStaticSetter(Class<?> refc, String name, Class<?> type)2948         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2949             MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
2950             return getDirectField(REF_putStatic, refc, field);
2951         }
2952 
2953         /**
2954          * Produces a VarHandle giving access to a static field {@code name} of
2955          * type {@code type} declared in a class of type {@code decl}.
2956          * The VarHandle's variable type is {@code type} and it has no
2957          * coordinate types.
2958          * <p>
2959          * Access checking is performed immediately on behalf of the lookup
2960          * class.
2961          * <p>
2962          * If the returned VarHandle is operated on, the declaring class will be
2963          * initialized, if it has not already been initialized.
2964          * <p>
2965          * Certain access modes of the returned VarHandle are unsupported under
2966          * the following conditions:
2967          * <ul>
2968          * <li>if the field is declared {@code final}, then the write, atomic
2969          *     update, numeric atomic update, and bitwise atomic update access
2970          *     modes are unsupported.
2971          * <li>if the field type is anything other than {@code byte},
2972          *     {@code short}, {@code char}, {@code int}, {@code long},
2973          *     {@code float}, or {@code double}, then numeric atomic update
2974          *     access modes are unsupported.
2975          * <li>if the field type is anything other than {@code boolean},
2976          *     {@code byte}, {@code short}, {@code char}, {@code int} or
2977          *     {@code long} then bitwise atomic update access modes are
2978          *     unsupported.
2979          * </ul>
2980          * <p>
2981          * If the field is declared {@code volatile} then the returned VarHandle
2982          * will override access to the field (effectively ignore the
2983          * {@code volatile} declaration) in accordance to its specified
2984          * access modes.
2985          * <p>
2986          * If the field type is {@code float} or {@code double} then numeric
2987          * and atomic update access modes compare values using their bitwise
2988          * representation (see {@link Float#floatToRawIntBits} and
2989          * {@link Double#doubleToRawLongBits}, respectively).
2990          * @apiNote
2991          * Bitwise comparison of {@code float} values or {@code double} values,
2992          * as performed by the numeric and atomic update access modes, differ
2993          * from the primitive {@code ==} operator and the {@link Float#equals}
2994          * and {@link Double#equals} methods, specifically with respect to
2995          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2996          * Care should be taken when performing a compare and set or a compare
2997          * and exchange operation with such values since the operation may
2998          * unexpectedly fail.
2999          * There are many possible NaN values that are considered to be
3000          * {@code NaN} in Java, although no IEEE 754 floating-point operation
3001          * provided by Java can distinguish between them.  Operation failure can
3002          * occur if the expected or witness value is a NaN value and it is
3003          * transformed (perhaps in a platform specific manner) into another NaN
3004          * value, and thus has a different bitwise representation (see
3005          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
3006          * details).
3007          * The values {@code -0.0} and {@code +0.0} have different bitwise
3008          * representations but are considered equal when using the primitive
3009          * {@code ==} operator.  Operation failure can occur if, for example, a
3010          * numeric algorithm computes an expected value to be say {@code -0.0}
3011          * and previously computed the witness value to be say {@code +0.0}.
3012          * @param decl the class that declares the static field
3013          * @param name the field's name
3014          * @param type the field's type, of type {@code T}
3015          * @return a VarHandle giving access to a static field
3016          * @throws NoSuchFieldException if the field does not exist
3017          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
3018          * @throws    SecurityException if a security manager is present and it
3019          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
3020          * @throws NullPointerException if any argument is null
3021          * @since 9
3022          */
findStaticVarHandle(Class<?> decl, String name, Class<?> type)3023         public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
3024             MemberName getField = resolveOrFail(REF_getStatic, decl, name, type);
3025             MemberName putField = resolveOrFail(REF_putStatic, decl, name, type);
3026             return getFieldVarHandle(REF_getStatic, REF_putStatic, decl, getField, putField);
3027         }
3028 
3029         /**
3030          * Produces an early-bound method handle for a non-static method.
3031          * The receiver must have a supertype {@code defc} in which a method
3032          * of the given name and type is accessible to the lookup class.
3033          * The method and all its argument types must be accessible to the lookup object.
3034          * The type of the method handle will be that of the method,
3035          * without any insertion of an additional receiver parameter.
3036          * The given receiver will be bound into the method handle,
3037          * so that every call to the method handle will invoke the
3038          * requested method on the given receiver.
3039          * <p>
3040          * The returned method handle will have
3041          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
3042          * the method's variable arity modifier bit ({@code 0x0080}) is set
3043          * <em>and</em> the trailing array argument is not the only argument.
3044          * (If the trailing array argument is the only argument,
3045          * the given receiver value will be bound to it.)
3046          * <p>
3047          * This is almost equivalent to the following code, with some differences noted below:
3048          * <blockquote><pre>{@code
3049 import static java.lang.invoke.MethodHandles.*;
3050 import static java.lang.invoke.MethodType.*;
3051 ...
3052 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
3053 MethodHandle mh1 = mh0.bindTo(receiver);
3054 mh1 = mh1.withVarargs(mh0.isVarargsCollector());
3055 return mh1;
3056          * }</pre></blockquote>
3057          * where {@code defc} is either {@code receiver.getClass()} or a super
3058          * type of that class, in which the requested method is accessible
3059          * to the lookup class.
3060          * (Unlike {@code bind}, {@code bindTo} does not preserve variable arity.
3061          * Also, {@code bindTo} may throw a {@code ClassCastException} in instances where {@code bind} would
3062          * throw an {@code IllegalAccessException}, as in the case where the member is {@code protected} and
3063          * the receiver is restricted by {@code findVirtual} to the lookup class.)
3064          * @param receiver the object from which the method is accessed
3065          * @param name the name of the method
3066          * @param type the type of the method, with the receiver argument omitted
3067          * @return the desired method handle
3068          * @throws NoSuchMethodException if the method does not exist
3069          * @throws IllegalAccessException if access checking fails
3070          *                                or if the method's variable arity modifier bit
3071          *                                is set and {@code asVarargsCollector} fails
3072          * @throws    SecurityException if a security manager is present and it
3073          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
3074          * @throws NullPointerException if any argument is null
3075          * @see MethodHandle#bindTo
3076          * @see #findVirtual
3077          */
bind(Object receiver, String name, MethodType type)3078         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
3079             Class<? extends Object> refc = receiver.getClass(); // may get NPE
3080             MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
3081             MethodHandle mh = getDirectMethodNoRestrictInvokeSpecial(refc, method, findBoundCallerLookup(method));
3082             if (!mh.type().leadingReferenceParameter().isAssignableFrom(receiver.getClass())) {
3083                 throw new IllegalAccessException("The restricted defining class " +
3084                                                  mh.type().leadingReferenceParameter().getName() +
3085                                                  " is not assignable from receiver class " +
3086                                                  receiver.getClass().getName());
3087             }
3088             return mh.bindArgumentL(0, receiver).setVarargs(method);
3089         }
3090 
3091         /**
3092          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
3093          * to <i>m</i>, if the lookup class has permission.
3094          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
3095          * If <i>m</i> is virtual, overriding is respected on every call.
3096          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
3097          * The type of the method handle will be that of the method,
3098          * with the receiver type prepended (but only if it is non-static).
3099          * If the method's {@code accessible} flag is not set,
3100          * access checking is performed immediately on behalf of the lookup class.
3101          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
3102          * <p>
3103          * The returned method handle will have
3104          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
3105          * the method's variable arity modifier bit ({@code 0x0080}) is set.
3106          * <p>
3107          * If <i>m</i> is static, and
3108          * if the returned method handle is invoked, the method's class will
3109          * be initialized, if it has not already been initialized.
3110          * @param m the reflected method
3111          * @return a method handle which can invoke the reflected method
3112          * @throws IllegalAccessException if access checking fails
3113          *                                or if the method's variable arity modifier bit
3114          *                                is set and {@code asVarargsCollector} fails
3115          * @throws NullPointerException if the argument is null
3116          */
unreflect(Method m)3117         public MethodHandle unreflect(Method m) throws IllegalAccessException {
3118             if (m.getDeclaringClass() == MethodHandle.class) {
3119                 MethodHandle mh = unreflectForMH(m);
3120                 if (mh != null)  return mh;
3121             }
3122             if (m.getDeclaringClass() == VarHandle.class) {
3123                 MethodHandle mh = unreflectForVH(m);
3124                 if (mh != null)  return mh;
3125             }
3126             MemberName method = new MemberName(m);
3127             byte refKind = method.getReferenceKind();
3128             if (refKind == REF_invokeSpecial)
3129                 refKind = REF_invokeVirtual;
3130             assert(method.isMethod());
3131             @SuppressWarnings("deprecation")
3132             Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
3133             return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerLookup(method));
3134         }
unreflectForMH(Method m)3135         private MethodHandle unreflectForMH(Method m) {
3136             // these names require special lookups because they throw UnsupportedOperationException
3137             if (MemberName.isMethodHandleInvokeName(m.getName()))
3138                 return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
3139             return null;
3140         }
unreflectForVH(Method m)3141         private MethodHandle unreflectForVH(Method m) {
3142             // these names require special lookups because they throw UnsupportedOperationException
3143             if (MemberName.isVarHandleMethodInvokeName(m.getName()))
3144                 return MethodHandleImpl.fakeVarHandleInvoke(new MemberName(m));
3145             return null;
3146         }
3147 
3148         /**
3149          * Produces a method handle for a reflected method.
3150          * It will bypass checks for overriding methods on the receiver,
3151          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
3152          * instruction from within the explicitly specified {@code specialCaller}.
3153          * The type of the method handle will be that of the method,
3154          * with a suitably restricted receiver type prepended.
3155          * (The receiver type will be {@code specialCaller} or a subtype.)
3156          * If the method's {@code accessible} flag is not set,
3157          * access checking is performed immediately on behalf of the lookup class,
3158          * as if {@code invokespecial} instruction were being linked.
3159          * <p>
3160          * Before method resolution,
3161          * if the explicitly specified caller class is not identical with the
3162          * lookup class, or if this lookup object does not have
3163          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
3164          * privileges, the access fails.
3165          * <p>
3166          * The returned method handle will have
3167          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
3168          * the method's variable arity modifier bit ({@code 0x0080}) is set.
3169          * @param m the reflected method
3170          * @param specialCaller the class nominally calling the method
3171          * @return a method handle which can invoke the reflected method
3172          * @throws IllegalAccessException if access checking fails,
3173          *                                or if the method is {@code static},
3174          *                                or if the method's variable arity modifier bit
3175          *                                is set and {@code asVarargsCollector} fails
3176          * @throws NullPointerException if any argument is null
3177          */
unreflectSpecial(Method m, Class<?> specialCaller)3178         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
3179             checkSpecialCaller(specialCaller, m.getDeclaringClass());
3180             Lookup specialLookup = this.in(specialCaller);
3181             MemberName method = new MemberName(m, true);
3182             assert(method.isMethod());
3183             // ignore m.isAccessible:  this is a new kind of access
3184             return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerLookup(method));
3185         }
3186 
3187         /**
3188          * Produces a method handle for a reflected constructor.
3189          * The type of the method handle will be that of the constructor,
3190          * with the return type changed to the declaring class.
3191          * The method handle will perform a {@code newInstance} operation,
3192          * creating a new instance of the constructor's class on the
3193          * arguments passed to the method handle.
3194          * <p>
3195          * If the constructor's {@code accessible} flag is not set,
3196          * access checking is performed immediately on behalf of the lookup class.
3197          * <p>
3198          * The returned method handle will have
3199          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
3200          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
3201          * <p>
3202          * If the returned method handle is invoked, the constructor's class will
3203          * be initialized, if it has not already been initialized.
3204          * @param c the reflected constructor
3205          * @return a method handle which can invoke the reflected constructor
3206          * @throws IllegalAccessException if access checking fails
3207          *                                or if the method's variable arity modifier bit
3208          *                                is set and {@code asVarargsCollector} fails
3209          * @throws NullPointerException if the argument is null
3210          */
unreflectConstructor(Constructor<?> c)3211         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
3212             MemberName ctor = new MemberName(c);
3213             assert(ctor.isConstructor());
3214             @SuppressWarnings("deprecation")
3215             Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
3216             return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
3217         }
3218 
3219         /**
3220          * Produces a method handle giving read access to a reflected field.
3221          * The type of the method handle will have a return type of the field's
3222          * value type.
3223          * If the field is {@code static}, the method handle will take no arguments.
3224          * Otherwise, its single argument will be the instance containing
3225          * the field.
3226          * If the {@code Field} object's {@code accessible} flag is not set,
3227          * access checking is performed immediately on behalf of the lookup class.
3228          * <p>
3229          * If the field is static, and
3230          * if the returned method handle is invoked, the field's class will
3231          * be initialized, if it has not already been initialized.
3232          * @param f the reflected field
3233          * @return a method handle which can load values from the reflected field
3234          * @throws IllegalAccessException if access checking fails
3235          * @throws NullPointerException if the argument is null
3236          */
unreflectGetter(Field f)3237         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
3238             return unreflectField(f, false);
3239         }
3240 
3241         /**
3242          * Produces a method handle giving write access to a reflected field.
3243          * The type of the method handle will have a void return type.
3244          * If the field is {@code static}, the method handle will take a single
3245          * argument, of the field's value type, the value to be stored.
3246          * Otherwise, the two arguments will be the instance containing
3247          * the field, and the value to be stored.
3248          * If the {@code Field} object's {@code accessible} flag is not set,
3249          * access checking is performed immediately on behalf of the lookup class.
3250          * <p>
3251          * If the field is {@code final}, write access will not be
3252          * allowed and access checking will fail, except under certain
3253          * narrow circumstances documented for {@link Field#set Field.set}.
3254          * A method handle is returned only if a corresponding call to
3255          * the {@code Field} object's {@code set} method could return
3256          * normally.  In particular, fields which are both {@code static}
3257          * and {@code final} may never be set.
3258          * <p>
3259          * If the field is {@code static}, and
3260          * if the returned method handle is invoked, the field's class will
3261          * be initialized, if it has not already been initialized.
3262          * @param f the reflected field
3263          * @return a method handle which can store values into the reflected field
3264          * @throws IllegalAccessException if access checking fails,
3265          *         or if the field is {@code final} and write access
3266          *         is not enabled on the {@code Field} object
3267          * @throws NullPointerException if the argument is null
3268          */
unreflectSetter(Field f)3269         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
3270             return unreflectField(f, true);
3271         }
3272 
unreflectField(Field f, boolean isSetter)3273         private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
3274             MemberName field = new MemberName(f, isSetter);
3275             if (isSetter && field.isFinal()) {
3276                 if (field.isTrustedFinalField()) {
3277                     String msg = field.isStatic() ? "static final field has no write access"
3278                                                   : "final field has no write access";
3279                     throw field.makeAccessException(msg, this);
3280                 }
3281             }
3282             assert(isSetter
3283                     ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
3284                     : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
3285             @SuppressWarnings("deprecation")
3286             Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
3287             return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
3288         }
3289 
3290         /**
3291          * Produces a VarHandle giving access to a reflected field {@code f}
3292          * of type {@code T} declared in a class of type {@code R}.
3293          * The VarHandle's variable type is {@code T}.
3294          * If the field is non-static the VarHandle has one coordinate type,
3295          * {@code R}.  Otherwise, the field is static, and the VarHandle has no
3296          * coordinate types.
3297          * <p>
3298          * Access checking is performed immediately on behalf of the lookup
3299          * class, regardless of the value of the field's {@code accessible}
3300          * flag.
3301          * <p>
3302          * If the field is static, and if the returned VarHandle is operated
3303          * on, the field's declaring class will be initialized, if it has not
3304          * already been initialized.
3305          * <p>
3306          * Certain access modes of the returned VarHandle are unsupported under
3307          * the following conditions:
3308          * <ul>
3309          * <li>if the field is declared {@code final}, then the write, atomic
3310          *     update, numeric atomic update, and bitwise atomic update access
3311          *     modes are unsupported.
3312          * <li>if the field type is anything other than {@code byte},
3313          *     {@code short}, {@code char}, {@code int}, {@code long},
3314          *     {@code float}, or {@code double} then numeric atomic update
3315          *     access modes are unsupported.
3316          * <li>if the field type is anything other than {@code boolean},
3317          *     {@code byte}, {@code short}, {@code char}, {@code int} or
3318          *     {@code long} then bitwise atomic update access modes are
3319          *     unsupported.
3320          * </ul>
3321          * <p>
3322          * If the field is declared {@code volatile} then the returned VarHandle
3323          * will override access to the field (effectively ignore the
3324          * {@code volatile} declaration) in accordance to its specified
3325          * access modes.
3326          * <p>
3327          * If the field type is {@code float} or {@code double} then numeric
3328          * and atomic update access modes compare values using their bitwise
3329          * representation (see {@link Float#floatToRawIntBits} and
3330          * {@link Double#doubleToRawLongBits}, respectively).
3331          * @apiNote
3332          * Bitwise comparison of {@code float} values or {@code double} values,
3333          * as performed by the numeric and atomic update access modes, differ
3334          * from the primitive {@code ==} operator and the {@link Float#equals}
3335          * and {@link Double#equals} methods, specifically with respect to
3336          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
3337          * Care should be taken when performing a compare and set or a compare
3338          * and exchange operation with such values since the operation may
3339          * unexpectedly fail.
3340          * There are many possible NaN values that are considered to be
3341          * {@code NaN} in Java, although no IEEE 754 floating-point operation
3342          * provided by Java can distinguish between them.  Operation failure can
3343          * occur if the expected or witness value is a NaN value and it is
3344          * transformed (perhaps in a platform specific manner) into another NaN
3345          * value, and thus has a different bitwise representation (see
3346          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
3347          * details).
3348          * The values {@code -0.0} and {@code +0.0} have different bitwise
3349          * representations but are considered equal when using the primitive
3350          * {@code ==} operator.  Operation failure can occur if, for example, a
3351          * numeric algorithm computes an expected value to be say {@code -0.0}
3352          * and previously computed the witness value to be say {@code +0.0}.
3353          * @param f the reflected field, with a field of type {@code T}, and
3354          * a declaring class of type {@code R}
3355          * @return a VarHandle giving access to non-static fields or a static
3356          * field
3357          * @throws IllegalAccessException if access checking fails
3358          * @throws NullPointerException if the argument is null
3359          * @since 9
3360          */
unreflectVarHandle(Field f)3361         public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException {
3362             MemberName getField = new MemberName(f, false);
3363             MemberName putField = new MemberName(f, true);
3364             return getFieldVarHandleNoSecurityManager(getField.getReferenceKind(), putField.getReferenceKind(),
3365                                                       f.getDeclaringClass(), getField, putField);
3366         }
3367 
3368         /**
3369          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
3370          * created by this lookup object or a similar one.
3371          * Security and access checks are performed to ensure that this lookup object
3372          * is capable of reproducing the target method handle.
3373          * This means that the cracking may fail if target is a direct method handle
3374          * but was created by an unrelated lookup object.
3375          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
3376          * and was created by a lookup object for a different class.
3377          * @param target a direct method handle to crack into symbolic reference components
3378          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
3379          * @throws    SecurityException if a security manager is present and it
3380          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
3381          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
3382          * @throws    NullPointerException if the target is {@code null}
3383          * @see MethodHandleInfo
3384          * @since 1.8
3385          */
revealDirect(MethodHandle target)3386         public MethodHandleInfo revealDirect(MethodHandle target) {
3387             if (!target.isCrackable()) {
3388                 throw newIllegalArgumentException("not a direct method handle");
3389             }
3390             MemberName member = target.internalMemberName();
3391             Class<?> defc = member.getDeclaringClass();
3392             byte refKind = member.getReferenceKind();
3393             assert(MethodHandleNatives.refKindIsValid(refKind));
3394             if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
3395                 // Devirtualized method invocation is usually formally virtual.
3396                 // To avoid creating extra MemberName objects for this common case,
3397                 // we encode this extra degree of freedom using MH.isInvokeSpecial.
3398                 refKind = REF_invokeVirtual;
3399             if (refKind == REF_invokeVirtual && defc.isInterface())
3400                 // Symbolic reference is through interface but resolves to Object method (toString, etc.)
3401                 refKind = REF_invokeInterface;
3402             // Check SM permissions and member access before cracking.
3403             try {
3404                 checkAccess(refKind, defc, member);
3405                 checkSecurityManager(defc, member);
3406             } catch (IllegalAccessException ex) {
3407                 throw new IllegalArgumentException(ex);
3408             }
3409             if (allowedModes != TRUSTED && member.isCallerSensitive()) {
3410                 Class<?> callerClass = target.internalCallerClass();
3411                 if (!hasFullPrivilegeAccess() || callerClass != lookupClass())
3412                     throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
3413             }
3414             // Produce the handle to the results.
3415             return new InfoFromMemberName(this, member, refKind);
3416         }
3417 
3418         /// Helper methods, all package-private.
3419 
resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type)3420         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
3421             checkSymbolicClass(refc);  // do this before attempting to resolve
3422             Objects.requireNonNull(name);
3423             Objects.requireNonNull(type);
3424             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
3425                                             NoSuchFieldException.class);
3426         }
3427 
resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type)3428         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
3429             checkSymbolicClass(refc);  // do this before attempting to resolve
3430             Objects.requireNonNull(name);
3431             Objects.requireNonNull(type);
3432             checkMethodName(refKind, name);  // NPE check on name
3433             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
3434                                             NoSuchMethodException.class);
3435         }
3436 
resolveOrFail(byte refKind, MemberName member)3437         MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
3438             checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
3439             Objects.requireNonNull(member.getName());
3440             Objects.requireNonNull(member.getType());
3441             return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(),
3442                                             ReflectiveOperationException.class);
3443         }
3444 
resolveOrNull(byte refKind, MemberName member)3445         MemberName resolveOrNull(byte refKind, MemberName member) {
3446             // do this before attempting to resolve
3447             if (!isClassAccessible(member.getDeclaringClass())) {
3448                 return null;
3449             }
3450             Objects.requireNonNull(member.getName());
3451             Objects.requireNonNull(member.getType());
3452             return IMPL_NAMES.resolveOrNull(refKind, member, lookupClassOrNull());
3453         }
3454 
checkSymbolicClass(Class<?> refc)3455         void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
3456             if (!isClassAccessible(refc)) {
3457                 throw new MemberName(refc).makeAccessException("symbolic reference class is not accessible", this);
3458             }
3459         }
3460 
isClassAccessible(Class<?> refc)3461         boolean isClassAccessible(Class<?> refc) {
3462             Objects.requireNonNull(refc);
3463             Class<?> caller = lookupClassOrNull();
3464             return caller == null || VerifyAccess.isClassAccessible(refc, caller, prevLookupClass, allowedModes);
3465         }
3466 
3467         /** Check name for an illegal leading "&lt;" character. */
checkMethodName(byte refKind, String name)3468         void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
3469             if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
3470                 throw new NoSuchMethodException("illegal method name: "+name);
3471         }
3472 
3473 
3474         /**
3475          * Find my trustable caller class if m is a caller sensitive method.
3476          * If this lookup object has full privilege access, then the caller class is the lookupClass.
3477          * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
3478          */
findBoundCallerLookup(MemberName m)3479         Lookup findBoundCallerLookup(MemberName m) throws IllegalAccessException {
3480             if (MethodHandleNatives.isCallerSensitive(m) && !hasFullPrivilegeAccess()) {
3481                 // Only lookups with full privilege access are allowed to resolve caller-sensitive methods
3482                 throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
3483             }
3484             return this;
3485         }
3486 
3487         /**
3488          * Returns {@code true} if this lookup has {@code PRIVATE} and {@code MODULE} access.
3489          * @return {@code true} if this lookup has {@code PRIVATE} and {@code MODULE} access.
3490          *
3491          * @deprecated This method was originally designed to test {@code PRIVATE} access
3492          * that implies full privilege access but {@code MODULE} access has since become
3493          * independent of {@code PRIVATE} access.  It is recommended to call
3494          * {@link #hasFullPrivilegeAccess()} instead.
