1 /*
2  * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
3  * Use is subject to license terms.
4  *
5  * This library is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU Lesser General Public
7  * License as published by the Free Software Foundation; either
8  * version 2.1 of the License, or (at your option) any later version.
9  *
10  * This library is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public License
16  * along with this library; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  */
23 
24 /* *********************************************************************
25  *
26  * The Original Code is the Multi-precision Binary Polynomial Arithmetic Library.
27  *
28  * The Initial Developer of the Original Code is
29  * Sun Microsystems, Inc.
30  * Portions created by the Initial Developer are Copyright (C) 2003
31  * the Initial Developer. All Rights Reserved.
32  *
33  * Contributor(s):
34  *   Sheueling Chang Shantz <sheueling.chang@sun.com> and
35  *   Douglas Stebila <douglas@stebila.ca> of Sun Laboratories.
36  *
37  *********************************************************************** */
38 
39 #ifndef _MP_GF2M_PRIV_H_
40 #define _MP_GF2M_PRIV_H_
41 
42 #include "mpi-priv.h"
43 
44 extern const mp_digit mp_gf2m_sqr_tb[16];
45 
46 #if defined(MP_USE_UINT_DIGIT)
47 #define MP_DIGIT_BITS 32
48 #else
49 #define MP_DIGIT_BITS 64
50 #endif
51 
52 /* Platform-specific macros for fast binary polynomial squaring. */
53 #if MP_DIGIT_BITS == 32
54 #define gf2m_SQR1(w) \
55     mp_gf2m_sqr_tb[(w) >> 28 & 0xF] << 24 | mp_gf2m_sqr_tb[(w) >> 24 & 0xF] << 16 | \
56     mp_gf2m_sqr_tb[(w) >> 20 & 0xF] <<  8 | mp_gf2m_sqr_tb[(w) >> 16 & 0xF]
57 #define gf2m_SQR0(w) \
58     mp_gf2m_sqr_tb[(w) >> 12 & 0xF] << 24 | mp_gf2m_sqr_tb[(w) >>  8 & 0xF] << 16 | \
59     mp_gf2m_sqr_tb[(w) >>  4 & 0xF] <<  8 | mp_gf2m_sqr_tb[(w)       & 0xF]
60 #else
61 #define gf2m_SQR1(w) \
62     mp_gf2m_sqr_tb[(w) >> 60 & 0xF] << 56 | mp_gf2m_sqr_tb[(w) >> 56 & 0xF] << 48 | \
63     mp_gf2m_sqr_tb[(w) >> 52 & 0xF] << 40 | mp_gf2m_sqr_tb[(w) >> 48 & 0xF] << 32 | \
64     mp_gf2m_sqr_tb[(w) >> 44 & 0xF] << 24 | mp_gf2m_sqr_tb[(w) >> 40 & 0xF] << 16 | \
65     mp_gf2m_sqr_tb[(w) >> 36 & 0xF] <<  8 | mp_gf2m_sqr_tb[(w) >> 32 & 0xF]
66 #define gf2m_SQR0(w) \
67     mp_gf2m_sqr_tb[(w) >> 28 & 0xF] << 56 | mp_gf2m_sqr_tb[(w) >> 24 & 0xF] << 48 | \
68     mp_gf2m_sqr_tb[(w) >> 20 & 0xF] << 40 | mp_gf2m_sqr_tb[(w) >> 16 & 0xF] << 32 | \
69     mp_gf2m_sqr_tb[(w) >> 12 & 0xF] << 24 | mp_gf2m_sqr_tb[(w) >>  8 & 0xF] << 16 | \
70     mp_gf2m_sqr_tb[(w) >>  4 & 0xF] <<  8 | mp_gf2m_sqr_tb[(w)       & 0xF]
71 #endif
72 
73 /* Multiply two binary polynomials mp_digits a, b.
74  * Result is a polynomial with degree < 2 * MP_DIGIT_BITS - 1.
75  * Output in two mp_digits rh, rl.
76  */
77 void s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b);
78 
79 /* Compute xor-multiply of two binary polynomials  (a1, a0) x (b1, b0)
80  * result is a binary polynomial in 4 mp_digits r[4].
81  * The caller MUST ensure that r has the right amount of space allocated.
82  */
83 void s_bmul_2x2(mp_digit *r, const mp_digit a1, const mp_digit a0, const mp_digit b1,
84         const mp_digit b0);
85 
86 /* Compute xor-multiply of two binary polynomials  (a2, a1, a0) x (b2, b1, b0)
87  * result is a binary polynomial in 6 mp_digits r[6].
88  * The caller MUST ensure that r has the right amount of space allocated.
89  */
90 void s_bmul_3x3(mp_digit *r, const mp_digit a2, const mp_digit a1, const mp_digit a0,
91         const mp_digit b2, const mp_digit b1, const mp_digit b0);
92 
93 /* Compute xor-multiply of two binary polynomials  (a3, a2, a1, a0) x (b3, b2, b1, b0)
94  * result is a binary polynomial in 8 mp_digits r[8].
95  * The caller MUST ensure that r has the right amount of space allocated.
96  */
97 void s_bmul_4x4(mp_digit *r, const mp_digit a3, const mp_digit a2, const mp_digit a1,
98         const mp_digit a0, const mp_digit b3, const mp_digit b2, const mp_digit b1,
99         const mp_digit b0);
100 
101 #endif /* _MP_GF2M_PRIV_H_ */
102