1 /*
2 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include <stdlib.h>
26 #include <stdint.h>
27
28 #include "precompiled.hpp"
29 #include "utilities/globalDefinitions.hpp"
30 #include "immediate_aarch64.hpp"
31
32 // there are at most 2^13 possible logical immediate encodings
33 // however, some combinations of immr and imms are invalid
34 static const unsigned LI_TABLE_SIZE = (1 << 13);
35
36 static int li_table_entry_count;
37
38 // for forward lookup we just use a direct array lookup
39 // and assume that the cient has supplied a valid encoding
40 // table[encoding] = immediate
41 static uint64_t LITable[LI_TABLE_SIZE];
42
43 // for reverse lookup we need a sparse map so we store a table of
44 // immediate and encoding pairs sorted by immediate value
45
46 struct li_pair {
47 uint64_t immediate;
48 uint32_t encoding;
49 };
50
51 static struct li_pair InverseLITable[LI_TABLE_SIZE];
52
53 // comparator to sort entries in the inverse table
compare_immediate_pair(const void * i1,const void * i2)54 int compare_immediate_pair(const void *i1, const void *i2)
55 {
56 struct li_pair *li1 = (struct li_pair *)i1;
57 struct li_pair *li2 = (struct li_pair *)i2;
58 if (li1->immediate < li2->immediate) {
59 return -1;
60 }
61 if (li1->immediate > li2->immediate) {
62 return 1;
63 }
64 return 0;
65 }
66
67 // helper functions used by expandLogicalImmediate
68
69 // for i = 1, ... N result<i-1> = 1 other bits are zero
ones(int N)70 static inline uint64_t ones(int N)
71 {
72 return (N == 64 ? -1ULL : (1ULL << N) - 1);
73 }
74
75 /*
76 * bit twiddling helpers for instruction decode
77 */
78
79 // 32 bit mask with bits [hi,...,lo] set
mask32(int hi=31,int lo=0)80 static inline uint32_t mask32(int hi = 31, int lo = 0)
81 {
82 int nbits = (hi + 1) - lo;
83 return ((1 << nbits) - 1) << lo;
84 }
85
mask64(int hi=63,int lo=0)86 static inline uint64_t mask64(int hi = 63, int lo = 0)
87 {
88 int nbits = (hi + 1) - lo;
89 return ((1L << nbits) - 1) << lo;
90 }
91
92 // pick bits [hi,...,lo] from val
pick32(uint32_t val,int hi=31,int lo=0)93 static inline uint32_t pick32(uint32_t val, int hi = 31, int lo = 0)
94 {
95 return (val & mask32(hi, lo));
96 }
97
98 // pick bits [hi,...,lo] from val
pick64(uint64_t val,int hi=31,int lo=0)99 static inline uint64_t pick64(uint64_t val, int hi = 31, int lo = 0)
100 {
101 return (val & mask64(hi, lo));
102 }
103
104 // mask [hi,lo] and shift down to start at bit 0
pickbits32(uint32_t val,int hi=31,int lo=0)105 static inline uint32_t pickbits32(uint32_t val, int hi = 31, int lo = 0)
106 {
107 return (pick32(val, hi, lo) >> lo);
108 }
109
110 // mask [hi,lo] and shift down to start at bit 0
pickbits64(uint64_t val,int hi=63,int lo=0)111 static inline uint64_t pickbits64(uint64_t val, int hi = 63, int lo = 0)
112 {
113 return (pick64(val, hi, lo) >> lo);
114 }
115
116 // result<0> to val<N>
pickbit(uint64_t val,int N)117 static inline uint64_t pickbit(uint64_t val, int N)
118 {
119 return pickbits64(val, N, N);
120 }
121
uimm(uint32_t val,int hi,int lo)122 static inline uint32_t uimm(uint32_t val, int hi, int lo)
123 {
124 return pickbits32(val, hi, lo);
125 }
126
127 // SPEC bits(M*N) Replicate(bits(M) x, integer N);
128 // this is just an educated guess
129
replicate(uint64_t bits,int nbits,int count)130 uint64_t replicate(uint64_t bits, int nbits, int count)
131 {
132 uint64_t result = 0;
133 // nbits may be 64 in which case we want mask to be -1
134 uint64_t mask = ones(nbits);
135 for (int i = 0; i < count ; i++) {
136 result <<= nbits;
137 result |= (bits & mask);
138 }
139 return result;
140 }
141
142 // this function writes the supplied bimm reference and returns a
143 // boolean to indicate success (1) or fail (0) because an illegal
144 // encoding must be treated as an UNALLOC instruction
145
146 // construct a 32 bit immediate value for a logical immediate operation
expandLogicalImmediate(uint32_t immN,uint32_t immr,uint32_t imms,uint64_t & bimm)147 int expandLogicalImmediate(uint32_t immN, uint32_t immr,
148 uint32_t imms, uint64_t &bimm)
149 {
150 int len; // ought to be <= 6
151 uint32_t levels; // 6 bits
152 uint32_t tmask_and; // 6 bits
153 uint32_t wmask_and; // 6 bits
154 uint32_t tmask_or; // 6 bits
155 uint32_t wmask_or; // 6 bits
156 uint64_t imm64; // 64 bits
157 uint64_t tmask, wmask; // 64 bits
158 uint32_t S, R, diff; // 6 bits?
