1 /*
2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3  *
4  * This code is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License version 2 only, as
6  * published by the Free Software Foundation.  Oracle designates this
7  * particular file as subject to the "Classpath" exception as provided
8  * by Oracle in the LICENSE file that accompanied this code.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  */
24 
25 /*
26  * This file is available under and governed by the GNU General Public
27  * License version 2 only, as published by the Free Software Foundation.
28  * However, the following notice accompanied the original version of this
29  * file:
30  *
31  * Written by Doug Lea and Martin Buchholz with assistance from members of
32  * JCP JSR-166 Expert Group and released to the public domain, as explained
33  * at http://creativecommons.org/publicdomain/zero/1.0/
34  */
35 
36 package java.util.concurrent;
37 
38 import java.lang.invoke.MethodHandles;
39 import java.lang.invoke.VarHandle;
40 import java.util.AbstractCollection;
41 import java.util.Arrays;
42 import java.util.Collection;
43 import java.util.Deque;
44 import java.util.Iterator;
45 import java.util.NoSuchElementException;
46 import java.util.Objects;
47 import java.util.Queue;
48 import java.util.Spliterator;
49 import java.util.Spliterators;
50 import java.util.function.Consumer;
51 import java.util.function.Predicate;
52 
53 /**
54  * An unbounded concurrent {@linkplain Deque deque} based on linked nodes.
55  * Concurrent insertion, removal, and access operations execute safely
56  * across multiple threads.
57  * A {@code ConcurrentLinkedDeque} is an appropriate choice when
58  * many threads will share access to a common collection.
59  * Like most other concurrent collection implementations, this class
60  * does not permit the use of {@code null} elements.
61  *
62  * <p>Iterators and spliterators are
63  * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
64  *
65  * <p>Beware that, unlike in most collections, the {@code size} method
66  * is <em>NOT</em> a constant-time operation. Because of the
67  * asynchronous nature of these deques, determining the current number
68  * of elements requires a traversal of the elements, and so may report
69  * inaccurate results if this collection is modified during traversal.
70  *
71  * <p>Bulk operations that add, remove, or examine multiple elements,
72  * such as {@link #addAll}, {@link #removeIf} or {@link #forEach},
73  * are <em>not</em> guaranteed to be performed atomically.
74  * For example, a {@code forEach} traversal concurrent with an {@code
75  * addAll} operation might observe only some of the added elements.
76  *
77  * <p>This class and its iterator implement all of the <em>optional</em>
78  * methods of the {@link Deque} and {@link Iterator} interfaces.
79  *
80  * <p>Memory consistency effects: As with other concurrent collections,
81  * actions in a thread prior to placing an object into a
82  * {@code ConcurrentLinkedDeque}
83  * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
84  * actions subsequent to the access or removal of that element from
85  * the {@code ConcurrentLinkedDeque} in another thread.
86  *
87  * <p>This class is a member of the
88  * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
89  * Java Collections Framework</a>.
90  *
91  * @since 1.7
92  * @author Doug Lea
93  * @author Martin Buchholz
94  * @param <E> the type of elements held in this deque
95  */
96 public class ConcurrentLinkedDeque<E>
97     extends AbstractCollection<E>
98     implements Deque<E>, java.io.Serializable {
99 
100     /*
101      * This is an implementation of a concurrent lock-free deque
102      * supporting interior removes but not interior insertions, as
103      * required to support the entire Deque interface.
104      *
105      * We extend the techniques developed for ConcurrentLinkedQueue and
106      * LinkedTransferQueue (see the internal docs for those classes).
107      * Understanding the ConcurrentLinkedQueue implementation is a
108      * prerequisite for understanding the implementation of this class.
109      *
110      * The data structure is a symmetrical doubly-linked "GC-robust"
111      * linked list of nodes.  We minimize the number of volatile writes
112      * using two techniques: advancing multiple hops with a single CAS
113      * and mixing volatile and non-volatile writes of the same memory
114      * locations.
115      *
116      * A node contains the expected E ("item") and links to predecessor
117      * ("prev") and successor ("next") nodes:
118      *
119      * class Node<E> { volatile Node<E> prev, next; volatile E item; }
120      *
121      * A node p is considered "live" if it contains a non-null item
122      * (p.item != null).  When an item is CASed to null, the item is
123      * atomically logically deleted from the collection.
124      *
125      * At any time, there is precisely one "first" node with a null
126      * prev reference that terminates any chain of prev references
127      * starting at a live node.  Similarly there is precisely one
128      * "last" node terminating any chain of next references starting at
129      * a live node.  The "first" and "last" nodes may or may not be live.
130      * The "first" and "last" nodes are always mutually reachable.
131      *
132      * A new element is added atomically by CASing the null prev or
133      * next reference in the first or last node to a fresh node
134      * containing the element.  The element's node atomically becomes
135      * "live" at that point.
136      *
137      * A node is considered "active" if it is a live node, or the
138      * first or last node.  Active nodes cannot be unlinked.
139      *
140      * A "self-link" is a next or prev reference that is the same node:
141      *   p.prev == p  or  p.next == p
142      * Self-links are used in the node unlinking process.  Active nodes
143      * never have self-links.
144      *
145      * A node p is active if and only if:
146      *
147      * p.item != null ||
148      * (p.prev == null && p.next != p) ||
149      * (p.next == null && p.prev != p)
150      *
151      * The deque object has two node references, "head" and "tail".
152      * The head and tail are only approximations to the first and last
153      * nodes of the deque.  The first node can always be found by
154      * following prev pointers from head; likewise for tail.  However,
155      * it is permissible for head and tail to be referring to deleted
156      * nodes that have been unlinked and so may not be reachable from
157      * any live node.
158      *
159      * There are 3 stages of node deletion;
160      * "logical deletion", "unlinking", and "gc-unlinking".
161      *
162      * 1. "logical deletion" by CASing item to null atomically removes
163      * the element from the collection, and makes the containing node
164      * eligible for unlinking.
165      *
166      * 2. "unlinking" makes a deleted node unreachable from active
167      * nodes, and thus eventually reclaimable by GC.  Unlinked nodes
168      * may remain reachable indefinitely from an iterator.
169      *
170      * Physical node unlinking is merely an optimization (albeit a
171      * critical one), and so can be performed at our convenience.  At
172      * any time, the set of live nodes maintained by prev and next
173      * links are identical, that is, the live nodes found via next
174      * links from the first node is equal to the elements found via
175      * prev links from the last node.  However, this is not true for
176      * nodes that have already been logically deleted - such nodes may
177      * be reachable in one direction only.
178      *
179      * 3. "gc-unlinking" takes unlinking further by making active
180      * nodes unreachable from deleted nodes, making it easier for the
181      * GC to reclaim future deleted nodes.  This step makes the data
182      * structure "gc-robust", as first described in detail by Boehm
183      * (http://portal.acm.org/citation.cfm?doid=503272.503282).
184      *
185      * GC-unlinked nodes may remain reachable indefinitely from an
186      * iterator, but unlike unlinked nodes, are never reachable from
187      * head or tail.
188      *
189      * Making the data structure GC-robust will eliminate the risk of
190      * unbounded memory retention with conservative GCs and is likely
191      * to improve performance with generational GCs.