3495          * @since 9
3496          */
3497         @Deprecated(since="14")
hasPrivateAccess()3498         public boolean hasPrivateAccess() {
3499             return hasFullPrivilegeAccess();
3500         }
3501 
3502         /**
3503          * Returns {@code true} if this lookup has <em>full privilege access</em>,
3504          * i.e. {@code PRIVATE} and {@code MODULE} access.
3505          * A {@code Lookup} object must have full privilege access in order to
3506          * access all members that are allowed to the {@linkplain #lookupClass() lookup class}.
3507          *
3508          * @return {@code true} if this lookup has full privilege access.
3509          * @since 14
3510          * @see <a href="MethodHandles.Lookup.html#privacc">private and module access</a>
3511          */
hasFullPrivilegeAccess()3512         public boolean hasFullPrivilegeAccess() {
3513             return (allowedModes & (PRIVATE|MODULE)) == (PRIVATE|MODULE);
3514         }
3515 
3516         /**
3517          * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
3518          * Determines a trustable caller class to compare with refc, the symbolic reference class.
3519          * If this lookup object has full privilege access, then the caller class is the lookupClass.
3520          */
checkSecurityManager(Class<?> refc, MemberName m)3521         void checkSecurityManager(Class<?> refc, MemberName m) {
3522             if (allowedModes == TRUSTED)  return;
3523 
3524             SecurityManager smgr = System.getSecurityManager();
3525             if (smgr == null)  return;
3526 
3527             // Step 1:
3528             boolean fullPowerLookup = hasFullPrivilegeAccess();
3529             if (!fullPowerLookup ||
3530                 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
3531                 ReflectUtil.checkPackageAccess(refc);
3532             }
3533 
3534             if (m == null) {  // findClass or accessClass
3535                 // Step 2b:
3536                 if (!fullPowerLookup) {
3537                     smgr.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
3538                 }
3539                 return;
3540             }
3541 
3542             // Step 2a:
3543             if (m.isPublic()) return;
3544             if (!fullPowerLookup) {
3545                 smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
3546             }
3547 
3548             // Step 3:
3549             Class<?> defc = m.getDeclaringClass();
3550             if (!fullPowerLookup && defc != refc) {
3551                 ReflectUtil.checkPackageAccess(defc);
3552             }
3553         }
3554 
checkMethod(byte refKind, Class<?> refc, MemberName m)3555         void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
3556             boolean wantStatic = (refKind == REF_invokeStatic);
3557             String message;
3558             if (m.isConstructor())
3559                 message = "expected a method, not a constructor";
3560             else if (!m.isMethod())
3561                 message = "expected a method";
3562             else if (wantStatic != m.isStatic())
3563                 message = wantStatic ? "expected a static method" : "expected a non-static method";
3564             else
3565                 { checkAccess(refKind, refc, m); return; }
3566             throw m.makeAccessException(message, this);
3567         }
3568 
checkField(byte refKind, Class<?> refc, MemberName m)3569         void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
3570             boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
3571             String message;
3572             if (wantStatic != m.isStatic())
3573                 message = wantStatic ? "expected a static field" : "expected a non-static field";
3574             else
3575                 { checkAccess(refKind, refc, m); return; }
3576             throw m.makeAccessException(message, this);
3577         }
3578 
3579         /** Check public/protected/private bits on the symbolic reference class and its member. */
checkAccess(byte refKind, Class<?> refc, MemberName m)3580         void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
3581             assert(m.referenceKindIsConsistentWith(refKind) &&
3582                    MethodHandleNatives.refKindIsValid(refKind) &&
3583                    (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
3584             int allowedModes = this.allowedModes;
3585             if (allowedModes == TRUSTED)  return;
3586             int mods = m.getModifiers();
3587             if (Modifier.isProtected(mods) &&
3588                     refKind == REF_invokeVirtual &&
3589                     m.getDeclaringClass() == Object.class &&
3590                     m.getName().equals("clone") &&
3591                     refc.isArray()) {
3592                 // The JVM does this hack also.
3593                 // (See ClassVerifier::verify_invoke_instructions
3594                 // and LinkResolver::check_method_accessability.)
3595                 // Because the JVM does not allow separate methods on array types,
3596                 // there is no separate method for int[].clone.
3597                 // All arrays simply inherit Object.clone.
3598                 // But for access checking logic, we make Object.clone
3599                 // (normally protected) appear to be public.
3600                 // Later on, when the DirectMethodHandle is created,
3601                 // its leading argument will be restricted to the
3602                 // requested array type.
3603                 // N.B. The return type is not adjusted, because
3604                 // that is *not* the bytecode behavior.
3605                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
3606             }
3607             if (Modifier.isProtected(mods) && refKind == REF_newInvokeSpecial) {
3608                 // cannot "new" a protected ctor in a different package
3609                 mods ^= Modifier.PROTECTED;
3610             }
3611             if (Modifier.isFinal(mods) &&
3612                     MethodHandleNatives.refKindIsSetter(refKind))
3613                 throw m.makeAccessException("unexpected set of a final field", this);
3614             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
3615             if ((requestedModes & allowedModes) != 0) {
3616                 if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
3617                                                     mods, lookupClass(), previousLookupClass(), allowedModes))
3618                     return;
3619             } else {
3620                 // Protected members can also be checked as if they were package-private.
3621                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
3622                         && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
3623                     return;
3624             }
3625             throw m.makeAccessException(accessFailedMessage(refc, m), this);
3626         }
3627 
accessFailedMessage(Class<?> refc, MemberName m)3628         String accessFailedMessage(Class<?> refc, MemberName m) {
3629             Class<?> defc = m.getDeclaringClass();
3630             int mods = m.getModifiers();
3631             // check the class first:
3632             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
3633                                (defc == refc ||
3634                                 Modifier.isPublic(refc.getModifiers())));
3635             if (!classOK && (allowedModes & PACKAGE) != 0) {
3636                 // ignore previous lookup class to check if default package access
3637                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), null, FULL_POWER_MODES) &&
3638                            (defc == refc ||
3639                             VerifyAccess.isClassAccessible(refc, lookupClass(), null, FULL_POWER_MODES)));
3640             }
3641             if (!classOK)
3642                 return "class is not public";
3643             if (Modifier.isPublic(mods))
3644                 return "access to public member failed";  // (how?, module not readable?)
3645             if (Modifier.isPrivate(mods))
3646                 return "member is private";
3647             if (Modifier.isProtected(mods))
3648                 return "member is protected";
3649             return "member is private to package";
3650         }
3651 
checkSpecialCaller(Class<?> specialCaller, Class<?> refc)3652         private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException {
3653             int allowedModes = this.allowedModes;
3654             if (allowedModes == TRUSTED)  return;
3655             if ((lookupModes() & PRIVATE) == 0
3656                 || (specialCaller != lookupClass()
3657                        // ensure non-abstract methods in superinterfaces can be special-invoked
3658                     && !(refc != null && refc.isInterface() && refc.isAssignableFrom(specialCaller))))
3659                 throw new MemberName(specialCaller).
3660                     makeAccessException("no private access for invokespecial", this);
3661         }
3662 
restrictProtectedReceiver(MemberName method)3663         private boolean restrictProtectedReceiver(MemberName method) {
3664             // The accessing class only has the right to use a protected member
3665             // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
3666             if (!method.isProtected() || method.isStatic()
3667                 || allowedModes == TRUSTED
3668                 || method.getDeclaringClass() == lookupClass()
3669                 || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass()))
3670                 return false;
3671             return true;
3672         }
restrictReceiver(MemberName method, DirectMethodHandle mh, Class<?> caller)3673         private MethodHandle restrictReceiver(MemberName method, DirectMethodHandle mh, Class<?> caller) throws IllegalAccessException {
3674             assert(!method.isStatic());
3675             // receiver type of mh is too wide; narrow to caller
3676             if (!method.getDeclaringClass().isAssignableFrom(caller)) {
3677                 throw method.makeAccessException("caller class must be a subclass below the method", caller);
3678             }
3679             MethodType rawType = mh.type();
3680             if (caller.isAssignableFrom(rawType.parameterType(0))) return mh; // no need to restrict; already narrow
3681             MethodType narrowType = rawType.changeParameterType(0, caller);
3682             assert(!mh.isVarargsCollector());  // viewAsType will lose varargs-ness
3683             assert(mh.viewAsTypeChecks(narrowType, true));
3684             return mh.copyWith(narrowType, mh.form);
3685         }
3686 
3687         /** Check access and get the requested method. */
getDirectMethod(byte refKind, Class<?> refc, MemberName method, Lookup callerLookup)3688         private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Lookup callerLookup) throws IllegalAccessException {
3689             final boolean doRestrict    = true;
3690             final boolean checkSecurity = true;
3691             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerLookup);
3692         }
3693         /** Check access and get the requested method, for invokespecial with no restriction on the application of narrowing rules. */
getDirectMethodNoRestrictInvokeSpecial(Class<?> refc, MemberName method, Lookup callerLookup)3694         private MethodHandle getDirectMethodNoRestrictInvokeSpecial(Class<?> refc, MemberName method, Lookup callerLookup) throws IllegalAccessException {
3695             final boolean doRestrict    = false;
3696             final boolean checkSecurity = true;
3697             return getDirectMethodCommon(REF_invokeSpecial, refc, method, checkSecurity, doRestrict, callerLookup);
3698         }
3699         /** Check access and get the requested method, eliding security manager checks. */
getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Lookup callerLookup)3700         private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Lookup callerLookup) throws IllegalAccessException {
3701             final boolean doRestrict    = true;
3702             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
3703             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerLookup);
3704         }
3705         /** Common code for all methods; do not call directly except from immediately above. */
getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method, boolean checkSecurity, boolean doRestrict, Lookup boundCaller)3706         private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
3707                                                    boolean checkSecurity,
3708                                                    boolean doRestrict,
3709                                                    Lookup boundCaller) throws IllegalAccessException {
3710             checkMethod(refKind, refc, method);
3711             // Optionally check with the security manager; this isn't needed for unreflect* calls.
3712             if (checkSecurity)
3713                 checkSecurityManager(refc, method);
3714             assert(!method.isMethodHandleInvoke());
3715 
3716             if (refKind == REF_invokeSpecial &&
3717                 refc != lookupClass() &&
3718                 !refc.isInterface() &&
3719                 refc != lookupClass().getSuperclass() &&
3720                 refc.isAssignableFrom(lookupClass())) {
3721                 assert(!method.getName().equals("<init>"));  // not this code path
3722 
3723                 // Per JVMS 6.5, desc. of invokespecial instruction:
3724                 // If the method is in a superclass of the LC,
3725                 // and if our original search was above LC.super,
3726                 // repeat the search (symbolic lookup) from LC.super
3727                 // and continue with the direct superclass of that class,
3728                 // and so forth, until a match is found or no further superclasses exist.
3729                 // FIXME: MemberName.resolve should handle this instead.
3730                 Class<?> refcAsSuper = lookupClass();
3731                 MemberName m2;
3732                 do {
3733                     refcAsSuper = refcAsSuper.getSuperclass();
3734                     m2 = new MemberName(refcAsSuper,
3735                                         method.getName(),
3736                                         method.getMethodType(),
3737                                         REF_invokeSpecial);
3738                     m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull());
3739                 } while (m2 == null &&         // no method is found yet
3740                          refc != refcAsSuper); // search up to refc
3741                 if (m2 == null)  throw new InternalError(method.toString());
3742                 method = m2;
3743                 refc = refcAsSuper;
3744                 // redo basic checks
3745                 checkMethod(refKind, refc, method);
3746             }
3747             DirectMethodHandle dmh = DirectMethodHandle.make(refKind, refc, method, lookupClass());
3748             MethodHandle mh = dmh;
3749             // Optionally narrow the receiver argument to lookupClass using restrictReceiver.
3750             if ((doRestrict && refKind == REF_invokeSpecial) ||
3751                     (MethodHandleNatives.refKindHasReceiver(refKind) && restrictProtectedReceiver(method))) {
3752                 mh = restrictReceiver(method, dmh, lookupClass());
3753             }
3754             mh = maybeBindCaller(method, mh, boundCaller);
3755             mh = mh.setVarargs(method);
3756             return mh;
3757         }
maybeBindCaller(MemberName method, MethodHandle mh, Lookup boundCaller)3758         private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh, Lookup boundCaller)
3759                                              throws IllegalAccessException {
3760             if (boundCaller.allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
3761                 return mh;
3762 
3763             // boundCaller must have full privilege access.
3764             // It should have been checked by findBoundCallerLookup. Safe to check this again.
3765             if (!boundCaller.hasFullPrivilegeAccess())
3766                 throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
3767 
3768             MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, boundCaller.lookupClass);
3769             // Note: caller will apply varargs after this step happens.
3770             return cbmh;
3771         }
3772 
3773         /** Check access and get the requested field. */
getDirectField(byte refKind, Class<?> refc, MemberName field)3774         private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
3775             final boolean checkSecurity = true;
3776             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
3777         }
3778         /** Check access and get the requested field, eliding security manager checks. */
getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field)3779         private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
3780             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
3781             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
3782         }
3783         /** Common code for all fields; do not call directly except from immediately above. */
getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field, boolean checkSecurity)3784         private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
3785                                                   boolean checkSecurity) throws IllegalAccessException {
3786             checkField(refKind, refc, field);
3787             // Optionally check with the security manager; this isn't needed for unreflect* calls.
3788             if (checkSecurity)
3789                 checkSecurityManager(refc, field);
3790             DirectMethodHandle dmh = DirectMethodHandle.make(refc, field);
3791             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
3792                                     restrictProtectedReceiver(field));
3793             if (doRestrict)
3794                 return restrictReceiver(field, dmh, lookupClass());
3795             return dmh;
3796         }
getFieldVarHandle(byte getRefKind, byte putRefKind, Class<?> refc, MemberName getField, MemberName putField)3797         private VarHandle getFieldVarHandle(byte getRefKind, byte putRefKind,
3798                                             Class<?> refc, MemberName getField, MemberName putField)
3799                 throws IllegalAccessException {
3800             final boolean checkSecurity = true;
3801             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
3802         }
getFieldVarHandleNoSecurityManager(byte getRefKind, byte putRefKind, Class<?> refc, MemberName getField, MemberName putField)3803         private VarHandle getFieldVarHandleNoSecurityManager(byte getRefKind, byte putRefKind,
3804                                                              Class<?> refc, MemberName getField, MemberName putField)
3805                 throws IllegalAccessException {
3806             final boolean checkSecurity = false;
3807             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
3808         }
getFieldVarHandleCommon(byte getRefKind, byte putRefKind, Class<?> refc, MemberName getField, MemberName putField, boolean checkSecurity)3809         private VarHandle getFieldVarHandleCommon(byte getRefKind, byte putRefKind,
3810                                                   Class<?> refc, MemberName getField, MemberName putField,
3811                                                   boolean checkSecurity) throws IllegalAccessException {
3812             assert getField.isStatic() == putField.isStatic();
3813             assert getField.isGetter() && putField.isSetter();
3814             assert MethodHandleNatives.refKindIsStatic(getRefKind) == MethodHandleNatives.refKindIsStatic(putRefKind);
3815             assert MethodHandleNatives.refKindIsGetter(getRefKind) && MethodHandleNatives.refKindIsSetter(putRefKind);
3816 
3817             checkField(getRefKind, refc, getField);
3818             if (checkSecurity)
3819                 checkSecurityManager(refc, getField);
3820 
3821             if (!putField.isFinal()) {
3822                 // A VarHandle does not support updates to final fields, any
3823                 // such VarHandle to a final field will be read-only and
3824                 // therefore the following write-based accessibility checks are
3825                 // only required for non-final fields
3826                 checkField(putRefKind, refc, putField);
3827                 if (checkSecurity)
3828                     checkSecurityManager(refc, putField);
3829             }
3830 
3831             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(getRefKind) &&
3832                                   restrictProtectedReceiver(getField));
3833             if (doRestrict) {
3834                 assert !getField.isStatic();
3835                 // receiver type of VarHandle is too wide; narrow to caller
3836                 if (!getField.getDeclaringClass().isAssignableFrom(lookupClass())) {
3837                     throw getField.makeAccessException("caller class must be a subclass below the method", lookupClass());
3838                 }
3839                 refc = lookupClass();
3840             }
3841             return VarHandles.makeFieldHandle(getField, refc, getField.getFieldType(),
3842                                               this.allowedModes == TRUSTED && !getField.isTrustedFinalField());
3843         }
3844         /** Check access and get the requested constructor. */
getDirectConstructor(Class<?> refc, MemberName ctor)3845         private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
3846             final boolean checkSecurity = true;
3847             return getDirectConstructorCommon(refc, ctor, checkSecurity);
3848         }
3849         /** Check access and get the requested constructor, eliding security manager checks. */
getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor)3850         private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
3851             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
3852             return getDirectConstructorCommon(refc, ctor, checkSecurity);
3853         }
3854         /** Common code for all constructors; do not call directly except from immediately above. */
getDirectConstructorCommon(Class<?> refc, MemberName ctor, boolean checkSecurity)3855         private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
3856                                                   boolean checkSecurity) throws IllegalAccessException {
3857             assert(ctor.isConstructor());
3858             checkAccess(REF_newInvokeSpecial, refc, ctor);
3859             // Optionally check with the security manager; this isn't needed for unreflect* calls.
3860             if (checkSecurity)
3861                 checkSecurityManager(refc, ctor);
3862             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
3863             return DirectMethodHandle.make(ctor).setVarargs(ctor);
3864         }
3865 
3866         /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
3867          */
3868         /*non-public*/
linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type)3869         MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type)
3870                 throws ReflectiveOperationException {
3871             if (!(type instanceof Class || type instanceof MethodType))
3872                 throw new InternalError("unresolved MemberName");
3873             MemberName member = new MemberName(refKind, defc, name, type);
3874             MethodHandle mh = LOOKASIDE_TABLE.get(member);
3875             if (mh != null) {
3876                 checkSymbolicClass(defc);
3877                 return mh;
3878             }
3879             if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
3880                 // Treat MethodHandle.invoke and invokeExact specially.
3881                 mh = findVirtualForMH(member.getName(), member.getMethodType());
3882                 if (mh != null) {
3883                     return mh;
3884                 }
3885             } else if (defc == VarHandle.class && refKind == REF_invokeVirtual) {
3886                 // Treat signature-polymorphic methods on VarHandle specially.
3887                 mh = findVirtualForVH(member.getName(), member.getMethodType());
3888                 if (mh != null) {
3889                     return mh;
3890                 }
3891             }
3892             MemberName resolved = resolveOrFail(refKind, member);
3893             mh = getDirectMethodForConstant(refKind, defc, resolved);
3894             if (mh instanceof DirectMethodHandle
3895                     && canBeCached(refKind, defc, resolved)) {
3896                 MemberName key = mh.internalMemberName();
3897                 if (key != null) {
3898                     key = key.asNormalOriginal();
3899                 }
3900                 if (member.equals(key)) {  // better safe than sorry
3901                     LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh);
3902                 }
3903             }
3904             return mh;
3905         }
canBeCached(byte refKind, Class<?> defc, MemberName member)3906         private boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
3907             if (refKind == REF_invokeSpecial) {
3908                 return false;
3909             }
3910             if (!Modifier.isPublic(defc.getModifiers()) ||
3911                     !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
3912                     !member.isPublic() ||
3913                     member.isCallerSensitive()) {
3914                 return false;
3915             }
3916             ClassLoader loader = defc.getClassLoader();
3917             if (loader != null) {
3918                 ClassLoader sysl = ClassLoader.getSystemClassLoader();
3919                 boolean found = false;
3920                 while (sysl != null) {
3921                     if (loader == sysl) { found = true; break; }
3922                     sysl = sysl.getParent();
3923                 }
3924                 if (!found) {
3925                     return false;
3926                 }
3927             }
3928             try {
3929                 MemberName resolved2 = publicLookup().resolveOrNull(refKind,
3930                     new MemberName(refKind, defc, member.getName(), member.getType()));
3931                 if (resolved2 == null) {
3932                     return false;
3933                 }
3934                 checkSecurityManager(defc, resolved2);
3935             } catch (SecurityException ex) {
3936                 return false;
3937             }
3938             return true;
3939         }
getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)3940         private MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
3941                 throws ReflectiveOperationException {
3942             if (MethodHandleNatives.refKindIsField(refKind)) {
3943                 return getDirectFieldNoSecurityManager(refKind, defc, member);
3944             } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
3945                 return getDirectMethodNoSecurityManager(refKind, defc, member, findBoundCallerLookup(member));
3946             } else if (refKind == REF_newInvokeSpecial) {
3947                 return getDirectConstructorNoSecurityManager(defc, member);
3948             }
3949             // oops
3950             throw newIllegalArgumentException("bad MethodHandle constant #"+member);
3951         }
3952 
3953         static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
3954     }
3955 
3956     /**
3957      * Produces a method handle constructing arrays of a desired type,
3958      * as if by the {@code anewarray} bytecode.
3959      * The return type of the method handle will be the array type.
3960      * The type of its sole argument will be {@code int}, which specifies the size of the array.
3961      *
3962      * <p> If the returned method handle is invoked with a negative
3963      * array size, a {@code NegativeArraySizeException} will be thrown.
3964      *
3965      * @param arrayClass an array type
3966      * @return a method handle which can create arrays of the given type
3967      * @throws NullPointerException if the argument is {@code null}
3968      * @throws IllegalArgumentException if {@code arrayClass} is not an array type
3969      * @see java.lang.reflect.Array#newInstance(Class, int)
3970      * @jvms 6.5 {@code anewarray} Instruction
3971      * @since 9
3972      */
arrayConstructor(Class<?> arrayClass)3973     public static MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException {
3974         if (!arrayClass.isArray()) {
3975             throw newIllegalArgumentException("not an array class: " + arrayClass.getName());
3976         }
3977         MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance).
3978                 bindTo(arrayClass.getComponentType());
3979         return ani.asType(ani.type().changeReturnType(arrayClass));
3980     }
3981 
3982     /**
3983      * Produces a method handle returning the length of an array,
3984      * as if by the {@code arraylength} bytecode.
3985      * The type of the method handle will have {@code int} as return type,
3986      * and its sole argument will be the array type.
3987      *
3988      * <p> If the returned method handle is invoked with a {@code null}
3989      * array reference, a {@code NullPointerException} will be thrown.
3990      *
3991      * @param arrayClass an array type
3992      * @return a method handle which can retrieve the length of an array of the given array type
3993      * @throws NullPointerException if the argument is {@code null}
3994      * @throws IllegalArgumentException if arrayClass is not an array type
3995      * @jvms 6.5 {@code arraylength} Instruction
3996      * @since 9
3997      */
arrayLength(Class<?> arrayClass)3998     public static MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException {
3999         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH);
4000     }
4001 
4002     /**
4003      * Produces a method handle giving read access to elements of an array,
4004      * as if by the {@code aaload} bytecode.
4005      * The type of the method handle will have a return type of the array's
4006      * element type.  Its first argument will be the array type,
4007      * and the second will be {@code int}.
4008      *
4009      * <p> When the returned method handle is invoked,
4010      * the array reference and array index are checked.
4011      * A {@code NullPointerException} will be thrown if the array reference
4012      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
4013      * thrown if the index is negative or if it is greater than or equal to
4014      * the length of the array.
4015      *
4016      * @param arrayClass an array type
4017      * @return a method handle which can load values from the given array type
4018      * @throws NullPointerException if the argument is null
4019      * @throws  IllegalArgumentException if arrayClass is not an array type
4020      * @jvms 6.5 {@code aaload} Instruction
4021      */
arrayElementGetter(Class<?> arrayClass)4022     public static MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
4023         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.GET);
4024     }
4025 
4026     /**
4027      * Produces a method handle giving write access to elements of an array,
4028      * as if by the {@code astore} bytecode.