159
160 if (immN == 1) {
161 len = 6; // looks like 7 given the spec above but this cannot be!
162 } else {
163 len = 0;
164 uint32_t val = (~imms & 0x3f);
165 for (int i = 5; i > 0; i--) {
166 if (val & (1 << i)) {
167 len = i;
168 break;
169 }
170 }
171 if (len < 1) {
172 return 0;
173 }
174 // for valid inputs leading 1s in immr must be less than leading
175 // zeros in imms
176 int len2 = 0; // ought to be < len
177 uint32_t val2 = (~immr & 0x3f);
178 for (int i = 5; i > 0; i--) {
179 if (!(val2 & (1 << i))) {
180 len2 = i;
181 break;
182 }
183 }
184 if (len2 >= len) {
185 return 0;
186 }
187 }
188
189 levels = (1 << len) - 1;
190
191 if ((imms & levels) == levels) {
192 return 0;
193 }
194
195 S = imms & levels;
196 R = immr & levels;
197
198 // 6 bit arithmetic!
199 diff = S - R;
200 tmask_and = (diff | ~levels) & 0x3f;
201 tmask_or = (diff & levels) & 0x3f;
202 tmask = 0xffffffffffffffffULL;
203
204 for (int i = 0; i < 6; i++) {
205 int nbits = 1 << i;
206 uint64_t and_bit = pickbit(tmask_and, i);
207 uint64_t or_bit = pickbit(tmask_or, i);
208 uint64_t and_bits_sub = replicate(and_bit, 1, nbits);
209 uint64_t or_bits_sub = replicate(or_bit, 1, nbits);
210 uint64_t and_bits_top = (and_bits_sub << nbits) | ones(nbits);
211 uint64_t or_bits_top = (0 << nbits) | or_bits_sub;
212
213 tmask = ((tmask
214 & (replicate(and_bits_top, 2 * nbits, 32 / nbits)))
215 | replicate(or_bits_top, 2 * nbits, 32 / nbits));
216 }
217
218 wmask_and = (immr | ~levels) & 0x3f;
219 wmask_or = (immr & levels) & 0x3f;
220
221 wmask = 0;
222
223 for (int i = 0; i < 6; i++) {
224 int nbits = 1 << i;
225 uint64_t and_bit = pickbit(wmask_and, i);
226 uint64_t or_bit = pickbit(wmask_or, i);
227 uint64_t and_bits_sub = replicate(and_bit, 1, nbits);
228 uint64_t or_bits_sub = replicate(or_bit, 1, nbits);
229 uint64_t and_bits_top = (ones(nbits) << nbits) | and_bits_sub;
230 uint64_t or_bits_top = (or_bits_sub << nbits) | 0;
231
232 wmask = ((wmask
233 & (replicate(and_bits_top, 2 * nbits, 32 / nbits)))
234 | replicate(or_bits_top, 2 * nbits, 32 / nbits));
235 }
236
237 if (diff & (1U << 6)) {
238 imm64 = tmask & wmask;
239 } else {
240 imm64 = tmask | wmask;
241 }
242
243
244 bimm = imm64;
245 return 1;
246 }
247
248 // constructor to initialise the lookup tables
249
250 static void initLITables();
251 // Use an empty struct with a construtor as MSVC doesn't support `__attribute__ ((constructor))`
252 // See https://stackoverflow.com/questions/1113409/attribute-constructor-equivalent-in-vc
initLITables_tinitLITables_t253 static struct initLITables_t { initLITables_t(void) { initLITables(); } } _initLITables;
initLITables()254 static void initLITables()
255 {
256 li_table_entry_count = 0;
257 for (unsigned index = 0; index < LI_TABLE_SIZE; index++) {
258 uint32_t N = uimm(index, 12, 12);