192      *
193      * When a node is dequeued at either end, e.g. via poll(), we would
194      * like to break any references from the node to active nodes.  We
195      * develop further the use of self-links that was very effective in
196      * other concurrent collection classes.  The idea is to replace
197      * prev and next pointers with special values that are interpreted
198      * to mean off-the-list-at-one-end.  These are approximations, but
199      * good enough to preserve the properties we want in our
200      * traversals, e.g. we guarantee that a traversal will never visit
201      * the same element twice, but we don't guarantee whether a
202      * traversal that runs out of elements will be able to see more
203      * elements later after enqueues at that end.  Doing gc-unlinking
204      * safely is particularly tricky, since any node can be in use
205      * indefinitely (for example by an iterator).  We must ensure that
206      * the nodes pointed at by head/tail never get gc-unlinked, since
207      * head/tail are needed to get "back on track" by other nodes that
208      * are gc-unlinked.  gc-unlinking accounts for much of the
209      * implementation complexity.
210      *
211      * Since neither unlinking nor gc-unlinking are necessary for
212      * correctness, there are many implementation choices regarding
213      * frequency (eagerness) of these operations.  Since volatile
214      * reads are likely to be much cheaper than CASes, saving CASes by
215      * unlinking multiple adjacent nodes at a time may be a win.
216      * gc-unlinking can be performed rarely and still be effective,
217      * since it is most important that long chains of deleted nodes
218      * are occasionally broken.
219      *
220      * The actual representation we use is that p.next == p means to
221      * goto the first node (which in turn is reached by following prev
222      * pointers from head), and p.next == null && p.prev == p means
223      * that the iteration is at an end and that p is a (static final)
224      * dummy node, NEXT_TERMINATOR, and not the last active node.
225      * Finishing the iteration when encountering such a TERMINATOR is
226      * good enough for read-only traversals, so such traversals can use
227      * p.next == null as the termination condition.  When we need to
228      * find the last (active) node, for enqueueing a new node, we need
229      * to check whether we have reached a TERMINATOR node; if so,
230      * restart traversal from tail.
231      *
232      * The implementation is completely directionally symmetrical,
233      * except that most public methods that iterate through the list
234      * follow next pointers, in the "forward" direction.
235      *
236      * We believe (without full proof) that all single-element Deque
237      * operations that operate directly at the two ends of the Deque
238      * (e.g., addFirst, peekLast, pollLast) are linearizable (see
239      * Herlihy and Shavit's book).  However, some combinations of
240      * operations are known not to be linearizable.  In particular,
241      * when an addFirst(A) is racing with pollFirst() removing B, it
242      * is possible for an observer iterating over the elements to
243      * observe first [A B C] and then [A C], even though no interior
244      * removes are ever performed.  Nevertheless, iterators behave
245      * reasonably, providing the "weakly consistent" guarantees.
246      *
247      * Empirically, microbenchmarks suggest that this class adds about
248      * 40% overhead relative to ConcurrentLinkedQueue, which feels as
249      * good as we can hope for.
250      */
251 
252     private static final long serialVersionUID = 876323262645176354L;
253 
254     /**
255      * A node from which the first node on list (that is, the unique node p
256      * with p.prev == null && p.next != p) can be reached in O(1) time.
257      * Invariants:
258      * - the first node is always O(1) reachable from head via prev links
259      * - all live nodes are reachable from the first node via succ()
260      * - head != null
261      * - (tmp = head).next != tmp || tmp != head
262      * - head is never gc-unlinked (but may be unlinked)
263      * Non-invariants:
264      * - head.item may or may not be null
265      * - head may not be reachable from the first or last node, or from tail
266      */
267     private transient volatile Node<E> head;
268 
269     /**
270      * A node from which the last node on list (that is, the unique node p
271      * with p.next == null && p.prev != p) can be reached in O(1) time.
272      * Invariants:
273      * - the last node is always O(1) reachable from tail via next links
274      * - all live nodes are reachable from the last node via pred()
275      * - tail != null
276      * - tail is never gc-unlinked (but may be unlinked)
277      * Non-invariants:
278      * - tail.item may or may not be null
279      * - tail may not be reachable from the first or last node, or from head
280      */
281     private transient volatile Node<E> tail;
282 
283     private static final Node<Object> PREV_TERMINATOR, NEXT_TERMINATOR;
284 
285     @SuppressWarnings("unchecked")
prevTerminator()286     Node<E> prevTerminator() {
287         return (Node<E>) PREV_TERMINATOR;
288     }
289 
290     @SuppressWarnings("unchecked")
nextTerminator()291     Node<E> nextTerminator() {
292         return (Node<E>) NEXT_TERMINATOR;
293     }
294 
295     static final class Node<E> {
296         volatile Node<E> prev;
297         volatile E item;
298         volatile Node<E> next;
299     }
300 
301     /**
302      * Returns a new node holding item.  Uses relaxed write because item
303      * can only be seen after piggy-backing publication via CAS.
304      */
newNode(E item)305     static <E> Node<E> newNode(E item) {
306         Node<E> node = new Node<E>();
307         ITEM.set(node, item);
308         return node;
309     }
310 
311     /**
312      * Links e as first element.
313      */
linkFirst(E e)314     private void linkFirst(E e) {
315         final Node<E> newNode = newNode(Objects.requireNonNull(e));
316 
317         restartFromHead:
318         for (;;)
319             for (Node<E> h = head, p = h, q;;) {
320                 if ((q = p.prev) != null &&
321                     (q = (p = q).prev) != null)
322                     // Check for head updates every other hop.
323                     // If p == q, we are sure to follow head instead.
324                     p = (h != (h = head)) ? h : q;
325                 else if (p.next == p) // PREV_TERMINATOR
326                     continue restartFromHead;
327                 else {
328                     // p is first node
329                     NEXT.set(newNode, p); // CAS piggyback
330                     if (PREV.compareAndSet(p, null, newNode)) {
331                         // Successful CAS is the linearization point
332                         // for e to become an element of this deque,
333                         // and for newNode to become "live".
334                         if (p != h) // hop two nodes at a time; failure is OK
335                             HEAD.weakCompareAndSet(this, h, newNode);
336                         return;
337                     }
338                     // Lost CAS race to another thread; re-read prev
339                 }
340             }
341     }
342 
343     /**
344      * Links e as last element.
345      */
linkLast(E e)346     private void linkLast(E e) {
347         final Node<E> newNode = newNode(Objects.requireNonNull(e));
348 
349         restartFromTail:
350         for (;;)
351             for (Node<E> t = tail, p = t, q;;) {
352                 if ((q = p.next) != null &&
353                     (q = (p = q).next) != null)
354                     // Check for tail updates every other hop.
355                     // If p == q, we are sure to follow tail instead.
356                     p = (t != (t = tail)) ? t : q;
357                 else if (p.prev == p) // NEXT_TERMINATOR
358                     continue restartFromTail;
359                 else {
360                     // p is last node
361                     PREV.set(newNode, p); // CAS piggyback
362                     if (NEXT.compareAndSet(p, null, newNode)) {
363                         // Successful CAS is the linearization point
364                         // for e to become an element of this deque,
365                         // and for newNode to become "live".
