1 /*
2  * Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package com.sun.tools.javac.code;
27 
28 import java.lang.ref.SoftReference;
29 import java.util.HashSet;
30 import java.util.HashMap;
31 import java.util.Locale;
32 import java.util.Map;
33 import java.util.Optional;
34 import java.util.Set;
35 import java.util.WeakHashMap;
36 import java.util.function.BiPredicate;
37 import java.util.function.Function;
38 import java.util.stream.Collector;
39 
40 import javax.tools.JavaFileObject;
41 
42 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
43 import com.sun.tools.javac.code.Lint.LintCategory;
44 import com.sun.tools.javac.code.Source.Feature;
45 import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
46 import com.sun.tools.javac.code.TypeMetadata.Entry.Kind;
47 import com.sun.tools.javac.comp.AttrContext;
48 import com.sun.tools.javac.comp.Check;
49 import com.sun.tools.javac.comp.Enter;
50 import com.sun.tools.javac.comp.Env;
51 import com.sun.tools.javac.comp.LambdaToMethod;
52 import com.sun.tools.javac.jvm.ClassFile;
53 import com.sun.tools.javac.util.*;
54 
55 import static com.sun.tools.javac.code.BoundKind.*;
56 import static com.sun.tools.javac.code.Flags.*;
57 import static com.sun.tools.javac.code.Kinds.Kind.*;
58 import static com.sun.tools.javac.code.Scope.*;
59 import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
60 import static com.sun.tools.javac.code.Symbol.*;
61 import static com.sun.tools.javac.code.Type.*;
62 import static com.sun.tools.javac.code.TypeTag.*;
63 import static com.sun.tools.javac.jvm.ClassFile.externalize;
64 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
65 
66 /**
67  * Utility class containing various operations on types.
68  *
69  * <p>Unless other names are more illustrative, the following naming
70  * conventions should be observed in this file:
71  *
72  * <dl>
73  * <dt>t</dt>
74  * <dd>If the first argument to an operation is a type, it should be named t.</dd>
75  * <dt>s</dt>
76  * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
77  * <dt>ts</dt>
78  * <dd>If an operations takes a list of types, the first should be named ts.</dd>
79  * <dt>ss</dt>
80  * <dd>A second list of types should be named ss.</dd>
81  * </dl>
82  *
83  * <p><b>This is NOT part of any supported API.
84  * If you write code that depends on this, you do so at your own risk.
85  * This code and its internal interfaces are subject to change or
86  * deletion without notice.</b>
87  */
88 public class Types {
89     protected static final Context.Key<Types> typesKey = new Context.Key<>();
90 
91     final Symtab syms;
92     final JavacMessages messages;
93     final Names names;
94     final boolean allowDefaultMethods;
95     final boolean mapCapturesToBounds;
96     final Check chk;
97     final Enter enter;
98     JCDiagnostic.Factory diags;
99     List<Warner> warnStack = List.nil();
100     final Name capturedName;
101 
102     public final Warner noWarnings;
103 
104     // <editor-fold defaultstate="collapsed" desc="Instantiating">
instance(Context context)105     public static Types instance(Context context) {
106         Types instance = context.get(typesKey);
107         if (instance == null)
108             instance = new Types(context);
109         return instance;
110     }
111 
Types(Context context)112     protected Types(Context context) {
113         context.put(typesKey, this);
114         syms = Symtab.instance(context);
115         names = Names.instance(context);
116         Source source = Source.instance(context);
117         allowDefaultMethods = Feature.DEFAULT_METHODS.allowedInSource(source);
118         mapCapturesToBounds = Feature.MAP_CAPTURES_TO_BOUNDS.allowedInSource(source);
119         chk = Check.instance(context);
120         enter = Enter.instance(context);
121         capturedName = names.fromString("<captured wildcard>");
122         messages = JavacMessages.instance(context);
123         diags = JCDiagnostic.Factory.instance(context);
124         noWarnings = new Warner(null);
125     }
126     // </editor-fold>
127 
128     // <editor-fold defaultstate="collapsed" desc="bounds">
129     /**
130      * Get a wildcard's upper bound, returning non-wildcards unchanged.
131      * @param t a type argument, either a wildcard or a type
132      */
wildUpperBound(Type t)133     public Type wildUpperBound(Type t) {
134         if (t.hasTag(WILDCARD)) {
135             WildcardType w = (WildcardType) t;
136             if (w.isSuperBound())
137                 return w.bound == null ? syms.objectType : w.bound.getUpperBound();
138             else
139                 return wildUpperBound(w.type);
140         }
141         else return t;
142     }
143 
144     /**
145      * Get a capture variable's upper bound, returning other types unchanged.
146      * @param t a type
147      */
cvarUpperBound(Type t)148     public Type cvarUpperBound(Type t) {
149         if (t.hasTag(TYPEVAR)) {
150             TypeVar v = (TypeVar) t;
151             return v.isCaptured() ? cvarUpperBound(v.getUpperBound()) : v;
152         }
153         else return t;
154     }
155 
156     /**
157      * Get a wildcard's lower bound, returning non-wildcards unchanged.
158      * @param t a type argument, either a wildcard or a type
159      */
wildLowerBound(Type t)160     public Type wildLowerBound(Type t) {
161         if (t.hasTag(WILDCARD)) {
162             WildcardType w = (WildcardType) t;
163             return w.isExtendsBound() ? syms.botType : wildLowerBound(w.type);
164         }
165         else return t;
166     }
167 
168     /**
169      * Get a capture variable's lower bound, returning other types unchanged.
170      * @param t a type
171      */
cvarLowerBound(Type t)172     public Type cvarLowerBound(Type t) {
173         if (t.hasTag(TYPEVAR) && ((TypeVar) t).isCaptured()) {
174             return cvarLowerBound(t.getLowerBound());
175         }
176         else return t;
177     }
178 
179     /**
180      * Recursively skip type-variables until a class/array type is found; capture conversion is then
181      * (optionally) applied to the resulting type. This is useful for i.e. computing a site that is
182      * suitable for a method lookup.
183      */
skipTypeVars(Type site, boolean capture)184     public Type skipTypeVars(Type site, boolean capture) {
185         while (site.hasTag(TYPEVAR)) {
186             site = site.getUpperBound();
187         }
188         return capture ? capture(site) : site;
189     }
190     // </editor-fold>
191 
192     // <editor-fold defaultstate="collapsed" desc="projections">
193 
194     /**
195      * A projection kind. See {@link TypeProjection}
196      */
197     enum ProjectionKind {
UPWARDS()198         UPWARDS() {
199             @Override
200             ProjectionKind complement() {
201                 return DOWNWARDS;
202             }
203         },
DOWNWARDS()204         DOWNWARDS() {
205             @Override
206             ProjectionKind complement() {
207                 return UPWARDS;
208             }
209         };
210 
complement()211         abstract ProjectionKind complement();
212     }
213 
214     /**
215      * This visitor performs upwards and downwards projections on types.
216      *
217      * A projection is defined as a function that takes a type T, a set of type variables V and that
218      * produces another type S.
219      *
220      * An upwards projection maps a type T into a type S such that (i) T has no variables in V,
221      * and (ii) S is an upper bound of T.
222      *
223      * A downwards projection maps a type T into a type S such that (i) T has no variables in V,
224      * and (ii) S is a lower bound of T.
225      *
226      * Note that projections are only allowed to touch variables in V. Therefore, it is possible for
227      * a projection to leave its input type unchanged if it does not contain any variables in V.
228      *
229      * Moreover, note that while an upwards projection is always defined (every type as an upper bound),
230      * a downwards projection is not always defined.
231      *
232      * Examples:
233      *
234      * {@code upwards(List<#CAP1>, [#CAP1]) = List<? extends String>, where #CAP1 <: String }
235      * {@code downwards(List<#CAP2>, [#CAP2]) = List<? super String>, where #CAP2 :> String }
236      * {@code upwards(List<#CAP1>, [#CAP2]) = List<#CAP1> }
237      * {@code downwards(List<#CAP1>, [#CAP1]) = not defined }
238      */
239     class TypeProjection extends TypeMapping<ProjectionKind> {
240 
241         List<Type> vars;
242         Set<Type> seen = new HashSet<>();
243 
TypeProjection(List<Type> vars)244         public TypeProjection(List<Type> vars) {
245             this.vars = vars;
246         }
247 
248         @Override
visitClassType(ClassType t, ProjectionKind pkind)249         public Type visitClassType(ClassType t, ProjectionKind pkind) {
250             if (t.isCompound()) {
251                 List<Type> components = directSupertypes(t);
252                 List<Type> components1 = components.map(c -> c.map(this, pkind));
253                 if (components == components1) return t;
254                 else return makeIntersectionType(components1);
255             } else {
256                 Type outer = t.getEnclosingType();
257                 Type outer1 = visit(outer, pkind);
258                 List<Type> typarams = t.getTypeArguments();
259                 List<Type> formals = t.tsym.type.getTypeArguments();
260                 ListBuffer<Type> typarams1 = new ListBuffer<>();
261                 boolean changed = false;
262                 for (Type actual : typarams) {
263                     Type t2 = mapTypeArgument(t, formals.head.getUpperBound(), actual, pkind);
264                     if (t2.hasTag(BOT)) {
265                         //not defined
266                         return syms.botType;
267                     }
268                     typarams1.add(t2);
269                     changed |= actual != t2;
270                     formals = formals.tail;
271                 }
272                 if (outer1 == outer && !changed) return t;
273                 else return new ClassType(outer1, typarams1.toList(), t.tsym, t.getMetadata()) {
274                     @Override
275                     protected boolean needsStripping() {
276                         return true;
277                     }
278                 };
279             }
280         }
281 
282         @Override
visitArrayType(ArrayType t, ProjectionKind s)283         public Type visitArrayType(ArrayType t, ProjectionKind s) {
284             Type elemtype = t.elemtype;
285             Type elemtype1 = visit(elemtype, s);
286             if (elemtype1 == elemtype) {
287                 return t;
288             } else if (elemtype1.hasTag(BOT)) {
289                 //undefined
290                 return syms.botType;
291             } else {
292                 return new ArrayType(elemtype1, t.tsym, t.metadata) {
293                     @Override
294                     protected boolean needsStripping() {
295                         return true;
296                     }
297                 };
298             }
299         }
300 
301         @Override
302         public Type visitTypeVar(TypeVar t, ProjectionKind pkind) {
303             if (vars.contains(t)) {
304                 if (seen.add(t)) {
305                     try {
306                         final Type bound;
307                         switch (pkind) {
308                             case UPWARDS:
309                                 bound = t.getUpperBound();
310                                 break;
311                             case DOWNWARDS:
312                                 bound = (t.getLowerBound() == null) ?
313                                         syms.botType :
314                                         t.getLowerBound();
315                                 break;
316                             default:
317                                 Assert.error();
318                                 return null;
319                         }
320                         return bound.map(this, pkind);
321                     } finally {
322                         seen.remove(t);
323                     }
324                 } else {
325                     //cycle
326                     return pkind == ProjectionKind.UPWARDS ?
327                             syms.objectType : syms.botType;
328                 }
329             } else {
330                 return t;
331             }
332         }
333 
334         private Type mapTypeArgument(Type site, Type declaredBound, Type t, ProjectionKind pkind) {
335             return t.containsAny(vars) ?
336                     t.map(new TypeArgumentProjection(site, declaredBound), pkind) :
337                     t;
338         }
339 
340         class TypeArgumentProjection extends TypeMapping<ProjectionKind> {
341 
342             Type site;
343             Type declaredBound;
344 
345             TypeArgumentProjection(Type site, Type declaredBound) {
346                 this.site = site;
347                 this.declaredBound = declaredBound;
348             }
349 
350             @Override
351             public Type visitType(Type t, ProjectionKind pkind) {
352                 //type argument is some type containing restricted vars
353                 if (pkind == ProjectionKind.DOWNWARDS) {
354                     //not defined
355                     return syms.botType;
356                 }
357                 Type upper = t.map(TypeProjection.this, ProjectionKind.UPWARDS);
358                 Type lower = t.map(TypeProjection.this, ProjectionKind.DOWNWARDS);
359                 List<Type> formals = site.tsym.type.getTypeArguments();
360                 BoundKind bk;
361                 Type bound;
362                 if (!isSameType(upper, syms.objectType) &&
363                         (declaredBound.containsAny(formals) ||
364                          !isSubtype(declaredBound, upper))) {
365                     bound = upper;
366                     bk = EXTENDS;
367                 } else if (!lower.hasTag(BOT)) {
368                     bound = lower;
369                     bk = SUPER;
370                 } else {
371                     bound = syms.objectType;
372                     bk = UNBOUND;
373                 }
374                 return makeWildcard(bound, bk);
375             }
376 
377             @Override
378             public Type visitWildcardType(WildcardType wt, ProjectionKind pkind) {
379                 //type argument is some wildcard whose bound contains restricted vars
380                 Type bound = syms.botType;
381                 BoundKind bk = wt.kind;
382                 switch (wt.kind) {
383                     case EXTENDS:
384                         bound = wt.type.map(TypeProjection.this, pkind);
385                         if (bound.hasTag(BOT)) {
386                             return syms.botType;
387                         }
388                         break;
389                     case SUPER:
390                         bound = wt.type.map(TypeProjection.this, pkind.complement());
391                         if (bound.hasTag(BOT)) {
392                             bound = syms.objectType;
393                             bk = UNBOUND;
394                         }
395                         break;
396                 }
397                 return makeWildcard(bound, bk);
398             }
399 
400             private Type makeWildcard(Type bound, BoundKind bk) {
401                 return new WildcardType(bound, bk, syms.boundClass) {
402                     @Override
403                     protected boolean needsStripping() {
404                         return true;
405                     }
406                 };
407             }
408         }
409     }
410 
411     /**
412      * Computes an upward projection of given type, and vars. See {@link TypeProjection}.
413      *
414      * @param t the type to be projected
415      * @param vars the set of type variables to be mapped
416      * @return the type obtained as result of the projection
417      */
418     public Type upward(Type t, List<Type> vars) {
419         return t.map(new TypeProjection(vars), ProjectionKind.UPWARDS);
420     }
421 
422     /**
423      * Computes the set of captured variables mentioned in a given type. See {@link CaptureScanner}.
424      * This routine is typically used to computed the input set of variables to be used during
425      * an upwards projection (see {@link Types#upward(Type, List)}).
426      *
427      * @param t the type where occurrences of captured variables have to be found
428      * @return the set of captured variables found in t
429      */
430     public List<Type> captures(Type t) {
431         CaptureScanner cs = new CaptureScanner();
432         Set<Type> captures = new HashSet<>();
433         cs.visit(t, captures);
434         return List.from(captures);
435     }
436 
437     /**
438      * This visitor scans a type recursively looking for occurrences of captured type variables.
439      */
440     class CaptureScanner extends SimpleVisitor<Void, Set<Type>> {
441 
442         @Override
443         public Void visitType(Type t, Set<Type> types) {
444             return null;
445         }
446 
447         @Override
448         public Void visitClassType(ClassType t, Set<Type> seen) {
449             if (t.isCompound()) {
450                 directSupertypes(t).forEach(s -> visit(s, seen));
451             } else {
452                 t.allparams().forEach(ta -> visit(ta, seen));
453             }
454             return null;
455         }
456 
457         @Override
458         public Void visitArrayType(ArrayType t, Set<Type> seen) {
459             return visit(t.elemtype, seen);
460         }
461 
462         @Override
463         public Void visitWildcardType(WildcardType t, Set<Type> seen) {
464             visit(t.type, seen);
465             return null;
466         }
467 
468         @Override
469         public Void visitTypeVar(TypeVar t, Set<Type> seen) {
470             if ((t.tsym.flags() & Flags.SYNTHETIC) != 0 && seen.add(t)) {
471                 visit(t.getUpperBound(), seen);
472             }
473             return null;
474         }
475 
476         @Override
477         public Void visitCapturedType(CapturedType t, Set<Type> seen) {
478             if (seen.add(t)) {
479                 visit(t.getUpperBound(), seen);
480                 visit(t.getLowerBound(), seen);
481             }
482             return null;
483         }
484     }
485 
486     // </editor-fold>
487 
488     // <editor-fold defaultstate="collapsed" desc="isUnbounded">
489     /**
490      * Checks that all the arguments to a class are unbounded
491      * wildcards or something else that doesn't make any restrictions
492      * on the arguments. If a class isUnbounded, a raw super- or
493      * subclass can be cast to it without a warning.
494      * @param t a type
495      * @return true iff the given type is unbounded or raw
496      */
497     public boolean isUnbounded(Type t) {
498         return isUnbounded.visit(t);
499     }
500     // where
501         private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
502 
503             public Boolean visitType(Type t, Void ignored) {
504                 return true;
505             }
506 
507             @Override
508             public Boolean visitClassType(ClassType t, Void ignored) {
509                 List<Type> parms = t.tsym.type.allparams();
510                 List<Type> args = t.allparams();
511                 while (parms.nonEmpty()) {
512                     WildcardType unb = new WildcardType(syms.objectType,
513                                                         BoundKind.UNBOUND,
514                                                         syms.boundClass,
515                                                         (TypeVar)parms.head);
516                     if (!containsType(args.head, unb))
517                         return false;
518                     parms = parms.tail;
519                     args = args.tail;
520                 }
521                 return true;
522             }
523         };
524     // </editor-fold>
525 
526     // <editor-fold defaultstate="collapsed" desc="asSub">
527     /**
528      * Return the least specific subtype of t that starts with symbol
529      * sym.  If none exists, return null.  The least specific subtype
530      * is determined as follows:
531      *
532      * <p>If there is exactly one parameterized instance of sym that is a
533      * subtype of t, that parameterized instance is returned.<br>
534      * Otherwise, if the plain type or raw type `sym' is a subtype of
535      * type t, the type `sym' itself is returned.  Otherwise, null is
536      * returned.
537      */
538     public Type asSub(Type t, Symbol sym) {
539         return asSub.visit(t, sym);
540     }
541     // where
542         private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
543 
544             public Type visitType(Type t, Symbol sym) {
545                 return null;
546             }
547 
548             @Override
549             public Type visitClassType(ClassType t, Symbol sym) {
550                 if (t.tsym == sym)
551                     return t;
552                 Type base = asSuper(sym.type, t.tsym);
553                 if (base == null)
554                     return null;
555                 ListBuffer<Type> from = new ListBuffer<>();
556                 ListBuffer<Type> to = new ListBuffer<>();
557                 try {
558                     adapt(base, t, from, to);
559                 } catch (AdaptFailure ex) {
560                     return null;
561                 }
562                 Type res = subst(sym.type, from.toList(), to.toList());
563                 if (!isSubtype(res, t))
564                     return null;
565                 ListBuffer<Type> openVars = new ListBuffer<>();
566                 for (List<Type> l = sym.type.allparams();
567                      l.nonEmpty(); l = l.tail)
568                     if (res.contains(l.head) && !t.contains(l.head))
569                         openVars.append(l.head);
570                 if (openVars.nonEmpty()) {
571                     if (t.isRaw()) {
572                         // The subtype of a raw type is raw
573                         res = erasure(res);
574                     } else {
575                         // Unbound type arguments default to ?
576                         List<Type> opens = openVars.toList();
577                         ListBuffer<Type> qs = new ListBuffer<>();
578                         for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
579                             qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND,
580                                                        syms.boundClass, (TypeVar) iter.head));
581                         }
582                         res = subst(res, opens, qs.toList());
583                     }
584                 }
585                 return res;
586             }
587 
588             @Override
589             public Type visitErrorType(ErrorType t, Symbol sym) {
590                 return t;
591             }
592         };
593     // </editor-fold>
594 
595     // <editor-fold defaultstate="collapsed" desc="isConvertible">
596     /**
597      * Is t a subtype of or convertible via boxing/unboxing
598      * conversion to s?
599      */
600     public boolean isConvertible(Type t, Type s, Warner warn) {
601         if (t.hasTag(ERROR)) {
602             return true;
603         }
604         boolean tPrimitive = t.isPrimitive();
605         boolean sPrimitive = s.isPrimitive();
606         if (tPrimitive == sPrimitive) {
607             return isSubtypeUnchecked(t, s, warn);
608         }
609         boolean tUndet = t.hasTag(UNDETVAR);
610         boolean sUndet = s.hasTag(UNDETVAR);
611 
612         if (tUndet || sUndet) {
613             return tUndet ?
614                     isSubtype(t, boxedTypeOrType(s)) :
615                     isSubtype(boxedTypeOrType(t), s);
616         }
617 
618         return tPrimitive
619             ? isSubtype(boxedClass(t).type, s)
620             : isSubtype(unboxedType(t), s);
621     }
622 
623     /**
624      * Is t a subtype of or convertible via boxing/unboxing
625      * conversions to s?
626      */
627     public boolean isConvertible(Type t, Type s) {
628         return isConvertible(t, s, noWarnings);
629     }
630     // </editor-fold>
631 
632     // <editor-fold defaultstate="collapsed" desc="findSam">
633 
634     /**
635      * Exception used to report a function descriptor lookup failure. The exception
636      * wraps a diagnostic that can be used to generate more details error
637      * messages.
638      */
639     public static class FunctionDescriptorLookupError extends RuntimeException {
640         private static final long serialVersionUID = 0;
641 
642         transient JCDiagnostic diagnostic;
643 
644         FunctionDescriptorLookupError() {
645             this.diagnostic = null;
646         }
647 
648         FunctionDescriptorLookupError setMessage(JCDiagnostic diag) {
649             this.diagnostic = diag;
650             return this;
651         }
652 
653         public JCDiagnostic getDiagnostic() {
654             return diagnostic;
655         }
656     }
657 
658     /**
659      * A cache that keeps track of function descriptors associated with given
660      * functional interfaces.