4029      * The type of the method handle will have a void return type.
4030      * Its last argument will be the array's element type.
4031      * The first and second arguments will be the array type and int.
4032      *
4033      * <p> When the returned method handle is invoked,
4034      * the array reference and array index are checked.
4035      * A {@code NullPointerException} will be thrown if the array reference
4036      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
4037      * thrown if the index is negative or if it is greater than or equal to
4038      * the length of the array.
4039      *
4040      * @param arrayClass the class of an array
4041      * @return a method handle which can store values into the array type
4042      * @throws NullPointerException if the argument is null
4043      * @throws IllegalArgumentException if arrayClass is not an array type
4044      * @jvms 6.5 {@code aastore} Instruction
4045      */
arrayElementSetter(Class<?> arrayClass)4046     public static MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
4047         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.SET);
4048     }
4049 
4050     /**
4051      * Produces a VarHandle giving access to elements of an array of type
4052      * {@code arrayClass}.  The VarHandle's variable type is the component type
4053      * of {@code arrayClass} and the list of coordinate types is
4054      * {@code (arrayClass, int)}, where the {@code int} coordinate type
4055      * corresponds to an argument that is an index into an array.
4056      * <p>
4057      * Certain access modes of the returned VarHandle are unsupported under
4058      * the following conditions:
4059      * <ul>
4060      * <li>if the component type is anything other than {@code byte},
4061      *     {@code short}, {@code char}, {@code int}, {@code long},
4062      *     {@code float}, or {@code double} then numeric atomic update access
4063      *     modes are unsupported.
4064      * <li>if the component type is anything other than {@code boolean},
4065      *     {@code byte}, {@code short}, {@code char}, {@code int} or
4066      *     {@code long} then bitwise atomic update access modes are
4067      *     unsupported.
4068      * </ul>
4069      * <p>
4070      * If the component type is {@code float} or {@code double} then numeric
4071      * and atomic update access modes compare values using their bitwise
4072      * representation (see {@link Float#floatToRawIntBits} and
4073      * {@link Double#doubleToRawLongBits}, respectively).
4074      *
4075      * <p> When the returned {@code VarHandle} is invoked,
4076      * the array reference and array index are checked.
4077      * A {@code NullPointerException} will be thrown if the array reference
4078      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
4079      * thrown if the index is negative or if it is greater than or equal to
4080      * the length of the array.
4081      *
4082      * @apiNote
4083      * Bitwise comparison of {@code float} values or {@code double} values,
4084      * as performed by the numeric and atomic update access modes, differ
4085      * from the primitive {@code ==} operator and the {@link Float#equals}
4086      * and {@link Double#equals} methods, specifically with respect to
4087      * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
4088      * Care should be taken when performing a compare and set or a compare
4089      * and exchange operation with such values since the operation may
4090      * unexpectedly fail.
4091      * There are many possible NaN values that are considered to be
4092      * {@code NaN} in Java, although no IEEE 754 floating-point operation
4093      * provided by Java can distinguish between them.  Operation failure can
4094      * occur if the expected or witness value is a NaN value and it is
4095      * transformed (perhaps in a platform specific manner) into another NaN
4096      * value, and thus has a different bitwise representation (see
4097      * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
4098      * details).
4099      * The values {@code -0.0} and {@code +0.0} have different bitwise
4100      * representations but are considered equal when using the primitive
4101      * {@code ==} operator.  Operation failure can occur if, for example, a
4102      * numeric algorithm computes an expected value to be say {@code -0.0}
4103      * and previously computed the witness value to be say {@code +0.0}.
4104      * @param arrayClass the class of an array, of type {@code T[]}
4105      * @return a VarHandle giving access to elements of an array
4106      * @throws NullPointerException if the arrayClass is null
4107      * @throws IllegalArgumentException if arrayClass is not an array type
4108      * @since 9
4109      */
arrayElementVarHandle(Class<?> arrayClass)4110     public static VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException {
4111         return VarHandles.makeArrayElementHandle(arrayClass);
4112     }
4113 
4114     /**
4115      * Produces a VarHandle giving access to elements of a {@code byte[]} array
4116      * viewed as if it were a different primitive array type, such as
4117      * {@code int[]} or {@code long[]}.
4118      * The VarHandle's variable type is the component type of
4119      * {@code viewArrayClass} and the list of coordinate types is
4120      * {@code (byte[], int)}, where the {@code int} coordinate type
4121      * corresponds to an argument that is an index into a {@code byte[]} array.
4122      * The returned VarHandle accesses bytes at an index in a {@code byte[]}
4123      * array, composing bytes to or from a value of the component type of
4124      * {@code viewArrayClass} according to the given endianness.
4125      * <p>
4126      * The supported component types (variables types) are {@code short},
4127      * {@code char}, {@code int}, {@code long}, {@code float} and
4128      * {@code double}.
4129      * <p>
4130      * Access of bytes at a given index will result in an
4131      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
4132      * or greater than the {@code byte[]} array length minus the size (in bytes)
4133      * of {@code T}.
4134      * <p>
4135      * Access of bytes at an index may be aligned or misaligned for {@code T},
4136      * with respect to the underlying memory address, {@code A} say, associated
4137      * with the array and index.
4138      * If access is misaligned then access for anything other than the
4139      * {@code get} and {@code set} access modes will result in an
4140      * {@code IllegalStateException}.  In such cases atomic access is only
4141      * guaranteed with respect to the largest power of two that divides the GCD
4142      * of {@code A} and the size (in bytes) of {@code T}.
4143      * If access is aligned then following access modes are supported and are
4144      * guaranteed to support atomic access:
4145      * <ul>
4146      * <li>read write access modes for all {@code T}, with the exception of
4147      *     access modes {@code get} and {@code set} for {@code long} and
4148      *     {@code double} on 32-bit platforms.
4149      * <li>atomic update access modes for {@code int}, {@code long},
4150      *     {@code float} or {@code double}.
4151      *     (Future major platform releases of the JDK may support additional
4152      *     types for certain currently unsupported access modes.)
4153      * <li>numeric atomic update access modes for {@code int} and {@code long}.
4154      *     (Future major platform releases of the JDK may support additional
4155      *     numeric types for certain currently unsupported access modes.)
4156      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
4157      *     (Future major platform releases of the JDK may support additional
4158      *     numeric types for certain currently unsupported access modes.)
4159      * </ul>
4160      * <p>
4161      * Misaligned access, and therefore atomicity guarantees, may be determined
4162      * for {@code byte[]} arrays without operating on a specific array.  Given
4163      * an {@code index}, {@code T} and it's corresponding boxed type,
4164      * {@code T_BOX}, misalignment may be determined as follows:
4165      * <pre>{@code
4166      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
4167      * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]).
4168      *     alignmentOffset(0, sizeOfT);
4169      * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT;
4170      * boolean isMisaligned = misalignedAtIndex != 0;
4171      * }</pre>
4172      * <p>
4173      * If the variable type is {@code float} or {@code double} then atomic
4174      * update access modes compare values using their bitwise representation
4175      * (see {@link Float#floatToRawIntBits} and
4176      * {@link Double#doubleToRawLongBits}, respectively).
4177      * @param viewArrayClass the view array class, with a component type of
4178      * type {@code T}
4179      * @param byteOrder the endianness of the view array elements, as
4180      * stored in the underlying {@code byte} array
4181      * @return a VarHandle giving access to elements of a {@code byte[]} array
4182      * viewed as if elements corresponding to the components type of the view
4183      * array class
4184      * @throws NullPointerException if viewArrayClass or byteOrder is null
4185      * @throws IllegalArgumentException if viewArrayClass is not an array type
4186      * @throws UnsupportedOperationException if the component type of
4187      * viewArrayClass is not supported as a variable type
4188      * @since 9
4189      */
byteArrayViewVarHandle(Class<?> viewArrayClass, ByteOrder byteOrder)4190     public static VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass,
4191                                      ByteOrder byteOrder) throws IllegalArgumentException {
4192         Objects.requireNonNull(byteOrder);
4193         return VarHandles.byteArrayViewHandle(viewArrayClass,
4194                                               byteOrder == ByteOrder.BIG_ENDIAN);
4195     }
4196 
4197     /**
4198      * Produces a VarHandle giving access to elements of a {@code ByteBuffer}
4199      * viewed as if it were an array of elements of a different primitive
4200      * component type to that of {@code byte}, such as {@code int[]} or
4201      * {@code long[]}.
4202      * The VarHandle's variable type is the component type of
4203      * {@code viewArrayClass} and the list of coordinate types is
4204      * {@code (ByteBuffer, int)}, where the {@code int} coordinate type
4205      * corresponds to an argument that is an index into a {@code byte[]} array.
4206      * The returned VarHandle accesses bytes at an index in a
4207      * {@code ByteBuffer}, composing bytes to or from a value of the component
4208      * type of {@code viewArrayClass} according to the given endianness.
4209      * <p>
4210      * The supported component types (variables types) are {@code short},
4211      * {@code char}, {@code int}, {@code long}, {@code float} and
4212      * {@code double}.
4213      * <p>
4214      * Access will result in a {@code ReadOnlyBufferException} for anything
4215      * other than the read access modes if the {@code ByteBuffer} is read-only.
4216      * <p>
4217      * Access of bytes at a given index will result in an
4218      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
4219      * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of
4220      * {@code T}.
4221      * <p>
4222      * Access of bytes at an index may be aligned or misaligned for {@code T},
4223      * with respect to the underlying memory address, {@code A} say, associated
4224      * with the {@code ByteBuffer} and index.
4225      * If access is misaligned then access for anything other than the
4226      * {@code get} and {@code set} access modes will result in an
4227      * {@code IllegalStateException}.  In such cases atomic access is only
4228      * guaranteed with respect to the largest power of two that divides the GCD
4229      * of {@code A} and the size (in bytes) of {@code T}.
4230      * If access is aligned then following access modes are supported and are
4231      * guaranteed to support atomic access:
4232      * <ul>
4233      * <li>read write access modes for all {@code T}, with the exception of
4234      *     access modes {@code get} and {@code set} for {@code long} and
4235      *     {@code double} on 32-bit platforms.
4236      * <li>atomic update access modes for {@code int}, {@code long},
4237      *     {@code float} or {@code double}.
4238      *     (Future major platform releases of the JDK may support additional
4239      *     types for certain currently unsupported access modes.)
4240      * <li>numeric atomic update access modes for {@code int} and {@code long}.
4241      *     (Future major platform releases of the JDK may support additional
4242      *     numeric types for certain currently unsupported access modes.)
4243      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
4244      *     (Future major platform releases of the JDK may support additional
4245      *     numeric types for certain currently unsupported access modes.)
4246      * </ul>
4247      * <p>
4248      * Misaligned access, and therefore atomicity guarantees, may be determined
4249      * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an
4250      * {@code index}, {@code T} and it's corresponding boxed type,
4251      * {@code T_BOX}, as follows:
4252      * <pre>{@code
4253      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
4254      * ByteBuffer bb = ...
4255      * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT);
4256      * boolean isMisaligned = misalignedAtIndex != 0;
4257      * }</pre>
4258      * <p>
4259      * If the variable type is {@code float} or {@code double} then atomic
4260      * update access modes compare values using their bitwise representation
4261      * (see {@link Float#floatToRawIntBits} and
4262      * {@link Double#doubleToRawLongBits}, respectively).
4263      * @param viewArrayClass the view array class, with a component type of
4264      * type {@code T}
4265      * @param byteOrder the endianness of the view array elements, as
4266      * stored in the underlying {@code ByteBuffer} (Note this overrides the
4267      * endianness of a {@code ByteBuffer})
4268      * @return a VarHandle giving access to elements of a {@code ByteBuffer}
4269      * viewed as if elements corresponding to the components type of the view
4270      * array class
4271      * @throws NullPointerException if viewArrayClass or byteOrder is null
4272      * @throws IllegalArgumentException if viewArrayClass is not an array type
4273      * @throws UnsupportedOperationException if the component type of
4274      * viewArrayClass is not supported as a variable type
4275      * @since 9
4276      */
byteBufferViewVarHandle(Class<?> viewArrayClass, ByteOrder byteOrder)4277     public static VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass,
4278                                       ByteOrder byteOrder) throws IllegalArgumentException {
4279         Objects.requireNonNull(byteOrder);
4280         return VarHandles.makeByteBufferViewHandle(viewArrayClass,
4281                                                    byteOrder == ByteOrder.BIG_ENDIAN);
4282     }
4283 
4284 
4285     /// method handle invocation (reflective style)
4286 
4287     /**
4288      * Produces a method handle which will invoke any method handle of the
4289      * given {@code type}, with a given number of trailing arguments replaced by
4290      * a single trailing {@code Object[]} array.
4291      * The resulting invoker will be a method handle with the following
4292      * arguments:
4293      * <ul>
4294      * <li>a single {@code MethodHandle} target
4295      * <li>zero or more leading values (counted by {@code leadingArgCount})
4296      * <li>an {@code Object[]} array containing trailing arguments
4297      * </ul>
4298      * <p>
4299      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
4300      * the indicated {@code type}.
4301      * That is, if the target is exactly of the given {@code type}, it will behave
4302      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
4303      * is used to convert the target to the required {@code type}.
4304      * <p>
4305      * The type of the returned invoker will not be the given {@code type}, but rather
4306      * will have all parameters except the first {@code leadingArgCount}
4307      * replaced by a single array of type {@code Object[]}, which will be
4308      * the final parameter.
4309      * <p>
4310      * Before invoking its target, the invoker will spread the final array, apply
4311      * reference casts as necessary, and unbox and widen primitive arguments.
4312      * If, when the invoker is called, the supplied array argument does
4313      * not have the correct number of elements, the invoker will throw
4314      * an {@link IllegalArgumentException} instead of invoking the target.
4315      * <p>
4316      * This method is equivalent to the following code (though it may be more efficient):
4317      * <blockquote><pre>{@code
4318 MethodHandle invoker = MethodHandles.invoker(type);
4319 int spreadArgCount = type.parameterCount() - leadingArgCount;
4320 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
4321 return invoker;
4322      * }</pre></blockquote>
4323      * This method throws no reflective or security exceptions.
4324      * @param type the desired target type
4325      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
4326      * @return a method handle suitable for invoking any method handle of the given type
4327      * @throws NullPointerException if {@code type} is null
4328      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
4329      *                  the range from 0 to {@code type.parameterCount()} inclusive,
4330      *                  or if the resulting method handle's type would have
4331      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4332      */
spreadInvoker(MethodType type, int leadingArgCount)4333     public static MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
4334         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
4335             throw newIllegalArgumentException("bad argument count", leadingArgCount);
4336         type = type.asSpreaderType(Object[].class, leadingArgCount, type.parameterCount() - leadingArgCount);
4337         return type.invokers().spreadInvoker(leadingArgCount);
4338     }
4339 
4340     /**
4341      * Produces a special <em>invoker method handle</em> which can be used to
4342      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
4343      * The resulting invoker will have a type which is
4344      * exactly equal to the desired type, except that it will accept
4345      * an additional leading argument of type {@code MethodHandle}.
4346      * <p>
4347      * This method is equivalent to the following code (though it may be more efficient):
4348      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
4349      *
4350      * <p style="font-size:smaller;">
4351      * <em>Discussion:</em>
4352      * Invoker method handles can be useful when working with variable method handles
4353      * of unknown types.
4354      * For example, to emulate an {@code invokeExact} call to a variable method
4355      * handle {@code M}, extract its type {@code T},
4356      * look up the invoker method {@code X} for {@code T},
4357      * and call the invoker method, as {@code X.invoke(T, A...)}.
4358      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
4359      * is unknown.)
4360      * If spreading, collecting, or other argument transformations are required,
4361      * they can be applied once to the invoker {@code X} and reused on many {@code M}
4362      * method handle values, as long as they are compatible with the type of {@code X}.
4363      * <p style="font-size:smaller;">
4364      * <em>(Note:  The invoker method is not available via the Core Reflection API.
4365      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
4366      * on the declared {@code invokeExact} or {@code invoke} method will raise an
4367      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
4368      * <p>
4369      * This method throws no reflective or security exceptions.
4370      * @param type the desired target type
4371      * @return a method handle suitable for invoking any method handle of the given type
4372      * @throws IllegalArgumentException if the resulting method handle's type would have
4373      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4374      */
exactInvoker(MethodType type)4375     public static MethodHandle exactInvoker(MethodType type) {
4376         return type.invokers().exactInvoker();
4377     }
4378 
4379     /**
4380      * Produces a special <em>invoker method handle</em> which can be used to
4381      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
4382      * The resulting invoker will have a type which is
4383      * exactly equal to the desired type, except that it will accept
4384      * an additional leading argument of type {@code MethodHandle}.
4385      * <p>
4386      * Before invoking its target, if the target differs from the expected type,
4387      * the invoker will apply reference casts as
4388      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
4389      * Similarly, the return value will be converted as necessary.
4390      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
4391      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
4392      * <p>
4393      * This method is equivalent to the following code (though it may be more efficient):
4394      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
4395      * <p style="font-size:smaller;">
4396      * <em>Discussion:</em>
4397      * A {@linkplain MethodType#genericMethodType general method type} is one which
4398      * mentions only {@code Object} arguments and return values.
4399      * An invoker for such a type is capable of calling any method handle
4400      * of the same arity as the general type.
4401      * <p style="font-size:smaller;">
4402      * <em>(Note:  The invoker method is not available via the Core Reflection API.
4403      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
4404      * on the declared {@code invokeExact} or {@code invoke} method will raise an
4405      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
4406      * <p>
4407      * This method throws no reflective or security exceptions.
4408      * @param type the desired target type
4409      * @return a method handle suitable for invoking any method handle convertible to the given type
4410      * @throws IllegalArgumentException if the resulting method handle's type would have
4411      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4412      */
invoker(MethodType type)4413     public static MethodHandle invoker(MethodType type) {
4414         return type.invokers().genericInvoker();
4415     }
4416 
4417     /**
4418      * Produces a special <em>invoker method handle</em> which can be used to
4419      * invoke a signature-polymorphic access mode method on any VarHandle whose
4420      * associated access mode type is compatible with the given type.
4421      * The resulting invoker will have a type which is exactly equal to the
4422      * desired given type, except that it will accept an additional leading
4423      * argument of type {@code VarHandle}.
4424      *
4425      * @param accessMode the VarHandle access mode
4426      * @param type the desired target type
4427      * @return a method handle suitable for invoking an access mode method of
4428      *         any VarHandle whose access mode type is of the given type.
4429      * @since 9
4430      */
varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type)4431     public static MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) {
4432         return type.invokers().varHandleMethodExactInvoker(accessMode);
4433     }
4434 
4435     /**
4436      * Produces a special <em>invoker method handle</em> which can be used to
4437      * invoke a signature-polymorphic access mode method on any VarHandle whose
4438      * associated access mode type is compatible with the given type.
4439      * The resulting invoker will have a type which is exactly equal to the
4440      * desired given type, except that it will accept an additional leading
4441      * argument of type {@code VarHandle}.
4442      * <p>
4443      * Before invoking its target, if the access mode type differs from the
4444      * desired given type, the invoker will apply reference casts as necessary
4445      * and box, unbox, or widen primitive values, as if by
4446      * {@link MethodHandle#asType asType}.  Similarly, the return value will be
4447      * converted as necessary.
4448      * <p>
4449      * This method is equivalent to the following code (though it may be more
4450      * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)}
4451      *
4452      * @param accessMode the VarHandle access mode
4453      * @param type the desired target type
4454      * @return a method handle suitable for invoking an access mode method of
4455      *         any VarHandle whose access mode type is convertible to the given
4456      *         type.
4457      * @since 9
4458      */
varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type)4459     public static MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) {
4460         return type.invokers().varHandleMethodInvoker(accessMode);
4461     }
4462 
4463     /*non-public*/
basicInvoker(MethodType type)4464     static MethodHandle basicInvoker(MethodType type) {
4465         return type.invokers().basicInvoker();
4466     }
4467 
4468      /// method handle modification (creation from other method handles)
4469 
4470     /**
4471      * Produces a method handle which adapts the type of the
4472      * given method handle to a new type by pairwise argument and return type conversion.
4473      * The original type and new type must have the same number of arguments.
4474      * The resulting method handle is guaranteed to report a type
4475      * which is equal to the desired new type.
4476      * <p>
4477      * If the original type and new type are equal, returns target.
4478      * <p>
4479      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
4480      * and some additional conversions are also applied if those conversions fail.
4481      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
4482      * if possible, before or instead of any conversions done by {@code asType}:
4483      * <ul>
4484      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
4485      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
4486      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
4487      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
4488      *     the boolean is converted to a byte value, 1 for true, 0 for false.
4489      *     (This treatment follows the usage of the bytecode verifier.)
4490      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
4491      *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
4492      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
4493      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
4494      *     then a Java casting conversion (JLS 5.5) is applied.
4495      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
4496      *     widening and/or narrowing.)
4497      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
4498      *     conversion will be applied at runtime, possibly followed
4499      *     by a Java casting conversion (JLS 5.5) on the primitive value,
4500      *     possibly followed by a conversion from byte to boolean by testing
4501      *     the low-order bit.
4502      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
4503      *     and if the reference is null at runtime, a zero value is introduced.
4504      * </ul>
4505      * @param target the method handle to invoke after arguments are retyped
4506      * @param newType the expected type of the new method handle
4507      * @return a method handle which delegates to the target after performing
4508      *           any necessary argument conversions, and arranges for any
4509      *           necessary return value conversions
4510      * @throws NullPointerException if either argument is null
4511      * @throws WrongMethodTypeException if the conversion cannot be made
4512      * @see MethodHandle#asType
4513      */
explicitCastArguments(MethodHandle target, MethodType newType)4514     public static MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
4515         explicitCastArgumentsChecks(target, newType);
4516         // use the asTypeCache when possible:
4517         MethodType oldType = target.type();
4518         if (oldType == newType)  return target;
4519         if (oldType.explicitCastEquivalentToAsType(newType)) {
4520             return target.asFixedArity().asType(newType);
4521         }
4522         return MethodHandleImpl.makePairwiseConvert(target, newType, false);
4523     }
4524 
explicitCastArgumentsChecks(MethodHandle target, MethodType newType)4525     private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) {
4526         if (target.type().parameterCount() != newType.parameterCount()) {
4527             throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType);
4528         }
4529     }
4530 
4531     /**
4532      * Produces a method handle which adapts the calling sequence of the
4533      * given method handle to a new type, by reordering the arguments.
4534      * The resulting method handle is guaranteed to report a type
4535      * which is equal to the desired new type.
4536      * <p>
4537      * The given array controls the reordering.
4538      * Call {@code #I} the number of incoming parameters (the value
4539      * {@code newType.parameterCount()}, and call {@code #O} the number
4540      * of outgoing parameters (the value {@code target.type().parameterCount()}).
4541      * Then the length of the reordering array must be {@code #O},
4542      * and each element must be a non-negative number less than {@code #I}.
4543      * For every {@code N} less than {@code #O}, the {@code N}-th
4544      * outgoing argument will be taken from the {@code I}-th incoming
4545      * argument, where {@code I} is {@code reorder[N]}.
4546      * <p>
4547      * No argument or return value conversions are applied.
4548      * The type of each incoming argument, as determined by {@code newType},
4549      * must be identical to the type of the corresponding outgoing parameter
4550      * or parameters in the target method handle.
4551      * The return type of {@code newType} must be identical to the return
4552      * type of the original target.
4553      * <p>
4554      * The reordering array need not specify an actual permutation.
4555      * An incoming argument will be duplicated if its index appears
4556      * more than once in the array, and an incoming argument will be dropped
4557      * if its index does not appear in the array.
4558      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
4559      * incoming arguments which are not mentioned in the reordering array
4560      * may be of any type, as determined only by {@code newType}.