259 uint32_t immr = uimm(index, 11, 6);
260 uint32_t imms = uimm(index, 5, 0);
261 if (expandLogicalImmediate(N, immr, imms, LITable[index])) {
262 InverseLITable[li_table_entry_count].immediate = LITable[index];
263 InverseLITable[li_table_entry_count].encoding = index;
264 li_table_entry_count++;
265 }
266 }
267 // now sort the inverse table
268 qsort(InverseLITable, li_table_entry_count,
269 sizeof(InverseLITable[0]), compare_immediate_pair);
270 }
271
272 // public APIs provided for logical immediate lookup and reverse lookup
273
logical_immediate_for_encoding(uint32_t encoding)274 uint64_t logical_immediate_for_encoding(uint32_t encoding)
275 {
276 return LITable[encoding];
277 }
278
encoding_for_logical_immediate(uint64_t immediate)279 uint32_t encoding_for_logical_immediate(uint64_t immediate)
280 {
281 struct li_pair pair;
282 struct li_pair *result;
283
284 pair.immediate = immediate;
285
286 result = (struct li_pair *)
287 bsearch(&pair, InverseLITable, li_table_entry_count,
288 sizeof(InverseLITable[0]), compare_immediate_pair);
289
290 if (result) {
291 return result->encoding;
292 }
293
294 return 0xffffffff;
295 }
296
297 // floating point immediates are encoded in 8 bits
298 // fpimm[7] = sign bit
299 // fpimm[6:4] = signed exponent
300 // fpimm[3:0] = fraction (assuming leading 1)
301 // i.e. F = s * 1.f * 2^(e - b)
302
fp_immediate_for_encoding(uint32_t imm8,int is_dp)303 uint64_t fp_immediate_for_encoding(uint32_t imm8, int is_dp)
304 {
305 union {
306 float fpval;
307 double dpval;
308 uint64_t val;
309 };
310
311 uint32_t s, e, f;
312 s = (imm8 >> 7 ) & 0x1;
313 e = (imm8 >> 4) & 0x7;
314 f = imm8 & 0xf;
315 // the fp value is s * n/16 * 2r where n is 16+e
316 fpval = (16.0 + f) / 16.0;
317 // n.b. exponent is signed
318 if (e < 4) {
319 int epos = e;
320 for (int i = 0; i <= epos; i++) {
321 fpval *= 2.0;
322 }
323 } else {
324 int eneg = 7 - e;
325 for (int i = 0; i < eneg; i++) {
326 fpval /= 2.0;
327 }
328 }
329
330 if (s) {
331 fpval = -fpval;
332 }
333 if (is_dp) {
334 dpval = (double)fpval;
335 }
336 return val;
337 }
338
encoding_for_fp_immediate(float immediate)339 uint32_t encoding_for_fp_immediate(float immediate)
340 {
341 // given a float which is of the form
342 //
343 // s * n/16 * 2r
344 //
345 // where n is 16+f and imm1:s, imm4:f, simm3:r
346 // return the imm8 result [s:r:f]
347 //
348
349 union {
350 float fpval;
351 uint32_t val;
352 };
353 fpval = immediate;
354 uint32_t s, r, f, res;
355 // sign bit is 31
356 s = (val >> 31) & 0x1;
357 // exponent is bits 30-23 but we only want the bottom 3 bits
358 // strictly we ought to check that the bits bits 30-25 are
359 // either all 1s or all 0s
360 r = (val >> 23) & 0x7;
361 // fraction is bits 22-0
362 f = (val >> 19) & 0xf;
363 res = (s << 7) | (r << 4) | f;
364 return res;
365 }
366
367