661      */
662     class DescriptorCache {
663 
664         private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<>();
665 
666         class FunctionDescriptor {
667             Symbol descSym;
668 
669             FunctionDescriptor(Symbol descSym) {
670                 this.descSym = descSym;
671             }
672 
673             public Symbol getSymbol() {
674                 return descSym;
675             }
676 
677             public Type getType(Type site) {
678                 site = removeWildcards(site);
679                 if (site.isIntersection()) {
680                     IntersectionClassType ict = (IntersectionClassType)site;
681                     for (Type component : ict.getExplicitComponents()) {
682                         if (!chk.checkValidGenericType(component)) {
683                             //if the inferred functional interface type is not well-formed,
684                             //or if it's not a subtype of the original target, issue an error
685                             throw failure(diags.fragment(Fragments.NoSuitableFunctionalIntfInst(site)));
686                         }
687                     }
688                 } else {
689                     if (!chk.checkValidGenericType(site)) {
690                         //if the inferred functional interface type is not well-formed,
691                         //or if it's not a subtype of the original target, issue an error
692                         throw failure(diags.fragment(Fragments.NoSuitableFunctionalIntfInst(site)));
693                     }
694                 }
695                 return memberType(site, descSym);
696             }
697         }
698 
699         class Entry {
700             final FunctionDescriptor cachedDescRes;
701             final int prevMark;
702 
703             public Entry(FunctionDescriptor cachedDescRes,
704                     int prevMark) {
705                 this.cachedDescRes = cachedDescRes;
706                 this.prevMark = prevMark;
707             }
708 
709             boolean matches(int mark) {
710                 return  this.prevMark == mark;
711             }
712         }
713 
714         FunctionDescriptor get(TypeSymbol origin) throws FunctionDescriptorLookupError {
715             Entry e = _map.get(origin);
716             CompoundScope members = membersClosure(origin.type, false);
717             if (e == null ||
718                     !e.matches(members.getMark())) {
719                 FunctionDescriptor descRes = findDescriptorInternal(origin, members);
720                 _map.put(origin, new Entry(descRes, members.getMark()));
721                 return descRes;
722             }
723             else {
724                 return e.cachedDescRes;
725             }
726         }
727 
728         /**
729          * Compute the function descriptor associated with a given functional interface
730          */
731         public FunctionDescriptor findDescriptorInternal(TypeSymbol origin,
732                 CompoundScope membersCache) throws FunctionDescriptorLookupError {
733             if (!origin.isInterface() || (origin.flags() & ANNOTATION) != 0 || origin.isSealed()) {
734                 //t must be an interface
735                 throw failure("not.a.functional.intf", origin);
736             }
737 
738             final ListBuffer<Symbol> abstracts = new ListBuffer<>();
739             for (Symbol sym : membersCache.getSymbols(new DescriptorFilter(origin))) {
740                 Type mtype = memberType(origin.type, sym);
741                 if (abstracts.isEmpty()) {
742                     abstracts.append(sym);
743                 } else if ((sym.name == abstracts.first().name &&
744                         overrideEquivalent(mtype, memberType(origin.type, abstracts.first())))) {
745                     if (!abstracts.stream().filter(msym -> msym.owner.isSubClass(sym.enclClass(), Types.this))
746                             .map(msym -> memberType(origin.type, msym))
747                             .anyMatch(abstractMType -> isSubSignature(abstractMType, mtype))) {
748                         abstracts.append(sym);
749                     }
750                 } else {
751                     //the target method(s) should be the only abstract members of t
752                     throw failure("not.a.functional.intf.1",  origin,
753                             diags.fragment(Fragments.IncompatibleAbstracts(Kinds.kindName(origin), origin)));
754                 }
755             }
756             if (abstracts.isEmpty()) {
757                 //t must define a suitable non-generic method
758                 throw failure("not.a.functional.intf.1", origin,
759                             diags.fragment(Fragments.NoAbstracts(Kinds.kindName(origin), origin)));
760             } else if (abstracts.size() == 1) {
761                 return new FunctionDescriptor(abstracts.first());
762             } else { // size > 1
763                 FunctionDescriptor descRes = mergeDescriptors(origin, abstracts.toList());
764                 if (descRes == null) {
765                     //we can get here if the functional interface is ill-formed
766                     ListBuffer<JCDiagnostic> descriptors = new ListBuffer<>();
767                     for (Symbol desc : abstracts) {
768                         String key = desc.type.getThrownTypes().nonEmpty() ?
769                                 "descriptor.throws" : "descriptor";
770                         descriptors.append(diags.fragment(key, desc.name,
771                                 desc.type.getParameterTypes(),
772                                 desc.type.getReturnType(),
773                                 desc.type.getThrownTypes()));
774                     }
775                     JCDiagnostic msg =
776                             diags.fragment(Fragments.IncompatibleDescsInFunctionalIntf(Kinds.kindName(origin),
777                                                                                        origin));
778                     JCDiagnostic.MultilineDiagnostic incompatibleDescriptors =
779                             new JCDiagnostic.MultilineDiagnostic(msg, descriptors.toList());
780                     throw failure(incompatibleDescriptors);
781                 }
782                 return descRes;
783             }
784         }
785 
786         /**
787          * Compute a synthetic type for the target descriptor given a list
788          * of override-equivalent methods in the functional interface type.
789          * The resulting method type is a method type that is override-equivalent
790          * and return-type substitutable with each method in the original list.
791          */
792         private FunctionDescriptor mergeDescriptors(TypeSymbol origin, List<Symbol> methodSyms) {
793             return mergeAbstracts(methodSyms, origin.type, false)
794                     .map(bestSoFar -> new FunctionDescriptor(bestSoFar.baseSymbol()) {
795                         @Override
796                         public Type getType(Type origin) {
797                             Type mt = memberType(origin, getSymbol());
798                             return createMethodTypeWithThrown(mt, bestSoFar.type.getThrownTypes());
799                         }
800                     }).orElse(null);
801         }
802 
803         FunctionDescriptorLookupError failure(String msg, Object... args) {
804             return failure(diags.fragment(msg, args));
805         }
806 
807         FunctionDescriptorLookupError failure(JCDiagnostic diag) {
808             return new FunctionDescriptorLookupError().setMessage(diag);
809         }
810     }
811 
812     private DescriptorCache descCache = new DescriptorCache();
813 
814     /**
815      * Find the method descriptor associated to this class symbol - if the
816      * symbol 'origin' is not a functional interface, an exception is thrown.
817      */
818     public Symbol findDescriptorSymbol(TypeSymbol origin) throws FunctionDescriptorLookupError {
819         return descCache.get(origin).getSymbol();
820     }
821 
822     /**
823      * Find the type of the method descriptor associated to this class symbol -
824      * if the symbol 'origin' is not a functional interface, an exception is thrown.
825      */
826     public Type findDescriptorType(Type origin) throws FunctionDescriptorLookupError {
827         return descCache.get(origin.tsym).getType(origin);
828     }
829 
830     /**
831      * Is given type a functional interface?
832      */
833     public boolean isFunctionalInterface(TypeSymbol tsym) {
834         try {
835             findDescriptorSymbol(tsym);
836             return true;
837         } catch (FunctionDescriptorLookupError ex) {
838             return false;
839         }
840     }
841 
842     public boolean isFunctionalInterface(Type site) {
843         try {
844             findDescriptorType(site);
845             return true;
846         } catch (FunctionDescriptorLookupError ex) {
847             return false;
848         }
849     }
850 
851     public Type removeWildcards(Type site) {
852         if (site.getTypeArguments().stream().anyMatch(t -> t.hasTag(WILDCARD))) {
853             //compute non-wildcard parameterization - JLS 9.9
854             List<Type> actuals = site.getTypeArguments();
855             List<Type> formals = site.tsym.type.getTypeArguments();
856             ListBuffer<Type> targs = new ListBuffer<>();
857             for (Type formal : formals) {
858                 Type actual = actuals.head;
859                 Type bound = formal.getUpperBound();
860                 if (actuals.head.hasTag(WILDCARD)) {
861                     WildcardType wt = (WildcardType)actual;
862                     //check that bound does not contain other formals
863                     if (bound.containsAny(formals)) {
864                         targs.add(wt.type);
865                     } else {
866                         //compute new type-argument based on declared bound and wildcard bound
867                         switch (wt.kind) {
868                             case UNBOUND:
869                                 targs.add(bound);
870                                 break;
871                             case EXTENDS:
872                                 targs.add(glb(bound, wt.type));
873                                 break;
874                             case SUPER:
875                                 targs.add(wt.type);
876                                 break;
877                             default:
878                                 Assert.error("Cannot get here!");
879                         }
880                     }
881                 } else {
882                     //not a wildcard - the new type argument remains unchanged
883                     targs.add(actual);
884                 }
885                 actuals = actuals.tail;
886             }
887             return subst(site.tsym.type, formals, targs.toList());
888         } else {
889             return site;
890         }
891     }
892 
893     /**
894      * Create a symbol for a class that implements a given functional interface
895      * and overrides its functional descriptor. This routine is used for two
896      * main purposes: (i) checking well-formedness of a functional interface;
897      * (ii) perform functional interface bridge calculation.
898      */
899     public ClassSymbol makeFunctionalInterfaceClass(Env<AttrContext> env, Name name, Type target, long cflags) {
900         if (target == null || target == syms.unknownType) {
901             return null;
902         }
903         Symbol descSym = findDescriptorSymbol(target.tsym);
904         Type descType = findDescriptorType(target);
905         ClassSymbol csym = new ClassSymbol(cflags, name, env.enclClass.sym.outermostClass());
906         csym.completer = Completer.NULL_COMPLETER;
907         csym.members_field = WriteableScope.create(csym);
908         MethodSymbol instDescSym = new MethodSymbol(descSym.flags(), descSym.name, descType, csym);
909         csym.members_field.enter(instDescSym);
910         Type.ClassType ctype = new Type.ClassType(Type.noType, List.nil(), csym);
911         ctype.supertype_field = syms.objectType;
912         ctype.interfaces_field = target.isIntersection() ?
913                 directSupertypes(target) :
914                 List.of(target);
915         csym.type = ctype;
916         csym.sourcefile = ((ClassSymbol)csym.owner).sourcefile;
917         return csym;
918     }
919 
920     /**
921      * Find the minimal set of methods that are overridden by the functional
922      * descriptor in 'origin'. All returned methods are assumed to have different
923      * erased signatures.
924      */
925     public List<Symbol> functionalInterfaceBridges(TypeSymbol origin) {
926         Assert.check(isFunctionalInterface(origin));
927         Symbol descSym = findDescriptorSymbol(origin);
928         CompoundScope members = membersClosure(origin.type, false);
929         ListBuffer<Symbol> overridden = new ListBuffer<>();
930         outer: for (Symbol m2 : members.getSymbolsByName(descSym.name, bridgeFilter)) {
931             if (m2 == descSym) continue;
932             else if (descSym.overrides(m2, origin, Types.this, false)) {
933                 for (Symbol m3 : overridden) {
934                     if (isSameType(m3.erasure(Types.this), m2.erasure(Types.this)) ||
935                             (m3.overrides(m2, origin, Types.this, false) &&
936                             (pendingBridges((ClassSymbol)origin, m3.enclClass()) ||
937                             (((MethodSymbol)m2).binaryImplementation((ClassSymbol)m3.owner, Types.this) != null)))) {
938                         continue outer;
939                     }
940                 }
941                 overridden.add(m2);
942             }
943         }
944         return overridden.toList();
945     }
946     //where
947         private Filter<Symbol> bridgeFilter = new Filter<Symbol>() {
948             public boolean accepts(Symbol t) {
949                 return t.kind == MTH &&
950                         t.name != names.init &&
951                         t.name != names.clinit &&
952                         (t.flags() & SYNTHETIC) == 0;
953             }
954         };
955         private boolean pendingBridges(ClassSymbol origin, TypeSymbol s) {
956             //a symbol will be completed from a classfile if (a) symbol has
957             //an associated file object with CLASS kind and (b) the symbol has
958             //not been entered
959             if (origin.classfile != null &&
960                     origin.classfile.getKind() == JavaFileObject.Kind.CLASS &&
961                     enter.getEnv(origin) == null) {
962                 return false;
963             }
964             if (origin == s) {
965                 return true;
966             }
967             for (Type t : interfaces(origin.type)) {
968                 if (pendingBridges((ClassSymbol)t.tsym, s)) {
969                     return true;
970                 }
971             }
972             return false;
973         }
974     // </editor-fold>
975 
976    /**
977     * Scope filter used to skip methods that should be ignored (such as methods
978     * overridden by j.l.Object) during function interface conversion interface check
979     */
980     class DescriptorFilter implements Filter<Symbol> {
981 
982        TypeSymbol origin;
983 
984        DescriptorFilter(TypeSymbol origin) {
985            this.origin = origin;
986        }
987 
988        @Override
989        public boolean accepts(Symbol sym) {
990            return sym.kind == MTH &&
991                    (sym.flags() & (ABSTRACT | DEFAULT)) == ABSTRACT &&
992                    !overridesObjectMethod(origin, sym) &&
993                    (interfaceCandidates(origin.type, (MethodSymbol)sym).head.flags() & DEFAULT) == 0;
994        }
995     }
996 
997     // <editor-fold defaultstate="collapsed" desc="isSubtype">
998     /**
999      * Is t an unchecked subtype of s?
1000      */
1001     public boolean isSubtypeUnchecked(Type t, Type s) {
1002         return isSubtypeUnchecked(t, s, noWarnings);
1003     }
1004     /**
1005      * Is t an unchecked subtype of s?
1006      */
1007     public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
1008         boolean result = isSubtypeUncheckedInternal(t, s, true, warn);
1009         if (result) {
1010             checkUnsafeVarargsConversion(t, s, warn);
1011         }
1012         return result;
1013     }
1014     //where
1015         private boolean isSubtypeUncheckedInternal(Type t, Type s, boolean capture, Warner warn) {
1016             if (t.hasTag(ARRAY) && s.hasTag(ARRAY)) {
1017                 if (((ArrayType)t).elemtype.isPrimitive()) {
1018                     return isSameType(elemtype(t), elemtype(s));
1019                 } else {
1020                     return isSubtypeUncheckedInternal(elemtype(t), elemtype(s), false, warn);
1021                 }
1022             } else if (isSubtype(t, s, capture)) {
1023                 return true;
1024             } else if (t.hasTag(TYPEVAR)) {
1025                 return isSubtypeUncheckedInternal(t.getUpperBound(), s, false, warn);
1026             } else if (!s.isRaw()) {
1027                 Type t2 = asSuper(t, s.tsym);
1028                 if (t2 != null && t2.isRaw()) {
1029                     if (isReifiable(s)) {
1030                         warn.silentWarn(LintCategory.UNCHECKED);
1031                     } else {
1032                         warn.warn(LintCategory.UNCHECKED);
1033                     }
1034                     return true;
1035                 }
1036             }
1037             return false;
1038         }
1039 
1040         private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
1041             if (!t.hasTag(ARRAY) || isReifiable(t)) {
1042                 return;
1043             }
1044             ArrayType from = (ArrayType)t;
1045             boolean shouldWarn = false;
1046             switch (s.getTag()) {
1047                 case ARRAY:
1048                     ArrayType to = (ArrayType)s;
1049                     shouldWarn = from.isVarargs() &&
1050                             !to.isVarargs() &&
1051                             !isReifiable(from);
1052                     break;
1053                 case CLASS:
1054                     shouldWarn = from.isVarargs();
1055                     break;
1056             }
1057             if (shouldWarn) {
1058                 warn.warn(LintCategory.VARARGS);
1059             }
1060         }
1061 
1062     /**
1063      * Is t a subtype of s?<br>
1064      * (not defined for Method and ForAll types)
1065      */
1066     final public boolean isSubtype(Type t, Type s) {
1067         return isSubtype(t, s, true);
1068     }
1069     final public boolean isSubtypeNoCapture(Type t, Type s) {
1070         return isSubtype(t, s, false);
1071     }
1072     public boolean isSubtype(Type t, Type s, boolean capture) {
1073         if (t.equalsIgnoreMetadata(s))
1074             return true;
1075         if (s.isPartial())
1076             return isSuperType(s, t);
1077 
1078         if (s.isCompound()) {
1079             for (Type s2 : interfaces(s).prepend(supertype(s))) {
1080                 if (!isSubtype(t, s2, capture))
1081                     return false;
1082             }
1083             return true;
1084         }
1085 
1086         // Generally, if 's' is a lower-bounded type variable, recur on lower bound; but
1087         // for inference variables and intersections, we need to keep 's'
1088         // (see JLS 4.10.2 for intersections and 18.2.3 for inference vars)
1089         if (!t.hasTag(UNDETVAR) && !t.isCompound()) {
1090             // TODO: JDK-8039198, bounds checking sometimes passes in a wildcard as s
1091             Type lower = cvarLowerBound(wildLowerBound(s));
1092             if (s != lower && !lower.hasTag(BOT))
1093                 return isSubtype(capture ? capture(t) : t, lower, false);
1094         }
1095 
1096         return isSubtype.visit(capture ? capture(t) : t, s);
1097     }
1098     // where
1099         private TypeRelation isSubtype = new TypeRelation()
1100         {
1101             @Override
1102             public Boolean visitType(Type t, Type s) {
1103                 switch (t.getTag()) {
1104                  case BYTE:
1105                      return (!s.hasTag(CHAR) && t.getTag().isSubRangeOf(s.getTag()));
1106                  case CHAR:
1107                      return (!s.hasTag(SHORT) && t.getTag().isSubRangeOf(s.getTag()));
1108                  case SHORT: case INT: case LONG:
1109                  case FLOAT: case DOUBLE:
1110                      return t.getTag().isSubRangeOf(s.getTag());
1111                  case BOOLEAN: case VOID:
1112                      return t.hasTag(s.getTag());
1113                  case TYPEVAR:
1114                      return isSubtypeNoCapture(t.getUpperBound(), s);
1115                  case BOT:
1116                      return
1117                          s.hasTag(BOT) || s.hasTag(CLASS) ||
1118                          s.hasTag(ARRAY) || s.hasTag(TYPEVAR);
1119                  case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
1120                  case NONE:
1121                      return false;
1122                  default:
1123                      throw new AssertionError("isSubtype " + t.getTag());
1124                  }
1125             }
1126 
1127             private Set<TypePair> cache = new HashSet<>();
1128 
1129             private boolean containsTypeRecursive(Type t, Type s) {
1130                 TypePair pair = new TypePair(t, s);
1131                 if (cache.add(pair)) {
1132                     try {
1133                         return containsType(t.getTypeArguments(),
1134                                             s.getTypeArguments());
1135                     } finally {
1136                         cache.remove(pair);
1137                     }
1138                 } else {
1139                     return containsType(t.getTypeArguments(),
1140                                         rewriteSupers(s).getTypeArguments());
1141                 }
1142             }
1143 
1144             private Type rewriteSupers(Type t) {
1145                 if (!t.isParameterized())
1146                     return t;
1147                 ListBuffer<Type> from = new ListBuffer<>();
1148                 ListBuffer<Type> to = new ListBuffer<>();
1149                 adaptSelf(t, from, to);
1150                 if (from.isEmpty())
1151                     return t;
1152                 ListBuffer<Type> rewrite = new ListBuffer<>();
1153                 boolean changed = false;
1154                 for (Type orig : to.toList()) {
1155                     Type s = rewriteSupers(orig);
1156                     if (s.isSuperBound() && !s.isExtendsBound()) {
1157                         s = new WildcardType(syms.objectType,
1158                                              BoundKind.UNBOUND,
1159                                              syms.boundClass,
1160                                              s.getMetadata());
1161                         changed = true;
1162                     } else if (s != orig) {
1163                         s = new WildcardType(wildUpperBound(s),
1164                                              BoundKind.EXTENDS,
1165                                              syms.boundClass,
1166                                              s.getMetadata());
1167                         changed = true;
1168                     }
1169                     rewrite.append(s);
1170                 }
1171                 if (changed)
1172                     return subst(t.tsym.type, from.toList(), rewrite.toList());
1173                 else
1174                     return t;
1175             }
1176 
1177             @Override
1178             public Boolean visitClassType(ClassType t, Type s) {
1179                 Type sup = asSuper(t, s.tsym);
1180                 if (sup == null) return false;
1181                 // If t is an intersection, sup might not be a class type
1182                 if (!sup.hasTag(CLASS)) return isSubtypeNoCapture(sup, s);
1183                 return sup.tsym == s.tsym
1184                      // Check type variable containment
1185                     && (!s.isParameterized() || containsTypeRecursive(s, sup))
1186                     && isSubtypeNoCapture(sup.getEnclosingType(),
1187                                           s.getEnclosingType());
1188             }
1189 
1190             @Override
1191             public Boolean visitArrayType(ArrayType t, Type s) {
1192                 if (s.hasTag(ARRAY)) {
1193                     if (t.elemtype.isPrimitive())
1194                         return isSameType(t.elemtype, elemtype(s));
1195                     else
1196                         return isSubtypeNoCapture(t.elemtype, elemtype(s));
1197                 }
1198 
1199                 if (s.hasTag(CLASS)) {
1200                     Name sname = s.tsym.getQualifiedName();
1201                     return sname == names.java_lang_Object
1202                         || sname == names.java_lang_Cloneable
1203                         || sname == names.java_io_Serializable;
1204                 }
1205 
1206                 return false;
1207             }
1208 
1209             @Override
1210             public Boolean visitUndetVar(UndetVar t, Type s) {
1211                 //todo: test against origin needed? or replace with substitution?
1212                 if (t == s || t.qtype == s || s.hasTag(ERROR) || s.hasTag(UNKNOWN)) {
1213                     return true;
1214                 } else if (s.hasTag(BOT)) {
1215                     //if 's' is 'null' there's no instantiated type U for which
1216                     //U <: s (but 'null' itself, which is not a valid type)
1217                     return false;
1218                 }
1219 
1220                 t.addBound(InferenceBound.UPPER, s, Types.this);
1221                 return true;
1222             }
1223 
1224             @Override
1225             public Boolean visitErrorType(ErrorType t, Type s) {
1226                 return true;
1227             }
1228         };
1229 
1230     /**
1231      * Is t a subtype of every type in given list `ts'?<br>
1232      * (not defined for Method and ForAll types)<br>
1233      * Allows unchecked conversions.
1234      */
1235     public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
1236         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1237             if (!isSubtypeUnchecked(t, l.head, warn))
1238                 return false;
1239         return true;
1240     }
1241 
1242     /**
1243      * Are corresponding elements of ts subtypes of ss?  If lists are
1244      * of different length, return false.
1245      */
1246     public boolean isSubtypes(List<Type> ts, List<Type> ss) {
1247         while (ts.tail != null && ss.tail != null
1248                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
1249                isSubtype(ts.head, ss.head)) {
1250             ts = ts.tail;
1251             ss = ss.tail;
1252         }
1253         return ts.tail == null && ss.tail == null;
1254         /*inlined: ts.isEmpty() && ss.isEmpty();*/
1255     }
1256 
1257     /**
1258      * Are corresponding elements of ts subtypes of ss, allowing
1259      * unchecked conversions?  If lists are of different length,
1260      * return false.
1261      **/
1262     public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
1263         while (ts.tail != null && ss.tail != null
1264                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
1265                isSubtypeUnchecked(ts.head, ss.head, warn)) {
1266             ts = ts.tail;
1267             ss = ss.tail;
1268         }
1269         return ts.tail == null && ss.tail == null;
1270         /*inlined: ts.isEmpty() && ss.isEmpty();*/
1271     }
1272     // </editor-fold>
1273 
1274     // <editor-fold defaultstate="collapsed" desc="isSuperType">
1275     /**
1276      * Is t a supertype of s?