4561      * <blockquote><pre>{@code
4562 import static java.lang.invoke.MethodHandles.*;
4563 import static java.lang.invoke.MethodType.*;
4564 ...
4565 MethodType intfn1 = methodType(int.class, int.class);
4566 MethodType intfn2 = methodType(int.class, int.class, int.class);
4567 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
4568 assert(sub.type().equals(intfn2));
4569 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
4570 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
4571 assert((int)rsub.invokeExact(1, 100) == 99);
4572 MethodHandle add = ... (int x, int y) -> (x+y) ...;
4573 assert(add.type().equals(intfn2));
4574 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
4575 assert(twice.type().equals(intfn1));
4576 assert((int)twice.invokeExact(21) == 42);
4577      * }</pre></blockquote>
4578      * <p>
4579      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4580      * variable-arity method handle}, even if the original target method handle was.
4581      * @param target the method handle to invoke after arguments are reordered
4582      * @param newType the expected type of the new method handle
4583      * @param reorder an index array which controls the reordering
4584      * @return a method handle which delegates to the target after it
4585      *           drops unused arguments and moves and/or duplicates the other arguments
4586      * @throws NullPointerException if any argument is null
4587      * @throws IllegalArgumentException if the index array length is not equal to
4588      *                  the arity of the target, or if any index array element
4589      *                  not a valid index for a parameter of {@code newType},
4590      *                  or if two corresponding parameter types in
4591      *                  {@code target.type()} and {@code newType} are not identical,
4592      */
permuteArguments(MethodHandle target, MethodType newType, int... reorder)4593     public static MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
4594         reorder = reorder.clone();  // get a private copy
4595         MethodType oldType = target.type();
4596         permuteArgumentChecks(reorder, newType, oldType);
4597         // first detect dropped arguments and handle them separately
4598         int[] originalReorder = reorder;
4599         BoundMethodHandle result = target.rebind();
4600         LambdaForm form = result.form;
4601         int newArity = newType.parameterCount();
4602         // Normalize the reordering into a real permutation,
4603         // by removing duplicates and adding dropped elements.
4604         // This somewhat improves lambda form caching, as well
4605         // as simplifying the transform by breaking it up into steps.
4606         for (int ddIdx; (ddIdx = findFirstDupOrDrop(reorder, newArity)) != 0; ) {
4607             if (ddIdx > 0) {
4608                 // We found a duplicated entry at reorder[ddIdx].
4609                 // Example:  (x,y,z)->asList(x,y,z)
4610                 // permuted by [1*,0,1] => (a0,a1)=>asList(a1,a0,a1)
4611                 // permuted by [0,1,0*] => (a0,a1)=>asList(a0,a1,a0)
4612                 // The starred element corresponds to the argument
4613                 // deleted by the dupArgumentForm transform.
4614                 int srcPos = ddIdx, dstPos = srcPos, dupVal = reorder[srcPos];
4615                 boolean killFirst = false;
4616                 for (int val; (val = reorder[--dstPos]) != dupVal; ) {
4617                     // Set killFirst if the dup is larger than an intervening position.
4618                     // This will remove at least one inversion from the permutation.
4619                     if (dupVal > val) killFirst = true;
4620                 }
4621                 if (!killFirst) {
4622                     srcPos = dstPos;
4623                     dstPos = ddIdx;
4624                 }
4625                 form = form.editor().dupArgumentForm(1 + srcPos, 1 + dstPos);
4626                 assert (reorder[srcPos] == reorder[dstPos]);
4627                 oldType = oldType.dropParameterTypes(dstPos, dstPos + 1);
4628                 // contract the reordering by removing the element at dstPos
4629                 int tailPos = dstPos + 1;
4630                 System.arraycopy(reorder, tailPos, reorder, dstPos, reorder.length - tailPos);
4631                 reorder = Arrays.copyOf(reorder, reorder.length - 1);
4632             } else {
4633                 int dropVal = ~ddIdx, insPos = 0;
4634                 while (insPos < reorder.length && reorder[insPos] < dropVal) {
4635                     // Find first element of reorder larger than dropVal.
4636                     // This is where we will insert the dropVal.
4637                     insPos += 1;
4638                 }
4639                 Class<?> ptype = newType.parameterType(dropVal);
4640                 form = form.editor().addArgumentForm(1 + insPos, BasicType.basicType(ptype));
4641                 oldType = oldType.insertParameterTypes(insPos, ptype);
4642                 // expand the reordering by inserting an element at insPos
4643                 int tailPos = insPos + 1;
4644                 reorder = Arrays.copyOf(reorder, reorder.length + 1);
4645                 System.arraycopy(reorder, insPos, reorder, tailPos, reorder.length - tailPos);
4646                 reorder[insPos] = dropVal;
4647             }
4648             assert (permuteArgumentChecks(reorder, newType, oldType));
4649         }
4650         assert (reorder.length == newArity);  // a perfect permutation
4651         // Note:  This may cache too many distinct LFs. Consider backing off to varargs code.
4652         form = form.editor().permuteArgumentsForm(1, reorder);
4653         if (newType == result.type() && form == result.internalForm())
4654             return result;
4655         return result.copyWith(newType, form);
4656     }
4657 
4658     /**
4659      * Return an indication of any duplicate or omission in reorder.
4660      * If the reorder contains a duplicate entry, return the index of the second occurrence.
4661      * Otherwise, return ~(n), for the first n in [0..newArity-1] that is not present in reorder.
4662      * Otherwise, return zero.
4663      * If an element not in [0..newArity-1] is encountered, return reorder.length.
4664      */
findFirstDupOrDrop(int[] reorder, int newArity)4665     private static int findFirstDupOrDrop(int[] reorder, int newArity) {
4666         final int BIT_LIMIT = 63;  // max number of bits in bit mask
4667         if (newArity < BIT_LIMIT) {
4668             long mask = 0;
4669             for (int i = 0; i < reorder.length; i++) {
4670                 int arg = reorder[i];
4671                 if (arg >= newArity) {
4672                     return reorder.length;
4673                 }
4674                 long bit = 1L << arg;
4675                 if ((mask & bit) != 0) {
4676                     return i;  // >0 indicates a dup
4677                 }
4678                 mask |= bit;
4679             }
4680             if (mask == (1L << newArity) - 1) {
4681                 assert(Long.numberOfTrailingZeros(Long.lowestOneBit(~mask)) == newArity);
4682                 return 0;
4683             }
4684             // find first zero
4685             long zeroBit = Long.lowestOneBit(~mask);
4686             int zeroPos = Long.numberOfTrailingZeros(zeroBit);
4687             assert(zeroPos <= newArity);
4688             if (zeroPos == newArity) {
4689                 return 0;
4690             }
4691             return ~zeroPos;
4692         } else {
4693             // same algorithm, different bit set
4694             BitSet mask = new BitSet(newArity);
4695             for (int i = 0; i < reorder.length; i++) {
4696                 int arg = reorder[i];
4697                 if (arg >= newArity) {
4698                     return reorder.length;
4699                 }
4700                 if (mask.get(arg)) {
4701                     return i;  // >0 indicates a dup
4702                 }
4703                 mask.set(arg);
4704             }
4705             int zeroPos = mask.nextClearBit(0);
4706             assert(zeroPos <= newArity);
4707             if (zeroPos == newArity) {
4708                 return 0;
4709             }
4710             return ~zeroPos;
4711         }
4712     }
4713 
permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType)4714     static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) {
4715         if (newType.returnType() != oldType.returnType())
4716             throw newIllegalArgumentException("return types do not match",
4717                     oldType, newType);
4718         if (reorder.length == oldType.parameterCount()) {
4719             int limit = newType.parameterCount();
4720             boolean bad = false;
4721             for (int j = 0; j < reorder.length; j++) {
4722                 int i = reorder[j];
4723                 if (i < 0 || i >= limit) {
4724                     bad = true; break;
4725                 }
4726                 Class<?> src = newType.parameterType(i);
4727                 Class<?> dst = oldType.parameterType(j);
4728                 if (src != dst)
4729                     throw newIllegalArgumentException("parameter types do not match after reorder",
4730                             oldType, newType);
4731             }
4732             if (!bad)  return true;
4733         }
4734         throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
4735     }
4736 
4737     /**
4738      * Produces a method handle of the requested return type which returns the given
4739      * constant value every time it is invoked.
4740      * <p>
4741      * Before the method handle is returned, the passed-in value is converted to the requested type.
4742      * If the requested type is primitive, widening primitive conversions are attempted,
4743      * else reference conversions are attempted.
4744      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
4745      * @param type the return type of the desired method handle
4746      * @param value the value to return
4747      * @return a method handle of the given return type and no arguments, which always returns the given value
4748      * @throws NullPointerException if the {@code type} argument is null
4749      * @throws ClassCastException if the value cannot be converted to the required return type
4750      * @throws IllegalArgumentException if the given type is {@code void.class}
4751      */
constant(Class<?> type, Object value)4752     public static MethodHandle constant(Class<?> type, Object value) {
4753         if (type.isPrimitive()) {
4754             if (type == void.class)
4755                 throw newIllegalArgumentException("void type");
4756             Wrapper w = Wrapper.forPrimitiveType(type);
4757             value = w.convert(value, type);
4758             if (w.zero().equals(value))
4759                 return zero(w, type);
4760             return insertArguments(identity(type), 0, value);
4761         } else {
4762             if (value == null)
4763                 return zero(Wrapper.OBJECT, type);
4764             return identity(type).bindTo(value);
4765         }
4766     }
4767 
4768     /**
4769      * Produces a method handle which returns its sole argument when invoked.
4770      * @param type the type of the sole parameter and return value of the desired method handle
4771      * @return a unary method handle which accepts and returns the given type
4772      * @throws NullPointerException if the argument is null
4773      * @throws IllegalArgumentException if the given type is {@code void.class}
4774      */
identity(Class<?> type)4775     public static MethodHandle identity(Class<?> type) {
4776         Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT);
4777         int pos = btw.ordinal();
4778         MethodHandle ident = IDENTITY_MHS[pos];
4779         if (ident == null) {
4780             ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType()));
4781         }
4782         if (ident.type().returnType() == type)
4783             return ident;
4784         // something like identity(Foo.class); do not bother to intern these
4785         assert (btw == Wrapper.OBJECT);
4786         return makeIdentity(type);
4787     }
4788 
4789     /**
4790      * Produces a constant method handle of the requested return type which
4791      * returns the default value for that type every time it is invoked.
4792      * The resulting constant method handle will have no side effects.
4793      * <p>The returned method handle is equivalent to {@code empty(methodType(type))}.
4794      * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))},
4795      * since {@code explicitCastArguments} converts {@code null} to default values.
4796      * @param type the expected return type of the desired method handle
4797      * @return a constant method handle that takes no arguments
4798      *         and returns the default value of the given type (or void, if the type is void)
4799      * @throws NullPointerException if the argument is null
4800      * @see MethodHandles#constant
4801      * @see MethodHandles#empty
4802      * @see MethodHandles#explicitCastArguments
4803      * @since 9
4804      */
zero(Class<?> type)4805     public static MethodHandle zero(Class<?> type) {
4806         Objects.requireNonNull(type);
4807         return type.isPrimitive() ?  zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type);
4808     }
4809 
identityOrVoid(Class<?> type)4810     private static MethodHandle identityOrVoid(Class<?> type) {
4811         return type == void.class ? zero(type) : identity(type);
4812     }
4813 
4814     /**
4815      * Produces a method handle of the requested type which ignores any arguments, does nothing,
4816      * and returns a suitable default depending on the return type.
4817      * That is, it returns a zero primitive value, a {@code null}, or {@code void}.
4818      * <p>The returned method handle is equivalent to
4819      * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}.
4820      *
4821      * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as
4822      * {@code guardWithTest(pred, target, empty(target.type())}.
4823      * @param type the type of the desired method handle
4824      * @return a constant method handle of the given type, which returns a default value of the given return type
4825      * @throws NullPointerException if the argument is null
4826      * @see MethodHandles#zero
4827      * @see MethodHandles#constant
4828      * @since 9
4829      */
empty(MethodType type)4830     public static  MethodHandle empty(MethodType type) {
4831         Objects.requireNonNull(type);
4832         return dropArguments(zero(type.returnType()), 0, type.parameterList());
4833     }
4834 
4835     private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT];
makeIdentity(Class<?> ptype)4836     private static MethodHandle makeIdentity(Class<?> ptype) {
4837         MethodType mtype = methodType(ptype, ptype);
4838         LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype));
4839         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY);
4840     }
4841 
zero(Wrapper btw, Class<?> rtype)4842     private static MethodHandle zero(Wrapper btw, Class<?> rtype) {
4843         int pos = btw.ordinal();
4844         MethodHandle zero = ZERO_MHS[pos];
4845         if (zero == null) {
4846             zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType()));
4847         }
4848         if (zero.type().returnType() == rtype)
4849             return zero;
4850         assert(btw == Wrapper.OBJECT);
4851         return makeZero(rtype);
4852     }
4853     private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT];
makeZero(Class<?> rtype)4854     private static MethodHandle makeZero(Class<?> rtype) {
4855         MethodType mtype = methodType(rtype);
4856         LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype));
4857         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO);
4858     }
4859 
setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value)4860     private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) {
4861         // Simulate a CAS, to avoid racy duplication of results.
4862         MethodHandle prev = cache[pos];
4863         if (prev != null) return prev;
4864         return cache[pos] = value;
4865     }
4866 
4867     /**
4868      * Provides a target method handle with one or more <em>bound arguments</em>
4869      * in advance of the method handle's invocation.
4870      * The formal parameters to the target corresponding to the bound
4871      * arguments are called <em>bound parameters</em>.
4872      * Returns a new method handle which saves away the bound arguments.
4873      * When it is invoked, it receives arguments for any non-bound parameters,
4874      * binds the saved arguments to their corresponding parameters,
4875      * and calls the original target.
4876      * <p>
4877      * The type of the new method handle will drop the types for the bound
4878      * parameters from the original target type, since the new method handle
4879      * will no longer require those arguments to be supplied by its callers.
4880      * <p>
4881      * Each given argument object must match the corresponding bound parameter type.
4882      * If a bound parameter type is a primitive, the argument object
4883      * must be a wrapper, and will be unboxed to produce the primitive value.
4884      * <p>
4885      * The {@code pos} argument selects which parameters are to be bound.
4886      * It may range between zero and <i>N-L</i> (inclusively),
4887      * where <i>N</i> is the arity of the target method handle
4888      * and <i>L</i> is the length of the values array.
4889      * <p>
4890      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4891      * variable-arity method handle}, even if the original target method handle was.
4892      * @param target the method handle to invoke after the argument is inserted
4893      * @param pos where to insert the argument (zero for the first)
4894      * @param values the series of arguments to insert
4895      * @return a method handle which inserts an additional argument,
4896      *         before calling the original method handle
4897      * @throws NullPointerException if the target or the {@code values} array is null
4898      * @throws IllegalArgumentException if (@code pos) is less than {@code 0} or greater than
4899      *         {@code N - L} where {@code N} is the arity of the target method handle and {@code L}
4900      *         is the length of the values array.
4901      * @throws ClassCastException if an argument does not match the corresponding bound parameter
4902      *         type.
4903      * @see MethodHandle#bindTo
4904      */
insertArguments(MethodHandle target, int pos, Object... values)4905     public static MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
4906         int insCount = values.length;
4907         Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos);
4908         if (insCount == 0)  return target;
4909         BoundMethodHandle result = target.rebind();
4910         for (int i = 0; i < insCount; i++) {
4911             Object value = values[i];
4912             Class<?> ptype = ptypes[pos+i];
4913             if (ptype.isPrimitive()) {
4914                 result = insertArgumentPrimitive(result, pos, ptype, value);
4915             } else {
4916                 value = ptype.cast(value);  // throw CCE if needed
4917                 result = result.bindArgumentL(pos, value);
4918             }
4919         }
4920         return result;
4921     }
4922 
insertArgumentPrimitive(BoundMethodHandle result, int pos, Class<?> ptype, Object value)4923     private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos,
4924                                                              Class<?> ptype, Object value) {
4925         Wrapper w = Wrapper.forPrimitiveType(ptype);
4926         // perform unboxing and/or primitive conversion
4927         value = w.convert(value, ptype);
4928         switch (w) {
4929         case INT:     return result.bindArgumentI(pos, (int)value);
4930         case LONG:    return result.bindArgumentJ(pos, (long)value);
4931         case FLOAT:   return result.bindArgumentF(pos, (float)value);
4932         case DOUBLE:  return result.bindArgumentD(pos, (double)value);
4933         default:      return result.bindArgumentI(pos, ValueConversions.widenSubword(value));
4934         }
4935     }
4936 
insertArgumentsChecks(MethodHandle target, int insCount, int pos)4937     private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException {
4938         MethodType oldType = target.type();
4939         int outargs = oldType.parameterCount();
4940         int inargs  = outargs - insCount;
4941         if (inargs < 0)
4942             throw newIllegalArgumentException("too many values to insert");
4943         if (pos < 0 || pos > inargs)
4944             throw newIllegalArgumentException("no argument type to append");
4945         return oldType.ptypes();
4946     }
4947 
4948     /**
4949      * Produces a method handle which will discard some dummy arguments
4950      * before calling some other specified <i>target</i> method handle.
4951      * The type of the new method handle will be the same as the target's type,
4952      * except it will also include the dummy argument types,
4953      * at some given position.
4954      * <p>
4955      * The {@code pos} argument may range between zero and <i>N</i>,
4956      * where <i>N</i> is the arity of the target.
4957      * If {@code pos} is zero, the dummy arguments will precede
4958      * the target's real arguments; if {@code pos} is <i>N</i>
4959      * they will come after.
4960      * <p>
4961      * <b>Example:</b>
4962      * <blockquote><pre>{@code
4963 import static java.lang.invoke.MethodHandles.*;
4964 import static java.lang.invoke.MethodType.*;
4965 ...
4966 MethodHandle cat = lookup().findVirtual(String.class,
4967   "concat", methodType(String.class, String.class));
4968 assertEquals("xy", (String) cat.invokeExact("x", "y"));
4969 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
4970 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
4971 assertEquals(bigType, d0.type());
4972 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
4973      * }</pre></blockquote>
4974      * <p>
4975      * This method is also equivalent to the following code:
4976      * <blockquote><pre>
4977      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
4978      * </pre></blockquote>
4979      * @param target the method handle to invoke after the arguments are dropped
4980      * @param pos position of first argument to drop (zero for the leftmost)
4981      * @param valueTypes the type(s) of the argument(s) to drop
4982      * @return a method handle which drops arguments of the given types,
4983      *         before calling the original method handle
4984      * @throws NullPointerException if the target is null,
4985      *                              or if the {@code valueTypes} list or any of its elements is null
4986      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
4987      *                  or if {@code pos} is negative or greater than the arity of the target,
4988      *                  or if the new method handle's type would have too many parameters
4989      */
dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes)4990     public static MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
4991         return dropArguments0(target, pos, copyTypes(valueTypes.toArray()));
4992     }
4993 
copyTypes(Object[] array)4994     private static List<Class<?>> copyTypes(Object[] array) {
4995         return Arrays.asList(Arrays.copyOf(array, array.length, Class[].class));
4996     }
4997 
dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes)4998     private static MethodHandle dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes) {
4999         MethodType oldType = target.type();  // get NPE
5000         int dropped = dropArgumentChecks(oldType, pos, valueTypes);
5001         MethodType newType = oldType.insertParameterTypes(pos, valueTypes);
5002         if (dropped == 0)  return target;
5003         BoundMethodHandle result = target.rebind();
5004         LambdaForm lform = result.form;
5005         int insertFormArg = 1 + pos;
5006         for (Class<?> ptype : valueTypes) {
5007             lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype));
5008         }
5009         result = result.copyWith(newType, lform);
5010         return result;
5011     }
5012 
dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes)5013     private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) {
5014         int dropped = valueTypes.size();
5015         MethodType.checkSlotCount(dropped);
5016         int outargs = oldType.parameterCount();
5017         int inargs  = outargs + dropped;
5018         if (pos < 0 || pos > outargs)
5019             throw newIllegalArgumentException("no argument type to remove"
5020                     + Arrays.asList(oldType, pos, valueTypes, inargs, outargs)
5021                     );
5022         return dropped;
5023     }
5024 
5025     /**
5026      * Produces a method handle which will discard some dummy arguments
5027      * before calling some other specified <i>target</i> method handle.
5028      * The type of the new method handle will be the same as the target's type,
5029      * except it will also include the dummy argument types,
5030      * at some given position.
5031      * <p>
5032      * The {@code pos} argument may range between zero and <i>N</i>,
5033      * where <i>N</i> is the arity of the target.
5034      * If {@code pos} is zero, the dummy arguments will precede
5035      * the target's real arguments; if {@code pos} is <i>N</i>
5036      * they will come after.
5037      * @apiNote
5038      * <blockquote><pre>{@code
5039 import static java.lang.invoke.MethodHandles.*;
5040 import static java.lang.invoke.MethodType.*;
5041 ...
5042 MethodHandle cat = lookup().findVirtual(String.class,
5043   "concat", methodType(String.class, String.class));
5044 assertEquals("xy", (String) cat.invokeExact("x", "y"));
5045 MethodHandle d0 = dropArguments(cat, 0, String.class);
5046 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
5047 MethodHandle d1 = dropArguments(cat, 1, String.class);
5048 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
5049 MethodHandle d2 = dropArguments(cat, 2, String.class);
5050 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
5051 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
5052 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
5053      * }</pre></blockquote>
5054      * <p>
5055      * This method is also equivalent to the following code:
5056      * <blockquote><pre>
5057      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
5058      * </pre></blockquote>
5059      * @param target the method handle to invoke after the arguments are dropped
5060      * @param pos position of first argument to drop (zero for the leftmost)
5061      * @param valueTypes the type(s) of the argument(s) to drop
5062      * @return a method handle which drops arguments of the given types,
5063      *         before calling the original method handle
5064      * @throws NullPointerException if the target is null,
5065      *                              or if the {@code valueTypes} array or any of its elements is null
5066      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
5067      *                  or if {@code pos} is negative or greater than the arity of the target,
5068      *                  or if the new method handle's type would have
5069      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
5070      */
dropArguments(MethodHandle target, int pos, Class<?>... valueTypes)5071     public static MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
5072         return dropArguments0(target, pos, copyTypes(valueTypes));
5073     }
5074 
5075     // private version which allows caller some freedom with error handling
dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos, boolean nullOnFailure)5076     private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos,
5077                                       boolean nullOnFailure) {
5078         newTypes = copyTypes(newTypes.toArray());
5079         List<Class<?>> oldTypes = target.type().parameterList();
5080         int match = oldTypes.size();
5081         if (skip != 0) {
5082             if (skip < 0 || skip > match) {
5083                 throw newIllegalArgumentException("illegal skip", skip, target);
5084             }
5085             oldTypes = oldTypes.subList(skip, match);
5086             match -= skip;
5087         }
5088         List<Class<?>> addTypes = newTypes;
5089         int add = addTypes.size();
5090         if (pos != 0) {
5091             if (pos < 0 || pos > add) {
5092                 throw newIllegalArgumentException("illegal pos", pos, newTypes);
5093             }
5094             addTypes = addTypes.subList(pos, add);
5095             add -= pos;
5096             assert(addTypes.size() == add);
5097         }
5098         // Do not add types which already match the existing arguments.