366                         if (p != t) // hop two nodes at a time; failure is OK
367                             TAIL.weakCompareAndSet(this, t, newNode);
368                         return;
369                     }
370                     // Lost CAS race to another thread; re-read next
371                 }
372             }
373     }
374 
375     private static final int HOPS = 2;
376 
377     /**
378      * Unlinks non-null node x.
379      */
unlink(Node<E> x)380     void unlink(Node<E> x) {
381         // assert x != null;
382         // assert x.item == null;
383         // assert x != PREV_TERMINATOR;
384         // assert x != NEXT_TERMINATOR;
385 
386         final Node<E> prev = x.prev;
387         final Node<E> next = x.next;
388         if (prev == null) {
389             unlinkFirst(x, next);
390         } else if (next == null) {
391             unlinkLast(x, prev);
392         } else {
393             // Unlink interior node.
394             //
395             // This is the common case, since a series of polls at the
396             // same end will be "interior" removes, except perhaps for
397             // the first one, since end nodes cannot be unlinked.
398             //
399             // At any time, all active nodes are mutually reachable by
400             // following a sequence of either next or prev pointers.
401             //
402             // Our strategy is to find the unique active predecessor
403             // and successor of x.  Try to fix up their links so that
404             // they point to each other, leaving x unreachable from
405             // active nodes.  If successful, and if x has no live
406             // predecessor/successor, we additionally try to gc-unlink,
407             // leaving active nodes unreachable from x, by rechecking
408             // that the status of predecessor and successor are
409             // unchanged and ensuring that x is not reachable from
410             // tail/head, before setting x's prev/next links to their
411             // logical approximate replacements, self/TERMINATOR.
412             Node<E> activePred, activeSucc;
413             boolean isFirst, isLast;
414             int hops = 1;
415 
416             // Find active predecessor
417             for (Node<E> p = prev; ; ++hops) {
418                 if (p.item != null) {
419                     activePred = p;
420                     isFirst = false;
421                     break;
422                 }
423                 Node<E> q = p.prev;
424                 if (q == null) {
425                     if (p.next == p)
426                         return;
427                     activePred = p;
428                     isFirst = true;
429                     break;
430                 }
431                 else if (p == q)
432                     return;
433                 else
434                     p = q;
435             }
436 
437             // Find active successor
438             for (Node<E> p = next; ; ++hops) {
439                 if (p.item != null) {
440                     activeSucc = p;
441                     isLast = false;
442                     break;
443                 }
444                 Node<E> q = p.next;
445                 if (q == null) {
446                     if (p.prev == p)
447                         return;
448                     activeSucc = p;
449                     isLast = true;
450                     break;
451                 }
452                 else if (p == q)
453                     return;
454                 else
455                     p = q;
456             }
457 
458             // TODO: better HOP heuristics
459             if (hops < HOPS
460                 // always squeeze out interior deleted nodes
461                 && (isFirst | isLast))
462                 return;
463 
464             // Squeeze out deleted nodes between activePred and
465             // activeSucc, including x.
466             skipDeletedSuccessors(activePred);
467             skipDeletedPredecessors(activeSucc);
468 
469             // Try to gc-unlink, if possible
470             if ((isFirst | isLast) &&
471 
472                 // Recheck expected state of predecessor and successor
473                 (activePred.next == activeSucc) &&
474                 (activeSucc.prev == activePred) &&
475                 (isFirst ? activePred.prev == null : activePred.item != null) &&
476                 (isLast  ? activeSucc.next == null : activeSucc.item != null)) {
477 
478                 updateHead(); // Ensure x is not reachable from head
479                 updateTail(); // Ensure x is not reachable from tail
480 
481                 // Finally, actually gc-unlink
482                 PREV.setRelease(x, isFirst ? prevTerminator() : x);
483                 NEXT.setRelease(x, isLast  ? nextTerminator() : x);
484             }
485         }
486     }
487 
488     /**
489      * Unlinks non-null first node.
490      */
unlinkFirst(Node<E> first, Node<E> next)491     private void unlinkFirst(Node<E> first, Node<E> next) {
492         // assert first != null;
493         // assert next != null;
494         // assert first.item == null;
495         for (Node<E> o = null, p = next, q;;) {
496             if (p.item != null || (q = p.next) == null) {
497                 if (o != null && p.prev != p &&
498                     NEXT.compareAndSet(first, next, p)) {
499                     skipDeletedPredecessors(p);
500                     if (first.prev == null &&
501                         (p.next == null || p.item != null) &&
502                         p.prev == first) {
503 
504                         updateHead(); // Ensure o is not reachable from head
505                         updateTail(); // Ensure o is not reachable from tail
506 
507                         // Finally, actually gc-unlink
508                         NEXT.setRelease(o, o);
509                         PREV.setRelease(o, prevTerminator());
510                     }
511                 }
512                 return;
513             }
514             else if (p == q)
515                 return;
516             else {
517                 o = p;
518                 p = q;
519             }
520         }
521     }
522 
523     /**
524      * Unlinks non-null last node.
525      */
unlinkLast(Node<E> last, Node<E> prev)526     private void unlinkLast(Node<E> last, Node<E> prev) {
527         // assert last != null;
528         // assert prev != null;
529         // assert last.item == null;
530         for (Node<E> o = null, p = prev, q;;) {
531             if (p.item != null || (q = p.prev) == null) {
532                 if (o != null && p.next != p &&
533                     PREV.compareAndSet(last, prev, p)) {
534                     skipDeletedSuccessors(p);
535                     if (last.next == null &&
536                         (p.prev == null || p.item != null) &&
537                         p.next == last) {
538 
539                         updateHead(); // Ensure o is not reachable from head
540                         updateTail(); // Ensure o is not reachable from tail
541 
542                         // Finally, actually gc-unlink
543                         PREV.setRelease(o, o);
544                         NEXT.setRelease(o, nextTerminator());
545                     }
546                 }
547                 return;
548             }
549             else if (p == q)
550                 return;
551             else {
552                 o = p;
553                 p = q;
554             }
555         }
556     }
557 
558     /**
559      * Guarantees that any node which was unlinked before a call to
560      * this method will be unreachable from head after it returns.
561      * Does not guarantee to eliminate slack, only that head will
562      * point to a node that was active while this method was running.
563      */
updateHead()564     private final void updateHead() {
565         // Either head already points to an active node, or we keep
566         // trying to cas it to the first node until it does.
567         Node<E> h, p, q;
568         restartFromHead:
569         while ((h = head).item == null && (p = h.prev) != null) {
570             for (;;) {
571                 if ((q = p.prev) == null ||
572                     (q = (p = q).prev) == null) {
573                     // It is possible that p is PREV_TERMINATOR,
574                     // but if so, the CAS is guaranteed to fail.
575                     if (HEAD.compareAndSet(this, h, p))
576                         return;
577                     else
578                         continue restartFromHead;
579                 }
580                 else if (h != head)
581                     continue restartFromHead;
582                 else
583                     p = q;
584             }
585         }
586     }
587 
588     /**
589      * Guarantees that any node which was unlinked before a call to
590      * this method will be unreachable from tail after it returns.
591      * Does not guarantee to eliminate slack, only that tail will
592      * point to a node that was active while this method was running.
593      */
updateTail()594     private final void updateTail() {
595         // Either tail already points to an active node, or we keep
596         // trying to cas it to the last node until it does.