1277      */
1278     public boolean isSuperType(Type t, Type s) {
1279         switch (t.getTag()) {
1280         case ERROR:
1281             return true;
1282         case UNDETVAR: {
1283             UndetVar undet = (UndetVar)t;
1284             if (t == s ||
1285                 undet.qtype == s ||
1286                 s.hasTag(ERROR) ||
1287                 s.hasTag(BOT)) {
1288                 return true;
1289             }
1290             undet.addBound(InferenceBound.LOWER, s, this);
1291             return true;
1292         }
1293         default:
1294             return isSubtype(s, t);
1295         }
1296     }
1297     // </editor-fold>
1298 
1299     // <editor-fold defaultstate="collapsed" desc="isSameType">
1300     /**
1301      * Are corresponding elements of the lists the same type?  If
1302      * lists are of different length, return false.
1303      */
1304     public boolean isSameTypes(List<Type> ts, List<Type> ss) {
1305         while (ts.tail != null && ss.tail != null
1306                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
1307                isSameType(ts.head, ss.head)) {
1308             ts = ts.tail;
1309             ss = ss.tail;
1310         }
1311         return ts.tail == null && ss.tail == null;
1312         /*inlined: ts.isEmpty() && ss.isEmpty();*/
1313     }
1314 
1315     /**
1316      * A polymorphic signature method (JLS 15.12.3) is a method that
1317      *   (i) is declared in the java.lang.invoke.MethodHandle/VarHandle classes;
1318      *  (ii) takes a single variable arity parameter;
1319      * (iii) whose declared type is Object[];
1320      *  (iv) has any return type, Object signifying a polymorphic return type; and
1321      *   (v) is native.
1322     */
1323    public boolean isSignaturePolymorphic(MethodSymbol msym) {
1324        List<Type> argtypes = msym.type.getParameterTypes();
1325        return (msym.flags_field & NATIVE) != 0 &&
1326               (msym.owner == syms.methodHandleType.tsym || msym.owner == syms.varHandleType.tsym) &&
1327                argtypes.length() == 1 &&
1328                argtypes.head.hasTag(TypeTag.ARRAY) &&
1329                ((ArrayType)argtypes.head).elemtype.tsym == syms.objectType.tsym;
1330    }
1331 
1332     /**
1333      * Is t the same type as s?
1334      */
1335     public boolean isSameType(Type t, Type s) {
1336         return isSameTypeVisitor.visit(t, s);
1337     }
1338     // where
1339 
1340         /**
1341          * Type-equality relation - type variables are considered
1342          * equals if they share the same object identity.
1343          */
1344         TypeRelation isSameTypeVisitor = new TypeRelation() {
1345 
1346             public Boolean visitType(Type t, Type s) {
1347                 if (t.equalsIgnoreMetadata(s))
1348                     return true;
1349 
1350                 if (s.isPartial())
1351                     return visit(s, t);
1352 
1353                 switch (t.getTag()) {
1354                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
1355                 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
1356                     return t.hasTag(s.getTag());
1357                 case TYPEVAR: {
1358                     if (s.hasTag(TYPEVAR)) {
1359                         //type-substitution does not preserve type-var types
1360                         //check that type var symbols and bounds are indeed the same
1361                         return t == s;
1362                     }
1363                     else {
1364                         //special case for s == ? super X, where upper(s) = u
1365                         //check that u == t, where u has been set by Type.withTypeVar
1366                         return s.isSuperBound() &&
1367                                 !s.isExtendsBound() &&
1368                                 visit(t, wildUpperBound(s));
1369                     }
1370                 }
1371                 default:
1372                     throw new AssertionError("isSameType " + t.getTag());
1373                 }
1374             }
1375 
1376             @Override
1377             public Boolean visitWildcardType(WildcardType t, Type s) {
1378                 if (!s.hasTag(WILDCARD)) {
1379                     return false;
1380                 } else {
1381                     WildcardType t2 = (WildcardType)s;
1382                     return (t.kind == t2.kind || (t.isExtendsBound() && s.isExtendsBound())) &&
1383                             isSameType(t.type, t2.type);
1384                 }
1385             }
1386 
1387             @Override
1388             public Boolean visitClassType(ClassType t, Type s) {
1389                 if (t == s)
1390                     return true;
1391 
1392                 if (s.isPartial())
1393                     return visit(s, t);
1394 
1395                 if (s.isSuperBound() && !s.isExtendsBound())
1396                     return visit(t, wildUpperBound(s)) && visit(t, wildLowerBound(s));
1397 
1398                 if (t.isCompound() && s.isCompound()) {
1399                     if (!visit(supertype(t), supertype(s)))
1400                         return false;
1401 
1402                     Map<Symbol,Type> tMap = new HashMap<>();
1403                     for (Type ti : interfaces(t)) {
1404                         if (tMap.containsKey(ti)) {
1405                             throw new AssertionError("Malformed intersection");
1406                         }
1407                         tMap.put(ti.tsym, ti);
1408                     }
1409                     for (Type si : interfaces(s)) {
1410                         if (!tMap.containsKey(si.tsym))
1411                             return false;
1412                         Type ti = tMap.remove(si.tsym);
1413                         if (!visit(ti, si))
1414                             return false;
1415                     }
1416                     return tMap.isEmpty();
1417                 }
1418                 return t.tsym == s.tsym
1419                     && visit(t.getEnclosingType(), s.getEnclosingType())
1420                     && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
1421             }
1422 
1423             @Override
1424             public Boolean visitArrayType(ArrayType t, Type s) {
1425                 if (t == s)
1426                     return true;
1427 
1428                 if (s.isPartial())
1429                     return visit(s, t);
1430 
1431                 return s.hasTag(ARRAY)
1432                     && containsTypeEquivalent(t.elemtype, elemtype(s));
1433             }
1434 
1435             @Override
1436             public Boolean visitMethodType(MethodType t, Type s) {
1437                 // isSameType for methods does not take thrown
1438                 // exceptions into account!
1439                 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
1440             }
1441 
1442             @Override
1443             public Boolean visitPackageType(PackageType t, Type s) {
1444                 return t == s;
1445             }
1446 
1447             @Override
1448             public Boolean visitForAll(ForAll t, Type s) {
1449                 if (!s.hasTag(FORALL)) {
1450                     return false;
1451                 }
1452 
1453                 ForAll forAll = (ForAll)s;
1454                 return hasSameBounds(t, forAll)
1455                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
1456             }
1457 
1458             @Override
1459             public Boolean visitUndetVar(UndetVar t, Type s) {
1460                 if (s.hasTag(WILDCARD)) {
1461                     // FIXME, this might be leftovers from before capture conversion
1462                     return false;
1463                 }
1464 
1465                 if (t == s || t.qtype == s || s.hasTag(ERROR) || s.hasTag(UNKNOWN)) {
1466                     return true;
1467                 }
1468 
1469                 t.addBound(InferenceBound.EQ, s, Types.this);
1470 
1471                 return true;
1472             }
1473 
1474             @Override
1475             public Boolean visitErrorType(ErrorType t, Type s) {
1476                 return true;
1477             }
1478         };
1479 
1480     // </editor-fold>
1481 
1482     // <editor-fold defaultstate="collapsed" desc="Contains Type">
1483     public boolean containedBy(Type t, Type s) {
1484         switch (t.getTag()) {
1485         case UNDETVAR:
1486             if (s.hasTag(WILDCARD)) {
1487                 UndetVar undetvar = (UndetVar)t;
1488                 WildcardType wt = (WildcardType)s;
1489                 switch(wt.kind) {
1490                     case UNBOUND:
1491                         break;
1492                     case EXTENDS: {
1493                         Type bound = wildUpperBound(s);
1494                         undetvar.addBound(InferenceBound.UPPER, bound, this);
1495                         break;
1496                     }
1497                     case SUPER: {
1498                         Type bound = wildLowerBound(s);
1499                         undetvar.addBound(InferenceBound.LOWER, bound, this);
1500                         break;
1501                     }
1502                 }
1503                 return true;
1504             } else {
1505                 return isSameType(t, s);
1506             }
1507         case ERROR:
1508             return true;
1509         default:
1510             return containsType(s, t);
1511         }
1512     }
1513 
1514     boolean containsType(List<Type> ts, List<Type> ss) {
1515         while (ts.nonEmpty() && ss.nonEmpty()
1516                && containsType(ts.head, ss.head)) {
1517             ts = ts.tail;
1518             ss = ss.tail;
1519         }
1520         return ts.isEmpty() && ss.isEmpty();
1521     }
1522 
1523     /**
1524      * Check if t contains s.
1525      *
1526      * <p>T contains S if:
1527      *
1528      * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
1529      *
1530      * <p>This relation is only used by ClassType.isSubtype(), that
1531      * is,
1532      *
1533      * <p>{@code C<S> <: C<T> if T contains S.}
1534      *
1535      * <p>Because of F-bounds, this relation can lead to infinite
1536      * recursion.  Thus we must somehow break that recursion.  Notice
1537      * that containsType() is only called from ClassType.isSubtype().
1538      * Since the arguments have already been checked against their
1539      * bounds, we know:
1540      *
1541      * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
1542      *
1543      * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
1544      *
1545      * @param t a type
1546      * @param s a type
1547      */
1548     public boolean containsType(Type t, Type s) {
1549         return containsType.visit(t, s);
1550     }
1551     // where
1552         private TypeRelation containsType = new TypeRelation() {
1553 
1554             public Boolean visitType(Type t, Type s) {
1555                 if (s.isPartial())
1556                     return containedBy(s, t);
1557                 else
1558                     return isSameType(t, s);
1559             }
1560 
1561 //            void debugContainsType(WildcardType t, Type s) {
1562 //                System.err.println();
1563 //                System.err.format(" does %s contain %s?%n", t, s);
1564 //                System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
1565 //                                  wildUpperBound(s), s, t, wildUpperBound(t),
1566 //                                  t.isSuperBound()
1567 //                                  || isSubtypeNoCapture(wildUpperBound(s), wildUpperBound(t)));
1568 //                System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
1569 //                                  wildLowerBound(t), t, s, wildLowerBound(s),
1570 //                                  t.isExtendsBound()
1571 //                                  || isSubtypeNoCapture(wildLowerBound(t), wildLowerBound(s)));
1572 //                System.err.println();
1573 //            }
1574 
1575             @Override
1576             public Boolean visitWildcardType(WildcardType t, Type s) {
1577                 if (s.isPartial())
1578                     return containedBy(s, t);
1579                 else {
1580 //                    debugContainsType(t, s);
1581                     return isSameWildcard(t, s)
1582                         || isCaptureOf(s, t)
1583                         || ((t.isExtendsBound() || isSubtypeNoCapture(wildLowerBound(t), wildLowerBound(s))) &&
1584                             (t.isSuperBound() || isSubtypeNoCapture(wildUpperBound(s), wildUpperBound(t))));
1585                 }
1586             }
1587 
1588             @Override
1589             public Boolean visitUndetVar(UndetVar t, Type s) {
1590                 if (!s.hasTag(WILDCARD)) {
1591                     return isSameType(t, s);
1592                 } else {
1593                     return false;
1594                 }
1595             }
1596 
1597             @Override
1598             public Boolean visitErrorType(ErrorType t, Type s) {
1599                 return true;
1600             }
1601         };
1602 
1603     public boolean isCaptureOf(Type s, WildcardType t) {
1604         if (!s.hasTag(TYPEVAR) || !((TypeVar)s).isCaptured())
1605             return false;
1606         return isSameWildcard(t, ((CapturedType)s).wildcard);
1607     }
1608 
1609     public boolean isSameWildcard(WildcardType t, Type s) {
1610         if (!s.hasTag(WILDCARD))
1611             return false;
1612         WildcardType w = (WildcardType)s;
1613         return w.kind == t.kind && w.type == t.type;
1614     }
1615 
1616     public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
1617         while (ts.nonEmpty() && ss.nonEmpty()
1618                && containsTypeEquivalent(ts.head, ss.head)) {
1619             ts = ts.tail;
1620             ss = ss.tail;
1621         }
1622         return ts.isEmpty() && ss.isEmpty();
1623     }
1624     // </editor-fold>
1625 
1626     // <editor-fold defaultstate="collapsed" desc="isCastable">
1627     public boolean isCastable(Type t, Type s) {
1628         return isCastable(t, s, noWarnings);
1629     }
1630 
1631     /**
1632      * Is t is castable to s?<br>
1633      * s is assumed to be an erased type.<br>
1634      * (not defined for Method and ForAll types).
1635      */
1636     public boolean isCastable(Type t, Type s, Warner warn) {
1637         if (t == s)
1638             return true;
1639         if (t.isPrimitive() != s.isPrimitive()) {
1640             t = skipTypeVars(t, false);
1641             return (isConvertible(t, s, warn)
1642                     || (s.isPrimitive() &&
1643                         isSubtype(boxedClass(s).type, t)));
1644         }
1645         if (warn != warnStack.head) {
1646             try {
1647                 warnStack = warnStack.prepend(warn);
1648                 checkUnsafeVarargsConversion(t, s, warn);
1649                 return isCastable.visit(t,s);
1650             } finally {
1651                 warnStack = warnStack.tail;
1652             }
1653         } else {
1654             return isCastable.visit(t,s);
1655         }
1656     }
1657     // where
1658         private TypeRelation isCastable = new TypeRelation() {
1659 
1660             public Boolean visitType(Type t, Type s) {
1661                 if (s.hasTag(ERROR) || t.hasTag(NONE))
1662                     return true;
1663 
1664                 switch (t.getTag()) {
1665                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
1666                 case DOUBLE:
1667                     return s.isNumeric();
1668                 case BOOLEAN:
1669                     return s.hasTag(BOOLEAN);
1670                 case VOID:
1671                     return false;
1672                 case BOT:
1673                     return isSubtype(t, s);
1674                 default:
1675                     throw new AssertionError();
1676                 }
1677             }
1678 
1679             @Override
1680             public Boolean visitWildcardType(WildcardType t, Type s) {
1681                 return isCastable(wildUpperBound(t), s, warnStack.head);
1682             }
1683 
1684             @Override
1685             public Boolean visitClassType(ClassType t, Type s) {
1686                 if (s.hasTag(ERROR) || s.hasTag(BOT))
1687                     return true;
1688 
1689                 if (s.hasTag(TYPEVAR)) {
1690                     if (isCastable(t, s.getUpperBound(), noWarnings)) {
1691                         warnStack.head.warn(LintCategory.UNCHECKED);
1692                         return true;
1693                     } else {
1694                         return false;
1695                     }
1696                 }
1697 
1698                 if (t.isCompound() || s.isCompound()) {
1699                     return !t.isCompound() ?
1700                             visitCompoundType((ClassType)s, t, true) :
1701                             visitCompoundType(t, s, false);
1702                 }
1703 
1704                 if (s.hasTag(CLASS) || s.hasTag(ARRAY)) {
1705                     boolean upcast;
1706                     if ((upcast = isSubtype(erasure(t), erasure(s)))
1707                         || isSubtype(erasure(s), erasure(t))) {
1708                         if (!upcast && s.hasTag(ARRAY)) {
1709                             if (!isReifiable(s))
1710                                 warnStack.head.warn(LintCategory.UNCHECKED);
1711                             return true;
1712                         } else if (s.isRaw()) {
1713                             return true;
1714                         } else if (t.isRaw()) {
1715                             if (!isUnbounded(s))
1716                                 warnStack.head.warn(LintCategory.UNCHECKED);
1717                             return true;
1718                         }
1719                         // Assume |a| <: |b|
1720                         final Type a = upcast ? t : s;
1721                         final Type b = upcast ? s : t;
1722                         final boolean HIGH = true;
1723                         final boolean LOW = false;
1724                         final boolean DONT_REWRITE_TYPEVARS = false;
1725                         Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
1726                         Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
1727                         Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
1728                         Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
1729                         Type lowSub = asSub(bLow, aLow.tsym);
1730                         Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
1731                         if (highSub == null) {
1732                             final boolean REWRITE_TYPEVARS = true;
1733                             aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
1734                             aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
1735                             bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
1736                             bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
1737                             lowSub = asSub(bLow, aLow.tsym);
1738                             highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
1739                         }
1740                         if (highSub != null) {
1741                             if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
1742                                 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
1743                             }
1744                             if (!disjointTypes(aHigh.allparams(), highSub.allparams())
1745                                 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
1746                                 && !disjointTypes(aLow.allparams(), highSub.allparams())
1747                                 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
1748                                 if (upcast ? giveWarning(a, b) :
1749                                     giveWarning(b, a))
1750                                     warnStack.head.warn(LintCategory.UNCHECKED);
1751                                 return true;
1752                             }
1753                         }
1754                         if (isReifiable(s))
1755                             return isSubtypeUnchecked(a, b);
1756                         else
1757                             return isSubtypeUnchecked(a, b, warnStack.head);
1758                     }
1759 
1760                     // Sidecast
1761                     if (s.hasTag(CLASS)) {
1762                         if ((s.tsym.flags() & INTERFACE) != 0) {
1763                             return ((t.tsym.flags() & FINAL) == 0)
1764                                 ? sideCast(t, s, warnStack.head)
1765                                 : sideCastFinal(t, s, warnStack.head);
1766                         } else if ((t.tsym.flags() & INTERFACE) != 0) {
1767                             return ((s.tsym.flags() & FINAL) == 0)
1768                                 ? sideCast(t, s, warnStack.head)
1769                                 : sideCastFinal(t, s, warnStack.head);
1770                         } else {
1771                             // unrelated class types
1772                             return false;
1773                         }
1774                     }
1775                 }
1776                 return false;
1777             }
1778 
1779             boolean visitCompoundType(ClassType ct, Type s, boolean reverse) {
1780                 Warner warn = noWarnings;
1781                 for (Type c : directSupertypes(ct)) {
1782                     warn.clear();
1783                     if (reverse ? !isCastable(s, c, warn) : !isCastable(c, s, warn))
1784                         return false;
1785                 }
1786                 if (warn.hasLint(LintCategory.UNCHECKED))
1787                     warnStack.head.warn(LintCategory.UNCHECKED);
1788                 return true;
1789             }
1790 
1791             @Override
1792             public Boolean visitArrayType(ArrayType t, Type s) {
1793                 switch (s.getTag()) {
1794                 case ERROR:
1795                 case BOT:
1796                     return true;
1797                 case TYPEVAR:
1798                     if (isCastable(s, t, noWarnings)) {
1799                         warnStack.head.warn(LintCategory.UNCHECKED);
1800                         return true;
1801                     } else {
1802                         return false;
1803                     }
1804                 case CLASS:
1805                     return isSubtype(t, s);
1806                 case ARRAY:
1807                     if (elemtype(t).isPrimitive() || elemtype(s).isPrimitive()) {
1808                         return elemtype(t).hasTag(elemtype(s).getTag());
1809                     } else {
1810                         return visit(elemtype(t), elemtype(s));
1811                     }
1812                 default:
1813                     return false;
1814                 }
1815             }
1816 
1817             @Override
1818             public Boolean visitTypeVar(TypeVar t, Type s) {
1819                 switch (s.getTag()) {
1820                 case ERROR:
1821                 case BOT:
1822                     return true;
1823                 case TYPEVAR:
1824                     if (isSubtype(t, s)) {
1825                         return true;
1826                     } else if (isCastable(t.getUpperBound(), s, noWarnings)) {
1827                         warnStack.head.warn(LintCategory.UNCHECKED);
1828                         return true;
1829                     } else {
1830                         return false;
1831                     }
1832                 default:
1833                     return isCastable(t.getUpperBound(), s, warnStack.head);
1834                 }
1835             }
1836 
1837             @Override
1838             public Boolean visitErrorType(ErrorType t, Type s) {
1839                 return true;
1840             }
1841         };
1842     // </editor-fold>
1843 
1844     // <editor-fold defaultstate="collapsed" desc="disjointTypes">
1845     public boolean disjointTypes(List<Type> ts, List<Type> ss) {
1846         while (ts.tail != null && ss.tail != null) {
1847             if (disjointType(ts.head, ss.head)) return true;
1848             ts = ts.tail;
1849             ss = ss.tail;
1850         }
1851         return false;
1852     }
1853 
1854     /**
1855      * Two types or wildcards are considered disjoint if it can be
1856      * proven that no type can be contained in both. It is
1857      * conservative in that it is allowed to say that two types are
1858      * not disjoint, even though they actually are.
1859      *
1860      * The type {@code C<X>} is castable to {@code C<Y>} exactly if
1861      * {@code X} and {@code Y} are not disjoint.
1862      */
1863     public boolean disjointType(Type t, Type s) {
1864         return disjointType.visit(t, s);
1865     }
1866     // where
1867         private TypeRelation disjointType = new TypeRelation() {
1868 
1869             private Set<TypePair> cache = new HashSet<>();
1870 
1871             @Override
1872             public Boolean visitType(Type t, Type s) {
1873                 if (s.hasTag(WILDCARD))
1874                     return visit(s, t);
1875                 else
1876                     return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
1877             }
1878 
1879             private boolean isCastableRecursive(Type t, Type s) {
1880                 TypePair pair = new TypePair(t, s);
1881                 if (cache.add(pair)) {
1882                     try {
1883                         return Types.this.isCastable(t, s);
1884                     } finally {
1885                         cache.remove(pair);
1886                     }
1887                 } else {
1888                     return true;
1889                 }
1890             }
1891 
1892             private boolean notSoftSubtypeRecursive(Type t, Type s) {
1893                 TypePair pair = new TypePair(t, s);
1894                 if (cache.add(pair)) {
1895                     try {
1896                         return Types.this.notSoftSubtype(t, s);
1897                     } finally {
1898                         cache.remove(pair);
1899                     }
1900                 } else {
1901                     return false;
1902                 }
1903             }
1904 
1905             @Override
1906             public Boolean visitWildcardType(WildcardType t, Type s) {
1907                 if (t.isUnbound())
1908                     return false;
1909 
1910                 if (!s.hasTag(WILDCARD)) {
1911                     if (t.isExtendsBound())
1912                         return notSoftSubtypeRecursive(s, t.type);
1913                     else
1914                         return notSoftSubtypeRecursive(t.type, s);
1915                 }
1916 
1917                 if (s.isUnbound())
1918                     return false;
1919 
1920                 if (t.isExtendsBound()) {
1921                     if (s.isExtendsBound())
1922                         return !isCastableRecursive(t.type, wildUpperBound(s));
1923                     else if (s.isSuperBound())
1924                         return notSoftSubtypeRecursive(wildLowerBound(s), t.type);
1925                 } else if (t.isSuperBound()) {
1926                     if (s.isExtendsBound())
1927                         return notSoftSubtypeRecursive(t.type, wildUpperBound(s));
1928                 }
1929                 return false;
1930             }
1931         };
1932     // </editor-fold>
1933 
1934     // <editor-fold defaultstate="collapsed" desc="cvarLowerBounds">
1935     public List<Type> cvarLowerBounds(List<Type> ts) {
1936         return ts.map(cvarLowerBoundMapping);
1937     }
1938         private final TypeMapping<Void> cvarLowerBoundMapping = new TypeMapping<Void>() {
1939             @Override
1940             public Type visitCapturedType(CapturedType t, Void _unused) {
1941                 return cvarLowerBound(t);
1942             }
1943         };
1944     // </editor-fold>
1945 
1946     // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
1947     /**
1948      * This relation answers the question: is impossible that
1949      * something of type `t' can be a subtype of `s'? This is
1950      * different from the question "is `t' not a subtype of `s'?"