5099         if (match > add || !oldTypes.equals(addTypes.subList(0, match))) {
5100             if (nullOnFailure) {
5101                 return null;
5102             }
5103             throw newIllegalArgumentException("argument lists do not match", oldTypes, newTypes);
5104         }
5105         addTypes = addTypes.subList(match, add);
5106         add -= match;
5107         assert(addTypes.size() == add);
5108         // newTypes:     (   P*[pos], M*[match], A*[add] )
5109         // target: ( S*[skip],        M*[match]  )
5110         MethodHandle adapter = target;
5111         if (add > 0) {
5112             adapter = dropArguments0(adapter, skip+ match, addTypes);
5113         }
5114         // adapter: (S*[skip],        M*[match], A*[add] )
5115         if (pos > 0) {
5116             adapter = dropArguments0(adapter, skip, newTypes.subList(0, pos));
5117         }
5118         // adapter: (S*[skip], P*[pos], M*[match], A*[add] )
5119         return adapter;
5120     }
5121 
5122     /**
5123      * Adapts a target method handle to match the given parameter type list. If necessary, adds dummy arguments. Some
5124      * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter
5125      * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The
5126      * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before
5127      * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by
5128      * {@link #dropArguments(MethodHandle, int, Class[])}.
5129      * <p>
5130      * The resulting handle will have the same return type as the target handle.
5131      * <p>
5132      * In more formal terms, assume these two type lists:<ul>
5133      * <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as
5134      * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list,
5135      * {@code newTypes}.
5136      * <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as
5137      * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's
5138      * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching
5139      * sub-list.
5140      * </ul>
5141      * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type
5142      * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by
5143      * {@link #dropArguments(MethodHandle, int, Class[])}.
5144      *
5145      * @apiNote
5146      * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be
5147      * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows:
5148      * <blockquote><pre>{@code
5149 import static java.lang.invoke.MethodHandles.*;
5150 import static java.lang.invoke.MethodType.*;
5151 ...
5152 ...
5153 MethodHandle h0 = constant(boolean.class, true);
5154 MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class));
5155 MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class);
5156 MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList());
5157 if (h1.type().parameterCount() < h2.type().parameterCount())
5158     h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0);  // lengthen h1
5159 else
5160     h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0);    // lengthen h2
5161 MethodHandle h3 = guardWithTest(h0, h1, h2);
5162 assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c"));
5163      * }</pre></blockquote>
5164      * @param target the method handle to adapt
5165      * @param skip number of targets parameters to disregard (they will be unchanged)
5166      * @param newTypes the list of types to match {@code target}'s parameter type list to
5167      * @param pos place in {@code newTypes} where the non-skipped target parameters must occur
5168      * @return a possibly adapted method handle
5169      * @throws NullPointerException if either argument is null
5170      * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class},
5171      *         or if {@code skip} is negative or greater than the arity of the target,
5172      *         or if {@code pos} is negative or greater than the newTypes list size,
5173      *         or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position
5174      *         {@code pos}.
5175      * @since 9
5176      */
dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos)5177     public static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) {
5178         Objects.requireNonNull(target);
5179         Objects.requireNonNull(newTypes);
5180         return dropArgumentsToMatch(target, skip, newTypes, pos, false);
5181     }
5182 
5183     /**
5184      * Adapts a target method handle by pre-processing
5185      * one or more of its arguments, each with its own unary filter function,
5186      * and then calling the target with each pre-processed argument
5187      * replaced by the result of its corresponding filter function.
5188      * <p>
5189      * The pre-processing is performed by one or more method handles,
5190      * specified in the elements of the {@code filters} array.
5191      * The first element of the filter array corresponds to the {@code pos}
5192      * argument of the target, and so on in sequence.
5193      * The filter functions are invoked in left to right order.
5194      * <p>
5195      * Null arguments in the array are treated as identity functions,
5196      * and the corresponding arguments left unchanged.
5197      * (If there are no non-null elements in the array, the original target is returned.)
5198      * Each filter is applied to the corresponding argument of the adapter.
5199      * <p>
5200      * If a filter {@code F} applies to the {@code N}th argument of
5201      * the target, then {@code F} must be a method handle which
5202      * takes exactly one argument.  The type of {@code F}'s sole argument
5203      * replaces the corresponding argument type of the target
5204      * in the resulting adapted method handle.
5205      * The return type of {@code F} must be identical to the corresponding
5206      * parameter type of the target.
5207      * <p>
5208      * It is an error if there are elements of {@code filters}
5209      * (null or not)
5210      * which do not correspond to argument positions in the target.
5211      * <p><b>Example:</b>
5212      * <blockquote><pre>{@code
5213 import static java.lang.invoke.MethodHandles.*;
5214 import static java.lang.invoke.MethodType.*;
5215 ...
5216 MethodHandle cat = lookup().findVirtual(String.class,
5217   "concat", methodType(String.class, String.class));
5218 MethodHandle upcase = lookup().findVirtual(String.class,
5219   "toUpperCase", methodType(String.class));
5220 assertEquals("xy", (String) cat.invokeExact("x", "y"));
5221 MethodHandle f0 = filterArguments(cat, 0, upcase);
5222 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
5223 MethodHandle f1 = filterArguments(cat, 1, upcase);
5224 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
5225 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
5226 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
5227      * }</pre></blockquote>
5228      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
5229      * denotes the return type of both the {@code target} and resulting adapter.
5230      * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values
5231      * of the parameters and arguments that precede and follow the filter position
5232      * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and
5233      * values of the filtered parameters and arguments; they also represent the
5234      * return types of the {@code filter[i]} handles. The latter accept arguments
5235      * {@code v[i]} of type {@code V[i]}, which also appear in the signature of
5236      * the resulting adapter.
5237      * <blockquote><pre>{@code
5238      * T target(P... p, A[i]... a[i], B... b);
5239      * A[i] filter[i](V[i]);
5240      * T adapter(P... p, V[i]... v[i], B... b) {
5241      *   return target(p..., filter[i](v[i])..., b...);
5242      * }
5243      * }</pre></blockquote>
5244      * <p>
5245      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5246      * variable-arity method handle}, even if the original target method handle was.
5247      *
5248      * @param target the method handle to invoke after arguments are filtered
5249      * @param pos the position of the first argument to filter
5250      * @param filters method handles to call initially on filtered arguments
5251      * @return method handle which incorporates the specified argument filtering logic
5252      * @throws NullPointerException if the target is null
5253      *                              or if the {@code filters} array is null
5254      * @throws IllegalArgumentException if a non-null element of {@code filters}
5255      *          does not match a corresponding argument type of target as described above,
5256      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
5257      *          or if the resulting method handle's type would have
5258      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
5259      */
filterArguments(MethodHandle target, int pos, MethodHandle... filters)5260     public static MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
5261         // In method types arguments start at index 0, while the LF
5262         // editor have the MH receiver at position 0 - adjust appropriately.
5263         final int MH_RECEIVER_OFFSET = 1;
5264         filterArgumentsCheckArity(target, pos, filters);
5265         MethodHandle adapter = target;
5266 
5267         // keep track of currently matched filters, as to optimize repeated filters
5268         int index = 0;
5269         int[] positions = new int[filters.length];
5270         MethodHandle filter = null;
5271 
5272         // process filters in reverse order so that the invocation of
5273         // the resulting adapter will invoke the filters in left-to-right order
5274         for (int i = filters.length - 1; i >= 0; --i) {
5275             MethodHandle newFilter = filters[i];
5276             if (newFilter == null) continue;  // ignore null elements of filters
5277 
5278             // flush changes on update
5279             if (filter != newFilter) {
5280                 if (filter != null) {
5281                     if (index > 1) {
5282                         adapter = filterRepeatedArgument(adapter, filter, Arrays.copyOf(positions, index));
5283                     } else {
5284                         adapter = filterArgument(adapter, positions[0] - 1, filter);
5285                     }
5286                 }
5287                 filter = newFilter;
5288                 index = 0;
5289             }
5290 
5291             filterArgumentChecks(target, pos + i, newFilter);
5292             positions[index++] = pos + i + MH_RECEIVER_OFFSET;
5293         }
5294         if (index > 1) {
5295             adapter = filterRepeatedArgument(adapter, filter, Arrays.copyOf(positions, index));
5296         } else if (index == 1) {
5297             adapter = filterArgument(adapter, positions[0] - 1, filter);
5298         }
5299         return adapter;
5300     }
5301 
filterRepeatedArgument(MethodHandle adapter, MethodHandle filter, int[] positions)5302     private static MethodHandle filterRepeatedArgument(MethodHandle adapter, MethodHandle filter, int[] positions) {
5303         MethodType targetType = adapter.type();
5304         MethodType filterType = filter.type();
5305         BoundMethodHandle result = adapter.rebind();
5306         Class<?> newParamType = filterType.parameterType(0);
5307 
5308         Class<?>[] ptypes = targetType.ptypes().clone();
5309         for (int pos : positions) {
5310             ptypes[pos - 1] = newParamType;
5311         }
5312         MethodType newType = MethodType.makeImpl(targetType.rtype(), ptypes, true);
5313 
5314         LambdaForm lform = result.editor().filterRepeatedArgumentForm(BasicType.basicType(newParamType), positions);
5315         return result.copyWithExtendL(newType, lform, filter);
5316     }
5317 
5318     /*non-public*/
filterArgument(MethodHandle target, int pos, MethodHandle filter)5319     static MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
5320         filterArgumentChecks(target, pos, filter);
5321         MethodType targetType = target.type();
5322         MethodType filterType = filter.type();
5323         BoundMethodHandle result = target.rebind();
5324         Class<?> newParamType = filterType.parameterType(0);
5325         LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType));
5326         MethodType newType = targetType.changeParameterType(pos, newParamType);
5327         result = result.copyWithExtendL(newType, lform, filter);
5328         return result;
5329     }
5330 
filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters)5331     private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) {
5332         MethodType targetType = target.type();
5333         int maxPos = targetType.parameterCount();
5334         if (pos + filters.length > maxPos)
5335             throw newIllegalArgumentException("too many filters");
5336     }
5337 
filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter)5338     private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
5339         MethodType targetType = target.type();
5340         MethodType filterType = filter.type();
5341         if (filterType.parameterCount() != 1
5342             || filterType.returnType() != targetType.parameterType(pos))
5343             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
5344     }
5345 
5346     /**
5347      * Adapts a target method handle by pre-processing
5348      * a sub-sequence of its arguments with a filter (another method handle).
5349      * The pre-processed arguments are replaced by the result (if any) of the
5350      * filter function.
5351      * The target is then called on the modified (usually shortened) argument list.
5352      * <p>
5353      * If the filter returns a value, the target must accept that value as
5354      * its argument in position {@code pos}, preceded and/or followed by
5355      * any arguments not passed to the filter.
5356      * If the filter returns void, the target must accept all arguments
5357      * not passed to the filter.
5358      * No arguments are reordered, and a result returned from the filter
5359      * replaces (in order) the whole subsequence of arguments originally
5360      * passed to the adapter.
5361      * <p>
5362      * The argument types (if any) of the filter
5363      * replace zero or one argument types of the target, at position {@code pos},
5364      * in the resulting adapted method handle.
5365      * The return type of the filter (if any) must be identical to the
5366      * argument type of the target at position {@code pos}, and that target argument
5367      * is supplied by the return value of the filter.
5368      * <p>
5369      * In all cases, {@code pos} must be greater than or equal to zero, and
5370      * {@code pos} must also be less than or equal to the target's arity.
5371      * <p><b>Example:</b>
5372      * <blockquote><pre>{@code
5373 import static java.lang.invoke.MethodHandles.*;
5374 import static java.lang.invoke.MethodType.*;
5375 ...
5376 MethodHandle deepToString = publicLookup()
5377   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
5378 
5379 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
5380 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
5381 
5382 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
5383 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
5384 
5385 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
5386 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
5387 assertEquals("[top, [up, down], strange]",
5388              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
5389 
5390 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
5391 assertEquals("[top, [up, down], [strange]]",
5392              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
5393 
5394 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
5395 assertEquals("[top, [[up, down, strange], charm], bottom]",
5396              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
5397      * }</pre></blockquote>
5398      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
5399      * represents the return type of the {@code target} and resulting adapter.
5400      * {@code V}/{@code v} stand for the return type and value of the
5401      * {@code filter}, which are also found in the signature and arguments of
5402      * the {@code target}, respectively, unless {@code V} is {@code void}.
5403      * {@code A}/{@code a} and {@code C}/{@code c} represent the parameter types
5404      * and values preceding and following the collection position, {@code pos},
5405      * in the {@code target}'s signature. They also turn up in the resulting
5406      * adapter's signature and arguments, where they surround
5407      * {@code B}/{@code b}, which represent the parameter types and arguments
5408      * to the {@code filter} (if any).
5409      * <blockquote><pre>{@code
5410      * T target(A...,V,C...);
5411      * V filter(B...);
5412      * T adapter(A... a,B... b,C... c) {
5413      *   V v = filter(b...);
5414      *   return target(a...,v,c...);
5415      * }
5416      * // and if the filter has no arguments:
5417      * T target2(A...,V,C...);
5418      * V filter2();
5419      * T adapter2(A... a,C... c) {
5420      *   V v = filter2();
5421      *   return target2(a...,v,c...);
5422      * }
5423      * // and if the filter has a void return:
5424      * T target3(A...,C...);
5425      * void filter3(B...);
5426      * T adapter3(A... a,B... b,C... c) {
5427      *   filter3(b...);
5428      *   return target3(a...,c...);
5429      * }
5430      * }</pre></blockquote>
5431      * <p>
5432      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
5433      * one which first "folds" the affected arguments, and then drops them, in separate
5434      * steps as follows:
5435      * <blockquote><pre>{@code
5436      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
5437      * mh = MethodHandles.foldArguments(mh, coll); //step 1
5438      * }</pre></blockquote>
5439      * If the target method handle consumes no arguments besides than the result
5440      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
5441      * is equivalent to {@code filterReturnValue(coll, mh)}.
5442      * If the filter method handle {@code coll} consumes one argument and produces
5443      * a non-void result, then {@code collectArguments(mh, N, coll)}
5444      * is equivalent to {@code filterArguments(mh, N, coll)}.
5445      * Other equivalences are possible but would require argument permutation.
5446      * <p>
5447      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5448      * variable-arity method handle}, even if the original target method handle was.
5449      *
5450      * @param target the method handle to invoke after filtering the subsequence of arguments
5451      * @param pos the position of the first adapter argument to pass to the filter,
5452      *            and/or the target argument which receives the result of the filter
5453      * @param filter method handle to call on the subsequence of arguments
5454      * @return method handle which incorporates the specified argument subsequence filtering logic
5455      * @throws NullPointerException if either argument is null
5456      * @throws IllegalArgumentException if the return type of {@code filter}
5457      *          is non-void and is not the same as the {@code pos} argument of the target,
5458      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
5459      *          or if the resulting method handle's type would have
5460      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
5461      * @see MethodHandles#foldArguments
5462      * @see MethodHandles#filterArguments
5463      * @see MethodHandles#filterReturnValue
5464      */
collectArguments(MethodHandle target, int pos, MethodHandle filter)5465     public static MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
5466         MethodType newType = collectArgumentsChecks(target, pos, filter);
5467         MethodType collectorType = filter.type();
5468         BoundMethodHandle result = target.rebind();
5469         LambdaForm lform;
5470         if (collectorType.returnType().isArray() && filter.intrinsicName() == Intrinsic.NEW_ARRAY) {
5471             lform = result.editor().collectArgumentArrayForm(1 + pos, filter);
5472             if (lform != null) {
5473                 return result.copyWith(newType, lform);
5474             }
5475         }
5476         lform = result.editor().collectArgumentsForm(1 + pos, collectorType.basicType());
5477         return result.copyWithExtendL(newType, lform, filter);
5478     }
5479 
collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter)5480     private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
5481         MethodType targetType = target.type();
5482         MethodType filterType = filter.type();
5483         Class<?> rtype = filterType.returnType();
5484         List<Class<?>> filterArgs = filterType.parameterList();
5485         if (rtype == void.class) {
5486             return targetType.insertParameterTypes(pos, filterArgs);
5487         }
5488         if (rtype != targetType.parameterType(pos)) {
5489             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
5490         }
5491         return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs);
5492     }
5493 
5494     /**
5495      * Adapts a target method handle by post-processing
5496      * its return value (if any) with a filter (another method handle).
5497      * The result of the filter is returned from the adapter.
5498      * <p>
5499      * If the target returns a value, the filter must accept that value as
5500      * its only argument.
5501      * If the target returns void, the filter must accept no arguments.
5502      * <p>
5503      * The return type of the filter
5504      * replaces the return type of the target
5505      * in the resulting adapted method handle.
5506      * The argument type of the filter (if any) must be identical to the
5507      * return type of the target.
5508      * <p><b>Example:</b>
5509      * <blockquote><pre>{@code
5510 import static java.lang.invoke.MethodHandles.*;
5511 import static java.lang.invoke.MethodType.*;
5512 ...
5513 MethodHandle cat = lookup().findVirtual(String.class,
5514   "concat", methodType(String.class, String.class));
5515 MethodHandle length = lookup().findVirtual(String.class,
5516   "length", methodType(int.class));
5517 System.out.println((String) cat.invokeExact("x", "y")); // xy
5518 MethodHandle f0 = filterReturnValue(cat, length);
5519 System.out.println((int) f0.invokeExact("x", "y")); // 2
5520      * }</pre></blockquote>
5521      * <p>Here is pseudocode for the resulting adapter. In the code,
5522      * {@code T}/{@code t} represent the result type and value of the
5523      * {@code target}; {@code V}, the result type of the {@code filter}; and
5524      * {@code A}/{@code a}, the types and values of the parameters and arguments
5525      * of the {@code target} as well as the resulting adapter.
5526      * <blockquote><pre>{@code
5527      * T target(A...);
5528      * V filter(T);
5529      * V adapter(A... a) {
5530      *   T t = target(a...);
5531      *   return filter(t);
5532      * }
5533      * // and if the target has a void return:
5534      * void target2(A...);
5535      * V filter2();
5536      * V adapter2(A... a) {
5537      *   target2(a...);
5538      *   return filter2();
5539      * }
5540      * // and if the filter has a void return:
5541      * T target3(A...);
5542      * void filter3(V);
5543      * void adapter3(A... a) {
5544      *   T t = target3(a...);
5545      *   filter3(t);
5546      * }
5547      * }</pre></blockquote>
5548      * <p>
5549      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5550      * variable-arity method handle}, even if the original target method handle was.
5551      * @param target the method handle to invoke before filtering the return value
5552      * @param filter method handle to call on the return value
5553      * @return method handle which incorporates the specified return value filtering logic
5554      * @throws NullPointerException if either argument is null
5555      * @throws IllegalArgumentException if the argument list of {@code filter}
5556      *          does not match the return type of target as described above
5557      */
filterReturnValue(MethodHandle target, MethodHandle filter)5558     public static MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
5559         MethodType targetType = target.type();
5560         MethodType filterType = filter.type();
5561         filterReturnValueChecks(targetType, filterType);
5562         BoundMethodHandle result = target.rebind();
5563         BasicType rtype = BasicType.basicType(filterType.returnType());
5564         LambdaForm lform = result.editor().filterReturnForm(rtype, false);
5565         MethodType newType = targetType.changeReturnType(filterType.returnType());
5566         result = result.copyWithExtendL(newType, lform, filter);
5567         return result;
5568     }
5569 
filterReturnValueChecks(MethodType targetType, MethodType filterType)5570     private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException {
5571         Class<?> rtype = targetType.returnType();
5572         int filterValues = filterType.parameterCount();
5573         if (filterValues == 0
5574                 ? (rtype != void.class)
5575                 : (rtype != filterType.parameterType(0) || filterValues != 1))
5576             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
5577     }
5578 
5579     /**
5580      * Filter the return value of a target method handle with a filter function. The filter function is
5581      * applied to the return value of the original handle; if the filter specifies more than one parameters,
5582      * then any remaining parameter is appended to the adapter handle. In other words, the adaptation works
5583      * as follows:
5584      * <blockquote><pre>{@code
5585      * T target(A...)
5586      * V filter(B... , T)
5587      * V adapter(A... a, B... b) {
5588      *     T t = target(a...);
5589      *     return filter(b..., t);
5590      * }</pre></blockquote>
5591      * <p>
5592      * If the filter handle is a unary function, then this method behaves like {@link #filterReturnValue(MethodHandle, MethodHandle)}.
5593      *
5594      * @param target the target method handle
5595      * @param filter the filter method handle
5596      * @return the adapter method handle
5597      */
collectReturnValue(MethodHandle target, MethodHandle filter)5598     /* package */ static MethodHandle collectReturnValue(MethodHandle target, MethodHandle filter) {
5599         MethodType targetType = target.type();
5600         MethodType filterType = filter.type();
5601         BoundMethodHandle result = target.rebind();
5602         LambdaForm lform = result.editor().collectReturnValueForm(filterType.basicType());
5603         MethodType newType = targetType.changeReturnType(filterType.returnType());
5604         if (filterType.parameterList().size() > 1) {
5605             for (int i = 0 ; i < filterType.parameterList().size() - 1 ; i++) {
5606                 newType = newType.appendParameterTypes(filterType.parameterType(i));
5607             }
5608         }
5609         result = result.copyWithExtendL(newType, lform, filter);
5610         return result;
5611     }
5612 
5613     /**
5614      * Adapts a target method handle by pre-processing
5615      * some of its arguments, and then calling the target with
5616      * the result of the pre-processing, inserted into the original
5617      * sequence of arguments.
5618      * <p>
5619      * The pre-processing is performed by {@code combiner}, a second method handle.
5620      * Of the arguments passed to the adapter, the first {@code N} arguments
5621      * are copied to the combiner, which is then called.
5622      * (Here, {@code N} is defined as the parameter count of the combiner.)
5623      * After this, control passes to the target, with any result
5624      * from the combiner inserted before the original {@code N} incoming
5625      * arguments.
5626      * <p>
5627      * If the combiner returns a value, the first parameter type of the target
5628      * must be identical with the return type of the combiner, and the next
5629      * {@code N} parameter types of the target must exactly match the parameters
5630      * of the combiner.
5631      * <p>
5632      * If the combiner has a void return, no result will be inserted,
5633      * and the first {@code N} parameter types of the target
5634      * must exactly match the parameters of the combiner.
5635      * <p>
5636      * The resulting adapter is the same type as the target, except that the
5637      * first parameter type is dropped,
5638      * if it corresponds to the result of the combiner.
5639      * <p>
5640      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
5641      * that either the combiner or the target does not wish to receive.
5642      * If some of the incoming arguments are destined only for the combiner,
5643      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
5644      * arguments will not need to be live on the stack on entry to the
5645      * target.)
5646      * <p><b>Example:</b>
5647      * <blockquote><pre>{@code
5648 import static java.lang.invoke.MethodHandles.*;
5649 import static java.lang.invoke.MethodType.*;
5650 ...
5651 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
5652   "println", methodType(void.class, String.class))
5653     .bindTo(System.out);
5654 MethodHandle cat = lookup().findVirtual(String.class,
5655   "concat", methodType(String.class, String.class));
5656 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
5657 MethodHandle catTrace = foldArguments(cat, trace);
5658 // also prints "boo":
5659 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
5660      * }</pre></blockquote>
5661      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
5662      * represents the result type of the {@code target} and resulting adapter.
5663      * {@code V}/{@code v} represent the type and value of the parameter and argument
5664      * of {@code target} that precedes the folding position; {@code V} also is
5665      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
5666      * types and values of the {@code N} parameters and arguments at the folding
5667      * position. {@code B}/{@code b} represent the types and values of the
5668      * {@code target} parameters and arguments that follow the folded parameters
5669      * and arguments.
5670      * <blockquote><pre>{@code
5671      * // there are N arguments in A...
5672      * T target(V, A[N]..., B...);
5673      * V combiner(A...);
5674      * T adapter(A... a, B... b) {
5675      *   V v = combiner(a...);
5676      *   return target(v, a..., b...);
5677      * }
5678      * // and if the combiner has a void return:
5679      * T target2(A[N]..., B...);
5680      * void combiner2(A...);
5681      * T adapter2(A... a, B... b) {
5682      *   combiner2(a...);
5683      *   return target2(a..., b...);
5684      * }
5685      * }</pre></blockquote>
5686      * <p>
5687      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5688      * variable-arity method handle}, even if the original target method handle was.