597         Node<E> t, p, q;
598         restartFromTail:
599         while ((t = tail).item == null && (p = t.next) != null) {
600             for (;;) {
601                 if ((q = p.next) == null ||
602                     (q = (p = q).next) == null) {
603                     // It is possible that p is NEXT_TERMINATOR,
604                     // but if so, the CAS is guaranteed to fail.
605                     if (TAIL.compareAndSet(this, t, p))
606                         return;
607                     else
608                         continue restartFromTail;
609                 }
610                 else if (t != tail)
611                     continue restartFromTail;
612                 else
613                     p = q;
614             }
615         }
616     }
617 
skipDeletedPredecessors(Node<E> x)618     private void skipDeletedPredecessors(Node<E> x) {
619         whileActive:
620         do {
621             Node<E> prev = x.prev;
622             // assert prev != null;
623             // assert x != NEXT_TERMINATOR;
624             // assert x != PREV_TERMINATOR;
625             Node<E> p = prev;
626             findActive:
627             for (;;) {
628                 if (p.item != null)
629                     break findActive;
630                 Node<E> q = p.prev;
631                 if (q == null) {
632                     if (p.next == p)
633                         continue whileActive;
634                     break findActive;
635                 }
636                 else if (p == q)
637                     continue whileActive;
638                 else
639                     p = q;
640             }
641 
642             // found active CAS target
643             if (prev == p || PREV.compareAndSet(x, prev, p))
644                 return;
645 
646         } while (x.item != null || x.next == null);
647     }
648 
skipDeletedSuccessors(Node<E> x)649     private void skipDeletedSuccessors(Node<E> x) {
650         whileActive:
651         do {
652             Node<E> next = x.next;
653             // assert next != null;
654             // assert x != NEXT_TERMINATOR;
655             // assert x != PREV_TERMINATOR;
656             Node<E> p = next;
657             findActive:
658             for (;;) {
659                 if (p.item != null)
660                     break findActive;
661                 Node<E> q = p.next;
662                 if (q == null) {
663                     if (p.prev == p)
664                         continue whileActive;
665                     break findActive;
666                 }
667                 else if (p == q)
668                     continue whileActive;
669                 else
670                     p = q;
671             }
672 
673             // found active CAS target
674             if (next == p || NEXT.compareAndSet(x, next, p))
675                 return;
676 
677         } while (x.item != null || x.prev == null);
678     }
679 
680     /**
681      * Returns the successor of p, or the first node if p.next has been
682      * linked to self, which will only be true if traversing with a
683      * stale pointer that is now off the list.
684      */
succ(Node<E> p)685     final Node<E> succ(Node<E> p) {
686         // TODO: should we skip deleted nodes here?
687         if (p == (p = p.next))
688             p = first();
689         return p;
690     }
691 
692     /**
693      * Returns the predecessor of p, or the last node if p.prev has been
694      * linked to self, which will only be true if traversing with a
695      * stale pointer that is now off the list.
696      */
pred(Node<E> p)697     final Node<E> pred(Node<E> p) {
698         if (p == (p = p.prev))
699             p = last();
700         return p;
701     }
702 
703     /**
704      * Returns the first node, the unique node p for which:
705      *     p.prev == null && p.next != p
706      * The returned node may or may not be logically deleted.
707      * Guarantees that head is set to the returned node.
708      */
first()709     Node<E> first() {
710         restartFromHead:
711         for (;;)
712             for (Node<E> h = head, p = h, q;;) {
713                 if ((q = p.prev) != null &&
714                     (q = (p = q).prev) != null)
715                     // Check for head updates every other hop.
716                     // If p == q, we are sure to follow head instead.
717                     p = (h != (h = head)) ? h : q;
718                 else if (p == h
719                          // It is possible that p is PREV_TERMINATOR,
720                          // but if so, the CAS is guaranteed to fail.
721                          || HEAD.compareAndSet(this, h, p))
722                     return p;
723                 else
724                     continue restartFromHead;
725             }
726     }
727 
728     /**
729      * Returns the last node, the unique node p for which:
730      *     p.next == null && p.prev != p
731      * The returned node may or may not be logically deleted.
732      * Guarantees that tail is set to the returned node.
733      */
last()734     Node<E> last() {
735         restartFromTail:
736         for (;;)
737             for (Node<E> t = tail, p = t, q;;) {
738                 if ((q = p.next) != null &&
739                     (q = (p = q).next) != null)
740                     // Check for tail updates every other hop.
741                     // If p == q, we are sure to follow tail instead.
742                     p = (t != (t = tail)) ? t : q;
743                 else if (p == t
744                          // It is possible that p is NEXT_TERMINATOR,
745                          // but if so, the CAS is guaranteed to fail.
746                          || TAIL.compareAndSet(this, t, p))
747                     return p;
748                 else
749                     continue restartFromTail;
750             }
751     }
752 
753     // Minor convenience utilities
754 
755     /**
756      * Returns element unless it is null, in which case throws
757      * NoSuchElementException.
758      *
759      * @param v the element
760      * @return the element
761      */
screenNullResult(E v)762     private E screenNullResult(E v) {
763         if (v == null)
764             throw new NoSuchElementException();
765         return v;
766     }
767 
768     /**
769      * Constructs an empty deque.
770      */
ConcurrentLinkedDeque()771     public ConcurrentLinkedDeque() {
772         head = tail = new Node<E>();
773     }
774 
775     /**
776      * Constructs a deque initially containing the elements of
777      * the given collection, added in traversal order of the
778      * collection's iterator.
779      *
780      * @param c the collection of elements to initially contain
781      * @throws NullPointerException if the specified collection or any
782      *         of its elements are null
783      */
ConcurrentLinkedDeque(Collection<? extends E> c)784     public ConcurrentLinkedDeque(Collection<? extends E> c) {
785         // Copy c into a private chain of Nodes
786         Node<E> h = null, t = null;
787         for (E e : c) {
788             Node<E> newNode = newNode(Objects.requireNonNull(e));
789             if (h == null)
790                 h = t = newNode;
791             else {
792                 NEXT.set(t, newNode);
793                 PREV.set(newNode, t);
794                 t = newNode;
795             }
796         }
797         initHeadTail(h, t);
798     }
799 
800     /**
801      * Initializes head and tail, ensuring invariants hold.
802      */
initHeadTail(Node<E> h, Node<E> t)803     private void initHeadTail(Node<E> h, Node<E> t) {
804         if (h == t) {
805             if (h == null)
806                 h = t = new Node<E>();
807             else {
808                 // Avoid edge case of a single Node with non-null item.
809                 Node<E> newNode = new Node<E>();
810                 NEXT.set(t, newNode);
811                 PREV.set(newNode, t);
812                 t = newNode;
813             }
814         }
815         head = h;
816         tail = t;
817     }
818 
819     /**
820      * Inserts the specified element at the front of this deque.
821      * As the deque is unbounded, this method will never throw
822      * {@link IllegalStateException}.
823      *
824      * @throws NullPointerException if the specified element is null
825      */
addFirst(E e)826     public void addFirst(E e) {
827         linkFirst(e);
828     }
829 
830     /**
831      * Inserts the specified element at the end of this deque.
832      * As the deque is unbounded, this method will never throw
833      * {@link IllegalStateException}.