1951      * when type variables are involved: Integer is not a subtype of T
1952      * where {@code <T extends Number>} but it is not true that Integer cannot
1953      * possibly be a subtype of T.
1954      */
1955     public boolean notSoftSubtype(Type t, Type s) {
1956         if (t == s) return false;
1957         if (t.hasTag(TYPEVAR)) {
1958             TypeVar tv = (TypeVar) t;
1959             return !isCastable(tv.getUpperBound(),
1960                                relaxBound(s),
1961                                noWarnings);
1962         }
1963         if (!s.hasTag(WILDCARD))
1964             s = cvarUpperBound(s);
1965 
1966         return !isSubtype(t, relaxBound(s));
1967     }
1968 
1969     private Type relaxBound(Type t) {
1970         return (t.hasTag(TYPEVAR)) ?
1971                 rewriteQuantifiers(skipTypeVars(t, false), true, true) :
1972                 t;
1973     }
1974     // </editor-fold>
1975 
1976     // <editor-fold defaultstate="collapsed" desc="isReifiable">
1977     public boolean isReifiable(Type t) {
1978         return isReifiable.visit(t);
1979     }
1980     // where
1981         private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
1982 
1983             public Boolean visitType(Type t, Void ignored) {
1984                 return true;
1985             }
1986 
1987             @Override
1988             public Boolean visitClassType(ClassType t, Void ignored) {
1989                 if (t.isCompound())
1990                     return false;
1991                 else {
1992                     if (!t.isParameterized())
1993                         return true;
1994 
1995                     for (Type param : t.allparams()) {
1996                         if (!param.isUnbound())
1997                             return false;
1998                     }
1999                     return true;
2000                 }
2001             }
2002 
2003             @Override
2004             public Boolean visitArrayType(ArrayType t, Void ignored) {
2005                 return visit(t.elemtype);
2006             }
2007 
2008             @Override
2009             public Boolean visitTypeVar(TypeVar t, Void ignored) {
2010                 return false;
2011             }
2012         };
2013     // </editor-fold>
2014 
2015     // <editor-fold defaultstate="collapsed" desc="Array Utils">
2016     public boolean isArray(Type t) {
2017         while (t.hasTag(WILDCARD))
2018             t = wildUpperBound(t);
2019         return t.hasTag(ARRAY);
2020     }
2021 
2022     /**
2023      * The element type of an array.
2024      */
2025     public Type elemtype(Type t) {
2026         switch (t.getTag()) {
2027         case WILDCARD:
2028             return elemtype(wildUpperBound(t));
2029         case ARRAY:
2030             return ((ArrayType)t).elemtype;
2031         case FORALL:
2032             return elemtype(((ForAll)t).qtype);
2033         case ERROR:
2034             return t;
2035         default:
2036             return null;
2037         }
2038     }
2039 
2040     public Type elemtypeOrType(Type t) {
2041         Type elemtype = elemtype(t);
2042         return elemtype != null ?
2043             elemtype :
2044             t;
2045     }
2046 
2047     /**
2048      * Mapping to take element type of an arraytype
2049      */
2050     private TypeMapping<Void> elemTypeFun = new TypeMapping<Void>() {
2051         @Override
2052         public Type visitArrayType(ArrayType t, Void _unused) {
2053             return t.elemtype;
2054         }
2055 
2056         @Override
2057         public Type visitTypeVar(TypeVar t, Void _unused) {
2058             return visit(skipTypeVars(t, false));
2059         }
2060     };
2061 
2062     /**
2063      * The number of dimensions of an array type.
2064      */
2065     public int dimensions(Type t) {
2066         int result = 0;
2067         while (t.hasTag(ARRAY)) {
2068             result++;
2069             t = elemtype(t);
2070         }
2071         return result;
2072     }
2073 
2074     /**
2075      * Returns an ArrayType with the component type t
2076      *
2077      * @param t The component type of the ArrayType
2078      * @return the ArrayType for the given component
2079      */
2080     public ArrayType makeArrayType(Type t) {
2081         if (t.hasTag(VOID) || t.hasTag(PACKAGE)) {
2082             Assert.error("Type t must not be a VOID or PACKAGE type, " + t.toString());
2083         }
2084         return new ArrayType(t, syms.arrayClass);
2085     }
2086     // </editor-fold>
2087 
2088     // <editor-fold defaultstate="collapsed" desc="asSuper">
2089     /**
2090      * Return the (most specific) base type of t that starts with the
2091      * given symbol.  If none exists, return null.
2092      *
2093      * Caveat Emptor: Since javac represents the class of all arrays with a singleton
2094      * symbol Symtab.arrayClass, which by being a singleton cannot hold any discriminant,
2095      * this method could yield surprising answers when invoked on arrays. For example when
2096      * invoked with t being byte [] and sym being t.sym itself, asSuper would answer null.
2097      *
2098      * @param t a type
2099      * @param sym a symbol
2100      */
2101     public Type asSuper(Type t, Symbol sym) {
2102         /* Some examples:
2103          *
2104          * (Enum<E>, Comparable) => Comparable<E>
2105          * (c.s.s.d.AttributeTree.ValueKind, Enum) => Enum<c.s.s.d.AttributeTree.ValueKind>
2106          * (c.s.s.t.ExpressionTree, c.s.s.t.Tree) => c.s.s.t.Tree
2107          * (j.u.List<capture#160 of ? extends c.s.s.d.DocTree>, Iterable) =>
2108          *     Iterable<capture#160 of ? extends c.s.s.d.DocTree>
2109          */
2110         if (sym.type == syms.objectType) { //optimization
2111             return syms.objectType;
2112         }
2113         return asSuper.visit(t, sym);
2114     }
2115     // where
2116         private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
2117 
2118             public Type visitType(Type t, Symbol sym) {
2119                 return null;
2120             }
2121 
2122             @Override
2123             public Type visitClassType(ClassType t, Symbol sym) {
2124                 if (t.tsym == sym)
2125                     return t;
2126 
2127                 Symbol c = t.tsym;
2128                 if ((c.flags_field & LOCKED) != 0) {
2129                     return null;
2130                 }
2131                 try {
2132                     c.flags_field |= LOCKED;
2133                     Type st = supertype(t);
2134                     if (st.hasTag(CLASS) || st.hasTag(TYPEVAR)) {
2135                         Type x = asSuper(st, sym);
2136                         if (x != null)
2137                             return x;
2138                     }
2139                     if ((sym.flags() & INTERFACE) != 0) {
2140                         for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
2141                             if (!l.head.hasTag(ERROR)) {
2142                                 Type x = asSuper(l.head, sym);
2143                                 if (x != null)
2144                                     return x;
2145                             }
2146                         }
2147                     }
2148                     return null;
2149                 } finally {
2150                     c.flags_field &= ~LOCKED;
2151                 }
2152             }
2153 
2154             @Override
2155             public Type visitArrayType(ArrayType t, Symbol sym) {
2156                 return isSubtype(t, sym.type) ? sym.type : null;
2157             }
2158 
2159             @Override
2160             public Type visitTypeVar(TypeVar t, Symbol sym) {
2161                 if (t.tsym == sym)
2162                     return t;
2163                 else
2164                     return asSuper(t.getUpperBound(), sym);
2165             }
2166 
2167             @Override
2168             public Type visitErrorType(ErrorType t, Symbol sym) {
2169                 return t;
2170             }
2171         };
2172 
2173     /**
2174      * Return the base type of t or any of its outer types that starts
2175      * with the given symbol.  If none exists, return null.
2176      *
2177      * @param t a type
2178      * @param sym a symbol
2179      */
2180     public Type asOuterSuper(Type t, Symbol sym) {
2181         switch (t.getTag()) {
2182         case CLASS:
2183             do {
2184                 Type s = asSuper(t, sym);
2185                 if (s != null) return s;
2186                 t = t.getEnclosingType();
2187             } while (t.hasTag(CLASS));
2188             return null;
2189         case ARRAY:
2190             return isSubtype(t, sym.type) ? sym.type : null;
2191         case TYPEVAR:
2192             return asSuper(t, sym);
2193         case ERROR:
2194             return t;
2195         default:
2196             return null;
2197         }
2198     }
2199 
2200     /**
2201      * Return the base type of t or any of its enclosing types that
2202      * starts with the given symbol.  If none exists, return null.
2203      *
2204      * @param t a type
2205      * @param sym a symbol
2206      */
2207     public Type asEnclosingSuper(Type t, Symbol sym) {
2208         switch (t.getTag()) {
2209         case CLASS:
2210             do {
2211                 Type s = asSuper(t, sym);
2212                 if (s != null) return s;
2213                 Type outer = t.getEnclosingType();
2214                 t = (outer.hasTag(CLASS)) ? outer :
2215                     (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
2216                     Type.noType;
2217             } while (t.hasTag(CLASS));
2218             return null;
2219         case ARRAY:
2220             return isSubtype(t, sym.type) ? sym.type : null;
2221         case TYPEVAR:
2222             return asSuper(t, sym);
2223         case ERROR:
2224             return t;
2225         default:
2226             return null;
2227         }
2228     }
2229     // </editor-fold>
2230 
2231     // <editor-fold defaultstate="collapsed" desc="memberType">
2232     /**
2233      * The type of given symbol, seen as a member of t.
2234      *
2235      * @param t a type
2236      * @param sym a symbol
2237      */
2238     public Type memberType(Type t, Symbol sym) {
2239         return (sym.flags() & STATIC) != 0
2240             ? sym.type
2241             : memberType.visit(t, sym);
2242         }
2243     // where
2244         private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
2245 
2246             public Type visitType(Type t, Symbol sym) {
2247                 return sym.type;
2248             }
2249 
2250             @Override
2251             public Type visitWildcardType(WildcardType t, Symbol sym) {
2252                 return memberType(wildUpperBound(t), sym);
2253             }
2254 
2255             @Override
2256             public Type visitClassType(ClassType t, Symbol sym) {
2257                 Symbol owner = sym.owner;
2258                 long flags = sym.flags();
2259                 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
2260                     Type base = asOuterSuper(t, owner);
2261                     //if t is an intersection type T = CT & I1 & I2 ... & In
2262                     //its supertypes CT, I1, ... In might contain wildcards
2263                     //so we need to go through capture conversion
2264                     base = t.isCompound() ? capture(base) : base;
2265                     if (base != null) {
2266                         List<Type> ownerParams = owner.type.allparams();
2267                         List<Type> baseParams = base.allparams();
2268                         if (ownerParams.nonEmpty()) {
2269                             if (baseParams.isEmpty()) {
2270                                 // then base is a raw type
2271                                 return erasure(sym.type);
2272                             } else {
2273                                 return subst(sym.type, ownerParams, baseParams);
2274                             }
2275                         }
2276                     }
2277                 }
2278                 return sym.type;
2279             }
2280 
2281             @Override
2282             public Type visitTypeVar(TypeVar t, Symbol sym) {
2283                 return memberType(t.getUpperBound(), sym);
2284             }
2285 
2286             @Override
2287             public Type visitErrorType(ErrorType t, Symbol sym) {
2288                 return t;
2289             }
2290         };
2291     // </editor-fold>
2292 
2293     // <editor-fold defaultstate="collapsed" desc="isAssignable">
2294     public boolean isAssignable(Type t, Type s) {
2295         return isAssignable(t, s, noWarnings);
2296     }
2297 
2298     /**
2299      * Is t assignable to s?<br>
2300      * Equivalent to subtype except for constant values and raw
2301      * types.<br>
2302      * (not defined for Method and ForAll types)
2303      */
2304     public boolean isAssignable(Type t, Type s, Warner warn) {
2305         if (t.hasTag(ERROR))
2306             return true;
2307         if (t.getTag().isSubRangeOf(INT) && t.constValue() != null) {
2308             int value = ((Number)t.constValue()).intValue();
2309             switch (s.getTag()) {
2310             case BYTE:
2311             case CHAR:
2312             case SHORT:
2313             case INT:
2314                 if (s.getTag().checkRange(value))
2315                     return true;
2316                 break;
2317             case CLASS:
2318                 switch (unboxedType(s).getTag()) {
2319                 case BYTE:
2320                 case CHAR:
2321                 case SHORT:
2322                     return isAssignable(t, unboxedType(s), warn);
2323                 }
2324                 break;
2325             }
2326         }
2327         return isConvertible(t, s, warn);
2328     }
2329     // </editor-fold>
2330 
2331     // <editor-fold defaultstate="collapsed" desc="erasure">
2332     /**
2333      * The erasure of t {@code |t|} -- the type that results when all
2334      * type parameters in t are deleted.
2335      */
2336     public Type erasure(Type t) {
2337         return eraseNotNeeded(t) ? t : erasure(t, false);
2338     }
2339     //where
2340     private boolean eraseNotNeeded(Type t) {
2341         // We don't want to erase primitive types and String type as that
2342         // operation is idempotent. Also, erasing these could result in loss
2343         // of information such as constant values attached to such types.
2344         return (t.isPrimitive()) || (syms.stringType.tsym == t.tsym);
2345     }
2346 
2347     private Type erasure(Type t, boolean recurse) {
2348         if (t.isPrimitive()) {
2349             return t; /* fast special case */
2350         } else {
2351             Type out = erasure.visit(t, recurse);
2352             return out;
2353         }
2354     }
2355     // where
2356         private TypeMapping<Boolean> erasure = new StructuralTypeMapping<Boolean>() {
2357             private Type combineMetadata(final Type s,
2358                                          final Type t) {
2359                 if (t.getMetadata() != TypeMetadata.EMPTY) {
2360                     switch (s.getKind()) {
2361                         case OTHER:
2362                         case UNION:
2363                         case INTERSECTION:
2364                         case PACKAGE:
2365                         case EXECUTABLE:
2366                         case NONE:
2367                         case VOID:
2368                         case ERROR:
2369                             return s;
2370                         default: return s.cloneWithMetadata(s.getMetadata().without(Kind.ANNOTATIONS));
2371                     }
2372                 } else {
2373                     return s;
2374                 }
2375             }
2376 
2377             public Type visitType(Type t, Boolean recurse) {
2378                 if (t.isPrimitive())
2379                     return t; /*fast special case*/
2380                 else {
2381                     //other cases already handled
2382                     return combineMetadata(t, t);
2383                 }
2384             }
2385 
2386             @Override
2387             public Type visitWildcardType(WildcardType t, Boolean recurse) {
2388                 Type erased = erasure(wildUpperBound(t), recurse);
2389                 return combineMetadata(erased, t);
2390             }
2391 
2392             @Override
2393             public Type visitClassType(ClassType t, Boolean recurse) {
2394                 Type erased = t.tsym.erasure(Types.this);
2395                 if (recurse) {
2396                     erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym,
2397                             t.getMetadata().without(Kind.ANNOTATIONS));
2398                     return erased;
2399                 } else {
2400                     return combineMetadata(erased, t);
2401                 }
2402             }
2403 
2404             @Override
2405             public Type visitTypeVar(TypeVar t, Boolean recurse) {
2406                 Type erased = erasure(t.getUpperBound(), recurse);
2407                 return combineMetadata(erased, t);
2408             }
2409         };
2410 
2411     public List<Type> erasure(List<Type> ts) {
2412         return erasure.visit(ts, false);
2413     }
2414 
2415     public Type erasureRecursive(Type t) {
2416         return erasure(t, true);
2417     }
2418 
2419     public List<Type> erasureRecursive(List<Type> ts) {
2420         return erasure.visit(ts, true);
2421     }
2422     // </editor-fold>
2423 
2424     // <editor-fold defaultstate="collapsed" desc="makeIntersectionType">
2425     /**
2426      * Make an intersection type from non-empty list of types.  The list should be ordered according to
2427      * {@link TypeSymbol#precedes(TypeSymbol, Types)}. Note that this might cause a symbol completion.
2428      * Hence, this version of makeIntersectionType may not be called during a classfile read.
2429      *
2430      * @param bounds    the types from which the intersection type is formed
2431      */
2432     public IntersectionClassType makeIntersectionType(List<Type> bounds) {
2433         return makeIntersectionType(bounds, bounds.head.tsym.isInterface());
2434     }
2435 
2436     /**
2437      * Make an intersection type from non-empty list of types.  The list should be ordered according to
2438      * {@link TypeSymbol#precedes(TypeSymbol, Types)}. This does not cause symbol completion as
2439      * an extra parameter indicates as to whether all bounds are interfaces - in which case the
2440      * supertype is implicitly assumed to be 'Object'.
2441      *
2442      * @param bounds        the types from which the intersection type is formed
2443      * @param allInterfaces are all bounds interface types?
2444      */
2445     public IntersectionClassType makeIntersectionType(List<Type> bounds, boolean allInterfaces) {
2446         Assert.check(bounds.nonEmpty());
2447         Type firstExplicitBound = bounds.head;
2448         if (allInterfaces) {
2449             bounds = bounds.prepend(syms.objectType);
2450         }
2451         ClassSymbol bc =
2452             new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
2453                             Type.moreInfo
2454                                 ? names.fromString(bounds.toString())
2455                                 : names.empty,
2456                             null,
2457                             syms.noSymbol);
2458         IntersectionClassType intersectionType = new IntersectionClassType(bounds, bc, allInterfaces);
2459         bc.type = intersectionType;
2460         bc.erasure_field = (bounds.head.hasTag(TYPEVAR)) ?
2461                 syms.objectType : // error condition, recover
2462                 erasure(firstExplicitBound);
2463         bc.members_field = WriteableScope.create(bc);
2464         return intersectionType;
2465     }
2466     // </editor-fold>
2467 
2468     // <editor-fold defaultstate="collapsed" desc="supertype">
2469     public Type supertype(Type t) {
2470         return supertype.visit(t);
2471     }
2472     // where
2473         private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
2474 
2475             public Type visitType(Type t, Void ignored) {
2476                 // A note on wildcards: there is no good way to
2477                 // determine a supertype for a super bounded wildcard.
2478                 return Type.noType;
2479             }
2480 
2481             @Override
2482             public Type visitClassType(ClassType t, Void ignored) {
2483                 if (t.supertype_field == null) {
2484                     Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
2485                     // An interface has no superclass; its supertype is Object.
2486                     if (t.isInterface())
2487                         supertype = ((ClassType)t.tsym.type).supertype_field;
2488                     if (t.supertype_field == null) {
2489                         List<Type> actuals = classBound(t).allparams();
2490                         List<Type> formals = t.tsym.type.allparams();
2491                         if (t.hasErasedSupertypes()) {
2492                             t.supertype_field = erasureRecursive(supertype);
2493                         } else if (formals.nonEmpty()) {
2494                             t.supertype_field = subst(supertype, formals, actuals);
2495                         }
2496                         else {
2497                             t.supertype_field = supertype;
2498                         }
2499                     }
2500                 }
2501                 return t.supertype_field;
2502             }
2503 
2504             /**
2505              * The supertype is always a class type. If the type
2506              * variable's bounds start with a class type, this is also
2507              * the supertype.  Otherwise, the supertype is
2508              * java.lang.Object.
2509              */
2510             @Override
2511             public Type visitTypeVar(TypeVar t, Void ignored) {
2512                 if (t.getUpperBound().hasTag(TYPEVAR) ||
2513                     (!t.getUpperBound().isCompound() && !t.getUpperBound().isInterface())) {
2514                     return t.getUpperBound();
2515                 } else {
2516                     return supertype(t.getUpperBound());
2517                 }
2518             }
2519 
2520             @Override
2521             public Type visitArrayType(ArrayType t, Void ignored) {
2522                 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
2523                     return arraySuperType();
2524                 else
2525                     return new ArrayType(supertype(t.elemtype), t.tsym);
2526             }
2527 
2528             @Override
2529             public Type visitErrorType(ErrorType t, Void ignored) {
2530                 return Type.noType;
2531             }
2532         };
2533     // </editor-fold>
2534 
2535     // <editor-fold defaultstate="collapsed" desc="interfaces">
2536     /**
2537      * Return the interfaces implemented by this class.
2538      */
2539     public List<Type> interfaces(Type t) {
2540         return interfaces.visit(t);
2541     }
2542     // where
2543         private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
2544 
2545             public List<Type> visitType(Type t, Void ignored) {
2546                 return List.nil();
2547             }
2548 
2549             @Override
2550             public List<Type> visitClassType(ClassType t, Void ignored) {
2551                 if (t.interfaces_field == null) {
2552                     List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
2553                     if (t.interfaces_field == null) {
2554                         // If t.interfaces_field is null, then t must
2555                         // be a parameterized type (not to be confused
2556                         // with a generic type declaration).
2557                         // Terminology:
2558                         //    Parameterized type: List<String>
2559                         //    Generic type declaration: class List<E> { ... }
2560                         // So t corresponds to List<String> and
2561                         // t.tsym.type corresponds to List<E>.
2562                         // The reason t must be parameterized type is
2563                         // that completion will happen as a side
2564                         // effect of calling
2565                         // ClassSymbol.getInterfaces.  Since
2566                         // t.interfaces_field is null after
2567                         // completion, we can assume that t is not the
2568                         // type of a class/interface declaration.
2569                         Assert.check(t != t.tsym.type, t);
2570                         List<Type> actuals = t.allparams();
2571                         List<Type> formals = t.tsym.type.allparams();
2572                         if (t.hasErasedSupertypes()) {
2573                             t.interfaces_field = erasureRecursive(interfaces);
2574                         } else if (formals.nonEmpty()) {
2575                             t.interfaces_field = subst(interfaces, formals, actuals);
2576                         }
2577                         else {
2578                             t.interfaces_field = interfaces;
2579                         }
2580                     }
2581                 }
2582                 return t.interfaces_field;
2583             }
2584 
2585             @Override
2586             public List<Type> visitTypeVar(TypeVar t, Void ignored) {
2587                 if (t.getUpperBound().isCompound())
2588                     return interfaces(t.getUpperBound());
2589 
2590                 if (t.getUpperBound().isInterface())
2591                     return List.of(t.getUpperBound());
2592 
2593                 return List.nil();
2594             }
2595         };
2596 
2597     public List<Type> directSupertypes(Type t) {
2598         return directSupertypes.visit(t);
2599     }
2600     // where
2601         private final UnaryVisitor<List<Type>> directSupertypes = new UnaryVisitor<List<Type>>() {
2602 
2603             public List<Type> visitType(final Type type, final Void ignored) {
2604                 if (!type.isIntersection()) {
2605                     final Type sup = supertype(type);
2606                     return (sup == Type.noType || sup == type || sup == null)
2607                         ? interfaces(type)
2608                         : interfaces(type).prepend(sup);
2609                 } else {
2610                     return ((IntersectionClassType)type).getExplicitComponents();
2611                 }
2612             }
2613         };
2614 
2615     public boolean isDirectSuperInterface(TypeSymbol isym, TypeSymbol origin) {
2616         for (Type i2 : interfaces(origin.type)) {
2617             if (isym == i2.tsym) return true;
2618         }
2619         return false;
2620     }
2621     // </editor-fold>
2622 
2623     // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
2624     Map<Type,Boolean> isDerivedRawCache = new HashMap<>();
2625 
2626     public boolean isDerivedRaw(Type t) {
2627         Boolean result = isDerivedRawCache.get(t);
2628         if (result == null) {
2629             result = isDerivedRawInternal(t);
2630             isDerivedRawCache.put(t, result);
2631         }
2632         return result;
2633     }
2634 
2635     public boolean isDerivedRawInternal(Type t) {
2636         if (t.isErroneous())
2637             return false;
2638         return
2639             t.isRaw() ||
2640             supertype(t) != Type.noType && isDerivedRaw(supertype(t)) ||
2641             isDerivedRaw(interfaces(t));
2642     }
2643 
2644     public boolean isDerivedRaw(List<Type> ts) {
2645         List<Type> l = ts;
2646         while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
2647         return l.nonEmpty();
2648     }
2649     // </editor-fold>
2650 
2651     // <editor-fold defaultstate="collapsed" desc="setBounds">
2652     /**
2653      * Same as {@link Types#setBounds(TypeVar, List, boolean)}, except that third parameter is computed directly,
2654      * as follows: if all all bounds are interface types, the computed supertype is Object,otherwise
2655      * the supertype is simply left null (in this case, the supertype is assumed to be the head of
2656      * the bound list passed as second argument). Note that this check might cause a symbol completion.