5689      * @param target the method handle to invoke after arguments are combined
5690      * @param combiner method handle to call initially on the incoming arguments
5691      * @return method handle which incorporates the specified argument folding logic
5692      * @throws NullPointerException if either argument is null
5693      * @throws IllegalArgumentException if {@code combiner}'s return type
5694      *          is non-void and not the same as the first argument type of
5695      *          the target, or if the initial {@code N} argument types
5696      *          of the target
5697      *          (skipping one matching the {@code combiner}'s return type)
5698      *          are not identical with the argument types of {@code combiner}
5699      */
foldArguments(MethodHandle target, MethodHandle combiner)5700     public static MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
5701         return foldArguments(target, 0, combiner);
5702     }
5703 
5704     /**
5705      * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then
5706      * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just
5707      * before the folded arguments.
5708      * <p>
5709      * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the
5710      * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a
5711      * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position
5712      * 0.
5713      *
5714      * @apiNote Example:
5715      * <blockquote><pre>{@code
5716     import static java.lang.invoke.MethodHandles.*;
5717     import static java.lang.invoke.MethodType.*;
5718     ...
5719     MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
5720     "println", methodType(void.class, String.class))
5721     .bindTo(System.out);
5722     MethodHandle cat = lookup().findVirtual(String.class,
5723     "concat", methodType(String.class, String.class));
5724     assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
5725     MethodHandle catTrace = foldArguments(cat, 1, trace);
5726     // also prints "jum":
5727     assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
5728      * }</pre></blockquote>
5729      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
5730      * represents the result type of the {@code target} and resulting adapter.
5731      * {@code V}/{@code v} represent the type and value of the parameter and argument
5732      * of {@code target} that precedes the folding position; {@code V} also is
5733      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
5734      * types and values of the {@code N} parameters and arguments at the folding
5735      * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types
5736      * and values of the {@code target} parameters and arguments that precede and
5737      * follow the folded parameters and arguments starting at {@code pos},
5738      * respectively.
5739      * <blockquote><pre>{@code
5740      * // there are N arguments in A...
5741      * T target(Z..., V, A[N]..., B...);
5742      * V combiner(A...);
5743      * T adapter(Z... z, A... a, B... b) {
5744      *   V v = combiner(a...);
5745      *   return target(z..., v, a..., b...);
5746      * }
5747      * // and if the combiner has a void return:
5748      * T target2(Z..., A[N]..., B...);
5749      * void combiner2(A...);
5750      * T adapter2(Z... z, A... a, B... b) {
5751      *   combiner2(a...);
5752      *   return target2(z..., a..., b...);
5753      * }
5754      * }</pre></blockquote>
5755      * <p>
5756      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5757      * variable-arity method handle}, even if the original target method handle was.
5758      *
5759      * @param target the method handle to invoke after arguments are combined
5760      * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code
5761      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
5762      * @param combiner method handle to call initially on the incoming arguments
5763      * @return method handle which incorporates the specified argument folding logic
5764      * @throws NullPointerException if either argument is null
5765      * @throws IllegalArgumentException if either of the following two conditions holds:
5766      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
5767      *              {@code pos} of the target signature;
5768      *          (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching
5769      *              the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}.
5770      *
5771      * @see #foldArguments(MethodHandle, MethodHandle)
5772      * @since 9
5773      */
foldArguments(MethodHandle target, int pos, MethodHandle combiner)5774     public static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) {
5775         MethodType targetType = target.type();
5776         MethodType combinerType = combiner.type();
5777         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType);
5778         BoundMethodHandle result = target.rebind();
5779         boolean dropResult = rtype == void.class;
5780         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType());
5781         MethodType newType = targetType;
5782         if (!dropResult) {
5783             newType = newType.dropParameterTypes(pos, pos + 1);
5784         }
5785         result = result.copyWithExtendL(newType, lform, combiner);
5786         return result;
5787     }
5788 
foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType)5789     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) {
5790         int foldArgs   = combinerType.parameterCount();
5791         Class<?> rtype = combinerType.returnType();
5792         int foldVals = rtype == void.class ? 0 : 1;
5793         int afterInsertPos = foldPos + foldVals;
5794         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
5795         if (ok) {
5796             for (int i = 0; i < foldArgs; i++) {
5797                 if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) {
5798                     ok = false;
5799                     break;
5800                 }
5801             }
5802         }
5803         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos))
5804             ok = false;
5805         if (!ok)
5806             throw misMatchedTypes("target and combiner types", targetType, combinerType);
5807         return rtype;
5808     }
5809 
5810     /**
5811      * Adapts a target method handle by pre-processing some of its arguments, then calling the target with the result
5812      * of the pre-processing replacing the argument at the given position.
5813      *
5814      * @param target the method handle to invoke after arguments are combined
5815      * @param position the position at which to start folding and at which to insert the folding result; if this is {@code
5816      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
5817      * @param combiner method handle to call initially on the incoming arguments
5818      * @param argPositions indexes of the target to pick arguments sent to the combiner from
5819      * @return method handle which incorporates the specified argument folding logic
5820      * @throws NullPointerException if either argument is null
5821      * @throws IllegalArgumentException if either of the following two conditions holds:
5822      *          (1) {@code combiner}'s return type is not the same as the argument type at position
5823      *              {@code pos} of the target signature;
5824      *          (2) the {@code N} argument types at positions {@code argPositions[1...N]} of the target signature are
5825      *              not identical with the argument types of {@code combiner}.
5826      */
5827     /*non-public*/
filterArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions)5828     static MethodHandle filterArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
5829         return argumentsWithCombiner(true, target, position, combiner, argPositions);
5830     }
5831 
5832     /**
5833      * Adapts a target method handle by pre-processing some of its arguments, calling the target with the result of
5834      * the pre-processing inserted into the original sequence of arguments at the given position.
5835      *
5836      * @param target the method handle to invoke after arguments are combined
5837      * @param position the position at which to start folding and at which to insert the folding result; if this is {@code
5838      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
5839      * @param combiner method handle to call initially on the incoming arguments
5840      * @param argPositions indexes of the target to pick arguments sent to the combiner from
5841      * @return method handle which incorporates the specified argument folding logic
5842      * @throws NullPointerException if either argument is null
5843      * @throws IllegalArgumentException if either of the following two conditions holds:
5844      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
5845      *              {@code pos} of the target signature;
5846      *          (2) the {@code N} argument types at positions {@code argPositions[1...N]} of the target signature
5847      *              (skipping {@code position} where the {@code combiner}'s return will be folded in) are not identical
5848      *              with the argument types of {@code combiner}.
5849      */
5850     /*non-public*/
foldArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions)5851     static MethodHandle foldArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
5852         return argumentsWithCombiner(false, target, position, combiner, argPositions);
5853     }
5854 
argumentsWithCombiner(boolean filter, MethodHandle target, int position, MethodHandle combiner, int ... argPositions)5855     private static MethodHandle argumentsWithCombiner(boolean filter, MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
5856         MethodType targetType = target.type();
5857         MethodType combinerType = combiner.type();
5858         Class<?> rtype = argumentsWithCombinerChecks(position, filter, targetType, combinerType, argPositions);
5859         BoundMethodHandle result = target.rebind();
5860 
5861         MethodType newType = targetType;
5862         LambdaForm lform;
5863         if (filter) {
5864             lform = result.editor().filterArgumentsForm(1 + position, combinerType.basicType(), argPositions);
5865         } else {
5866             boolean dropResult = rtype == void.class;
5867             lform = result.editor().foldArgumentsForm(1 + position, dropResult, combinerType.basicType(), argPositions);
5868             if (!dropResult) {
5869                 newType = newType.dropParameterTypes(position, position + 1);
5870             }
5871         }
5872         result = result.copyWithExtendL(newType, lform, combiner);
5873         return result;
5874     }
5875 
argumentsWithCombinerChecks(int position, boolean filter, MethodType targetType, MethodType combinerType, int ... argPos)5876     private static Class<?> argumentsWithCombinerChecks(int position, boolean filter, MethodType targetType, MethodType combinerType, int ... argPos) {
5877         int combinerArgs = combinerType.parameterCount();
5878         if (argPos.length != combinerArgs) {
5879             throw newIllegalArgumentException("combiner and argument map must be equal size", combinerType, argPos.length);
5880         }
5881         Class<?> rtype = combinerType.returnType();
5882 
5883         for (int i = 0; i < combinerArgs; i++) {
5884             int arg = argPos[i];
5885             if (arg < 0 || arg > targetType.parameterCount()) {
5886                 throw newIllegalArgumentException("arg outside of target parameterRange", targetType, arg);
5887             }
5888             if (combinerType.parameterType(i) != targetType.parameterType(arg)) {
5889                 throw newIllegalArgumentException("target argument type at position " + arg
5890                         + " must match combiner argument type at index " + i + ": " + targetType
5891                         + " -> " + combinerType + ", map: " + Arrays.toString(argPos));
5892             }
5893         }
5894         if (filter && combinerType.returnType() != targetType.parameterType(position)) {
5895             throw misMatchedTypes("target and combiner types", targetType, combinerType);
5896         }
5897         return rtype;
5898     }
5899 
5900     /**
5901      * Makes a method handle which adapts a target method handle,
5902      * by guarding it with a test, a boolean-valued method handle.
5903      * If the guard fails, a fallback handle is called instead.
5904      * All three method handles must have the same corresponding
5905      * argument and return types, except that the return type
5906      * of the test must be boolean, and the test is allowed
5907      * to have fewer arguments than the other two method handles.
5908      * <p>
5909      * Here is pseudocode for the resulting adapter. In the code, {@code T}
5910      * represents the uniform result type of the three involved handles;
5911      * {@code A}/{@code a}, the types and values of the {@code target}
5912      * parameters and arguments that are consumed by the {@code test}; and
5913      * {@code B}/{@code b}, those types and values of the {@code target}
5914      * parameters and arguments that are not consumed by the {@code test}.
5915      * <blockquote><pre>{@code
5916      * boolean test(A...);
5917      * T target(A...,B...);
5918      * T fallback(A...,B...);
5919      * T adapter(A... a,B... b) {
5920      *   if (test(a...))
5921      *     return target(a..., b...);
5922      *   else
5923      *     return fallback(a..., b...);
5924      * }
5925      * }</pre></blockquote>
5926      * Note that the test arguments ({@code a...} in the pseudocode) cannot
5927      * be modified by execution of the test, and so are passed unchanged
5928      * from the caller to the target or fallback as appropriate.
5929      * @param test method handle used for test, must return boolean
5930      * @param target method handle to call if test passes
5931      * @param fallback method handle to call if test fails
5932      * @return method handle which incorporates the specified if/then/else logic
5933      * @throws NullPointerException if any argument is null
5934      * @throws IllegalArgumentException if {@code test} does not return boolean,
5935      *          or if all three method types do not match (with the return
5936      *          type of {@code test} changed to match that of the target).
5937      */
guardWithTest(MethodHandle test, MethodHandle target, MethodHandle fallback)5938     public static MethodHandle guardWithTest(MethodHandle test,
5939                                MethodHandle target,
5940                                MethodHandle fallback) {
5941         MethodType gtype = test.type();
5942         MethodType ttype = target.type();
5943         MethodType ftype = fallback.type();
5944         if (!ttype.equals(ftype))
5945             throw misMatchedTypes("target and fallback types", ttype, ftype);
5946         if (gtype.returnType() != boolean.class)
5947             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
5948         List<Class<?>> targs = ttype.parameterList();
5949         test = dropArgumentsToMatch(test, 0, targs, 0, true);
5950         if (test == null) {
5951             throw misMatchedTypes("target and test types", ttype, gtype);
5952         }
5953         return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
5954     }
5955 
misMatchedTypes(String what, T t1, T t2)5956     static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) {
5957         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
5958     }
5959 
5960     /**
5961      * Makes a method handle which adapts a target method handle,
5962      * by running it inside an exception handler.
5963      * If the target returns normally, the adapter returns that value.
5964      * If an exception matching the specified type is thrown, the fallback
5965      * handle is called instead on the exception, plus the original arguments.
5966      * <p>
5967      * The target and handler must have the same corresponding
5968      * argument and return types, except that handler may omit trailing arguments
5969      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
5970      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
5971      * <p>
5972      * Here is pseudocode for the resulting adapter. In the code, {@code T}
5973      * represents the return type of the {@code target} and {@code handler},
5974      * and correspondingly that of the resulting adapter; {@code A}/{@code a},
5975      * the types and values of arguments to the resulting handle consumed by
5976      * {@code handler}; and {@code B}/{@code b}, those of arguments to the
5977      * resulting handle discarded by {@code handler}.
5978      * <blockquote><pre>{@code
5979      * T target(A..., B...);
5980      * T handler(ExType, A...);
5981      * T adapter(A... a, B... b) {
5982      *   try {
5983      *     return target(a..., b...);
5984      *   } catch (ExType ex) {
5985      *     return handler(ex, a...);
5986      *   }
5987      * }
5988      * }</pre></blockquote>
5989      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
5990      * be modified by execution of the target, and so are passed unchanged
5991      * from the caller to the handler, if the handler is invoked.
5992      * <p>
5993      * The target and handler must return the same type, even if the handler
5994      * always throws.  (This might happen, for instance, because the handler
5995      * is simulating a {@code finally} clause).
5996      * To create such a throwing handler, compose the handler creation logic
5997      * with {@link #throwException throwException},
5998      * in order to create a method handle of the correct return type.
5999      * @param target method handle to call
6000      * @param exType the type of exception which the handler will catch
6001      * @param handler method handle to call if a matching exception is thrown
6002      * @return method handle which incorporates the specified try/catch logic
6003      * @throws NullPointerException if any argument is null
6004      * @throws IllegalArgumentException if {@code handler} does not accept
6005      *          the given exception type, or if the method handle types do
6006      *          not match in their return types and their
6007      *          corresponding parameters
6008      * @see MethodHandles#tryFinally(MethodHandle, MethodHandle)
6009      */
catchException(MethodHandle target, Class<? extends Throwable> exType, MethodHandle handler)6010     public static MethodHandle catchException(MethodHandle target,
6011                                 Class<? extends Throwable> exType,
6012                                 MethodHandle handler) {
6013         MethodType ttype = target.type();
6014         MethodType htype = handler.type();
6015         if (!Throwable.class.isAssignableFrom(exType))
6016             throw new ClassCastException(exType.getName());
6017         if (htype.parameterCount() < 1 ||
6018             !htype.parameterType(0).isAssignableFrom(exType))
6019             throw newIllegalArgumentException("handler does not accept exception type "+exType);
6020         if (htype.returnType() != ttype.returnType())
6021             throw misMatchedTypes("target and handler return types", ttype, htype);
6022         handler = dropArgumentsToMatch(handler, 1, ttype.parameterList(), 0, true);
6023         if (handler == null) {
6024             throw misMatchedTypes("target and handler types", ttype, htype);
6025         }
6026         return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
6027     }
6028 
6029     /**
6030      * Produces a method handle which will throw exceptions of the given {@code exType}.
6031      * The method handle will accept a single argument of {@code exType},
6032      * and immediately throw it as an exception.
6033      * The method type will nominally specify a return of {@code returnType}.
6034      * The return type may be anything convenient:  It doesn't matter to the
6035      * method handle's behavior, since it will never return normally.
6036      * @param returnType the return type of the desired method handle
6037      * @param exType the parameter type of the desired method handle
6038      * @return method handle which can throw the given exceptions
6039      * @throws NullPointerException if either argument is null
6040      */
throwException(Class<?> returnType, Class<? extends Throwable> exType)6041     public static MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
6042         if (!Throwable.class.isAssignableFrom(exType))
6043             throw new ClassCastException(exType.getName());
6044         return MethodHandleImpl.throwException(methodType(returnType, exType));
6045     }
6046 
6047     /**
6048      * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each
6049      * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and
6050      * delivers the loop's result, which is the return value of the resulting handle.
6051      * <p>
6052      * Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop
6053      * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration
6054      * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in
6055      * terms of method handles, each clause will specify up to four independent actions:<ul>
6056      * <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}.
6057      * <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}.
6058      * <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit.
6059      * <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value.
6060      * </ul>
6061      * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}.
6062      * The values themselves will be {@code (v...)}.  When we speak of "parameter lists", we will usually
6063      * be referring to types, but in some contexts (describing execution) the lists will be of actual values.
6064      * <p>
6065      * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in
6066      * this case. See below for a detailed description.
6067      * <p>
6068      * <em>Parameters optional everywhere:</em>
6069      * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}.
6070      * As an exception, the init functions cannot take any {@code v} parameters,
6071      * because those values are not yet computed when the init functions are executed.
6072      * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take.
6073      * In fact, any clause function may take no arguments at all.
6074      * <p>
6075      * <em>Loop parameters:</em>
6076      * A clause function may take all the iteration variable values it is entitled to, in which case
6077      * it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>,
6078      * with their types and values notated as {@code (A...)} and {@code (a...)}.
6079      * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed.
6080      * (Since init functions do not accept iteration variables {@code v}, any parameter to an
6081      * init function is automatically a loop parameter {@code a}.)
6082      * As with iteration variables, clause functions are allowed but not required to accept loop parameters.
6083      * These loop parameters act as loop-invariant values visible across the whole loop.
6084      * <p>
6085      * <em>Parameters visible everywhere:</em>
6086      * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full
6087      * list {@code (v... a...)} of current iteration variable values and incoming loop parameters.
6088      * The init functions can observe initial pre-loop state, in the form {@code (a...)}.
6089      * Most clause functions will not need all of this information, but they will be formally connected to it
6090      * as if by {@link #dropArguments}.
6091      * <a id="astar"></a>
6092      * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full
6093      * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}).
6094      * In that notation, the general form of an init function parameter list
6095      * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}.
6096      * <p>
6097      * <em>Checking clause structure:</em>
6098      * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the
6099      * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must"
6100      * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not
6101      * met by the inputs to the loop combinator.
6102      * <p>
6103      * <em>Effectively identical sequences:</em>
6104      * <a id="effid"></a>
6105      * A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B}
6106      * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}.
6107      * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical"
6108      * as a whole if the set contains a longest list, and all members of the set are effectively identical to
6109      * that longest list.
6110      * For example, any set of type sequences of the form {@code (V*)} is effectively identical,
6111      * and the same is true if more sequences of the form {@code (V... A*)} are added.
6112      * <p>
6113      * <em>Step 0: Determine clause structure.</em><ol type="a">
6114      * <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element.
6115      * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements.
6116      * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length
6117      * four. Padding takes place by appending elements to the array.
6118      * <li>Clauses with all {@code null}s are disregarded.
6119      * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini".
6120      * </ol>
6121      * <p>
6122      * <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a">
6123      * <li>The iteration variable type for each clause is determined using the clause's init and step return types.
6124      * <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is
6125      * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's
6126      * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's
6127      * iteration variable type.
6128      * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}.
6129      * <li>This list of types is called the "iteration variable types" ({@code (V...)}).
6130      * </ol>
6131      * <p>
6132      * <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul>
6133      * <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}).
6134      * <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types.
6135      * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.)
6136      * <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types.
6137      * (These types will be checked in step 2, along with all the clause function types.)
6138      * <li>Omitted clause functions are ignored.  (Equivalently, they are deemed to have empty parameter lists.)
6139      * <li>All of the collected parameter lists must be effectively identical.
6140      * <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}).
6141      * <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence.
6142      * <li>The combined list consisting of iteration variable types followed by the external parameter types is called
6143      * the "internal parameter list".
6144      * </ul>
6145      * <p>
6146      * <em>Step 1C: Determine loop return type.</em><ol type="a">
6147      * <li>Examine fini function return types, disregarding omitted fini functions.
6148      * <li>If there are no fini functions, the loop return type is {@code void}.
6149      * <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return
6150      * type.
6151      * </ol>
6152      * <p>
6153      * <em>Step 1D: Check other types.</em><ol type="a">
6154      * <li>There must be at least one non-omitted pred function.
6155      * <li>Every non-omitted pred function must have a {@code boolean} return type.
6156      * </ol>
6157      * <p>
6158      * <em>Step 2: Determine parameter lists.</em><ol type="a">
6159      * <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}.
6160      * <li>The parameter list for init functions will be adjusted to the external parameter list.
6161      * (Note that their parameter lists are already effectively identical to this list.)
6162      * <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be
6163      * effectively identical to the internal parameter list {@code (V... A...)}.
6164      * </ol>
6165      * <p>
6166      * <em>Step 3: Fill in omitted functions.</em><ol type="a">
6167      * <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable
6168      * type.
6169      * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration
6170      * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void}
6171      * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.)
6172      * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far
6173      * as this clause is concerned.  Note that in such cases the corresponding fini function is unreachable.)
6174      * <li>If a fini function is omitted, use a {@linkplain #empty default value} for the
6175      * loop return type.
6176      * </ol>
6177      * <p>
6178      * <em>Step 4: Fill in missing parameter types.</em><ol type="a">
6179      * <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)},
6180      * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list.
6181      * <li>At this point, every non-init function parameter list is effectively identical to the internal parameter
6182      * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list,
6183      * pad out the end of the list.
6184      * <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch(MethodHandle, int, List, int) dropping unused trailing arguments}.
6185      * </ol>
6186      * <p>
6187      * <em>Final observations.</em><ol type="a">
6188      * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments.
6189      * <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have.
6190      * <li>All fini functions have a common return type {@code R}, which the final loop handle will also have.
6191      * <li>All non-init functions have a common parameter type list {@code (V... A...)}, of
6192      * (non-{@code void}) iteration variables {@code V} followed by loop parameters.
6193      * <li>Each pair of init and step functions agrees in their return type {@code V}.
6194      * <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables.
6195      * <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters.
6196      * </ol>
6197      * <p>
6198      * <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property:
6199      * <ul>
6200      * <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}.
6201      * <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters.
6202      * (Only one {@code Pn} has to be non-{@code null}.)
6203      * <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}.
6204      * <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types.
6205      * <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}.
6206      * <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}.
6207      * <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine
6208      * the resulting loop handle's parameter types {@code (A...)}.
6209      * </ul>
6210      * In this example, the loop handle parameters {@code (A...)} were derived from the step functions,
6211      * which is natural if most of the loop computation happens in the steps.  For some loops,
6212      * the burden of computation might be heaviest in the pred functions, and so the pred functions
6213      * might need to accept the loop parameter values.  For loops with complex exit logic, the fini
6214      * functions might need to accept loop parameters, and likewise for loops with complex entry logic,
6215      * where the init functions will need the extra parameters.  For such reasons, the rules for
6216      * determining these parameters are as symmetric as possible, across all clause parts.
6217      * In general, the loop parameters function as common invariant values across the whole
6218      * loop, while the iteration variables function as common variant values, or (if there is
6219      * no step function) as internal loop invariant temporaries.
6220      * <p>
6221      * <em>Loop execution.</em><ol type="a">
6222      * <li>When the loop is called, the loop input values are saved in locals, to be passed to
6223      * every clause function. These locals are loop invariant.
6224      * <li>Each init function is executed in clause order (passing the external arguments {@code (a...)})
6225      * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals.
6226      * These locals will be loop varying (unless their steps behave as identity functions, as noted above).
6227      * <li>All function executions (except init functions) will be passed the internal parameter list, consisting of
6228      * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)}
6229      * (in argument order).
6230      * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function
6231      * returns {@code false}.
6232      * <li>The non-{@code void} result from a step function call is used to update the corresponding value in the
6233      * sequence {@code (v...)} of loop variables.
6234      * The updated value is immediately visible to all subsequent function calls.
6235      * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value
6236      * (of type {@code R}) is returned from the loop as a whole.
6237      * <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit
6238      * except by throwing an exception.
6239      * </ol>
6240      * <p>
6241      * <em>Usage tips.</em>
6242      * <ul>
6243      * <li>Although each step function will receive the current values of <em>all</em> the loop variables,
6244      * sometimes a step function only needs to observe the current value of its own variable.