834      *
835      * <p>This method is equivalent to {@link #add}.
836      *
837      * @throws NullPointerException if the specified element is null
838      */
addLast(E e)839     public void addLast(E e) {
840         linkLast(e);
841     }
842 
843     /**
844      * Inserts the specified element at the front of this deque.
845      * As the deque is unbounded, this method will never return {@code false}.
846      *
847      * @return {@code true} (as specified by {@link Deque#offerFirst})
848      * @throws NullPointerException if the specified element is null
849      */
offerFirst(E e)850     public boolean offerFirst(E e) {
851         linkFirst(e);
852         return true;
853     }
854 
855     /**
856      * Inserts the specified element at the end of this deque.
857      * As the deque is unbounded, this method will never return {@code false}.
858      *
859      * <p>This method is equivalent to {@link #add}.
860      *
861      * @return {@code true} (as specified by {@link Deque#offerLast})
862      * @throws NullPointerException if the specified element is null
863      */
offerLast(E e)864     public boolean offerLast(E e) {
865         linkLast(e);
866         return true;
867     }
868 
peekFirst()869     public E peekFirst() {
870         restart: for (;;) {
871             E item;
872             Node<E> first = first(), p = first;
873             while ((item = p.item) == null) {
874                 if (p == (p = p.next)) continue restart;
875                 if (p == null)
876                     break;
877             }
878             // recheck for linearizability
879             if (first.prev != null) continue restart;
880             return item;
881         }
882     }
883 
peekLast()884     public E peekLast() {
885         restart: for (;;) {
886             E item;
887             Node<E> last = last(), p = last;
888             while ((item = p.item) == null) {
889                 if (p == (p = p.prev)) continue restart;
890                 if (p == null)
891                     break;
892             }
893             // recheck for linearizability
894             if (last.next != null) continue restart;
895             return item;
896         }
897     }
898 
899     /**
900      * @throws NoSuchElementException {@inheritDoc}
901      */
getFirst()902     public E getFirst() {
903         return screenNullResult(peekFirst());
904     }
905 
906     /**
907      * @throws NoSuchElementException {@inheritDoc}
908      */
getLast()909     public E getLast() {
910         return screenNullResult(peekLast());
911     }
912 
pollFirst()913     public E pollFirst() {
914         restart: for (;;) {
915             for (Node<E> first = first(), p = first;;) {
916                 final E item;
917                 if ((item = p.item) != null) {
918                     // recheck for linearizability
919                     if (first.prev != null) continue restart;
920                     if (ITEM.compareAndSet(p, item, null)) {
921                         unlink(p);
922                         return item;
923                     }
924                 }
925                 if (p == (p = p.next)) continue restart;
926                 if (p == null) {
927                     if (first.prev != null) continue restart;
928                     return null;
929                 }
930             }
931         }
932     }
933 
pollLast()934     public E pollLast() {
935         restart: for (;;) {
936             for (Node<E> last = last(), p = last;;) {
937                 final E item;
938                 if ((item = p.item) != null) {
939                     // recheck for linearizability
940                     if (last.next != null) continue restart;
941                     if (ITEM.compareAndSet(p, item, null)) {
942                         unlink(p);
943                         return item;
944                     }
945                 }
946                 if (p == (p = p.prev)) continue restart;
947                 if (p == null) {
948                     if (last.next != null) continue restart;
949                     return null;
950                 }
951             }
952         }
953     }
954 
955     /**
956      * @throws NoSuchElementException {@inheritDoc}
957      */
removeFirst()958     public E removeFirst() {
959         return screenNullResult(pollFirst());
960     }
961 
962     /**
963      * @throws NoSuchElementException {@inheritDoc}
964      */
removeLast()965     public E removeLast() {
966         return screenNullResult(pollLast());
967     }
968 
969     // *** Queue and stack methods ***
970 
971     /**
972      * Inserts the specified element at the tail of this deque.
973      * As the deque is unbounded, this method will never return {@code false}.
974      *
975      * @return {@code true} (as specified by {@link Queue#offer})
976      * @throws NullPointerException if the specified element is null
977      */
offer(E e)978     public boolean offer(E e) {
979         return offerLast(e);
980     }
981 
982     /**
983      * Inserts the specified element at the tail of this deque.
984      * As the deque is unbounded, this method will never throw
985      * {@link IllegalStateException} or return {@code false}.
986      *
987      * @return {@code true} (as specified by {@link Collection#add})
988      * @throws NullPointerException if the specified element is null
989      */
add(E e)990     public boolean add(E e) {
991         return offerLast(e);
992     }
993 
poll()994     public E poll()           { return pollFirst(); }
peek()995     public E peek()           { return peekFirst(); }
996 
997     /**
998      * @throws NoSuchElementException {@inheritDoc}
999      */
remove()1000     public E remove()         { return removeFirst(); }
1001 
1002     /**
1003      * @throws NoSuchElementException {@inheritDoc}
1004      */
pop()1005     public E pop()            { return removeFirst(); }
1006 
1007     /**
1008      * @throws NoSuchElementException {@inheritDoc}
1009      */
element()1010     public E element()        { return getFirst(); }
1011 
1012     /**
1013      * @throws NullPointerException {@inheritDoc}
1014      */
push(E e)1015     public void push(E e)     { addFirst(e); }
1016 
1017     /**
1018      * Removes the first occurrence of the specified element from this deque.
1019      * If the deque does not contain the element, it is unchanged.
1020      * More formally, removes the first element {@code e} such that
1021      * {@code o.equals(e)} (if such an element exists).
1022      * Returns {@code true} if this deque contained the specified element
1023      * (or equivalently, if this deque changed as a result of the call).
1024      *
1025      * @param o element to be removed from this deque, if present
1026      * @return {@code true} if the deque contained the specified element
1027      * @throws NullPointerException if the specified element is null
1028      */
removeFirstOccurrence(Object o)1029     public boolean removeFirstOccurrence(Object o) {
1030         Objects.requireNonNull(o);
1031         for (Node<E> p = first(); p != null; p = succ(p)) {
1032             final E item;
1033             if ((item = p.item) != null
1034                 && o.equals(item)
1035                 && ITEM.compareAndSet(p, item, null)) {
1036                 unlink(p);
1037                 return true;
1038             }
1039         }
1040         return false;
1041     }
1042 
1043     /**
1044      * Removes the last occurrence of the specified element from this deque.
1045      * If the deque does not contain the element, it is unchanged.
1046      * More formally, removes the last element {@code e} such that
1047      * {@code o.equals(e)} (if such an element exists).
1048      * Returns {@code true} if this deque contained the specified element
1049      * (or equivalently, if this deque changed as a result of the call).
1050      *
1051      * @param o element to be removed from this deque, if present
1052      * @return {@code true} if the deque contained the specified element
1053      * @throws NullPointerException if the specified element is null
1054      */
removeLastOccurrence(Object o)1055     public boolean removeLastOccurrence(Object o) {
1056         Objects.requireNonNull(o);
1057         for (Node<E> p = last(); p != null; p = pred(p)) {
1058             final E item;
1059             if ((item = p.item) != null
1060                 && o.equals(item)
1061                 && ITEM.compareAndSet(p, item, null)) {
1062                 unlink(p);
1063                 return true;
1064             }
1065         }
1066         return false;
1067     }
1068 
1069     /**
1070      * Returns {@code true} if this deque contains the specified element.