2657      * Hence, this version of setBounds may not be called during a classfile read.
2658      *
2659      * @param t         a type variable
2660      * @param bounds    the bounds, must be nonempty
2661      */
2662     public void setBounds(TypeVar t, List<Type> bounds) {
2663         setBounds(t, bounds, bounds.head.tsym.isInterface());
2664     }
2665 
2666     /**
2667      * Set the bounds field of the given type variable to reflect a (possibly multiple) list of bounds.
2668      * This does not cause symbol completion as an extra parameter indicates as to whether all bounds
2669      * are interfaces - in which case the supertype is implicitly assumed to be 'Object'.
2670      *
2671      * @param t             a type variable
2672      * @param bounds        the bounds, must be nonempty
2673      * @param allInterfaces are all bounds interface types?
2674      */
2675     public void setBounds(TypeVar t, List<Type> bounds, boolean allInterfaces) {
2676         t.setUpperBound( bounds.tail.isEmpty() ?
2677                 bounds.head :
2678                 makeIntersectionType(bounds, allInterfaces) );
2679         t.rank_field = -1;
2680     }
2681     // </editor-fold>
2682 
2683     // <editor-fold defaultstate="collapsed" desc="getBounds">
2684     /**
2685      * Return list of bounds of the given type variable.
2686      */
2687     public List<Type> getBounds(TypeVar t) {
2688         if (t.getUpperBound().hasTag(NONE))
2689             return List.nil();
2690         else if (t.getUpperBound().isErroneous() || !t.getUpperBound().isCompound())
2691             return List.of(t.getUpperBound());
2692         else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
2693             return interfaces(t).prepend(supertype(t));
2694         else
2695             // No superclass was given in bounds.
2696             // In this case, supertype is Object, erasure is first interface.
2697             return interfaces(t);
2698     }
2699     // </editor-fold>
2700 
2701     // <editor-fold defaultstate="collapsed" desc="classBound">
2702     /**
2703      * If the given type is a (possibly selected) type variable,
2704      * return the bounding class of this type, otherwise return the
2705      * type itself.
2706      */
2707     public Type classBound(Type t) {
2708         return classBound.visit(t);
2709     }
2710     // where
2711         private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
2712 
2713             public Type visitType(Type t, Void ignored) {
2714                 return t;
2715             }
2716 
2717             @Override
2718             public Type visitClassType(ClassType t, Void ignored) {
2719                 Type outer1 = classBound(t.getEnclosingType());
2720                 if (outer1 != t.getEnclosingType())
2721                     return new ClassType(outer1, t.getTypeArguments(), t.tsym,
2722                                          t.getMetadata());
2723                 else
2724                     return t;
2725             }
2726 
2727             @Override
2728             public Type visitTypeVar(TypeVar t, Void ignored) {
2729                 return classBound(supertype(t));
2730             }
2731 
2732             @Override
2733             public Type visitErrorType(ErrorType t, Void ignored) {
2734                 return t;
2735             }
2736         };
2737     // </editor-fold>
2738 
2739     // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
2740     /**
2741      * Returns true iff the first signature is a <em>sub
2742      * signature</em> of the other.  This is <b>not</b> an equivalence
2743      * relation.
2744      *
2745      * @jls 8.4.2 Method Signature
2746      * @see #overrideEquivalent(Type t, Type s)
2747      * @param t first signature (possibly raw).
2748      * @param s second signature (could be subjected to erasure).
2749      * @return true if t is a sub signature of s.
2750      */
2751     public boolean isSubSignature(Type t, Type s) {
2752         return isSubSignature(t, s, true);
2753     }
2754 
2755     public boolean isSubSignature(Type t, Type s, boolean strict) {
2756         return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
2757     }
2758 
2759     /**
2760      * Returns true iff these signatures are related by <em>override
2761      * equivalence</em>.  This is the natural extension of
2762      * isSubSignature to an equivalence relation.
2763      *
2764      * @jls 8.4.2 Method Signature
2765      * @see #isSubSignature(Type t, Type s)
2766      * @param t a signature (possible raw, could be subjected to
2767      * erasure).
2768      * @param s a signature (possible raw, could be subjected to
2769      * erasure).
2770      * @return true if either argument is a sub signature of the other.
2771      */
2772     public boolean overrideEquivalent(Type t, Type s) {
2773         return hasSameArgs(t, s) ||
2774             hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
2775     }
2776 
2777     public boolean overridesObjectMethod(TypeSymbol origin, Symbol msym) {
2778         for (Symbol sym : syms.objectType.tsym.members().getSymbolsByName(msym.name)) {
2779             if (msym.overrides(sym, origin, Types.this, true)) {
2780                 return true;
2781             }
2782         }
2783         return false;
2784     }
2785 
2786     /**
2787      * This enum defines the strategy for implementing most specific return type check
2788      * during the most specific and functional interface checks.
2789      */
2790     public enum MostSpecificReturnCheck {
2791         /**
2792          * Return r1 is more specific than r2 if {@code r1 <: r2}. Extra care required for (i) handling
2793          * method type variables (if either method is generic) and (ii) subtyping should be replaced
2794          * by type-equivalence for primitives. This is essentially an inlined version of
2795          * {@link Types#resultSubtype(Type, Type, Warner)}, where the assignability check has been
2796          * replaced with a strict subtyping check.
2797          */
2798         BASIC() {
2799             @Override
2800             public boolean test(Type mt1, Type mt2, Types types) {
2801                 List<Type> tvars = mt1.getTypeArguments();
2802                 List<Type> svars = mt2.getTypeArguments();
2803                 Type t = mt1.getReturnType();
2804                 Type s = types.subst(mt2.getReturnType(), svars, tvars);
2805                 return types.isSameType(t, s) ||
2806                     !t.isPrimitive() &&
2807                     !s.isPrimitive() &&
2808                     types.isSubtype(t, s);
2809             }
2810         },
2811         /**
2812          * Return r1 is more specific than r2 if r1 is return-type-substitutable for r2.
2813          */
2814         RTS() {
2815             @Override
2816             public boolean test(Type mt1, Type mt2, Types types) {
2817                 return types.returnTypeSubstitutable(mt1, mt2);
2818             }
2819         };
2820 
2821         public abstract boolean test(Type mt1, Type mt2, Types types);
2822     }
2823 
2824     /**
2825      * Merge multiple abstract methods. The preferred method is a method that is a subsignature
2826      * of all the other signatures and whose return type is more specific {@see MostSpecificReturnCheck}.
2827      * The resulting preferred method has a thrown clause that is the intersection of the merged
2828      * methods' clauses.
2829      */
2830     public Optional<Symbol> mergeAbstracts(List<Symbol> ambiguousInOrder, Type site, boolean sigCheck) {
2831         //first check for preconditions
2832         boolean shouldErase = false;
2833         List<Type> erasedParams = ambiguousInOrder.head.erasure(this).getParameterTypes();
2834         for (Symbol s : ambiguousInOrder) {
2835             if ((s.flags() & ABSTRACT) == 0 ||
2836                     (sigCheck && !isSameTypes(erasedParams, s.erasure(this).getParameterTypes()))) {
2837                 return Optional.empty();
2838             } else if (s.type.hasTag(FORALL)) {
2839                 shouldErase = true;
2840             }
2841         }
2842         //then merge abstracts
2843         for (MostSpecificReturnCheck mostSpecificReturnCheck : MostSpecificReturnCheck.values()) {
2844             outer: for (Symbol s : ambiguousInOrder) {
2845                 Type mt = memberType(site, s);
2846                 List<Type> allThrown = mt.getThrownTypes();
2847                 for (Symbol s2 : ambiguousInOrder) {
2848                     if (s != s2) {
2849                         Type mt2 = memberType(site, s2);
2850                         if (!isSubSignature(mt, mt2) ||
2851                                 !mostSpecificReturnCheck.test(mt, mt2, this)) {
2852                             //ambiguity cannot be resolved
2853                             continue outer;
2854                         } else {
2855                             List<Type> thrownTypes2 = mt2.getThrownTypes();
2856                             if (!mt.hasTag(FORALL) && shouldErase) {
2857                                 thrownTypes2 = erasure(thrownTypes2);
2858                             } else if (mt.hasTag(FORALL)) {
2859                                 //subsignature implies that if most specific is generic, then all other
2860                                 //methods are too
2861                                 Assert.check(mt2.hasTag(FORALL));
2862                                 // if both are generic methods, adjust thrown types ahead of intersection computation
2863                                 thrownTypes2 = subst(thrownTypes2, mt2.getTypeArguments(), mt.getTypeArguments());
2864                             }
2865                             allThrown = chk.intersect(allThrown, thrownTypes2);
2866                         }
2867                     }
2868                 }
2869                 return (allThrown == mt.getThrownTypes()) ?
2870                         Optional.of(s) :
2871                         Optional.of(new MethodSymbol(
2872                                 s.flags(),
2873                                 s.name,
2874                                 createMethodTypeWithThrown(s.type, allThrown),
2875                                 s.owner) {
2876                             @Override
2877                             public Symbol baseSymbol() {
2878                                 return s;
2879                             }
2880                         });
2881             }
2882         }
2883         return Optional.empty();
2884     }
2885 
2886     // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
2887     class ImplementationCache {
2888 
2889         private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map = new WeakHashMap<>();
2890 
2891         class Entry {
2892             final MethodSymbol cachedImpl;
2893             final Filter<Symbol> implFilter;
2894             final boolean checkResult;
2895             final int prevMark;
2896 
2897             public Entry(MethodSymbol cachedImpl,
2898                     Filter<Symbol> scopeFilter,
2899                     boolean checkResult,
2900                     int prevMark) {
2901                 this.cachedImpl = cachedImpl;
2902                 this.implFilter = scopeFilter;
2903                 this.checkResult = checkResult;
2904                 this.prevMark = prevMark;
2905             }
2906 
2907             boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
2908                 return this.implFilter == scopeFilter &&
2909                         this.checkResult == checkResult &&
2910                         this.prevMark == mark;
2911             }
2912         }
2913 
2914         MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
2915             SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
2916             Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
2917             if (cache == null) {
2918                 cache = new HashMap<>();
2919                 _map.put(ms, new SoftReference<>(cache));
2920             }
2921             Entry e = cache.get(origin);
2922             CompoundScope members = membersClosure(origin.type, true);
2923             if (e == null ||
2924                     !e.matches(implFilter, checkResult, members.getMark())) {
2925                 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
2926                 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
2927                 return impl;
2928             }
2929             else {
2930                 return e.cachedImpl;
2931             }
2932         }
2933 
2934         private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
2935             for (Type t = origin.type; t.hasTag(CLASS) || t.hasTag(TYPEVAR); t = supertype(t)) {
2936                 t = skipTypeVars(t, false);
2937                 TypeSymbol c = t.tsym;
2938                 Symbol bestSoFar = null;
2939                 for (Symbol sym : c.members().getSymbolsByName(ms.name, implFilter)) {
2940                     if (sym != null && sym.overrides(ms, origin, Types.this, checkResult)) {
2941                         bestSoFar = sym;
2942                         if ((sym.flags() & ABSTRACT) == 0) {
2943                             //if concrete impl is found, exit immediately
2944                             break;
2945                         }
2946                     }
2947                 }
2948                 if (bestSoFar != null) {
2949                     //return either the (only) concrete implementation or the first abstract one
2950                     return (MethodSymbol)bestSoFar;
2951                 }
2952             }
2953             return null;
2954         }
2955     }
2956 
2957     private ImplementationCache implCache = new ImplementationCache();
2958 
2959     public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
2960         return implCache.get(ms, origin, checkResult, implFilter);
2961     }
2962     // </editor-fold>
2963 
2964     // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
2965     class MembersClosureCache extends SimpleVisitor<Scope.CompoundScope, Void> {
2966 
2967         private Map<TypeSymbol, CompoundScope> _map = new HashMap<>();
2968 
2969         Set<TypeSymbol> seenTypes = new HashSet<>();
2970 
2971         class MembersScope extends CompoundScope {
2972 
2973             CompoundScope scope;
2974 
2975             public MembersScope(CompoundScope scope) {
2976                 super(scope.owner);
2977                 this.scope = scope;
2978             }
2979 
2980             Filter<Symbol> combine(Filter<Symbol> sf) {
2981                 return s -> !s.owner.isInterface() && (sf == null || sf.accepts(s));
2982             }
2983 
2984             @Override
2985             public Iterable<Symbol> getSymbols(Filter<Symbol> sf, LookupKind lookupKind) {
2986                 return scope.getSymbols(combine(sf), lookupKind);
2987             }
2988 
2989             @Override
2990             public Iterable<Symbol> getSymbolsByName(Name name, Filter<Symbol> sf, LookupKind lookupKind) {
2991                 return scope.getSymbolsByName(name, combine(sf), lookupKind);
2992             }
2993 
2994             @Override
2995             public int getMark() {
2996                 return scope.getMark();
2997             }
2998         }
2999 
3000         CompoundScope nilScope;
3001 
3002         /** members closure visitor methods **/
3003 
3004         public CompoundScope visitType(Type t, Void _unused) {
3005             if (nilScope == null) {
3006                 nilScope = new CompoundScope(syms.noSymbol);
3007             }
3008             return nilScope;
3009         }
3010 
3011         @Override
3012         public CompoundScope visitClassType(ClassType t, Void _unused) {
3013             if (!seenTypes.add(t.tsym)) {
3014                 //this is possible when an interface is implemented in multiple
3015                 //superclasses, or when a class hierarchy is circular - in such
3016                 //cases we don't need to recurse (empty scope is returned)
3017                 return new CompoundScope(t.tsym);
3018             }
3019             try {
3020                 seenTypes.add(t.tsym);
3021                 ClassSymbol csym = (ClassSymbol)t.tsym;
3022                 CompoundScope membersClosure = _map.get(csym);
3023                 if (membersClosure == null) {
3024                     membersClosure = new CompoundScope(csym);
3025                     for (Type i : interfaces(t)) {
3026                         membersClosure.prependSubScope(visit(i, null));
3027                     }
3028                     membersClosure.prependSubScope(visit(supertype(t), null));
3029                     membersClosure.prependSubScope(csym.members());
3030                     _map.put(csym, membersClosure);
3031                 }
3032                 return membersClosure;
3033             }
3034             finally {
3035                 seenTypes.remove(t.tsym);
3036             }
3037         }
3038 
3039         @Override
3040         public CompoundScope visitTypeVar(TypeVar t, Void _unused) {
3041             return visit(t.getUpperBound(), null);
3042         }
3043     }
3044 
3045     private MembersClosureCache membersCache = new MembersClosureCache();
3046 
3047     public CompoundScope membersClosure(Type site, boolean skipInterface) {
3048         CompoundScope cs = membersCache.visit(site, null);
3049         Assert.checkNonNull(cs, () -> "type " + site);
3050         return skipInterface ? membersCache.new MembersScope(cs) : cs;
3051     }
3052     // </editor-fold>
3053 
3054 
3055     /** Return first abstract member of class `sym'.
3056      */
3057     public MethodSymbol firstUnimplementedAbstract(ClassSymbol sym) {
3058         try {
3059             return firstUnimplementedAbstractImpl(sym, sym);
3060         } catch (CompletionFailure ex) {
3061             chk.completionError(enter.getEnv(sym).tree.pos(), ex);
3062             return null;
3063         }
3064     }
3065         //where:
3066         private MethodSymbol firstUnimplementedAbstractImpl(ClassSymbol impl, ClassSymbol c) {
3067             MethodSymbol undef = null;
3068             // Do not bother to search in classes that are not abstract,
3069             // since they cannot have abstract members.
3070             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
3071                 Scope s = c.members();
3072                 for (Symbol sym : s.getSymbols(NON_RECURSIVE)) {
3073                     if (sym.kind == MTH &&
3074                         (sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
3075                         MethodSymbol absmeth = (MethodSymbol)sym;
3076                         MethodSymbol implmeth = absmeth.implementation(impl, this, true);
3077                         if (implmeth == null || implmeth == absmeth) {
3078                             //look for default implementations
3079                             if (allowDefaultMethods) {
3080                                 MethodSymbol prov = interfaceCandidates(impl.type, absmeth).head;
3081                                 if (prov != null && prov.overrides(absmeth, impl, this, true)) {
3082                                     implmeth = prov;
3083                                 }
3084                             }
3085                         }
3086                         if (implmeth == null || implmeth == absmeth) {
3087                             undef = absmeth;
3088                             break;
3089                         }
3090                     }
3091                 }
3092                 if (undef == null) {
3093                     Type st = supertype(c.type);
3094                     if (st.hasTag(CLASS))
3095                         undef = firstUnimplementedAbstractImpl(impl, (ClassSymbol)st.tsym);
3096                 }
3097                 for (List<Type> l = interfaces(c.type);
3098                      undef == null && l.nonEmpty();
3099                      l = l.tail) {
3100                     undef = firstUnimplementedAbstractImpl(impl, (ClassSymbol)l.head.tsym);
3101                 }
3102             }
3103             return undef;
3104         }
3105 
3106     public class CandidatesCache {
3107         public Map<Entry, List<MethodSymbol>> cache = new WeakHashMap<>();
3108 
3109         class Entry {
3110             Type site;
3111             MethodSymbol msym;
3112 
3113             Entry(Type site, MethodSymbol msym) {
3114                 this.site = site;
3115                 this.msym = msym;
3116             }
3117 
3118             @Override
3119             public boolean equals(Object obj) {
3120                 if (obj instanceof Entry) {
3121                     Entry e = (Entry)obj;
3122                     return e.msym == msym && isSameType(site, e.site);
3123                 } else {
3124                     return false;
3125                 }
3126             }
3127 
3128             @Override
3129             public int hashCode() {
3130                 return Types.this.hashCode(site) & ~msym.hashCode();
3131             }
3132         }
3133 
3134         public List<MethodSymbol> get(Entry e) {
3135             return cache.get(e);
3136         }
3137 
3138         public void put(Entry e, List<MethodSymbol> msymbols) {
3139             cache.put(e, msymbols);
3140         }
3141     }
3142 
3143     public CandidatesCache candidatesCache = new CandidatesCache();
3144 
3145     //where
3146     public List<MethodSymbol> interfaceCandidates(Type site, MethodSymbol ms) {
3147         CandidatesCache.Entry e = candidatesCache.new Entry(site, ms);
3148         List<MethodSymbol> candidates = candidatesCache.get(e);
3149         if (candidates == null) {
3150             Filter<Symbol> filter = new MethodFilter(ms, site);
3151             List<MethodSymbol> candidates2 = List.nil();
3152             for (Symbol s : membersClosure(site, false).getSymbols(filter)) {
3153                 if (!site.tsym.isInterface() && !s.owner.isInterface()) {
3154                     return List.of((MethodSymbol)s);
3155                 } else if (!candidates2.contains(s)) {
3156                     candidates2 = candidates2.prepend((MethodSymbol)s);
3157                 }
3158             }
3159             candidates = prune(candidates2);
3160             candidatesCache.put(e, candidates);
3161         }
3162         return candidates;
3163     }
3164 
3165     public List<MethodSymbol> prune(List<MethodSymbol> methods) {
3166         ListBuffer<MethodSymbol> methodsMin = new ListBuffer<>();
3167         for (MethodSymbol m1 : methods) {
3168             boolean isMin_m1 = true;
3169             for (MethodSymbol m2 : methods) {
3170                 if (m1 == m2) continue;
3171                 if (m2.owner != m1.owner &&
3172                         asSuper(m2.owner.type, m1.owner) != null) {
3173                     isMin_m1 = false;
3174                     break;
3175                 }
3176             }
3177             if (isMin_m1)
3178                 methodsMin.append(m1);
3179         }
3180         return methodsMin.toList();
3181     }
3182     // where
3183             private class MethodFilter implements Filter<Symbol> {
3184 
3185                 Symbol msym;
3186                 Type site;
3187 
3188                 MethodFilter(Symbol msym, Type site) {
3189                     this.msym = msym;
3190                     this.site = site;
3191                 }
3192 
3193                 public boolean accepts(Symbol s) {
3194                     return s.kind == MTH &&
3195                             s.name == msym.name &&
3196                             (s.flags() & SYNTHETIC) == 0 &&
3197                             s.isInheritedIn(site.tsym, Types.this) &&
3198                             overrideEquivalent(memberType(site, s), memberType(site, msym));
3199                 }
3200             }
3201     // </editor-fold>
3202 
3203     /**
3204      * Does t have the same arguments as s?  It is assumed that both
3205      * types are (possibly polymorphic) method types.  Monomorphic
3206      * method types "have the same arguments", if their argument lists
3207      * are equal.  Polymorphic method types "have the same arguments",
3208      * if they have the same arguments after renaming all type
3209      * variables of one to corresponding type variables in the other,
3210      * where correspondence is by position in the type parameter list.