6245      * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}.
6246      * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}.
6247      * <li>Loop variables are not required to vary; they can be loop invariant.  A clause can create
6248      * a loop invariant by a suitable init function with no step, pred, or fini function.  This may be
6249      * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable.
6250      * <li>If some of the clause functions are virtual methods on an instance, the instance
6251      * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause
6252      * like {@code new MethodHandle[]{identity(ObjType.class)}}.  In that case, the instance reference
6253      * will be the first iteration variable value, and it will be easy to use virtual
6254      * methods as clause parts, since all of them will take a leading instance reference matching that value.
6255      * </ul>
6256      * <p>
6257      * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types
6258      * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop;
6259      * and {@code R} is the common result type of all finalizers as well as of the resulting loop.
6260      * <blockquote><pre>{@code
6261      * V... init...(A...);
6262      * boolean pred...(V..., A...);
6263      * V... step...(V..., A...);
6264      * R fini...(V..., A...);
6265      * R loop(A... a) {
6266      *   V... v... = init...(a...);
6267      *   for (;;) {
6268      *     for ((v, p, s, f) in (v..., pred..., step..., fini...)) {
6269      *       v = s(v..., a...);
6270      *       if (!p(v..., a...)) {
6271      *         return f(v..., a...);
6272      *       }
6273      *     }
6274      *   }
6275      * }
6276      * }</pre></blockquote>
6277      * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded
6278      * to their full length, even though individual clause functions may neglect to take them all.
6279      * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}.
6280      *
6281      * @apiNote Example:
6282      * <blockquote><pre>{@code
6283      * // iterative implementation of the factorial function as a loop handle
6284      * static int one(int k) { return 1; }
6285      * static int inc(int i, int acc, int k) { return i + 1; }
6286      * static int mult(int i, int acc, int k) { return i * acc; }
6287      * static boolean pred(int i, int acc, int k) { return i < k; }
6288      * static int fin(int i, int acc, int k) { return acc; }
6289      * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
6290      * // null initializer for counter, should initialize to 0
6291      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
6292      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
6293      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
6294      * assertEquals(120, loop.invoke(5));
6295      * }</pre></blockquote>
6296      * The same example, dropping arguments and using combinators:
6297      * <blockquote><pre>{@code
6298      * // simplified implementation of the factorial function as a loop handle
6299      * static int inc(int i) { return i + 1; } // drop acc, k
6300      * static int mult(int i, int acc) { return i * acc; } //drop k
6301      * static boolean cmp(int i, int k) { return i < k; }
6302      * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods
6303      * // null initializer for counter, should initialize to 0
6304      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
6305      * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc
6306      * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i
6307      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
6308      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
6309      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
6310      * assertEquals(720, loop.invoke(6));
6311      * }</pre></blockquote>
6312      * A similar example, using a helper object to hold a loop parameter:
6313      * <blockquote><pre>{@code
6314      * // instance-based implementation of the factorial function as a loop handle
6315      * static class FacLoop {
6316      *   final int k;
6317      *   FacLoop(int k) { this.k = k; }
6318      *   int inc(int i) { return i + 1; }
6319      *   int mult(int i, int acc) { return i * acc; }
6320      *   boolean pred(int i) { return i < k; }
6321      *   int fin(int i, int acc) { return acc; }
6322      * }
6323      * // assume MH_FacLoop is a handle to the constructor
6324      * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
6325      * // null initializer for counter, should initialize to 0
6326      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
6327      * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop};
6328      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
6329      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
6330      * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause);
6331      * assertEquals(5040, loop.invoke(7));
6332      * }</pre></blockquote>
6333      *
6334      * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above.
6335      *
6336      * @return a method handle embodying the looping behavior as defined by the arguments.
6337      *
6338      * @throws IllegalArgumentException in case any of the constraints described above is violated.
6339      *
6340      * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle)
6341      * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
6342      * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle)
6343      * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle)
6344      * @since 9
6345      */
loop(MethodHandle[].... clauses)6346     public static MethodHandle loop(MethodHandle[]... clauses) {
6347         // Step 0: determine clause structure.
6348         loopChecks0(clauses);
6349 
6350         List<MethodHandle> init = new ArrayList<>();
6351         List<MethodHandle> step = new ArrayList<>();
6352         List<MethodHandle> pred = new ArrayList<>();
6353         List<MethodHandle> fini = new ArrayList<>();
6354 
6355         Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> {
6356             init.add(clause[0]); // all clauses have at least length 1
6357             step.add(clause.length <= 1 ? null : clause[1]);
6358             pred.add(clause.length <= 2 ? null : clause[2]);
6359             fini.add(clause.length <= 3 ? null : clause[3]);
6360         });
6361 
6362         assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1;
6363         final int nclauses = init.size();
6364 
6365         // Step 1A: determine iteration variables (V...).
6366         final List<Class<?>> iterationVariableTypes = new ArrayList<>();
6367         for (int i = 0; i < nclauses; ++i) {
6368             MethodHandle in = init.get(i);
6369             MethodHandle st = step.get(i);
6370             if (in == null && st == null) {
6371                 iterationVariableTypes.add(void.class);
6372             } else if (in != null && st != null) {
6373                 loopChecks1a(i, in, st);
6374                 iterationVariableTypes.add(in.type().returnType());
6375             } else {
6376                 iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType());
6377             }
6378         }
6379         final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class).
6380                 collect(Collectors.toList());
6381 
6382         // Step 1B: determine loop parameters (A...).
6383         final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size());
6384         loopChecks1b(init, commonSuffix);
6385 
6386         // Step 1C: determine loop return type.
6387         // Step 1D: check other types.
6388         // local variable required here; see JDK-8223553
6389         Stream<Class<?>> cstream = fini.stream().filter(Objects::nonNull).map(MethodHandle::type)
6390                 .map(MethodType::returnType);
6391         final Class<?> loopReturnType = cstream.findFirst().orElse(void.class);
6392         loopChecks1cd(pred, fini, loopReturnType);
6393 
6394         // Step 2: determine parameter lists.
6395         final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix);
6396         commonParameterSequence.addAll(commonSuffix);
6397         loopChecks2(step, pred, fini, commonParameterSequence);
6398 
6399         // Step 3: fill in omitted functions.
6400         for (int i = 0; i < nclauses; ++i) {
6401             Class<?> t = iterationVariableTypes.get(i);
6402             if (init.get(i) == null) {
6403                 init.set(i, empty(methodType(t, commonSuffix)));
6404             }
6405             if (step.get(i) == null) {
6406                 step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i));
6407             }
6408             if (pred.get(i) == null) {
6409                 pred.set(i, dropArguments0(constant(boolean.class, true), 0, commonParameterSequence));
6410             }
6411             if (fini.get(i) == null) {
6412                 fini.set(i, empty(methodType(t, commonParameterSequence)));
6413             }
6414         }
6415 
6416         // Step 4: fill in missing parameter types.
6417         // Also convert all handles to fixed-arity handles.
6418         List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix));
6419         List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence));
6420         List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence));
6421         List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence));
6422 
6423         assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList).
6424                 allMatch(pl -> pl.equals(commonSuffix));
6425         assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList).
6426                 allMatch(pl -> pl.equals(commonParameterSequence));
6427 
6428         return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini);
6429     }
6430 
loopChecks0(MethodHandle[][] clauses)6431     private static void loopChecks0(MethodHandle[][] clauses) {
6432         if (clauses == null || clauses.length == 0) {
6433             throw newIllegalArgumentException("null or no clauses passed");
6434         }
6435         if (Stream.of(clauses).anyMatch(Objects::isNull)) {
6436             throw newIllegalArgumentException("null clauses are not allowed");
6437         }
6438         if (Stream.of(clauses).anyMatch(c -> c.length > 4)) {
6439             throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements.");
6440         }
6441     }
6442 
loopChecks1a(int i, MethodHandle in, MethodHandle st)6443     private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) {
6444         if (in.type().returnType() != st.type().returnType()) {
6445             throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(),
6446                     st.type().returnType());
6447         }
6448     }
6449 
longestParameterList(Stream<MethodHandle> mhs, int skipSize)6450     private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) {
6451         final List<Class<?>> empty = List.of();
6452         final List<Class<?>> longest = mhs.filter(Objects::nonNull).
6453                 // take only those that can contribute to a common suffix because they are longer than the prefix
6454                         map(MethodHandle::type).
6455                         filter(t -> t.parameterCount() > skipSize).
6456                         map(MethodType::parameterList).
6457                         reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
6458         return longest.size() == 0 ? empty : longest.subList(skipSize, longest.size());
6459     }
6460 
longestParameterList(List<List<Class<?>>> lists)6461     private static List<Class<?>> longestParameterList(List<List<Class<?>>> lists) {
6462         final List<Class<?>> empty = List.of();
6463         return lists.stream().reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
6464     }
6465 
buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize)6466     private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) {
6467         final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize);
6468         final List<Class<?>> longest2 = longestParameterList(init.stream(), 0);
6469         return longestParameterList(Arrays.asList(longest1, longest2));
6470     }
6471 
loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix)6472     private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) {
6473         if (init.stream().filter(Objects::nonNull).map(MethodHandle::type).
6474                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) {
6475             throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init +
6476                     " (common suffix: " + commonSuffix + ")");
6477         }
6478     }
6479 
loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType)6480     private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) {
6481         if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
6482                 anyMatch(t -> t != loopReturnType)) {
6483             throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " +
6484                     loopReturnType + ")");
6485         }
6486 
6487         if (!pred.stream().filter(Objects::nonNull).findFirst().isPresent()) {
6488             throw newIllegalArgumentException("no predicate found", pred);
6489         }
6490         if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
6491                 anyMatch(t -> t != boolean.class)) {
6492             throw newIllegalArgumentException("predicates must have boolean return type", pred);
6493         }
6494     }
6495 
loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence)6496     private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) {
6497         if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type).
6498                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) {
6499             throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step +
6500                     "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")");
6501         }
6502     }
6503 
fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams)6504     private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) {
6505         return hs.stream().map(h -> {
6506             int pc = h.type().parameterCount();
6507             int tpsize = targetParams.size();
6508             return pc < tpsize ? dropArguments0(h, pc, targetParams.subList(pc, tpsize)) : h;
6509         }).collect(Collectors.toList());
6510     }
6511 
fixArities(List<MethodHandle> hs)6512     private static List<MethodHandle> fixArities(List<MethodHandle> hs) {
6513         return hs.stream().map(MethodHandle::asFixedArity).collect(Collectors.toList());
6514     }
6515 
6516     /**
6517      * Constructs a {@code while} loop from an initializer, a body, and a predicate.
6518      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6519      * <p>
6520      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
6521      * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate
6522      * evaluates to {@code true}).
6523      * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case).
6524      * <p>
6525      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
6526      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
6527      * and updated with the value returned from its invocation. The result of loop execution will be
6528      * the final value of the additional loop-local variable (if present).
6529      * <p>
6530      * The following rules hold for these argument handles:<ul>
6531      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6532      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
6533      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6534      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
6535      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
6536      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
6537      * It will constrain the parameter lists of the other loop parts.
6538      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
6539      * list {@code (A...)} is called the <em>external parameter list</em>.
6540      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6541      * additional state variable of the loop.
6542      * The body must both accept and return a value of this type {@code V}.
6543      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6544      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6545      * <a href="MethodHandles.html#effid">effectively identical</a>
6546      * to the external parameter list {@code (A...)}.
6547      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6548      * {@linkplain #empty default value}.
6549      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
6550      * Its parameter list (either empty or of the form {@code (V A*)}) must be
6551      * effectively identical to the internal parameter list.
6552      * </ul>
6553      * <p>
6554      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6555      * <li>The loop handle's result type is the result type {@code V} of the body.
6556      * <li>The loop handle's parameter types are the types {@code (A...)},
6557      * from the external parameter list.
6558      * </ul>
6559      * <p>
6560      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6561      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
6562      * passed to the loop.
6563      * <blockquote><pre>{@code
6564      * V init(A...);
6565      * boolean pred(V, A...);
6566      * V body(V, A...);
6567      * V whileLoop(A... a...) {
6568      *   V v = init(a...);
6569      *   while (pred(v, a...)) {
6570      *     v = body(v, a...);
6571      *   }
6572      *   return v;
6573      * }
6574      * }</pre></blockquote>
6575      *
6576      * @apiNote Example:
6577      * <blockquote><pre>{@code
6578      * // implement the zip function for lists as a loop handle
6579      * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); }
6580      * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); }
6581      * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) {
6582      *   zip.add(a.next());
6583      *   zip.add(b.next());
6584      *   return zip;
6585      * }
6586      * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods
6587      * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep);
6588      * List<String> a = Arrays.asList("a", "b", "c", "d");
6589      * List<String> b = Arrays.asList("e", "f", "g", "h");
6590      * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h");
6591      * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator()));
6592      * }</pre></blockquote>
6593      *
6594      *
6595      * @apiNote The implementation of this method can be expressed as follows:
6596      * <blockquote><pre>{@code
6597      * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
6598      *     MethodHandle fini = (body.type().returnType() == void.class
6599      *                         ? null : identity(body.type().returnType()));
6600      *     MethodHandle[]
6601      *         checkExit = { null, null, pred, fini },
6602      *         varBody   = { init, body };
6603      *     return loop(checkExit, varBody);
6604      * }
6605      * }</pre></blockquote>
6606      *
6607      * @param init optional initializer, providing the initial value of the loop variable.
6608      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6609      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
6610      *             above for other constraints.
6611      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
6612      *             See above for other constraints.
6613      *
6614      * @return a method handle implementing the {@code while} loop as described by the arguments.
6615      * @throws IllegalArgumentException if the rules for the arguments are violated.
6616      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
6617      *
6618      * @see #loop(MethodHandle[][])
6619      * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
6620      * @since 9
6621      */
whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body)6622     public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
6623         whileLoopChecks(init, pred, body);
6624         MethodHandle fini = identityOrVoid(body.type().returnType());
6625         MethodHandle[] checkExit = { null, null, pred, fini };
6626         MethodHandle[] varBody = { init, body };
6627         return loop(checkExit, varBody);
6628     }
6629 
6630     /**
6631      * Constructs a {@code do-while} loop from an initializer, a body, and a predicate.
6632      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6633      * <p>
6634      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
6635      * method will, in each iteration, first execute its body and then evaluate the predicate.
6636      * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body.
6637      * <p>
6638      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
6639      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
6640      * and updated with the value returned from its invocation. The result of loop execution will be
6641      * the final value of the additional loop-local variable (if present).
6642      * <p>
6643      * The following rules hold for these argument handles:<ul>
6644      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6645      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
6646      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6647      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
6648      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
6649      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
6650      * It will constrain the parameter lists of the other loop parts.
6651      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
6652      * list {@code (A...)} is called the <em>external parameter list</em>.
6653      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6654      * additional state variable of the loop.
6655      * The body must both accept and return a value of this type {@code V}.
6656      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6657      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6658      * <a href="MethodHandles.html#effid">effectively identical</a>
6659      * to the external parameter list {@code (A...)}.
6660      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6661      * {@linkplain #empty default value}.
6662      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
6663      * Its parameter list (either empty or of the form {@code (V A*)}) must be
6664      * effectively identical to the internal parameter list.
6665      * </ul>
6666      * <p>
6667      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6668      * <li>The loop handle's result type is the result type {@code V} of the body.
6669      * <li>The loop handle's parameter types are the types {@code (A...)},
6670      * from the external parameter list.
6671      * </ul>
6672      * <p>
6673      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6674      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
6675      * passed to the loop.
6676      * <blockquote><pre>{@code
6677      * V init(A...);
6678      * boolean pred(V, A...);
6679      * V body(V, A...);
6680      * V doWhileLoop(A... a...) {
6681      *   V v = init(a...);
6682      *   do {
6683      *     v = body(v, a...);
6684      *   } while (pred(v, a...));
6685      *   return v;
6686      * }
6687      * }</pre></blockquote>
6688      *
6689      * @apiNote Example:
6690      * <blockquote><pre>{@code
6691      * // int i = 0; while (i < limit) { ++i; } return i; => limit
6692      * static int zero(int limit) { return 0; }
6693      * static int step(int i, int limit) { return i + 1; }
6694      * static boolean pred(int i, int limit) { return i < limit; }
6695      * // assume MH_zero, MH_step, and MH_pred are handles to the above methods
6696      * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred);
6697      * assertEquals(23, loop.invoke(23));
6698      * }</pre></blockquote>
6699      *
6700      *
6701      * @apiNote The implementation of this method can be expressed as follows:
6702      * <blockquote><pre>{@code
6703      * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
6704      *     MethodHandle fini = (body.type().returnType() == void.class
6705      *                         ? null : identity(body.type().returnType()));
6706      *     MethodHandle[] clause = { init, body, pred, fini };
6707      *     return loop(clause);
6708      * }
6709      * }</pre></blockquote>
6710      *
6711      * @param init optional initializer, providing the initial value of the loop variable.
6712      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6713      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
6714      *             See above for other constraints.
6715      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
6716      *             above for other constraints.
6717      *
6718      * @return a method handle implementing the {@code while} loop as described by the arguments.
6719      * @throws IllegalArgumentException if the rules for the arguments are violated.
6720      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
6721      *
6722      * @see #loop(MethodHandle[][])
6723      * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle)
6724      * @since 9
6725      */
doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred)6726     public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
6727         whileLoopChecks(init, pred, body);
6728         MethodHandle fini = identityOrVoid(body.type().returnType());
6729         MethodHandle[] clause = {init, body, pred, fini };
6730         return loop(clause);
6731     }
6732 
whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body)6733     private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) {
6734         Objects.requireNonNull(pred);
6735         Objects.requireNonNull(body);
6736         MethodType bodyType = body.type();
6737         Class<?> returnType = bodyType.returnType();
6738         List<Class<?>> innerList = bodyType.parameterList();
6739         List<Class<?>> outerList = innerList;
6740         if (returnType == void.class) {
6741             // OK
6742         } else if (innerList.size() == 0 || innerList.get(0) != returnType) {
6743             // leading V argument missing => error
6744             MethodType expected = bodyType.insertParameterTypes(0, returnType);
6745             throw misMatchedTypes("body function", bodyType, expected);
6746         } else {
6747             outerList = innerList.subList(1, innerList.size());
6748         }
6749         MethodType predType = pred.type();
6750         if (predType.returnType() != boolean.class ||
6751                 !predType.effectivelyIdenticalParameters(0, innerList)) {
6752             throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList));
6753         }
6754         if (init != null) {
6755             MethodType initType = init.type();
6756             if (initType.returnType() != returnType ||
6757                     !initType.effectivelyIdenticalParameters(0, outerList)) {
6758                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
6759             }
6760         }
6761     }
6762 
6763     /**
6764      * Constructs a loop that runs a given number of iterations.
6765      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6766      * <p>
6767      * The number of iterations is determined by the {@code iterations} handle evaluation result.
6768      * The loop counter {@code i} is an extra loop iteration variable of type {@code int}.
6769      * It will be initialized to 0 and incremented by 1 in each iteration.
6770      * <p>
6771      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
6772      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
6773      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
6774      * <p>
6775      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
6776      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
6777      * iteration variable.
6778      * The result of the loop handle execution will be the final {@code V} value of that variable
6779      * (or {@code void} if there is no {@code V} variable).
6780      * <p>
6781      * The following rules hold for the argument handles:<ul>
6782      * <li>The {@code iterations} handle must not be {@code null}, and must return
6783      * the type {@code int}, referred to here as {@code I} in parameter type lists.
6784      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6785      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
6786      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6787      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
6788      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
6789      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
6790      * of types called the <em>internal parameter list</em>.
6791      * It will constrain the parameter lists of the other loop parts.
6792      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
6793      * with no additional {@code A} types, then the internal parameter list is extended by
6794      * the argument types {@code A...} of the {@code iterations} handle.
6795      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
6796      * list {@code (A...)} is called the <em>external parameter list</em>.
6797      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6798      * additional state variable of the loop.
6799      * The body must both accept a leading parameter and return a value of this type {@code V}.
6800      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6801      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6802      * <a href="MethodHandles.html#effid">effectively identical</a>
6803      * to the external parameter list {@code (A...)}.
6804      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6805      * {@linkplain #empty default value}.
6806      * <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be
6807      * effectively identical to the external parameter list {@code (A...)}.
6808      * </ul>
6809      * <p>
6810      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6811      * <li>The loop handle's result type is the result type {@code V} of the body.
6812      * <li>The loop handle's parameter types are the types {@code (A...)},
6813      * from the external parameter list.
6814      * </ul>
6815      * <p>
6816      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6817      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
6818      * arguments passed to the loop.
6819      * <blockquote><pre>{@code
6820      * int iterations(A...);
6821      * V init(A...);
6822      * V body(V, int, A...);
6823      * V countedLoop(A... a...) {
6824      *   int end = iterations(a...);
6825      *   V v = init(a...);
6826      *   for (int i = 0; i < end; ++i) {
6827      *     v = body(v, i, a...);
6828      *   }
6829      *   return v;
6830      * }
6831      * }</pre></blockquote>
6832      *
6833      * @apiNote Example with a fully conformant body method:
6834      * <blockquote><pre>{@code
6835      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
6836      * // => a variation on a well known theme
6837      * static String step(String v, int counter, String init) { return "na " + v; }
6838      * // assume MH_step is a handle to the method above
6839      * MethodHandle fit13 = MethodHandles.constant(int.class, 13);
6840      * MethodHandle start = MethodHandles.identity(String.class);
6841      * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step);
6842      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!"));
6843      * }</pre></blockquote>
6844      *
6845      * @apiNote Example with the simplest possible body method type,
6846      * and passing the number of iterations to the loop invocation:
6847      * <blockquote><pre>{@code
6848      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
6849      * // => a variation on a well known theme
6850      * static String step(String v, int counter ) { return "na " + v; }
6851      * // assume MH_step is a handle to the method above
6852      * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class);
6853      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class);
6854      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i) -> "na " + v
6855      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!"));
6856      * }</pre></blockquote>
6857      *
6858      * @apiNote Example that treats the number of iterations, string to append to, and string to append
6859      * as loop parameters:
6860      * <blockquote><pre>{@code
6861      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
6862      * // => a variation on a well known theme
6863      * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; }
6864      * // assume MH_step is a handle to the method above
6865      * MethodHandle count = MethodHandles.identity(int.class);
6866      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class);
6867      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i, _, pre, _) -> pre + " " + v
6868      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!"));
6869      * }</pre></blockquote>
6870      *
6871      * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}
6872      * to enforce a loop type:
6873      * <blockquote><pre>{@code
6874      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
6875      * // => a variation on a well known theme
6876      * static String step(String v, int counter, String pre) { return pre + " " + v; }
6877      * // assume MH_step is a handle to the method above
6878      * MethodType loopType = methodType(String.class, String.class, int.class, String.class);
6879      * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class),    0, loopType.parameterList(), 1);
6880      * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2);
6881      * MethodHandle body  = MethodHandles.dropArgumentsToMatch(MH_step,                              2, loopType.parameterList(), 0);
6882      * MethodHandle loop = MethodHandles.countedLoop(count, start, body);  // (v, i, pre, _, _) -> pre + " " + v
6883      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!"));
6884      * }</pre></blockquote>
6885      *
6886      * @apiNote The implementation of this method can be expressed as follows:
6887      * <blockquote><pre>{@code
6888      * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
6889      *     return countedLoop(empty(iterations.type()), iterations, init, body);
6890      * }
6891      * }</pre></blockquote>
6892      *
6893      * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's
6894      *                   result type must be {@code int}. See above for other constraints.
6895      * @param init optional initializer, providing the initial value of the loop variable.
6896      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6897      * @param body body of the loop, which may not be {@code null}.
6898      *             It controls the loop parameters and result type in the standard case (see above for details).