1071      * More formally, returns {@code true} if and only if this deque contains
1072      * at least one element {@code e} such that {@code o.equals(e)}.
1073      *
1074      * @param o element whose presence in this deque is to be tested
1075      * @return {@code true} if this deque contains the specified element
1076      */
contains(Object o)1077     public boolean contains(Object o) {
1078         if (o != null) {
1079             for (Node<E> p = first(); p != null; p = succ(p)) {
1080                 final E item;
1081                 if ((item = p.item) != null && o.equals(item))
1082                     return true;
1083             }
1084         }
1085         return false;
1086     }
1087 
1088     /**
1089      * Returns {@code true} if this collection contains no elements.
1090      *
1091      * @return {@code true} if this collection contains no elements
1092      */
isEmpty()1093     public boolean isEmpty() {
1094         return peekFirst() == null;
1095     }
1096 
1097     /**
1098      * Returns the number of elements in this deque.  If this deque
1099      * contains more than {@code Integer.MAX_VALUE} elements, it
1100      * returns {@code Integer.MAX_VALUE}.
1101      *
1102      * <p>Beware that, unlike in most collections, this method is
1103      * <em>NOT</em> a constant-time operation. Because of the
1104      * asynchronous nature of these deques, determining the current
1105      * number of elements requires traversing them all to count them.
1106      * Additionally, it is possible for the size to change during
1107      * execution of this method, in which case the returned result
1108      * will be inaccurate. Thus, this method is typically not very
1109      * useful in concurrent applications.
1110      *
1111      * @return the number of elements in this deque
1112      */
size()1113     public int size() {
1114         restart: for (;;) {
1115             int count = 0;
1116             for (Node<E> p = first(); p != null;) {
1117                 if (p.item != null)
1118                     if (++count == Integer.MAX_VALUE)
1119                         break;  // @see Collection.size()
1120                 if (p == (p = p.next))
1121                     continue restart;
1122             }
1123             return count;
1124         }
1125     }
1126 
1127     /**
1128      * Removes the first occurrence of the specified element from this deque.
1129      * If the deque does not contain the element, it is unchanged.
1130      * More formally, removes the first element {@code e} such that
1131      * {@code o.equals(e)} (if such an element exists).
1132      * Returns {@code true} if this deque contained the specified element
1133      * (or equivalently, if this deque changed as a result of the call).
1134      *
1135      * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1136      *
1137      * @param o element to be removed from this deque, if present
1138      * @return {@code true} if the deque contained the specified element
1139      * @throws NullPointerException if the specified element is null
1140      */
remove(Object o)1141     public boolean remove(Object o) {
1142         return removeFirstOccurrence(o);
1143     }
1144 
1145     /**
1146      * Appends all of the elements in the specified collection to the end of
1147      * this deque, in the order that they are returned by the specified
1148      * collection's iterator.  Attempts to {@code addAll} of a deque to
1149      * itself result in {@code IllegalArgumentException}.
1150      *
1151      * @param c the elements to be inserted into this deque
1152      * @return {@code true} if this deque changed as a result of the call
1153      * @throws NullPointerException if the specified collection or any
1154      *         of its elements are null
1155      * @throws IllegalArgumentException if the collection is this deque
1156      */
addAll(Collection<? extends E> c)1157     public boolean addAll(Collection<? extends E> c) {
1158         if (c == this)
1159             // As historically specified in AbstractQueue#addAll
1160             throw new IllegalArgumentException();
1161 
1162         // Copy c into a private chain of Nodes
1163         Node<E> beginningOfTheEnd = null, last = null;
1164         for (E e : c) {
1165             Node<E> newNode = newNode(Objects.requireNonNull(e));
1166             if (beginningOfTheEnd == null)
1167                 beginningOfTheEnd = last = newNode;
1168             else {
1169                 NEXT.set(last, newNode);
1170                 PREV.set(newNode, last);
1171                 last = newNode;
1172             }
1173         }
1174         if (beginningOfTheEnd == null)
1175             return false;
1176 
1177         // Atomically append the chain at the tail of this collection
1178         restartFromTail:
1179         for (;;)
1180             for (Node<E> t = tail, p = t, q;;) {
1181                 if ((q = p.next) != null &&
1182                     (q = (p = q).next) != null)
1183                     // Check for tail updates every other hop.
1184                     // If p == q, we are sure to follow tail instead.
1185                     p = (t != (t = tail)) ? t : q;
1186                 else if (p.prev == p) // NEXT_TERMINATOR
1187                     continue restartFromTail;
1188                 else {
1189                     // p is last node
1190                     PREV.set(beginningOfTheEnd, p); // CAS piggyback
1191                     if (NEXT.compareAndSet(p, null, beginningOfTheEnd)) {
1192                         // Successful CAS is the linearization point
1193                         // for all elements to be added to this deque.
1194                         if (!TAIL.weakCompareAndSet(this, t, last)) {
1195                             // Try a little harder to update tail,
1196                             // since we may be adding many elements.
1197                             t = tail;
1198                             if (last.next == null)
1199                                 TAIL.weakCompareAndSet(this, t, last);
1200                         }
1201                         return true;
1202                     }
1203                     // Lost CAS race to another thread; re-read next
1204                 }
1205             }
1206     }
1207 
1208     /**
1209      * Removes all of the elements from this deque.
1210      */
clear()1211     public void clear() {
1212         while (pollFirst() != null)
1213             ;
1214     }
1215 
toString()1216     public String toString() {
1217         String[] a = null;
1218         restart: for (;;) {
1219             int charLength = 0;
1220             int size = 0;
1221             for (Node<E> p = first(); p != null;) {
1222                 final E item;
1223                 if ((item = p.item) != null) {
1224                     if (a == null)
1225                         a = new String[4];
1226                     else if (size == a.length)
1227                         a = Arrays.copyOf(a, 2 * size);
1228                     String s = item.toString();
1229                     a[size++] = s;
1230                     charLength += s.length();
1231                 }
1232                 if (p == (p = p.next))
1233                     continue restart;
1234             }
1235 
1236             if (size == 0)
1237                 return "[]";
1238 
1239             return Helpers.toString(a, size, charLength);
1240         }
1241     }
1242 
toArrayInternal(Object[] a)1243     private Object[] toArrayInternal(Object[] a) {
1244         Object[] x = a;
1245         restart: for (;;) {
1246             int size = 0;
1247             for (Node<E> p = first(); p != null;) {
1248                 final E item;
1249                 if ((item = p.item) != null) {
1250                     if (x == null)
1251                         x = new Object[4];
1252                     else if (size == x.length)
1253                         x = Arrays.copyOf(x, 2 * (size + 4));
1254                     x[size++] = item;
1255                 }
1256                 if (p == (p = p.next))
1257                     continue restart;
1258             }
1259             if (x == null)
1260                 return new Object[0];
1261             else if (a != null && size <= a.length) {
1262                 if (a != x)
1263                     System.arraycopy(x, 0, a, 0, size);
1264                 if (size < a.length)
1265                     a[size] = null;
1266                 return a;
1267             }
1268             return (size == x.length) ? x : Arrays.copyOf(x, size);
1269         }
1270     }
1271 
1272     /**
1273      * Returns an array containing all of the elements in this deque, in
1274      * proper sequence (from first to last element).