3211      */
3212     public boolean hasSameArgs(Type t, Type s) {
3213         return hasSameArgs(t, s, true);
3214     }
3215 
3216     public boolean hasSameArgs(Type t, Type s, boolean strict) {
3217         return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
3218     }
3219 
3220     private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
3221         return hasSameArgs.visit(t, s);
3222     }
3223     // where
3224         private class HasSameArgs extends TypeRelation {
3225 
3226             boolean strict;
3227 
3228             public HasSameArgs(boolean strict) {
3229                 this.strict = strict;
3230             }
3231 
3232             public Boolean visitType(Type t, Type s) {
3233                 throw new AssertionError();
3234             }
3235 
3236             @Override
3237             public Boolean visitMethodType(MethodType t, Type s) {
3238                 return s.hasTag(METHOD)
3239                     && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
3240             }
3241 
3242             @Override
3243             public Boolean visitForAll(ForAll t, Type s) {
3244                 if (!s.hasTag(FORALL))
3245                     return strict ? false : visitMethodType(t.asMethodType(), s);
3246 
3247                 ForAll forAll = (ForAll)s;
3248                 return hasSameBounds(t, forAll)
3249                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
3250             }
3251 
3252             @Override
3253             public Boolean visitErrorType(ErrorType t, Type s) {
3254                 return false;
3255             }
3256         }
3257 
3258     TypeRelation hasSameArgs_strict = new HasSameArgs(true);
3259         TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
3260 
3261     // </editor-fold>
3262 
3263     // <editor-fold defaultstate="collapsed" desc="subst">
3264     public List<Type> subst(List<Type> ts,
3265                             List<Type> from,
3266                             List<Type> to) {
3267         return ts.map(new Subst(from, to));
3268     }
3269 
3270     /**
3271      * Substitute all occurrences of a type in `from' with the
3272      * corresponding type in `to' in 't'. Match lists `from' and `to'
3273      * from the right: If lists have different length, discard leading
3274      * elements of the longer list.
3275      */
3276     public Type subst(Type t, List<Type> from, List<Type> to) {
3277         return t.map(new Subst(from, to));
3278     }
3279 
3280     private class Subst extends StructuralTypeMapping<Void> {
3281         List<Type> from;
3282         List<Type> to;
3283 
3284         public Subst(List<Type> from, List<Type> to) {
3285             int fromLength = from.length();
3286             int toLength = to.length();
3287             while (fromLength > toLength) {
3288                 fromLength--;
3289                 from = from.tail;
3290             }
3291             while (fromLength < toLength) {
3292                 toLength--;
3293                 to = to.tail;
3294             }
3295             this.from = from;
3296             this.to = to;
3297         }
3298 
3299         @Override
3300         public Type visitTypeVar(TypeVar t, Void ignored) {
3301             for (List<Type> from = this.from, to = this.to;
3302                  from.nonEmpty();
3303                  from = from.tail, to = to.tail) {
3304                 if (t.equalsIgnoreMetadata(from.head)) {
3305                     return to.head.withTypeVar(t);
3306                 }
3307             }
3308             return t;
3309         }
3310 
3311         @Override
3312         public Type visitClassType(ClassType t, Void ignored) {
3313             if (!t.isCompound()) {
3314                 return super.visitClassType(t, ignored);
3315             } else {
3316                 Type st = visit(supertype(t));
3317                 List<Type> is = visit(interfaces(t), ignored);
3318                 if (st == supertype(t) && is == interfaces(t))
3319                     return t;
3320                 else
3321                     return makeIntersectionType(is.prepend(st));
3322             }
3323         }
3324 
3325         @Override
3326         public Type visitWildcardType(WildcardType t, Void ignored) {
3327             WildcardType t2 = (WildcardType)super.visitWildcardType(t, ignored);
3328             if (t2 != t && t.isExtendsBound() && t2.type.isExtendsBound()) {
3329                 t2.type = wildUpperBound(t2.type);
3330             }
3331             return t2;
3332         }
3333 
3334         @Override
3335         public Type visitForAll(ForAll t, Void ignored) {
3336             if (Type.containsAny(to, t.tvars)) {
3337                 //perform alpha-renaming of free-variables in 't'
3338                 //if 'to' types contain variables that are free in 't'
3339                 List<Type> freevars = newInstances(t.tvars);
3340                 t = new ForAll(freevars,
3341                                Types.this.subst(t.qtype, t.tvars, freevars));
3342             }
3343             List<Type> tvars1 = substBounds(t.tvars, from, to);
3344             Type qtype1 = visit(t.qtype);
3345             if (tvars1 == t.tvars && qtype1 == t.qtype) {
3346                 return t;
3347             } else if (tvars1 == t.tvars) {
3348                 return new ForAll(tvars1, qtype1) {
3349                     @Override
3350                     public boolean needsStripping() {
3351                         return true;
3352                     }
3353                 };
3354             } else {
3355                 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1)) {
3356                     @Override
3357                     public boolean needsStripping() {
3358                         return true;
3359                     }
3360                 };
3361             }
3362         }
3363     }
3364 
3365     public List<Type> substBounds(List<Type> tvars,
3366                                   List<Type> from,
3367                                   List<Type> to) {
3368         if (tvars.isEmpty())
3369             return tvars;
3370         ListBuffer<Type> newBoundsBuf = new ListBuffer<>();
3371         boolean changed = false;
3372         // calculate new bounds
3373         for (Type t : tvars) {
3374             TypeVar tv = (TypeVar) t;
3375             Type bound = subst(tv.getUpperBound(), from, to);
3376             if (bound != tv.getUpperBound())
3377                 changed = true;
3378             newBoundsBuf.append(bound);
3379         }
3380         if (!changed)
3381             return tvars;
3382         ListBuffer<Type> newTvars = new ListBuffer<>();
3383         // create new type variables without bounds
3384         for (Type t : tvars) {
3385             newTvars.append(new TypeVar(t.tsym, null, syms.botType,
3386                                         t.getMetadata()));
3387         }
3388         // the new bounds should use the new type variables in place
3389         // of the old
3390         List<Type> newBounds = newBoundsBuf.toList();
3391         from = tvars;
3392         to = newTvars.toList();
3393         for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
3394             newBounds.head = subst(newBounds.head, from, to);
3395         }
3396         newBounds = newBoundsBuf.toList();
3397         // set the bounds of new type variables to the new bounds
3398         for (Type t : newTvars.toList()) {
3399             TypeVar tv = (TypeVar) t;
3400             tv.setUpperBound( newBounds.head );
3401             newBounds = newBounds.tail;
3402         }
3403         return newTvars.toList();
3404     }
3405 
3406     public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
3407         Type bound1 = subst(t.getUpperBound(), from, to);
3408         if (bound1 == t.getUpperBound())
3409             return t;
3410         else {
3411             // create new type variable without bounds
3412             TypeVar tv = new TypeVar(t.tsym, null, syms.botType,
3413                                      t.getMetadata());
3414             // the new bound should use the new type variable in place
3415             // of the old
3416             tv.setUpperBound( subst(bound1, List.of(t), List.of(tv)) );
3417             return tv;
3418         }
3419     }
3420     // </editor-fold>
3421 
3422     // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
3423     /**
3424      * Does t have the same bounds for quantified variables as s?
3425      */
3426     public boolean hasSameBounds(ForAll t, ForAll s) {
3427         List<Type> l1 = t.tvars;
3428         List<Type> l2 = s.tvars;
3429         while (l1.nonEmpty() && l2.nonEmpty() &&
3430                isSameType(l1.head.getUpperBound(),
3431                           subst(l2.head.getUpperBound(),
3432                                 s.tvars,
3433                                 t.tvars))) {
3434             l1 = l1.tail;
3435             l2 = l2.tail;
3436         }
3437         return l1.isEmpty() && l2.isEmpty();
3438     }
3439     // </editor-fold>
3440 
3441     // <editor-fold defaultstate="collapsed" desc="newInstances">
3442     /** Create new vector of type variables from list of variables
3443      *  changing all recursive bounds from old to new list.
3444      */
3445     public List<Type> newInstances(List<Type> tvars) {
3446         List<Type> tvars1 = tvars.map(newInstanceFun);
3447         for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
3448             TypeVar tv = (TypeVar) l.head;
3449             tv.setUpperBound( subst(tv.getUpperBound(), tvars, tvars1) );
3450         }
3451         return tvars1;
3452     }
3453         private static final TypeMapping<Void> newInstanceFun = new TypeMapping<Void>() {
3454             @Override
3455             public TypeVar visitTypeVar(TypeVar t, Void _unused) {
3456                 return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound(), t.getMetadata());
3457             }
3458         };
3459     // </editor-fold>
3460 
3461     public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
3462         return original.accept(methodWithParameters, newParams);
3463     }
3464     // where
3465         private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
3466             public Type visitType(Type t, List<Type> newParams) {
3467                 throw new IllegalArgumentException("Not a method type: " + t);
3468             }
3469             public Type visitMethodType(MethodType t, List<Type> newParams) {
3470                 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
3471             }
3472             public Type visitForAll(ForAll t, List<Type> newParams) {
3473                 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
3474             }
3475         };
3476 
3477     public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
3478         return original.accept(methodWithThrown, newThrown);
3479     }
3480     // where
3481         private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
3482             public Type visitType(Type t, List<Type> newThrown) {
3483                 throw new IllegalArgumentException("Not a method type: " + t);
3484             }
3485             public Type visitMethodType(MethodType t, List<Type> newThrown) {
3486                 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
3487             }
3488             public Type visitForAll(ForAll t, List<Type> newThrown) {
3489                 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
3490             }
3491         };
3492 
3493     public Type createMethodTypeWithReturn(Type original, Type newReturn) {
3494         return original.accept(methodWithReturn, newReturn);
3495     }
3496     // where
3497         private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
3498             public Type visitType(Type t, Type newReturn) {
3499                 throw new IllegalArgumentException("Not a method type: " + t);
3500             }
3501             public Type visitMethodType(MethodType t, Type newReturn) {
3502                 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym) {
3503                     @Override
3504                     public Type baseType() {
3505                         return t;
3506                     }
3507                 };
3508             }
3509             public Type visitForAll(ForAll t, Type newReturn) {
3510                 return new ForAll(t.tvars, t.qtype.accept(this, newReturn)) {
3511                     @Override
3512                     public Type baseType() {
3513                         return t;
3514                     }
3515                 };
3516             }
3517         };
3518 
3519     // <editor-fold defaultstate="collapsed" desc="createErrorType">
3520     public Type createErrorType(Type originalType) {
3521         return new ErrorType(originalType, syms.errSymbol);
3522     }
3523 
3524     public Type createErrorType(ClassSymbol c, Type originalType) {
3525         return new ErrorType(c, originalType);
3526     }
3527 
3528     public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
3529         return new ErrorType(name, container, originalType);
3530     }
3531     // </editor-fold>
3532 
3533     // <editor-fold defaultstate="collapsed" desc="rank">
3534     /**
3535      * The rank of a class is the length of the longest path between
3536      * the class and java.lang.Object in the class inheritance
3537      * graph. Undefined for all but reference types.
3538      */
3539     public int rank(Type t) {
3540         switch(t.getTag()) {
3541         case CLASS: {
3542             ClassType cls = (ClassType)t;
3543             if (cls.rank_field < 0) {
3544                 Name fullname = cls.tsym.getQualifiedName();
3545                 if (fullname == names.java_lang_Object)
3546                     cls.rank_field = 0;
3547                 else {
3548                     int r = rank(supertype(cls));
3549                     for (List<Type> l = interfaces(cls);
3550                          l.nonEmpty();
3551                          l = l.tail) {
3552                         if (rank(l.head) > r)
3553                             r = rank(l.head);
3554                     }
3555                     cls.rank_field = r + 1;
3556                 }
3557             }
3558             return cls.rank_field;
3559         }
3560         case TYPEVAR: {
3561             TypeVar tvar = (TypeVar)t;
3562             if (tvar.rank_field < 0) {
3563                 int r = rank(supertype(tvar));
3564                 for (List<Type> l = interfaces(tvar);
3565                      l.nonEmpty();
3566                      l = l.tail) {
3567                     if (rank(l.head) > r) r = rank(l.head);
3568                 }
3569                 tvar.rank_field = r + 1;
3570             }
3571             return tvar.rank_field;
3572         }
3573         case ERROR:
3574         case NONE:
3575             return 0;
3576         default:
3577             throw new AssertionError();
3578         }
3579     }
3580     // </editor-fold>
3581 
3582     /**
3583      * Helper method for generating a string representation of a given type
3584      * accordingly to a given locale
3585      */
3586     public String toString(Type t, Locale locale) {
3587         return Printer.createStandardPrinter(messages).visit(t, locale);
3588     }
3589 
3590     /**
3591      * Helper method for generating a string representation of a given type
3592      * accordingly to a given locale
3593      */
3594     public String toString(Symbol t, Locale locale) {
3595         return Printer.createStandardPrinter(messages).visit(t, locale);
3596     }
3597 
3598     // <editor-fold defaultstate="collapsed" desc="toString">
3599     /**
3600      * This toString is slightly more descriptive than the one on Type.
3601      *
3602      * @deprecated Types.toString(Type t, Locale l) provides better support
3603      * for localization
3604      */
3605     @Deprecated
3606     public String toString(Type t) {
3607         if (t.hasTag(FORALL)) {
3608             ForAll forAll = (ForAll)t;
3609             return typaramsString(forAll.tvars) + forAll.qtype;
3610         }
3611         return "" + t;
3612     }
3613     // where
3614         private String typaramsString(List<Type> tvars) {
3615             StringBuilder s = new StringBuilder();
3616             s.append('<');
3617             boolean first = true;
3618             for (Type t : tvars) {
3619                 if (!first) s.append(", ");
3620                 first = false;
3621                 appendTyparamString(((TypeVar)t), s);
3622             }
3623             s.append('>');
3624             return s.toString();
3625         }
3626         private void appendTyparamString(TypeVar t, StringBuilder buf) {
3627             buf.append(t);
3628             if (t.getUpperBound() == null ||
3629                 t.getUpperBound().tsym.getQualifiedName() == names.java_lang_Object)
3630                 return;
3631             buf.append(" extends "); // Java syntax; no need for i18n
3632             Type bound = t.getUpperBound();
3633             if (!bound.isCompound()) {
3634                 buf.append(bound);
3635             } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
3636                 buf.append(supertype(t));
3637                 for (Type intf : interfaces(t)) {
3638                     buf.append('&');
3639                     buf.append(intf);
3640                 }
3641             } else {
3642                 // No superclass was given in bounds.
3643                 // In this case, supertype is Object, erasure is first interface.
3644                 boolean first = true;
3645                 for (Type intf : interfaces(t)) {
3646                     if (!first) buf.append('&');
3647                     first = false;
3648                     buf.append(intf);
3649                 }
3650             }
3651         }
3652     // </editor-fold>
3653 
3654     // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
3655     /**
3656      * A cache for closures.
3657      *
3658      * <p>A closure is a list of all the supertypes and interfaces of
3659      * a class or interface type, ordered by ClassSymbol.precedes
3660      * (that is, subclasses come first, arbitrary but fixed
3661      * otherwise).
3662      */
3663     private Map<Type,List<Type>> closureCache = new HashMap<>();
3664 
3665     /**
3666      * Returns the closure of a class or interface type.
3667      */
3668     public List<Type> closure(Type t) {
3669         List<Type> cl = closureCache.get(t);
3670         if (cl == null) {
3671             Type st = supertype(t);
3672             if (!t.isCompound()) {
3673                 if (st.hasTag(CLASS)) {
3674                     cl = insert(closure(st), t);
3675                 } else if (st.hasTag(TYPEVAR)) {
3676                     cl = closure(st).prepend(t);
3677                 } else {
3678                     cl = List.of(t);
3679                 }
3680             } else {
3681                 cl = closure(supertype(t));
3682             }
3683             for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
3684                 cl = union(cl, closure(l.head));
3685             closureCache.put(t, cl);
3686         }
3687         return cl;
3688     }
3689 
3690     /**
3691      * Collect types into a new closure (using a @code{ClosureHolder})
3692      */
3693     public Collector<Type, ClosureHolder, List<Type>> closureCollector(boolean minClosure, BiPredicate<Type, Type> shouldSkip) {
3694         return Collector.of(() -> new ClosureHolder(minClosure, shouldSkip),
3695                 ClosureHolder::add,
3696                 ClosureHolder::merge,
3697                 ClosureHolder::closure);
3698     }
3699     //where
3700         class ClosureHolder {
3701             List<Type> closure;
3702             final boolean minClosure;
3703             final BiPredicate<Type, Type> shouldSkip;
3704 
3705             ClosureHolder(boolean minClosure, BiPredicate<Type, Type> shouldSkip) {
3706                 this.closure = List.nil();
3707                 this.minClosure = minClosure;
3708                 this.shouldSkip = shouldSkip;
3709             }
3710 
3711             void add(Type type) {
3712                 closure = insert(closure, type, shouldSkip);
3713             }
3714 
3715             ClosureHolder merge(ClosureHolder other) {
3716                 closure = union(closure, other.closure, shouldSkip);
3717                 return this;
3718             }
3719 
3720             List<Type> closure() {
3721                 return minClosure ? closureMin(closure) : closure;
3722             }
3723         }
3724 
3725     BiPredicate<Type, Type> basicClosureSkip = (t1, t2) -> t1.tsym == t2.tsym;
3726 
3727     /**
3728      * Insert a type in a closure
3729      */
3730     public List<Type> insert(List<Type> cl, Type t, BiPredicate<Type, Type> shouldSkip) {
3731         if (cl.isEmpty()) {
3732             return cl.prepend(t);
3733         } else if (shouldSkip.test(t, cl.head)) {
3734             return cl;
3735         } else if (t.tsym.precedes(cl.head.tsym, this)) {
3736             return cl.prepend(t);
3737         } else {
3738             // t comes after head, or the two are unrelated
3739             return insert(cl.tail, t, shouldSkip).prepend(cl.head);
3740         }
3741     }
3742 
3743     public List<Type> insert(List<Type> cl, Type t) {
3744         return insert(cl, t, basicClosureSkip);
3745     }
3746 
3747     /**
3748      * Form the union of two closures
3749      */
3750     public List<Type> union(List<Type> cl1, List<Type> cl2, BiPredicate<Type, Type> shouldSkip) {
3751         if (cl1.isEmpty()) {
3752             return cl2;
3753         } else if (cl2.isEmpty()) {
3754             return cl1;
3755         } else if (shouldSkip.test(cl1.head, cl2.head)) {
3756             return union(cl1.tail, cl2.tail, shouldSkip).prepend(cl1.head);
3757         } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
3758             return union(cl1, cl2.tail, shouldSkip).prepend(cl2.head);
3759         } else {
3760             return union(cl1.tail, cl2, shouldSkip).prepend(cl1.head);
3761         }
3762     }
3763 
3764     public List<Type> union(List<Type> cl1, List<Type> cl2) {
3765         return union(cl1, cl2, basicClosureSkip);
3766     }
3767 
3768     /**
3769      * Intersect two closures
3770      */
3771     public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
3772         if (cl1 == cl2)
3773             return cl1;
3774         if (cl1.isEmpty() || cl2.isEmpty())
3775             return List.nil();
3776         if (cl1.head.tsym.precedes(cl2.head.tsym, this))
3777             return intersect(cl1.tail, cl2);
3778         if (cl2.head.tsym.precedes(cl1.head.tsym, this))
3779             return intersect(cl1, cl2.tail);
3780         if (isSameType(cl1.head, cl2.head))
3781             return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
3782         if (cl1.head.tsym == cl2.head.tsym &&
3783             cl1.head.hasTag(CLASS) && cl2.head.hasTag(CLASS)) {
3784             if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
3785                 Type merge = merge(cl1.head,cl2.head);
3786                 return intersect(cl1.tail, cl2.tail).prepend(merge);
3787             }
3788             if (cl1.head.isRaw() || cl2.head.isRaw())
3789                 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
3790         }
3791         return intersect(cl1.tail, cl2.tail);
3792     }
3793     // where
3794         class TypePair {
3795             final Type t1;
3796             final Type t2;;
3797 
3798             TypePair(Type t1, Type t2) {
3799                 this.t1 = t1;
3800                 this.t2 = t2;
3801             }
3802             @Override
3803             public int hashCode() {
3804                 return 127 * Types.this.hashCode(t1) + Types.this.hashCode(t2);
3805             }
3806             @Override
3807             public boolean equals(Object obj) {
3808                 if (!(obj instanceof TypePair))
3809                     return false;
3810                 TypePair typePair = (TypePair)obj;
3811                 return isSameType(t1, typePair.t1)
3812                     && isSameType(t2, typePair.t2);
3813             }
3814         }
3815         Set<TypePair> mergeCache = new HashSet<>();
3816         private Type merge(Type c1, Type c2) {
3817             ClassType class1 = (ClassType) c1;
3818             List<Type> act1 = class1.getTypeArguments();
3819             ClassType class2 = (ClassType) c2;
3820             List<Type> act2 = class2.getTypeArguments();
3821             ListBuffer<Type> merged = new ListBuffer<>();
3822             List<Type> typarams = class1.tsym.type.getTypeArguments();
3823 
3824             while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
3825                 if (containsType(act1.head, act2.head)) {
3826                     merged.append(act1.head);
3827                 } else if (containsType(act2.head, act1.head)) {
3828                     merged.append(act2.head);
3829                 } else {
3830                     TypePair pair = new TypePair(c1, c2);
3831                     Type m;
3832                     if (mergeCache.add(pair)) {
3833                         m = new WildcardType(lub(wildUpperBound(act1.head),
3834                                                  wildUpperBound(act2.head)),
3835                                              BoundKind.EXTENDS,
3836                                              syms.boundClass);
3837                         mergeCache.remove(pair);
3838                     } else {
3839                         m = new WildcardType(syms.objectType,
3840                                              BoundKind.UNBOUND,
3841                                              syms.boundClass);
3842                     }
3843                     merged.append(m.withTypeVar(typarams.head));
3844                 }
3845                 act1 = act1.tail;
3846                 act2 = act2.tail;
3847                 typarams = typarams.tail;
3848             }
3849             Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
3850             // There is no spec detailing how type annotations are to
3851             // be inherited.  So set it to noAnnotations for now
3852             return new ClassType(class1.getEnclosingType(), merged.toList(),
3853                                  class1.tsym);
3854         }
3855 
3856     /**
3857      * Return the minimum type of a closure, a compound type if no
3858      * unique minimum exists.
3859      */
3860     private Type compoundMin(List<Type> cl) {
3861         if (cl.isEmpty()) return syms.objectType;
3862         List<Type> compound = closureMin(cl);
3863         if (compound.isEmpty())
3864             return null;
3865         else if (compound.tail.isEmpty())
3866             return compound.head;
3867         else
3868             return makeIntersectionType(compound);
3869     }
3870 
3871     /**
3872      * Return the minimum types of a closure, suitable for computing
3873      * compoundMin or glb.