6899      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
6900      *             and may accept any number of additional types.
6901      *             See above for other constraints.
6902      *
6903      * @return a method handle representing the loop.
6904      * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}.
6905      * @throws IllegalArgumentException if any argument violates the rules formulated above.
6906      *
6907      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle)
6908      * @since 9
6909      */
countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body)6910     public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
6911         return countedLoop(empty(iterations.type()), iterations, init, body);
6912     }
6913 
6914     /**
6915      * Constructs a loop that counts over a range of numbers.
6916      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6917      * <p>
6918      * The loop counter {@code i} is a loop iteration variable of type {@code int}.
6919      * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive)
6920      * values of the loop counter.
6921      * The loop counter will be initialized to the {@code int} value returned from the evaluation of the
6922      * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1.
6923      * <p>
6924      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
6925      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
6926      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
6927      * <p>
6928      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
6929      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
6930      * iteration variable.
6931      * The result of the loop handle execution will be the final {@code V} value of that variable
6932      * (or {@code void} if there is no {@code V} variable).
6933      * <p>
6934      * The following rules hold for the argument handles:<ul>
6935      * <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return
6936      * the common type {@code int}, referred to here as {@code I} in parameter type lists.
6937      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6938      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
6939      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6940      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
6941      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
6942      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
6943      * of types called the <em>internal parameter list</em>.
6944      * It will constrain the parameter lists of the other loop parts.
6945      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
6946      * with no additional {@code A} types, then the internal parameter list is extended by
6947      * the argument types {@code A...} of the {@code end} handle.
6948      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
6949      * list {@code (A...)} is called the <em>external parameter list</em>.
6950      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6951      * additional state variable of the loop.
6952      * The body must both accept a leading parameter and return a value of this type {@code V}.
6953      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6954      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6955      * <a href="MethodHandles.html#effid">effectively identical</a>
6956      * to the external parameter list {@code (A...)}.
6957      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6958      * {@linkplain #empty default value}.
6959      * <li>The parameter list of {@code start} (of some form {@code (A*)}) must be
6960      * effectively identical to the external parameter list {@code (A...)}.
6961      * <li>Likewise, the parameter list of {@code end} must be effectively identical
6962      * to the external parameter list.
6963      * </ul>
6964      * <p>
6965      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6966      * <li>The loop handle's result type is the result type {@code V} of the body.
6967      * <li>The loop handle's parameter types are the types {@code (A...)},
6968      * from the external parameter list.
6969      * </ul>
6970      * <p>
6971      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6972      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
6973      * arguments passed to the loop.
6974      * <blockquote><pre>{@code
6975      * int start(A...);
6976      * int end(A...);
6977      * V init(A...);
6978      * V body(V, int, A...);
6979      * V countedLoop(A... a...) {
6980      *   int e = end(a...);
6981      *   int s = start(a...);
6982      *   V v = init(a...);
6983      *   for (int i = s; i < e; ++i) {
6984      *     v = body(v, i, a...);
6985      *   }
6986      *   return v;
6987      * }
6988      * }</pre></blockquote>
6989      *
6990      * @apiNote The implementation of this method can be expressed as follows:
6991      * <blockquote><pre>{@code
6992      * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
6993      *     MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class);
6994      *     // assume MH_increment and MH_predicate are handles to implementation-internal methods with
6995      *     // the following semantics:
6996      *     // MH_increment: (int limit, int counter) -> counter + 1
6997      *     // MH_predicate: (int limit, int counter) -> counter < limit
6998      *     Class<?> counterType = start.type().returnType();  // int
6999      *     Class<?> returnType = body.type().returnType();
7000      *     MethodHandle incr = MH_increment, pred = MH_predicate, retv = null;
7001      *     if (returnType != void.class) {  // ignore the V variable
7002      *         incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
7003      *         pred = dropArguments(pred, 1, returnType);  // ditto
7004      *         retv = dropArguments(identity(returnType), 0, counterType); // ignore limit
7005      *     }
7006      *     body = dropArguments(body, 0, counterType);  // ignore the limit variable
7007      *     MethodHandle[]
7008      *         loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
7009      *         bodyClause = { init, body },            // v = init(); v = body(v, i)
7010      *         indexVar   = { start, incr };           // i = start(); i = i + 1
7011      *     return loop(loopLimit, bodyClause, indexVar);
7012      * }
7013      * }</pre></blockquote>
7014      *
7015      * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}.
7016      *              See above for other constraints.
7017      * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to
7018      *            {@code end-1}). The result type must be {@code int}. See above for other constraints.
7019      * @param init optional initializer, providing the initial value of the loop variable.
7020      *             May be {@code null}, implying a default initial value.  See above for other constraints.
7021      * @param body body of the loop, which may not be {@code null}.
7022      *             It controls the loop parameters and result type in the standard case (see above for details).
7023      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
7024      *             and may accept any number of additional types.
7025      *             See above for other constraints.
7026      *
7027      * @return a method handle representing the loop.
7028      * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}.
7029      * @throws IllegalArgumentException if any argument violates the rules formulated above.
7030      *
7031      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle)
7032      * @since 9
7033      */
countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body)7034     public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
7035         countedLoopChecks(start, end, init, body);
7036         Class<?> counterType = start.type().returnType();  // int, but who's counting?
7037         Class<?> limitType   = end.type().returnType();    // yes, int again
7038         Class<?> returnType  = body.type().returnType();
7039         MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep);
7040         MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred);
7041         MethodHandle retv = null;
7042         if (returnType != void.class) {
7043             incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
7044             pred = dropArguments(pred, 1, returnType);  // ditto
7045             retv = dropArguments(identity(returnType), 0, counterType);
7046         }
7047         body = dropArguments(body, 0, counterType);  // ignore the limit variable
7048         MethodHandle[]
7049             loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
7050             bodyClause = { init, body },            // v = init(); v = body(v, i)
7051             indexVar   = { start, incr };           // i = start(); i = i + 1
7052         return loop(loopLimit, bodyClause, indexVar);
7053     }
7054 
countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body)7055     private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
7056         Objects.requireNonNull(start);
7057         Objects.requireNonNull(end);
7058         Objects.requireNonNull(body);
7059         Class<?> counterType = start.type().returnType();
7060         if (counterType != int.class) {
7061             MethodType expected = start.type().changeReturnType(int.class);
7062             throw misMatchedTypes("start function", start.type(), expected);
7063         } else if (end.type().returnType() != counterType) {
7064             MethodType expected = end.type().changeReturnType(counterType);
7065             throw misMatchedTypes("end function", end.type(), expected);
7066         }
7067         MethodType bodyType = body.type();
7068         Class<?> returnType = bodyType.returnType();
7069         List<Class<?>> innerList = bodyType.parameterList();
7070         // strip leading V value if present
7071         int vsize = (returnType == void.class ? 0 : 1);
7072         if (vsize != 0 && (innerList.size() == 0 || innerList.get(0) != returnType)) {
7073             // argument list has no "V" => error
7074             MethodType expected = bodyType.insertParameterTypes(0, returnType);
7075             throw misMatchedTypes("body function", bodyType, expected);
7076         } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) {
7077             // missing I type => error
7078             MethodType expected = bodyType.insertParameterTypes(vsize, counterType);
7079             throw misMatchedTypes("body function", bodyType, expected);
7080         }
7081         List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size());
7082         if (outerList.isEmpty()) {
7083             // special case; take lists from end handle
7084             outerList = end.type().parameterList();
7085             innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList();
7086         }
7087         MethodType expected = methodType(counterType, outerList);
7088         if (!start.type().effectivelyIdenticalParameters(0, outerList)) {
7089             throw misMatchedTypes("start parameter types", start.type(), expected);
7090         }
7091         if (end.type() != start.type() &&
7092             !end.type().effectivelyIdenticalParameters(0, outerList)) {
7093             throw misMatchedTypes("end parameter types", end.type(), expected);
7094         }
7095         if (init != null) {
7096             MethodType initType = init.type();
7097             if (initType.returnType() != returnType ||
7098                 !initType.effectivelyIdenticalParameters(0, outerList)) {
7099                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
7100             }
7101         }
7102     }
7103 
7104     /**
7105      * Constructs a loop that ranges over the values produced by an {@code Iterator<T>}.
7106      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
7107      * <p>
7108      * The iterator itself will be determined by the evaluation of the {@code iterator} handle.
7109      * Each value it produces will be stored in a loop iteration variable of type {@code T}.
7110      * <p>
7111      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
7112      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
7113      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
7114      * <p>
7115      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
7116      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
7117      * iteration variable.
7118      * The result of the loop handle execution will be the final {@code V} value of that variable
7119      * (or {@code void} if there is no {@code V} variable).
7120      * <p>
7121      * The following rules hold for the argument handles:<ul>
7122      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
7123      * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}.
7124      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
7125      * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V}
7126      * is quietly dropped from the parameter list, leaving {@code (T A...)V}.)
7127      * <li>The parameter list {@code (V T A...)} of the body contributes to a list
7128      * of types called the <em>internal parameter list</em>.
7129      * It will constrain the parameter lists of the other loop parts.
7130      * <li>As a special case, if the body contributes only {@code V} and {@code T} types,
7131      * with no additional {@code A} types, then the internal parameter list is extended by
7132      * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the
7133      * single type {@code Iterable} is added and constitutes the {@code A...} list.
7134      * <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter
7135      * list {@code (A...)} is called the <em>external parameter list</em>.
7136      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
7137      * additional state variable of the loop.
7138      * The body must both accept a leading parameter and return a value of this type {@code V}.
7139      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
7140      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
7141      * <a href="MethodHandles.html#effid">effectively identical</a>
7142      * to the external parameter list {@code (A...)}.
7143      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
7144      * {@linkplain #empty default value}.
7145      * <li>If the {@code iterator} handle is non-{@code null}, it must have the return
7146      * type {@code java.util.Iterator} or a subtype thereof.
7147      * The iterator it produces when the loop is executed will be assumed
7148      * to yield values which can be converted to type {@code T}.
7149      * <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be
7150      * effectively identical to the external parameter list {@code (A...)}.
7151      * <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves
7152      * like {@link java.lang.Iterable#iterator()}.  In that case, the internal parameter list
7153      * {@code (V T A...)} must have at least one {@code A} type, and the default iterator
7154      * handle parameter is adjusted to accept the leading {@code A} type, as if by
7155      * the {@link MethodHandle#asType asType} conversion method.
7156      * The leading {@code A} type must be {@code Iterable} or a subtype thereof.
7157      * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}.
7158      * </ul>
7159      * <p>
7160      * The type {@code T} may be either a primitive or reference.
7161      * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator},
7162      * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object}
7163      * as if by the {@link MethodHandle#asType asType} conversion method.
7164      * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur
7165      * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}.
7166      * <p>
7167      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
7168      * <li>The loop handle's result type is the result type {@code V} of the body.
7169      * <li>The loop handle's parameter types are the types {@code (A...)},
7170      * from the external parameter list.
7171      * </ul>
7172      * <p>
7173      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
7174      * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the
7175      * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop.
7176      * <blockquote><pre>{@code
7177      * Iterator<T> iterator(A...);  // defaults to Iterable::iterator
7178      * V init(A...);
7179      * V body(V,T,A...);
7180      * V iteratedLoop(A... a...) {
7181      *   Iterator<T> it = iterator(a...);
7182      *   V v = init(a...);
7183      *   while (it.hasNext()) {
7184      *     T t = it.next();
7185      *     v = body(v, t, a...);
7186      *   }
7187      *   return v;
7188      * }
7189      * }</pre></blockquote>
7190      *
7191      * @apiNote Example:
7192      * <blockquote><pre>{@code
7193      * // get an iterator from a list
7194      * static List<String> reverseStep(List<String> r, String e) {
7195      *   r.add(0, e);
7196      *   return r;
7197      * }
7198      * static List<String> newArrayList() { return new ArrayList<>(); }
7199      * // assume MH_reverseStep and MH_newArrayList are handles to the above methods
7200      * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep);
7201      * List<String> list = Arrays.asList("a", "b", "c", "d", "e");
7202      * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a");
7203      * assertEquals(reversedList, (List<String>) loop.invoke(list));
7204      * }</pre></blockquote>
7205      *
7206      * @apiNote The implementation of this method can be expressed approximately as follows:
7207      * <blockquote><pre>{@code
7208      * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
7209      *     // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable
7210      *     Class<?> returnType = body.type().returnType();
7211      *     Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
7212      *     MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype));
7213      *     MethodHandle retv = null, step = body, startIter = iterator;
7214      *     if (returnType != void.class) {
7215      *         // the simple thing first:  in (I V A...), drop the I to get V
7216      *         retv = dropArguments(identity(returnType), 0, Iterator.class);
7217      *         // body type signature (V T A...), internal loop types (I V A...)
7218      *         step = swapArguments(body, 0, 1);  // swap V <-> T
7219      *     }
7220      *     if (startIter == null)  startIter = MH_getIter;
7221      *     MethodHandle[]
7222      *         iterVar    = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext())
7223      *         bodyClause = { init, filterArguments(step, 0, nextVal) };  // v = body(v, t, a)
7224      *     return loop(iterVar, bodyClause);
7225      * }
7226      * }</pre></blockquote>
7227      *
7228      * @param iterator an optional handle to return the iterator to start the loop.
7229      *                 If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype.
7230      *                 See above for other constraints.
7231      * @param init optional initializer, providing the initial value of the loop variable.
7232      *             May be {@code null}, implying a default initial value.  See above for other constraints.
7233      * @param body body of the loop, which may not be {@code null}.
7234      *             It controls the loop parameters and result type in the standard case (see above for details).
7235      *             It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values),
7236      *             and may accept any number of additional types.
7237      *             See above for other constraints.
7238      *
7239      * @return a method handle embodying the iteration loop functionality.
7240      * @throws NullPointerException if the {@code body} handle is {@code null}.
7241      * @throws IllegalArgumentException if any argument violates the above requirements.
7242      *
7243      * @since 9
7244      */
iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body)7245     public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
7246         Class<?> iterableType = iteratedLoopChecks(iterator, init, body);
7247         Class<?> returnType = body.type().returnType();
7248         MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred);
7249         MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext);
7250         MethodHandle startIter;
7251         MethodHandle nextVal;
7252         {
7253             MethodType iteratorType;
7254             if (iterator == null) {
7255                 // derive argument type from body, if available, else use Iterable
7256                 startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator);
7257                 iteratorType = startIter.type().changeParameterType(0, iterableType);
7258             } else {
7259                 // force return type to the internal iterator class
7260                 iteratorType = iterator.type().changeReturnType(Iterator.class);
7261                 startIter = iterator;
7262             }
7263             Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
7264             MethodType nextValType = nextRaw.type().changeReturnType(ttype);
7265 
7266             // perform the asType transforms under an exception transformer, as per spec.:
7267             try {
7268                 startIter = startIter.asType(iteratorType);
7269                 nextVal = nextRaw.asType(nextValType);
7270             } catch (WrongMethodTypeException ex) {
7271                 throw new IllegalArgumentException(ex);
7272             }
7273         }
7274 
7275         MethodHandle retv = null, step = body;
7276         if (returnType != void.class) {
7277             // the simple thing first:  in (I V A...), drop the I to get V
7278             retv = dropArguments(identity(returnType), 0, Iterator.class);
7279             // body type signature (V T A...), internal loop types (I V A...)
7280             step = swapArguments(body, 0, 1);  // swap V <-> T
7281         }
7282 
7283         MethodHandle[]
7284             iterVar    = { startIter, null, hasNext, retv },
7285             bodyClause = { init, filterArgument(step, 0, nextVal) };
7286         return loop(iterVar, bodyClause);
7287     }
7288 
iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body)7289     private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) {
7290         Objects.requireNonNull(body);
7291         MethodType bodyType = body.type();
7292         Class<?> returnType = bodyType.returnType();
7293         List<Class<?>> internalParamList = bodyType.parameterList();
7294         // strip leading V value if present
7295         int vsize = (returnType == void.class ? 0 : 1);
7296         if (vsize != 0 && (internalParamList.size() == 0 || internalParamList.get(0) != returnType)) {
7297             // argument list has no "V" => error
7298             MethodType expected = bodyType.insertParameterTypes(0, returnType);
7299             throw misMatchedTypes("body function", bodyType, expected);
7300         } else if (internalParamList.size() <= vsize) {
7301             // missing T type => error
7302             MethodType expected = bodyType.insertParameterTypes(vsize, Object.class);
7303             throw misMatchedTypes("body function", bodyType, expected);
7304         }
7305         List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size());
7306         Class<?> iterableType = null;
7307         if (iterator != null) {
7308             // special case; if the body handle only declares V and T then
7309             // the external parameter list is obtained from iterator handle
7310             if (externalParamList.isEmpty()) {
7311                 externalParamList = iterator.type().parameterList();
7312             }
7313             MethodType itype = iterator.type();
7314             if (!Iterator.class.isAssignableFrom(itype.returnType())) {
7315                 throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type");
7316             }
7317             if (!itype.effectivelyIdenticalParameters(0, externalParamList)) {
7318                 MethodType expected = methodType(itype.returnType(), externalParamList);
7319                 throw misMatchedTypes("iterator parameters", itype, expected);
7320             }
7321         } else {
7322             if (externalParamList.isEmpty()) {
7323                 // special case; if the iterator handle is null and the body handle
7324                 // only declares V and T then the external parameter list consists
7325                 // of Iterable
7326                 externalParamList = Arrays.asList(Iterable.class);
7327                 iterableType = Iterable.class;
7328             } else {
7329                 // special case; if the iterator handle is null and the external
7330                 // parameter list is not empty then the first parameter must be
7331                 // assignable to Iterable
7332                 iterableType = externalParamList.get(0);
7333                 if (!Iterable.class.isAssignableFrom(iterableType)) {
7334                     throw newIllegalArgumentException(
7335                             "inferred first loop argument must inherit from Iterable: " + iterableType);
7336                 }
7337             }
7338         }
7339         if (init != null) {
7340             MethodType initType = init.type();
7341             if (initType.returnType() != returnType ||
7342                     !initType.effectivelyIdenticalParameters(0, externalParamList)) {
7343                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList));
7344             }
7345         }
7346         return iterableType;  // help the caller a bit
7347     }
7348 
7349     /*non-public*/
swapArguments(MethodHandle mh, int i, int j)7350     static MethodHandle swapArguments(MethodHandle mh, int i, int j) {
7351         // there should be a better way to uncross my wires
7352         int arity = mh.type().parameterCount();
7353         int[] order = new int[arity];
7354         for (int k = 0; k < arity; k++)  order[k] = k;
7355         order[i] = j; order[j] = i;
7356         Class<?>[] types = mh.type().parameterArray();
7357         Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti;
7358         MethodType swapType = methodType(mh.type().returnType(), types);
7359         return permuteArguments(mh, swapType, order);
7360     }
7361 
7362     /**
7363      * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block.
7364      * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception
7365      * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The
7366      * exception will be rethrown, unless {@code cleanup} handle throws an exception first.  The
7367      * value returned from the {@code cleanup} handle's execution will be the result of the execution of the
7368      * {@code try-finally} handle.
7369      * <p>
7370      * The {@code cleanup} handle will be passed one or two additional leading arguments.
7371      * The first is the exception thrown during the
7372      * execution of the {@code target} handle, or {@code null} if no exception was thrown.
7373      * The second is the result of the execution of the {@code target} handle, or, if it throws an exception,
7374      * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder.
7375      * The second argument is not present if the {@code target} handle has a {@code void} return type.
7376      * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists
7377      * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.)
7378      * <p>
7379      * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except
7380      * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or
7381      * two extra leading parameters:<ul>
7382      * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and
7383      * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry
7384      * the result from the execution of the {@code target} handle.
7385      * This parameter is not present if the {@code target} returns {@code void}.
7386      * </ul>
7387      * <p>
7388      * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of
7389      * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting
7390      * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by
7391      * the cleanup.
7392      * <blockquote><pre>{@code
7393      * V target(A..., B...);
7394      * V cleanup(Throwable, V, A...);
7395      * V adapter(A... a, B... b) {
7396      *   V result = (zero value for V);
7397      *   Throwable throwable = null;
7398      *   try {
7399      *     result = target(a..., b...);
7400      *   } catch (Throwable t) {
7401      *     throwable = t;
7402      *     throw t;
7403      *   } finally {
7404      *     result = cleanup(throwable, result, a...);
7405      *   }
7406      *   return result;
7407      * }
7408      * }</pre></blockquote>
7409      * <p>
7410      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
7411      * be modified by execution of the target, and so are passed unchanged
7412      * from the caller to the cleanup, if it is invoked.
7413      * <p>
7414      * The target and cleanup must return the same type, even if the cleanup
7415      * always throws.
7416      * To create such a throwing cleanup, compose the cleanup logic
7417      * with {@link #throwException throwException},
7418      * in order to create a method handle of the correct return type.
7419      * <p>
7420      * Note that {@code tryFinally} never converts exceptions into normal returns.
7421      * In rare cases where exceptions must be converted in that way, first wrap
7422      * the target with {@link #catchException(MethodHandle, Class, MethodHandle)}
7423      * to capture an outgoing exception, and then wrap with {@code tryFinally}.
7424      * <p>
7425      * It is recommended that the first parameter type of {@code cleanup} be
7426      * declared {@code Throwable} rather than a narrower subtype.  This ensures
7427      * {@code cleanup} will always be invoked with whatever exception that
7428      * {@code target} throws.  Declaring a narrower type may result in a
7429      * {@code ClassCastException} being thrown by the {@code try-finally}
7430      * handle if the type of the exception thrown by {@code target} is not
7431      * assignable to the first parameter type of {@code cleanup}.  Note that
7432      * various exception types of {@code VirtualMachineError},
7433      * {@code LinkageError}, and {@code RuntimeException} can in principle be
7434      * thrown by almost any kind of Java code, and a finally clause that
7435      * catches (say) only {@code IOException} would mask any of the others
7436      * behind a {@code ClassCastException}.
7437      *
7438      * @param target the handle whose execution is to be wrapped in a {@code try} block.
7439      * @param cleanup the handle that is invoked in the finally block.
7440      *
7441      * @return a method handle embodying the {@code try-finally} block composed of the two arguments.
7442      * @throws NullPointerException if any argument is null
7443      * @throws IllegalArgumentException if {@code cleanup} does not accept
7444      *          the required leading arguments, or if the method handle types do
7445      *          not match in their return types and their
7446      *          corresponding trailing parameters
7447      *
7448      * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle)
7449      * @since 9
7450      */
tryFinally(MethodHandle target, MethodHandle cleanup)7451     public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) {
7452         List<Class<?>> targetParamTypes = target.type().parameterList();
7453         Class<?> rtype = target.type().returnType();
7454 
7455         tryFinallyChecks(target, cleanup);
7456 
7457         // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments.
7458         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
7459         // target parameter list.
7460         cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0);
7461 
7462         // Ensure that the intrinsic type checks the instance thrown by the
7463         // target against the first parameter of cleanup
7464         cleanup = cleanup.asType(cleanup.type().changeParameterType(0, Throwable.class));
7465 
7466         // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
7467         return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes);
7468     }
7469 
tryFinallyChecks(MethodHandle target, MethodHandle cleanup)7470     private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) {
7471         Class<?> rtype = target.type().returnType();
7472         if (rtype != cleanup.type().returnType()) {
7473             throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype);
7474         }
7475         MethodType cleanupType = cleanup.type();
7476         if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) {
7477             throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class);
7478         }
7479         if (rtype != void.class && cleanupType.parameterType(1) != rtype) {
7480             throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype);
7481         }
7482         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
7483         // target parameter list.
7484         int cleanupArgIndex = rtype == void.class ? 1 : 2;
7485         if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) {
7486             throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix",
7487                     cleanup.type(), target.type());
7488         }
7489     }
7490 
7491 }
7492