1275      *
1276      * <p>The returned array will be "safe" in that no references to it are
1277      * maintained by this deque.  (In other words, this method must allocate
1278      * a new array).  The caller is thus free to modify the returned array.
1279      *
1280      * <p>This method acts as bridge between array-based and collection-based
1281      * APIs.
1282      *
1283      * @return an array containing all of the elements in this deque
1284      */
toArray()1285     public Object[] toArray() {
1286         return toArrayInternal(null);
1287     }
1288 
1289     /**
1290      * Returns an array containing all of the elements in this deque,
1291      * in proper sequence (from first to last element); the runtime
1292      * type of the returned array is that of the specified array.  If
1293      * the deque fits in the specified array, it is returned therein.
1294      * Otherwise, a new array is allocated with the runtime type of
1295      * the specified array and the size of this deque.
1296      *
1297      * <p>If this deque fits in the specified array with room to spare
1298      * (i.e., the array has more elements than this deque), the element in
1299      * the array immediately following the end of the deque is set to
1300      * {@code null}.
1301      *
1302      * <p>Like the {@link #toArray()} method, this method acts as
1303      * bridge between array-based and collection-based APIs.  Further,
1304      * this method allows precise control over the runtime type of the
1305      * output array, and may, under certain circumstances, be used to
1306      * save allocation costs.
1307      *
1308      * <p>Suppose {@code x} is a deque known to contain only strings.
1309      * The following code can be used to dump the deque into a newly
1310      * allocated array of {@code String}:
1311      *
1312      * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1313      *
1314      * Note that {@code toArray(new Object[0])} is identical in function to
1315      * {@code toArray()}.
1316      *
1317      * @param a the array into which the elements of the deque are to
1318      *          be stored, if it is big enough; otherwise, a new array of the
1319      *          same runtime type is allocated for this purpose
1320      * @return an array containing all of the elements in this deque
1321      * @throws ArrayStoreException if the runtime type of the specified array
1322      *         is not a supertype of the runtime type of every element in
1323      *         this deque
1324      * @throws NullPointerException if the specified array is null
1325      */
1326     @SuppressWarnings("unchecked")
toArray(T[] a)1327     public <T> T[] toArray(T[] a) {
1328         if (a == null) throw new NullPointerException();
1329         return (T[]) toArrayInternal(a);
1330     }
1331 
1332     /**
1333      * Returns an iterator over the elements in this deque in proper sequence.
1334      * The elements will be returned in order from first (head) to last (tail).
1335      *
1336      * <p>The returned iterator is
1337      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1338      *
1339      * @return an iterator over the elements in this deque in proper sequence
1340      */
iterator()1341     public Iterator<E> iterator() {
1342         return new Itr();
1343     }
1344 
1345     /**
1346      * Returns an iterator over the elements in this deque in reverse
1347      * sequential order.  The elements will be returned in order from
1348      * last (tail) to first (head).
1349      *
1350      * <p>The returned iterator is
1351      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1352      *
1353      * @return an iterator over the elements in this deque in reverse order
1354      */
descendingIterator()1355     public Iterator<E> descendingIterator() {
1356         return new DescendingItr();
1357     }
1358 
1359     private abstract class AbstractItr implements Iterator<E> {
1360         /**
1361          * Next node to return item for.
1362          */
1363         private Node<E> nextNode;
1364 
1365         /**
1366          * nextItem holds on to item fields because once we claim
1367          * that an element exists in hasNext(), we must return it in
1368          * the following next() call even if it was in the process of
1369          * being removed when hasNext() was called.
1370          */
1371         private E nextItem;
1372 
1373         /**
1374          * Node returned by most recent call to next. Needed by remove.
1375          * Reset to null if this element is deleted by a call to remove.
1376          */
1377         private Node<E> lastRet;
1378 
startNode()1379         abstract Node<E> startNode();
nextNode(Node<E> p)1380         abstract Node<E> nextNode(Node<E> p);
1381 
AbstractItr()1382         AbstractItr() {
1383             advance();
1384         }
1385 
1386         /**
1387          * Sets nextNode and nextItem to next valid node, or to null
1388          * if no such.
1389          */
advance()1390         private void advance() {
1391             lastRet = nextNode;
1392 
1393             Node<E> p = (nextNode == null) ? startNode() : nextNode(nextNode);
1394             for (;; p = nextNode(p)) {
1395                 if (p == null) {
1396                     // might be at active end or TERMINATOR node; both are OK
1397                     nextNode = null;
1398                     nextItem = null;
1399                     break;
1400                 }
1401                 final E item;
1402                 if ((item = p.item) != null) {
1403                     nextNode = p;
1404                     nextItem = item;
1405                     break;
1406                 }
1407             }
1408         }
1409 
hasNext()1410         public boolean hasNext() {
1411             return nextItem != null;
1412         }
1413 
next()1414         public E next() {
1415             E item = nextItem;
1416             if (item == null) throw new NoSuchElementException();
1417             advance();
1418             return item;
1419         }
1420 
remove()1421         public void remove() {
1422             Node<E> l = lastRet;
1423             if (l == null) throw new IllegalStateException();
1424             l.item = null;
1425             unlink(l);
1426             lastRet = null;
1427         }
1428     }
1429 
1430     /** Forward iterator */
1431     private class Itr extends AbstractItr {
Itr()1432         Itr() {}                        // prevent access constructor creation
startNode()1433         Node<E> startNode() { return first(); }
nextNode(Node<E> p)1434         Node<E> nextNode(Node<E> p) { return succ(p); }
1435     }
1436 
1437     /** Descending iterator */
1438     private class DescendingItr extends AbstractItr {
DescendingItr()1439         DescendingItr() {}              // prevent access constructor creation
startNode()1440         Node<E> startNode() { return last(); }
nextNode(Node<E> p)1441         Node<E> nextNode(Node<E> p) { return pred(p); }
1442     }
1443 
1444     /** A customized variant of Spliterators.IteratorSpliterator */
1445     final class CLDSpliterator implements Spliterator<E> {
1446         static final int MAX_BATCH = 1 << 25;  // max batch array size;
1447         Node<E> current;    // current node; null until initialized
1448         int batch;          // batch size for splits
1449         boolean exhausted;  // true when no more nodes
1450 
trySplit()1451         public Spliterator<E> trySplit() {
1452             Node<E> p, q;
1453             if ((p = current()) == null || (q = p.next) == null)
1454                 return null;
1455             int i = 0, n = batch = Math.min(batch + 1, MAX_BATCH);
1456             Object[] a = null;
1457             do {
1458                 final E e;
1459                 if ((e = p.item) != null) {
1460                     if (a == null)
1461                         a = new Object[n];
1462                     a[i++] = e;
1463                 }
1464                 if (p == (p = q))
1465                     p = first();
1466             } while (p != null && (q = p.next) != null && i < n);
1467             setCurrent(p);
1468             return (i == 0) ? null :
1469                 Spliterators.spliterator(a, 0, i, (Spliterator.ORDERED |
1470                                                    Spliterator.NONNULL |
1471                                                    Spliterator.CONCURRENT));
1472         }
1473 
forEachRemaining(Consumer<? super E> action)1474         public void forEachRemaining(Consumer<? super E> action) {
1475             Objects.requireNonNull(action);
1476             Node<E> p;
1477             if ((p = current()) != null) {
1478                 current = null;
1479                 exhausted = true;
1480                 do {
1481                     final E e;
1482                     if ((e = p.item) != null)
1483                         action.accept(e);
1484                     if (p == (p = p.next))
1485                         p = first();
1486                 } while (p != null);
1487             }
1488         }
1489 
tryAdvance(Consumer<? super E> action)1490         public boolean tryAdvance(Consumer<? super E> action) {
1491             Objects.requireNonNull(action);
1492             Node<E> p;
1493             if ((p = current()) != null) {
1494                 E e;
1495                 do {
1496                     e = p.item;
1497                     if (p == (p = p.next))
1498                         p = first();
1499                 } while (e == null && p != null);
1500                 setCurrent(p);
1501                 if (e != null) {
1502                     action.accept(e);
1503                     return true;
1504                 }
1505             }
1506             return false;
1507         }
1508 
setCurrent(Node<E> p)1509         private void setCurrent(Node<E> p) {
1510             if ((current = p) == null)
1511                 exhausted = true;
1512         }
1513 
current()1514         private Node<E> current() {
1515             Node<E> p;
1516             if ((p = current) == null && !exhausted)
1517                 setCurrent(p = first());
1518             return p;
1519         }
1520 
estimateSize()1521         public long estimateSize() { return Long.MAX_VALUE; }
1522 
characteristics()1523         public int characteristics() {
1524             return (Spliterator.ORDERED |
1525                     Spliterator.NONNULL |
1526                     Spliterator.CONCURRENT);
1527         }
1528     }
1529 
1530     /**
1531      * Returns a {@link Spliterator} over the elements in this deque.