3874      */
3875     private List<Type> closureMin(List<Type> cl) {
3876         ListBuffer<Type> classes = new ListBuffer<>();
3877         ListBuffer<Type> interfaces = new ListBuffer<>();
3878         Set<Type> toSkip = new HashSet<>();
3879         while (!cl.isEmpty()) {
3880             Type current = cl.head;
3881             boolean keep = !toSkip.contains(current);
3882             if (keep && current.hasTag(TYPEVAR)) {
3883                 // skip lower-bounded variables with a subtype in cl.tail
3884                 for (Type t : cl.tail) {
3885                     if (isSubtypeNoCapture(t, current)) {
3886                         keep = false;
3887                         break;
3888                     }
3889                 }
3890             }
3891             if (keep) {
3892                 if (current.isInterface())
3893                     interfaces.append(current);
3894                 else
3895                     classes.append(current);
3896                 for (Type t : cl.tail) {
3897                     // skip supertypes of 'current' in cl.tail
3898                     if (isSubtypeNoCapture(current, t))
3899                         toSkip.add(t);
3900                 }
3901             }
3902             cl = cl.tail;
3903         }
3904         return classes.appendList(interfaces).toList();
3905     }
3906 
3907     /**
3908      * Return the least upper bound of list of types.  if the lub does
3909      * not exist return null.
3910      */
3911     public Type lub(List<Type> ts) {
3912         return lub(ts.toArray(new Type[ts.length()]));
3913     }
3914 
3915     /**
3916      * Return the least upper bound (lub) of set of types.  If the lub
3917      * does not exist return the type of null (bottom).
3918      */
3919     public Type lub(Type... ts) {
3920         final int UNKNOWN_BOUND = 0;
3921         final int ARRAY_BOUND = 1;
3922         final int CLASS_BOUND = 2;
3923 
3924         int[] kinds = new int[ts.length];
3925 
3926         int boundkind = UNKNOWN_BOUND;
3927         for (int i = 0 ; i < ts.length ; i++) {
3928             Type t = ts[i];
3929             switch (t.getTag()) {
3930             case CLASS:
3931                 boundkind |= kinds[i] = CLASS_BOUND;
3932                 break;
3933             case ARRAY:
3934                 boundkind |= kinds[i] = ARRAY_BOUND;
3935                 break;
3936             case  TYPEVAR:
3937                 do {
3938                     t = t.getUpperBound();
3939                 } while (t.hasTag(TYPEVAR));
3940                 if (t.hasTag(ARRAY)) {
3941                     boundkind |= kinds[i] = ARRAY_BOUND;
3942                 } else {
3943                     boundkind |= kinds[i] = CLASS_BOUND;
3944                 }
3945                 break;
3946             default:
3947                 kinds[i] = UNKNOWN_BOUND;
3948                 if (t.isPrimitive())
3949                     return syms.errType;
3950             }
3951         }
3952         switch (boundkind) {
3953         case 0:
3954             return syms.botType;
3955 
3956         case ARRAY_BOUND:
3957             // calculate lub(A[], B[])
3958             Type[] elements = new Type[ts.length];
3959             for (int i = 0 ; i < ts.length ; i++) {
3960                 Type elem = elements[i] = elemTypeFun.apply(ts[i]);
3961                 if (elem.isPrimitive()) {
3962                     // if a primitive type is found, then return
3963                     // arraySuperType unless all the types are the
3964                     // same
3965                     Type first = ts[0];
3966                     for (int j = 1 ; j < ts.length ; j++) {
3967                         if (!isSameType(first, ts[j])) {
3968                              // lub(int[], B[]) is Cloneable & Serializable
3969                             return arraySuperType();
3970                         }
3971                     }
3972                     // all the array types are the same, return one
3973                     // lub(int[], int[]) is int[]
3974                     return first;
3975                 }
3976             }
3977             // lub(A[], B[]) is lub(A, B)[]
3978             return new ArrayType(lub(elements), syms.arrayClass);
3979 
3980         case CLASS_BOUND:
3981             // calculate lub(A, B)
3982             int startIdx = 0;
3983             for (int i = 0; i < ts.length ; i++) {
3984                 Type t = ts[i];
3985                 if (t.hasTag(CLASS) || t.hasTag(TYPEVAR)) {
3986                     break;
3987                 } else {
3988                     startIdx++;
3989                 }
3990             }
3991             Assert.check(startIdx < ts.length);
3992             //step 1 - compute erased candidate set (EC)
3993             List<Type> cl = erasedSupertypes(ts[startIdx]);
3994             for (int i = startIdx + 1 ; i < ts.length ; i++) {
3995                 Type t = ts[i];
3996                 if (t.hasTag(CLASS) || t.hasTag(TYPEVAR))
3997                     cl = intersect(cl, erasedSupertypes(t));
3998             }
3999             //step 2 - compute minimal erased candidate set (MEC)
4000             List<Type> mec = closureMin(cl);
4001             //step 3 - for each element G in MEC, compute lci(Inv(G))
4002             List<Type> candidates = List.nil();
4003             for (Type erasedSupertype : mec) {
4004                 List<Type> lci = List.of(asSuper(ts[startIdx], erasedSupertype.tsym));
4005                 for (int i = startIdx + 1 ; i < ts.length ; i++) {
4006                     Type superType = asSuper(ts[i], erasedSupertype.tsym);
4007                     lci = intersect(lci, superType != null ? List.of(superType) : List.nil());
4008                 }
4009                 candidates = candidates.appendList(lci);
4010             }
4011             //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
4012             //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
4013             return compoundMin(candidates);
4014 
4015         default:
4016             // calculate lub(A, B[])
4017             List<Type> classes = List.of(arraySuperType());
4018             for (int i = 0 ; i < ts.length ; i++) {
4019                 if (kinds[i] != ARRAY_BOUND) // Filter out any arrays
4020                     classes = classes.prepend(ts[i]);
4021             }
4022             // lub(A, B[]) is lub(A, arraySuperType)
4023             return lub(classes);
4024         }
4025     }
4026     // where
4027         List<Type> erasedSupertypes(Type t) {
4028             ListBuffer<Type> buf = new ListBuffer<>();
4029             for (Type sup : closure(t)) {
4030                 if (sup.hasTag(TYPEVAR)) {
4031                     buf.append(sup);
4032                 } else {
4033                     buf.append(erasure(sup));
4034                 }
4035             }
4036             return buf.toList();
4037         }
4038 
4039         private Type arraySuperType = null;
4040         private Type arraySuperType() {
4041             // initialized lazily to avoid problems during compiler startup
4042             if (arraySuperType == null) {
4043                 synchronized (this) {
4044                     if (arraySuperType == null) {
4045                         // JLS 10.8: all arrays implement Cloneable and Serializable.
4046                         arraySuperType = makeIntersectionType(List.of(syms.serializableType,
4047                                 syms.cloneableType), true);
4048                     }
4049                 }
4050             }
4051             return arraySuperType;
4052         }
4053     // </editor-fold>
4054 
4055     // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
4056     public Type glb(List<Type> ts) {
4057         Type t1 = ts.head;
4058         for (Type t2 : ts.tail) {
4059             if (t1.isErroneous())
4060                 return t1;
4061             t1 = glb(t1, t2);
4062         }
4063         return t1;
4064     }
4065     //where
4066     public Type glb(Type t, Type s) {
4067         if (s == null)
4068             return t;
4069         else if (t.isPrimitive() || s.isPrimitive())
4070             return syms.errType;
4071         else if (isSubtypeNoCapture(t, s))
4072             return t;
4073         else if (isSubtypeNoCapture(s, t))
4074             return s;
4075 
4076         List<Type> closure = union(closure(t), closure(s));
4077         return glbFlattened(closure, t);
4078     }
4079     //where
4080     /**
4081      * Perform glb for a list of non-primitive, non-error, non-compound types;
4082      * redundant elements are removed.  Bounds should be ordered according to
4083      * {@link Symbol#precedes(TypeSymbol,Types)}.
4084      *
4085      * @param flatBounds List of type to glb
4086      * @param errT Original type to use if the result is an error type
4087      */
4088     private Type glbFlattened(List<Type> flatBounds, Type errT) {
4089         List<Type> bounds = closureMin(flatBounds);
4090 
4091         if (bounds.isEmpty()) {             // length == 0
4092             return syms.objectType;
4093         } else if (bounds.tail.isEmpty()) { // length == 1
4094             return bounds.head;
4095         } else {                            // length > 1
4096             int classCount = 0;
4097             List<Type> cvars = List.nil();
4098             List<Type> lowers = List.nil();
4099             for (Type bound : bounds) {
4100                 if (!bound.isInterface()) {
4101                     classCount++;
4102                     Type lower = cvarLowerBound(bound);
4103                     if (bound != lower && !lower.hasTag(BOT)) {
4104                         cvars = cvars.append(bound);
4105                         lowers = lowers.append(lower);
4106                     }
4107                 }
4108             }
4109             if (classCount > 1) {
4110                 if (lowers.isEmpty()) {
4111                     return createErrorType(errT);
4112                 } else {
4113                     // try again with lower bounds included instead of capture variables
4114                     List<Type> newBounds = bounds.diff(cvars).appendList(lowers);
4115                     return glb(newBounds);
4116                 }
4117             }
4118         }
4119         return makeIntersectionType(bounds);
4120     }
4121     // </editor-fold>
4122 
4123     // <editor-fold defaultstate="collapsed" desc="hashCode">
4124     /**
4125      * Compute a hash code on a type.
4126      */
4127     public int hashCode(Type t) {
4128         return hashCode(t, false);
4129     }
4130 
4131     public int hashCode(Type t, boolean strict) {
4132         return strict ?
4133                 hashCodeStrictVisitor.visit(t) :
4134                 hashCodeVisitor.visit(t);
4135     }
4136     // where
4137         private static final HashCodeVisitor hashCodeVisitor = new HashCodeVisitor();
4138         private static final HashCodeVisitor hashCodeStrictVisitor = new HashCodeVisitor() {
4139             @Override
4140             public Integer visitTypeVar(TypeVar t, Void ignored) {
4141                 return System.identityHashCode(t);
4142             }
4143         };
4144 
4145         private static class HashCodeVisitor extends UnaryVisitor<Integer> {
4146             public Integer visitType(Type t, Void ignored) {
4147                 return t.getTag().ordinal();
4148             }
4149 
4150             @Override
4151             public Integer visitClassType(ClassType t, Void ignored) {
4152                 int result = visit(t.getEnclosingType());
4153                 result *= 127;
4154                 result += t.tsym.flatName().hashCode();
4155                 for (Type s : t.getTypeArguments()) {
4156                     result *= 127;
4157                     result += visit(s);
4158                 }
4159                 return result;
4160             }
4161 
4162             @Override
4163             public Integer visitMethodType(MethodType t, Void ignored) {
4164                 int h = METHOD.ordinal();
4165                 for (List<Type> thisargs = t.argtypes;
4166                      thisargs.tail != null;
4167                      thisargs = thisargs.tail)
4168                     h = (h << 5) + visit(thisargs.head);
4169                 return (h << 5) + visit(t.restype);
4170             }
4171 
4172             @Override
4173             public Integer visitWildcardType(WildcardType t, Void ignored) {
4174                 int result = t.kind.hashCode();
4175                 if (t.type != null) {
4176                     result *= 127;
4177                     result += visit(t.type);
4178                 }
4179                 return result;
4180             }
4181 
4182             @Override
4183             public Integer visitArrayType(ArrayType t, Void ignored) {
4184                 return visit(t.elemtype) + 12;
4185             }
4186 
4187             @Override
4188             public Integer visitTypeVar(TypeVar t, Void ignored) {
4189                 return System.identityHashCode(t);
4190             }
4191 
4192             @Override
4193             public Integer visitUndetVar(UndetVar t, Void ignored) {
4194                 return System.identityHashCode(t);
4195             }
4196 
4197             @Override
4198             public Integer visitErrorType(ErrorType t, Void ignored) {
4199                 return 0;
4200             }
4201         }
4202     // </editor-fold>
4203 
4204     // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
4205     /**
4206      * Does t have a result that is a subtype of the result type of s,
4207      * suitable for covariant returns?  It is assumed that both types
4208      * are (possibly polymorphic) method types.  Monomorphic method
4209      * types are handled in the obvious way.  Polymorphic method types
4210      * require renaming all type variables of one to corresponding
4211      * type variables in the other, where correspondence is by
4212      * position in the type parameter list. */
4213     public boolean resultSubtype(Type t, Type s, Warner warner) {
4214         List<Type> tvars = t.getTypeArguments();
4215         List<Type> svars = s.getTypeArguments();
4216         Type tres = t.getReturnType();
4217         Type sres = subst(s.getReturnType(), svars, tvars);
4218         return covariantReturnType(tres, sres, warner);
4219     }
4220 
4221     /**
4222      * Return-Type-Substitutable.
4223      * @jls 8.4.5 Method Result
4224      */
4225     public boolean returnTypeSubstitutable(Type r1, Type r2) {
4226         if (hasSameArgs(r1, r2))
4227             return resultSubtype(r1, r2, noWarnings);
4228         else
4229             return covariantReturnType(r1.getReturnType(),
4230                                        erasure(r2.getReturnType()),
4231                                        noWarnings);
4232     }
4233 
4234     public boolean returnTypeSubstitutable(Type r1,
4235                                            Type r2, Type r2res,
4236                                            Warner warner) {
4237         if (isSameType(r1.getReturnType(), r2res))
4238             return true;
4239         if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
4240             return false;
4241 
4242         if (hasSameArgs(r1, r2))
4243             return covariantReturnType(r1.getReturnType(), r2res, warner);
4244         if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
4245             return true;
4246         if (!isSubtype(r1.getReturnType(), erasure(r2res)))
4247             return false;
4248         warner.warn(LintCategory.UNCHECKED);
4249         return true;
4250     }
4251 
4252     /**
4253      * Is t an appropriate return type in an overrider for a
4254      * method that returns s?
4255      */
4256     public boolean covariantReturnType(Type t, Type s, Warner warner) {
4257         return
4258             isSameType(t, s) ||
4259             !t.isPrimitive() &&
4260             !s.isPrimitive() &&
4261             isAssignable(t, s, warner);
4262     }
4263     // </editor-fold>
4264 
4265     // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
4266     /**
4267      * Return the class that boxes the given primitive.
4268      */
4269     public ClassSymbol boxedClass(Type t) {
4270         return syms.enterClass(syms.java_base, syms.boxedName[t.getTag().ordinal()]);
4271     }
4272 
4273     /**
4274      * Return the boxed type if 't' is primitive, otherwise return 't' itself.
4275      */
4276     public Type boxedTypeOrType(Type t) {
4277         return t.isPrimitive() ?
4278             boxedClass(t).type :
4279             t;
4280     }
4281 
4282     /**
4283      * Return the primitive type corresponding to a boxed type.
4284      */
4285     public Type unboxedType(Type t) {
4286         for (int i=0; i<syms.boxedName.length; i++) {
4287             Name box = syms.boxedName[i];
4288             if (box != null &&
4289                 asSuper(t, syms.enterClass(syms.java_base, box)) != null)
4290                 return syms.typeOfTag[i];
4291         }
4292         return Type.noType;
4293     }
4294 
4295     /**
4296      * Return the unboxed type if 't' is a boxed class, otherwise return 't' itself.
4297      */
4298     public Type unboxedTypeOrType(Type t) {
4299         Type unboxedType = unboxedType(t);
4300         return unboxedType.hasTag(NONE) ? t : unboxedType;
4301     }
4302     // </editor-fold>
4303 
4304     // <editor-fold defaultstate="collapsed" desc="Capture conversion">
4305     /*
4306      * JLS 5.1.10 Capture Conversion:
4307      *
4308      * Let G name a generic type declaration with n formal type
4309      * parameters A1 ... An with corresponding bounds U1 ... Un. There
4310      * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
4311      * where, for 1 <= i <= n:
4312      *
4313      * + If Ti is a wildcard type argument (4.5.1) of the form ? then
4314      *   Si is a fresh type variable whose upper bound is
4315      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
4316      *   type.
4317      *
4318      * + If Ti is a wildcard type argument of the form ? extends Bi,
4319      *   then Si is a fresh type variable whose upper bound is
4320      *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
4321      *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
4322      *   a compile-time error if for any two classes (not interfaces)
4323      *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
4324      *
4325      * + If Ti is a wildcard type argument of the form ? super Bi,
4326      *   then Si is a fresh type variable whose upper bound is
4327      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
4328      *
4329      * + Otherwise, Si = Ti.
4330      *
4331      * Capture conversion on any type other than a parameterized type
4332      * (4.5) acts as an identity conversion (5.1.1). Capture
4333      * conversions never require a special action at run time and
4334      * therefore never throw an exception at run time.
4335      *
4336      * Capture conversion is not applied recursively.
4337      */
4338     /**
4339      * Capture conversion as specified by the JLS.
4340      */
4341 
4342     public List<Type> capture(List<Type> ts) {
4343         List<Type> buf = List.nil();
4344         for (Type t : ts) {
4345             buf = buf.prepend(capture(t));
4346         }
4347         return buf.reverse();
4348     }
4349 
4350     public Type capture(Type t) {
4351         if (!t.hasTag(CLASS)) {
4352             return t;
4353         }
4354         if (t.getEnclosingType() != Type.noType) {
4355             Type capturedEncl = capture(t.getEnclosingType());
4356             if (capturedEncl != t.getEnclosingType()) {
4357                 Type type1 = memberType(capturedEncl, t.tsym);
4358                 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
4359             }
4360         }
4361         ClassType cls = (ClassType)t;
4362         if (cls.isRaw() || !cls.isParameterized())
4363             return cls;
4364 
4365         ClassType G = (ClassType)cls.asElement().asType();
4366         List<Type> A = G.getTypeArguments();
4367         List<Type> T = cls.getTypeArguments();
4368         List<Type> S = freshTypeVariables(T);
4369 
4370         List<Type> currentA = A;
4371         List<Type> currentT = T;
4372         List<Type> currentS = S;
4373         boolean captured = false;
4374         while (!currentA.isEmpty() &&
4375                !currentT.isEmpty() &&
4376                !currentS.isEmpty()) {
4377             if (currentS.head != currentT.head) {
4378                 captured = true;
4379                 WildcardType Ti = (WildcardType)currentT.head;
4380                 Type Ui = currentA.head.getUpperBound();
4381                 CapturedType Si = (CapturedType)currentS.head;
4382                 if (Ui == null)
4383                     Ui = syms.objectType;
4384                 switch (Ti.kind) {
4385                 case UNBOUND:
4386                     Si.setUpperBound( subst(Ui, A, S) );
4387                     Si.lower = syms.botType;
4388                     break;
4389                 case EXTENDS:
4390                     Si.setUpperBound( glb(Ti.getExtendsBound(), subst(Ui, A, S)) );
4391                     Si.lower = syms.botType;
4392                     break;
4393                 case SUPER:
4394                     Si.setUpperBound( subst(Ui, A, S) );
4395                     Si.lower = Ti.getSuperBound();
4396                     break;
4397                 }
4398                 Type tmpBound = Si.getUpperBound().hasTag(UNDETVAR) ? ((UndetVar)Si.getUpperBound()).qtype : Si.getUpperBound();
4399                 Type tmpLower = Si.lower.hasTag(UNDETVAR) ? ((UndetVar)Si.lower).qtype : Si.lower;
4400                 if (!Si.getUpperBound().hasTag(ERROR) &&
4401                     !Si.lower.hasTag(ERROR) &&
4402                     isSameType(tmpBound, tmpLower)) {
4403                     currentS.head = Si.getUpperBound();
4404                 }
4405             }
4406             currentA = currentA.tail;
4407             currentT = currentT.tail;
4408             currentS = currentS.tail;
4409         }
4410         if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
4411             return erasure(t); // some "rare" type involved
4412 
4413         if (captured)
4414             return new ClassType(cls.getEnclosingType(), S, cls.tsym,
4415                                  cls.getMetadata());
4416         else
4417             return t;
4418     }
4419     // where
4420         public List<Type> freshTypeVariables(List<Type> types) {
4421             ListBuffer<Type> result = new ListBuffer<>();
4422             for (Type t : types) {
4423                 if (t.hasTag(WILDCARD)) {
4424                     Type bound = ((WildcardType)t).getExtendsBound();
4425                     if (bound == null)
4426                         bound = syms.objectType;
4427                     result.append(new CapturedType(capturedName,
4428                                                    syms.noSymbol,
4429                                                    bound,
4430                                                    syms.botType,
4431                                                    (WildcardType)t));
4432                 } else {
4433                     result.append(t);
4434                 }
4435             }
4436             return result.toList();
4437         }
4438     // </editor-fold>
4439 
4440     // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
4441     private boolean sideCast(Type from, Type to, Warner warn) {
4442         // We are casting from type $from$ to type $to$, which are
4443         // non-final unrelated types.  This method
4444         // tries to reject a cast by transferring type parameters
4445         // from $to$ to $from$ by common superinterfaces.
4446         boolean reverse = false;
4447         Type target = to;
4448         if ((to.tsym.flags() & INTERFACE) == 0) {
4449             Assert.check((from.tsym.flags() & INTERFACE) != 0);
4450             reverse = true;
4451             to = from;
4452             from = target;
4453         }
4454         List<Type> commonSupers = superClosure(to, erasure(from));
4455         boolean giveWarning = commonSupers.isEmpty();
4456         // The arguments to the supers could be unified here to
4457         // get a more accurate analysis
4458         while (commonSupers.nonEmpty()) {
4459             Type t1 = asSuper(from, commonSupers.head.tsym);
4460             Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
4461             if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
4462                 return false;
4463             giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
4464             commonSupers = commonSupers.tail;
4465         }
4466         if (giveWarning && !isReifiable(reverse ? from : to))
4467             warn.warn(LintCategory.UNCHECKED);
4468         return true;
4469     }
4470 
4471     private boolean sideCastFinal(Type from, Type to, Warner warn) {
4472         // We are casting from type $from$ to type $to$, which are
4473         // unrelated types one of which is final and the other of
4474         // which is an interface.  This method
4475         // tries to reject a cast by transferring type parameters
4476         // from the final class to the interface.
4477         boolean reverse = false;
4478         Type target = to;
4479         if ((to.tsym.flags() & INTERFACE) == 0) {
4480             Assert.check((from.tsym.flags() & INTERFACE) != 0);
4481             reverse = true;
4482             to = from;
4483             from = target;
4484         }
4485         Assert.check((from.tsym.flags() & FINAL) != 0);
4486         Type t1 = asSuper(from, to.tsym);
4487         if (t1 == null) return false;
4488         Type t2 = to;
4489         if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
4490             return false;
4491         if (!isReifiable(target) &&
4492             (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
4493             warn.warn(LintCategory.UNCHECKED);
4494         return true;
4495     }
4496 
4497     private boolean giveWarning(Type from, Type to) {
4498         List<Type> bounds = to.isCompound() ?
4499                 directSupertypes(to) : List.of(to);
4500         for (Type b : bounds) {
4501             Type subFrom = asSub(from, b.tsym);
4502             if (b.isParameterized() &&
4503                     (!(isUnbounded(b) ||
4504                     isSubtype(from, b) ||
4505                     ((subFrom != null) && containsType(b.allparams(), subFrom.allparams()))))) {
4506                 return true;
4507             }
4508         }
4509         return false;
4510     }
4511 
4512     private List<Type> superClosure(Type t, Type s) {
4513         List<Type> cl = List.nil();
4514         for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
4515             if (isSubtype(s, erasure(l.head))) {
4516                 cl = insert(cl, l.head);
4517             } else {
4518                 cl = union(cl, superClosure(l.head, s));
4519             }
4520         }
4521         return cl;
4522     }
4523 
4524     private boolean containsTypeEquivalent(Type t, Type s) {
4525         return isSameType(t, s) || // shortcut
4526             containsType(t, s) && containsType(s, t);
4527     }
4528 
4529     // <editor-fold defaultstate="collapsed" desc="adapt">
4530     /**
4531      * Adapt a type by computing a substitution which maps a source
4532      * type to a target type.
4533      *
4534      * @param source    the source type
4535      * @param target    the target type
4536      * @param from      the type variables of the computed substitution
4537      * @param to        the types of the computed substitution.
4538      */
4539     public void adapt(Type source,
4540                        Type target,
4541                        ListBuffer<Type> from,
4542                        ListBuffer<Type> to) throws AdaptFailure {
4543         new Adapter(from, to).adapt(source, target);
4544     }
4545 
4546     class Adapter extends SimpleVisitor<Void, Type> {
4547 
4548         ListBuffer<Type> from;
4549         ListBuffer<Type> to;
4550         Map<Symbol,Type> mapping;
4551 
4552         Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
4553             this.from = from;
4554             this.to = to;
4555             mapping = new HashMap<>();
4556         }
4557 
4558         public void adapt(Type source, Type target) throws AdaptFailure {
4559             visit(source, target);
4560             List<Type> fromList = from.toList();
4561             List<Type> toList = to.toList();
4562             while (!fromList.isEmpty()) {
4563                 Type val = mapping.get(fromList.head.tsym);
4564                 if (toList.head != val)
4565                     toList.head = val;
4566                 fromList = fromList.tail;
4567                 toList = toList.tail;
4568             }
4569         }
4570 
4571         @Override
4572         public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
4573             if (target.hasTag(CLASS))
4574                 adaptRecursive(source.allparams(), target.allparams());
4575             return null;
4576         }
4577 
4578         @Override
4579         public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
4580             if (target.hasTag(ARRAY))
4581                 adaptRecursive(elemtype(source), elemtype(target));
4582             return null;
4583         }
4584 
4585         @Override
4586         public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
4587             if (source.isExtendsBound())
4588                 adaptRecursive(wildUpperBound(source), wildUpperBound(target));
4589             else if (source.isSuperBound())
4590                 adaptRecursive(wildLowerBound(source), wildLowerBound(target));
4591             return null;
4592         }
4593 
4594         @Override
4595         public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
4596             // Check to see if there is
4597             // already a mapping for $source$, in which case
4598             // the old mapping will be merged with the new
4599             Type val = mapping.get(source.tsym);
4600             if (val != null) {
4601                 if (val.isSuperBound() && target.isSuperBound()) {
4602                     val = isSubtype(wildLowerBound(val), wildLowerBound(target))
4603                         ? target : val;
4604                 } else if (val.isExtendsBound() && target.isExtendsBound()) {
4605                     val = isSubtype(wildUpperBound(val), wildUpperBound(target))
4606                         ? val : target;
4607                 } else if (!isSameType(val, target)) {
4608                     throw new AdaptFailure();
4609                 }
4610             } else {
4611                 val = target;
4612                 from.append(source);
4613                 to.append(target);
4614             }
4615             mapping.put(source.tsym, val);
4616             return null;
4617         }
4618 
4619         @Override
4620         public Void visitType(Type source, Type target) {
4621             return null;
4622         }
4623 
4624         private Set<TypePair> cache = new HashSet<>();
4625 
4626         private void adaptRecursive(Type source, Type target) {
4627             TypePair pair = new TypePair(source, target);
4628             if (cache.add(pair)) {
4629                 try {
4630                     visit(source, target);
4631                 } finally {
4632                     cache.remove(pair);
4633                 }
4634             }
4635         }
4636 
4637         private void adaptRecursive(List<Type> source, List<Type> target) {
4638             if (source.length() == target.length()) {
4639                 while (source.nonEmpty()) {
4640                     adaptRecursive(source.head, target.head);
4641                     source = source.tail;
4642                     target = target.tail;
4643                 }
4644             }
4645         }
4646     }
4647 
4648     public static class AdaptFailure extends RuntimeException {
4649         static final long serialVersionUID = -7490231548272701566L;
4650     }
4651 
4652     private void adaptSelf(Type t,
4653                            ListBuffer<Type> from,
4654                            ListBuffer<Type> to) {
4655         try {
4656             //if (t.tsym.type != t)
4657                 adapt(t.tsym.type, t, from, to);
4658         } catch (AdaptFailure ex) {
4659             // Adapt should never fail calculating a mapping from
4660             // t.tsym.type to t as there can be no merge problem.
4661             throw new AssertionError(ex);
4662         }
4663     }
4664     // </editor-fold>
4665 
4666     /**
4667      * Rewrite all type variables (universal quantifiers) in the given
4668      * type to wildcards (existential quantifiers).  This is used to
4669      * determine if a cast is allowed.  For example, if high is true
4670      * and {@code T <: Number}, then {@code List<T>} is rewritten to
4671      * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
4672      * List<? extends Number>} a {@code List<T>} can be cast to {@code
4673      * List<Integer>} with a warning.
4674      * @param t a type
4675      * @param high if true return an upper bound; otherwise a lower
4676      * bound
4677      * @param rewriteTypeVars only rewrite captured wildcards if false;
4678      * otherwise rewrite all type variables
4679      * @return the type rewritten with wildcards (existential
4680      * quantifiers) only
4681      */
4682     private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
4683         return new Rewriter(high, rewriteTypeVars).visit(t);
4684     }
4685 
4686     class Rewriter extends UnaryVisitor<Type> {
4687 
4688         boolean high;
4689         boolean rewriteTypeVars;
4690 
4691         Rewriter(boolean high, boolean rewriteTypeVars) {
4692             this.high = high;
4693             this.rewriteTypeVars = rewriteTypeVars;
4694         }
4695 
4696         @Override
4697         public Type visitClassType(ClassType t, Void s) {
4698             ListBuffer<Type> rewritten = new ListBuffer<>();
4699             boolean changed = false;
4700             for (Type arg : t.allparams()) {
4701                 Type bound = visit(arg);
4702                 if (arg != bound) {
4703                     changed = true;
4704                 }
4705                 rewritten.append(bound);
4706             }
4707             if (changed)
4708                 return subst(t.tsym.type,
4709                         t.tsym.type.allparams(),
4710                         rewritten.toList());
4711             else
4712                 return t;
4713         }
4714 
4715         public Type visitType(Type t, Void s) {
4716             return t;
4717         }
4718 
4719         @Override
4720         public Type visitCapturedType(CapturedType t, Void s) {
4721             Type w_bound = t.wildcard.type;
4722             Type bound = w_bound.contains(t) ?
4723                         erasure(w_bound) :
4724                         visit(w_bound);
4725             return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
4726         }
4727 
4728         @Override
4729         public Type visitTypeVar(TypeVar t, Void s) {
4730             if (rewriteTypeVars) {
4731                 Type bound = t.getUpperBound().contains(t) ?
4732                         erasure(t.getUpperBound()) :
4733                         visit(t.getUpperBound());
4734                 return rewriteAsWildcardType(bound, t, EXTENDS);
4735             } else {
4736                 return t;
4737             }
4738         }
4739 
4740         @Override
4741         public Type visitWildcardType(WildcardType t, Void s) {
4742             Type bound2 = visit(t.type);
4743             return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
4744         }
4745 
4746         private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
4747             switch (bk) {
4748                case EXTENDS: return high ?
4749                        makeExtendsWildcard(B(bound), formal) :
4750                        makeExtendsWildcard(syms.objectType, formal);
4751                case SUPER: return high ?
4752                        makeSuperWildcard(syms.botType, formal) :
4753                        makeSuperWildcard(B(bound), formal);
4754                case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
4755                default:
4756                    Assert.error("Invalid bound kind " + bk);
4757                    return null;
4758             }
4759         }
4760 
4761         Type B(Type t) {
4762             while (t.hasTag(WILDCARD)) {
4763                 WildcardType w = (WildcardType)t;
4764                 t = high ?
4765                     w.getExtendsBound() :
4766                     w.getSuperBound();
4767                 if (t == null) {
4768                     t = high ? syms.objectType : syms.botType;
4769                 }
4770             }
4771             return t;
4772         }
4773     }
4774 
4775 
4776     /**
4777      * Create a wildcard with the given upper (extends) bound; create
4778      * an unbounded wildcard if bound is Object.
4779      *
4780      * @param bound the upper bound
4781      * @param formal the formal type parameter that will be
4782      * substituted by the wildcard
4783      */
4784     private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
4785         if (bound == syms.objectType) {
4786             return new WildcardType(syms.objectType,
4787                                     BoundKind.UNBOUND,
4788                                     syms.boundClass,
4789                                     formal);
4790         } else {
4791             return new WildcardType(bound,
4792                                     BoundKind.EXTENDS,
4793                                     syms.boundClass,
4794                                     formal);
4795         }
4796     }
4797 
4798     /**
4799      * Create a wildcard with the given lower (super) bound; create an
4800      * unbounded wildcard if bound is bottom (type of {@code null}).
4801      *
4802      * @param bound the lower bound
4803      * @param formal the formal type parameter that will be
4804      * substituted by the wildcard
4805      */
4806     private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
4807         if (bound.hasTag(BOT)) {
4808             return new WildcardType(syms.objectType,
4809                                     BoundKind.UNBOUND,
4810                                     syms.boundClass,
4811                                     formal);
4812         } else {
4813             return new WildcardType(bound,
4814                                     BoundKind.SUPER,
4815                                     syms.boundClass,
4816                                     formal);
4817         }
4818     }
4819 
4820     /**
4821      * A wrapper for a type that allows use in sets.
4822      */
4823     public static class UniqueType {
4824         public final Type type;
4825         final Types types;
4826 
4827         public UniqueType(Type type, Types types) {
4828             this.type = type;
4829             this.types = types;
4830         }
4831 
4832         public int hashCode() {
4833             return types.hashCode(type);
4834         }
4835 
4836         public boolean equals(Object obj) {
4837             return (obj instanceof UniqueType) &&
4838                 types.isSameType(type, ((UniqueType)obj).type);
4839         }
4840 
4841         public String toString() {
4842             return type.toString();
4843         }
4844 
4845     }
4846     // </editor-fold>
4847 
4848     // <editor-fold defaultstate="collapsed" desc="Visitors">
4849     /**
4850      * A default visitor for types.  All visitor methods except
4851      * visitType are implemented by delegating to visitType.  Concrete
4852      * subclasses must provide an implementation of visitType and can
4853      * override other methods as needed.
4854      *
4855      * @param <R> the return type of the operation implemented by this
4856      * visitor; use Void if no return type is needed.
4857      * @param <S> the type of the second argument (the first being the
4858      * type itself) of the operation implemented by this visitor; use
4859      * Void if a second argument is not needed.
4860      */
4861     public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
4862         final public R visit(Type t, S s)               { return t.accept(this, s); }
4863         public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
4864         public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
4865         public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
4866         public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
4867         public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
4868         public R visitModuleType(ModuleType t, S s)     { return visitType(t, s); }
4869         public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
4870         public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
4871         public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
4872         public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
4873         public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
4874     }
4875 
4876     /**
4877      * A default visitor for symbols.  All visitor methods except
4878      * visitSymbol are implemented by delegating to visitSymbol.  Concrete
4879      * subclasses must provide an implementation of visitSymbol and can
4880      * override other methods as needed.
4881      *
4882      * @param <R> the return type of the operation implemented by this
4883      * visitor; use Void if no return type is needed.
4884      * @param <S> the type of the second argument (the first being the
4885      * symbol itself) of the operation implemented by this visitor; use
4886      * Void if a second argument is not needed.
4887      */
4888     public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
4889         final public R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
4890         public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
4891         public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
4892         public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
4893         public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
4894         public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
4895         public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
4896     }
4897 
4898     /**
4899      * A <em>simple</em> visitor for types.  This visitor is simple as
4900      * captured wildcards, for-all types (generic methods), and
4901      * undetermined type variables (part of inference) are hidden.
4902      * Captured wildcards are hidden by treating them as type
4903      * variables and the rest are hidden by visiting their qtypes.
4904      *
4905      * @param <R> the return type of the operation implemented by this
4906      * visitor; use Void if no return type is needed.
4907      * @param <S> the type of the second argument (the first being the
4908      * type itself) of the operation implemented by this visitor; use
4909      * Void if a second argument is not needed.
4910      */
4911     public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
4912         @Override
4913         public R visitCapturedType(CapturedType t, S s) {
4914             return visitTypeVar(t, s);
4915         }
4916         @Override
4917         public R visitForAll(ForAll t, S s) {
4918             return visit(t.qtype, s);
4919         }
4920         @Override
4921         public R visitUndetVar(UndetVar t, S s) {
4922             return visit(t.qtype, s);
4923         }
4924     }
4925 
4926     /**
4927      * A plain relation on types.  That is a 2-ary function on the
4928      * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
4929      * <!-- In plain text: Type x Type -> Boolean -->
4930      */
4931     public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
4932 
4933     /**
4934      * A convenience visitor for implementing operations that only
4935      * require one argument (the type itself), that is, unary
4936      * operations.
4937      *
4938      * @param <R> the return type of the operation implemented by this
4939      * visitor; use Void if no return type is needed.
4940      */
4941     public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
4942         final public R visit(Type t) { return t.accept(this, null); }
4943     }
4944 
4945     /**
4946      * A visitor for implementing a mapping from types to types.  The
4947      * default behavior of this class is to implement the identity
4948      * mapping (mapping a type to itself).  This can be overridden in
4949      * subclasses.
4950      *
4951      * @param <S> the type of the second argument (the first being the
4952      * type itself) of this mapping; use Void if a second argument is
4953      * not needed.
4954      */
4955     public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
4956         final public Type visit(Type t) { return t.accept(this, null); }
4957         public Type visitType(Type t, S s) { return t; }
4958     }
4959 
4960     /**
4961      * An abstract class for mappings from types to types (see {@link Type#map(TypeMapping)}.
4962      * This class implements the functional interface {@code Function}, that allows it to be used
4963      * fluently in stream-like processing.
4964      */
4965     public static class TypeMapping<S> extends MapVisitor<S> implements Function<Type, Type> {
4966         @Override
4967         public Type apply(Type type) { return visit(type); }
4968 
4969         List<Type> visit(List<Type> ts, S s) {
4970             return ts.map(t -> visit(t, s));
4971         }
4972 
4973         @Override
4974         public Type visitCapturedType(CapturedType t, S s) {
4975             return visitTypeVar(t, s);
4976         }
4977     }
4978     // </editor-fold>
4979 
4980 
4981     // <editor-fold defaultstate="collapsed" desc="Annotation support">
4982 
4983     public RetentionPolicy getRetention(Attribute.Compound a) {
4984         return getRetention(a.type.tsym);
4985     }
4986 
4987     public RetentionPolicy getRetention(TypeSymbol sym) {
4988         RetentionPolicy vis = RetentionPolicy.CLASS; // the default
4989         Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
4990         if (c != null) {
4991             Attribute value = c.member(names.value);
4992             if (value != null && value instanceof Attribute.Enum) {
4993                 Name levelName = ((Attribute.Enum)value).value.name;
4994                 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
4995                 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
4996                 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
4997                 else ;// /* fail soft */ throw new AssertionError(levelName);
4998             }
4999         }
5000         return vis;
5001     }
5002     // </editor-fold>
5003 
5004     // <editor-fold defaultstate="collapsed" desc="Signature Generation">
5005 
5006     public static abstract class SignatureGenerator {
5007 
5008         public static class InvalidSignatureException extends RuntimeException {
5009             private static final long serialVersionUID = 0;
5010 
5011             private final transient Type type;
5012 
5013             InvalidSignatureException(Type type) {
5014                 this.type = type;
5015             }
5016 
5017             public Type type() {
5018                 return type;
5019             }
5020         }
5021 
5022         private final Types types;
5023 
5024         protected abstract void append(char ch);
5025         protected abstract void append(byte[] ba);
5026         protected abstract void append(Name name);
5027         protected void classReference(ClassSymbol c) { /* by default: no-op */ }
5028 
5029         protected SignatureGenerator(Types types) {
5030             this.types = types;
5031         }
5032 
5033         protected void reportIllegalSignature(Type t) {
5034             throw new InvalidSignatureException(t);
5035         }
5036 
5037         /**
5038          * Assemble signature of given type in string buffer.
5039          */
5040         public void assembleSig(Type type) {
5041             switch (type.getTag()) {
5042                 case BYTE:
5043                     append('B');
5044                     break;
5045                 case SHORT:
5046                     append('S');
5047                     break;
5048                 case CHAR:
5049                     append('C');
5050                     break;
5051                 case INT:
5052                     append('I');
5053                     break;
5054                 case LONG:
5055                     append('J');
5056                     break;
5057                 case FLOAT:
5058                     append('F');
5059                     break;
5060                 case DOUBLE:
5061                     append('D');
5062                     break;
5063                 case BOOLEAN:
5064                     append('Z');
5065                     break;
5066                 case VOID:
5067                     append('V');
5068                     break;
5069                 case CLASS:
5070                     if (type.isCompound()) {
5071                         reportIllegalSignature(type);
5072                     }
5073                     append('L');
5074                     assembleClassSig(type);
5075                     append(';');
5076                     break;
5077                 case ARRAY:
5078                     ArrayType at = (ArrayType) type;
5079                     append('[');
5080                     assembleSig(at.elemtype);
5081                     break;
5082                 case METHOD:
5083                     MethodType mt = (MethodType) type;
5084                     append('(');
5085                     assembleSig(mt.argtypes);
5086                     append(')');
5087                     assembleSig(mt.restype);
5088                     if (hasTypeVar(mt.thrown)) {
5089                         for (List<Type> l = mt.thrown; l.nonEmpty(); l = l.tail) {
5090                             append('^');
5091                             assembleSig(l.head);
5092                         }
5093                     }
5094                     break;
5095                 case WILDCARD: {
5096                     Type.WildcardType ta = (Type.WildcardType) type;
5097                     switch (ta.kind) {
5098                         case SUPER:
5099                             append('-');
5100                             assembleSig(ta.type);
5101                             break;
5102                         case EXTENDS:
5103                             append('+');
5104                             assembleSig(ta.type);
5105                             break;
5106                         case UNBOUND:
5107                             append('*');
5108                             break;
5109                         default:
5110                             throw new AssertionError(ta.kind);
5111                     }
5112                     break;
5113                 }
5114                 case TYPEVAR:
5115                     if (((TypeVar)type).isCaptured()) {
5116                         reportIllegalSignature(type);
5117                     }
5118                     append('T');
5119                     append(type.tsym.name);
5120                     append(';');
5121                     break;
5122                 case FORALL:
5123                     Type.ForAll ft = (Type.ForAll) type;
5124                     assembleParamsSig(ft.tvars);
5125                     assembleSig(ft.qtype);
5126                     break;
5127                 default:
5128                     throw new AssertionError("typeSig " + type.getTag());
5129             }
5130         }
5131 
5132         public boolean hasTypeVar(List<Type> l) {
5133             while (l.nonEmpty()) {
5134                 if (l.head.hasTag(TypeTag.TYPEVAR)) {
5135                     return true;
5136                 }
5137                 l = l.tail;
5138             }
5139             return false;
5140         }
5141 
5142         public void assembleClassSig(Type type) {
5143             ClassType ct = (ClassType) type;
5144             ClassSymbol c = (ClassSymbol) ct.tsym;
5145             classReference(c);
5146             Type outer = ct.getEnclosingType();
5147             if (outer.allparams().nonEmpty()) {
5148                 boolean rawOuter =
5149                         c.owner.kind == MTH || // either a local class
5150                         c.name == types.names.empty; // or anonymous
5151                 assembleClassSig(rawOuter
5152                         ? types.erasure(outer)
5153                         : outer);
5154                 append(rawOuter ? '$' : '.');
5155                 Assert.check(c.flatname.startsWith(c.owner.enclClass().flatname));
5156                 append(rawOuter
5157                         ? c.flatname.subName(c.owner.enclClass().flatname.getByteLength() + 1, c.flatname.getByteLength())
5158                         : c.name);
5159             } else {
5160                 append(externalize(c.flatname));
5161             }
5162             if (ct.getTypeArguments().nonEmpty()) {
5163                 append('<');
5164                 assembleSig(ct.getTypeArguments());
5165                 append('>');
5166             }
5167         }
5168 
5169         public void assembleParamsSig(List<Type> typarams) {
5170             append('<');
5171             for (List<Type> ts = typarams; ts.nonEmpty(); ts = ts.tail) {
5172                 Type.TypeVar tvar = (Type.TypeVar) ts.head;
5173                 append(tvar.tsym.name);
5174                 List<Type> bounds = types.getBounds(tvar);
5175                 if ((bounds.head.tsym.flags() & INTERFACE) != 0) {
5176                     append(':');
5177                 }
5178                 for (List<Type> l = bounds; l.nonEmpty(); l = l.tail) {
5179                     append(':');
5180                     assembleSig(l.head);
5181                 }
5182             }
5183             append('>');
5184         }
5185 
5186         public void assembleSig(List<Type> types) {
5187             for (List<Type> ts = types; ts.nonEmpty(); ts = ts.tail) {
5188                 assembleSig(ts.head);
5189             }
5190         }
5191     }
5192 
5193     public Type constantType(LoadableConstant c) {
5194         switch (c.poolTag()) {
5195             case ClassFile.CONSTANT_Class:
5196                 return syms.classType;
5197             case ClassFile.CONSTANT_String:
5198                 return syms.stringType;
5199             case ClassFile.CONSTANT_Integer:
5200                 return syms.intType;
5201             case ClassFile.CONSTANT_Float:
5202                 return syms.floatType;
5203             case ClassFile.CONSTANT_Long:
5204                 return syms.longType;
5205             case ClassFile.CONSTANT_Double:
5206                 return syms.doubleType;
5207             case ClassFile.CONSTANT_MethodHandle:
5208                 return syms.methodHandleType;
5209             case ClassFile.CONSTANT_MethodType:
5210                 return syms.methodTypeType;
5211             case ClassFile.CONSTANT_Dynamic:
5212                 return ((DynamicVarSymbol)c).type;
5213             default:
5214                 throw new AssertionError("Not a loadable constant: " + c.poolTag());
5215         }
5216     }
5217     // </editor-fold>
5218 
5219     public void newRound() {
5220         descCache._map.clear();
5221         isDerivedRawCache.clear();
5222         implCache._map.clear();
5223         membersCache._map.clear();
5224         closureCache.clear();
5225     }
5226 }
5227