1532      *
1533      * <p>The returned spliterator is
1534      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1535      *
1536      * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1537      * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1538      *
1539      * @implNote
1540      * The {@code Spliterator} implements {@code trySplit} to permit limited
1541      * parallelism.
1542      *
1543      * @return a {@code Spliterator} over the elements in this deque
1544      * @since 1.8
1545      */
spliterator()1546     public Spliterator<E> spliterator() {
1547         return new CLDSpliterator();
1548     }
1549 
1550     /**
1551      * Saves this deque to a stream (that is, serializes it).
1552      *
1553      * @param s the stream
1554      * @throws java.io.IOException if an I/O error occurs
1555      * @serialData All of the elements (each an {@code E}) in
1556      * the proper order, followed by a null
1557      */
writeObject(java.io.ObjectOutputStream s)1558     private void writeObject(java.io.ObjectOutputStream s)
1559         throws java.io.IOException {
1560 
1561         // Write out any hidden stuff
1562         s.defaultWriteObject();
1563 
1564         // Write out all elements in the proper order.
1565         for (Node<E> p = first(); p != null; p = succ(p)) {
1566             final E item;
1567             if ((item = p.item) != null)
1568                 s.writeObject(item);
1569         }
1570 
1571         // Use trailing null as sentinel
1572         s.writeObject(null);
1573     }
1574 
1575     /**
1576      * Reconstitutes this deque from a stream (that is, deserializes it).
1577      * @param s the stream
1578      * @throws ClassNotFoundException if the class of a serialized object
1579      *         could not be found
1580      * @throws java.io.IOException if an I/O error occurs
1581      */
readObject(java.io.ObjectInputStream s)1582     private void readObject(java.io.ObjectInputStream s)
1583         throws java.io.IOException, ClassNotFoundException {
1584         s.defaultReadObject();
1585 
1586         // Read in elements until trailing null sentinel found
1587         Node<E> h = null, t = null;
1588         for (Object item; (item = s.readObject()) != null; ) {
1589             @SuppressWarnings("unchecked")
1590             Node<E> newNode = newNode((E) item);
1591             if (h == null)
1592                 h = t = newNode;
1593             else {
1594                 NEXT.set(t, newNode);
1595                 PREV.set(newNode, t);
1596                 t = newNode;
1597             }
1598         }
1599         initHeadTail(h, t);
1600     }
1601 
1602     /**
1603      * @throws NullPointerException {@inheritDoc}
1604      */
removeIf(Predicate<? super E> filter)1605     public boolean removeIf(Predicate<? super E> filter) {
1606         Objects.requireNonNull(filter);
1607         return bulkRemove(filter);
1608     }
1609 
1610     /**
1611      * @throws NullPointerException {@inheritDoc}
1612      */
removeAll(Collection<?> c)1613     public boolean removeAll(Collection<?> c) {
1614         Objects.requireNonNull(c);
1615         return bulkRemove(e -> c.contains(e));
1616     }
1617 
1618     /**
1619      * @throws NullPointerException {@inheritDoc}
1620      */
retainAll(Collection<?> c)1621     public boolean retainAll(Collection<?> c) {
1622         Objects.requireNonNull(c);
1623         return bulkRemove(e -> !c.contains(e));
1624     }
1625 
1626     /** Implementation of bulk remove methods. */
bulkRemove(Predicate<? super E> filter)1627     private boolean bulkRemove(Predicate<? super E> filter) {
1628         boolean removed = false;
1629         for (Node<E> p = first(), succ; p != null; p = succ) {
1630             succ = succ(p);
1631             final E item;
1632             if ((item = p.item) != null
1633                 && filter.test(item)
1634                 && ITEM.compareAndSet(p, item, null)) {
1635                 unlink(p);
1636                 removed = true;
1637             }
1638         }
1639         return removed;
1640     }
1641 
1642     /**
1643      * @throws NullPointerException {@inheritDoc}
1644      */
forEach(Consumer<? super E> action)1645     public void forEach(Consumer<? super E> action) {
1646         Objects.requireNonNull(action);
1647         E item;
1648         for (Node<E> p = first(); p != null; p = succ(p))
1649             if ((item = p.item) != null)
1650                 action.accept(item);
1651     }
1652 
1653     // VarHandle mechanics
1654     private static final VarHandle HEAD;
1655     private static final VarHandle TAIL;
1656     private static final VarHandle PREV;
1657     private static final VarHandle NEXT;
1658     private static final VarHandle ITEM;
1659     static {
1660         PREV_TERMINATOR = new Node<Object>();
1661         PREV_TERMINATOR.next = PREV_TERMINATOR;
1662         NEXT_TERMINATOR = new Node<Object>();
1663         NEXT_TERMINATOR.prev = NEXT_TERMINATOR;
1664         try {
1665             MethodHandles.Lookup l = MethodHandles.lookup();
1666             HEAD = l.findVarHandle(ConcurrentLinkedDeque.class, "head",
1667                                    Node.class);
1668             TAIL = l.findVarHandle(ConcurrentLinkedDeque.class, "tail",
1669                                    Node.class);
1670             PREV = l.findVarHandle(Node.class, "prev", Node.class);
1671             NEXT = l.findVarHandle(Node.class, "next", Node.class);
1672             ITEM = l.findVarHandle(Node.class, "item", Object.class);
1673         } catch (ReflectiveOperationException e) {
1674             throw new ExceptionInInitializerError(e);
1675         }
1676     }
1677 }
1678