1 /*
2  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include <stdlib.h>
26 #include <stdint.h>
27 
28 #include "precompiled.hpp"
29 #include "utilities/globalDefinitions.hpp"
30 #include "immediate_aarch64.hpp"
31 
32 // there are at most 2^13 possible logical immediate encodings
33 // however, some combinations of immr and imms are invalid
34 static const unsigned  LI_TABLE_SIZE = (1 << 13);
35 
36 static int li_table_entry_count;
37 
38 // for forward lookup we just use a direct array lookup
39 // and assume that the cient has supplied a valid encoding
40 // table[encoding] = immediate
41 static uint64_t LITable[LI_TABLE_SIZE];
42 
43 // for reverse lookup we need a sparse map so we store a table of
44 // immediate and encoding pairs sorted by immediate value
45 
46 struct li_pair {
47   uint64_t immediate;
48   uint32_t encoding;
49 };
50 
51 static struct li_pair InverseLITable[LI_TABLE_SIZE];
52 
53 // comparator to sort entries in the inverse table
compare_immediate_pair(const void * i1,const void * i2)54 int compare_immediate_pair(const void *i1, const void *i2)
55 {
56   struct li_pair *li1 = (struct li_pair *)i1;
57   struct li_pair *li2 = (struct li_pair *)i2;
58   if (li1->immediate < li2->immediate) {
59     return -1;
60   }
61   if (li1->immediate > li2->immediate) {
62     return 1;
63   }
64   return 0;
65 }
66 
67 // helper functions used by expandLogicalImmediate
68 
69 // for i = 1, ... N result<i-1> = 1 other bits are zero
ones(int N)70 static inline uint64_t ones(int N)
71 {
72   return (N == 64 ? -1ULL : (1ULL << N) - 1);
73 }
74 
75 /*
76  * bit twiddling helpers for instruction decode
77  */
78 
79 // 32 bit mask with bits [hi,...,lo] set
mask32(int hi=31,int lo=0)80 static inline uint32_t mask32(int hi = 31, int lo = 0)
81 {
82   int nbits = (hi + 1) - lo;
83   return ((1 << nbits) - 1) << lo;
84 }
85 
mask64(int hi=63,int lo=0)86 static inline uint64_t mask64(int hi = 63, int lo = 0)
87 {
88   int nbits = (hi + 1) - lo;
89   return ((1L << nbits) - 1) << lo;
90 }
91 
92 // pick bits [hi,...,lo] from val
pick32(uint32_t val,int hi=31,int lo=0)93 static inline uint32_t pick32(uint32_t val, int hi = 31, int lo = 0)
94 {
95   return (val & mask32(hi, lo));
96 }
97 
98 // pick bits [hi,...,lo] from val
pick64(uint64_t val,int hi=31,int lo=0)99 static inline uint64_t pick64(uint64_t val, int hi = 31, int lo = 0)
100 {
101   return (val & mask64(hi, lo));
102 }
103 
104 // mask [hi,lo] and shift down to start at bit 0
pickbits32(uint32_t val,int hi=31,int lo=0)105 static inline uint32_t pickbits32(uint32_t val, int hi = 31, int lo = 0)
106 {
107   return (pick32(val, hi, lo) >> lo);
108 }
109 
110 // mask [hi,lo] and shift down to start at bit 0
pickbits64(uint64_t val,int hi=63,int lo=0)111 static inline uint64_t pickbits64(uint64_t val, int hi = 63, int lo = 0)
112 {
113   return (pick64(val, hi, lo) >> lo);
114 }
115 
116 // result<0> to val<N>
pickbit(uint64_t val,int N)117 static inline uint64_t pickbit(uint64_t val, int N)
118 {
119   return pickbits64(val, N, N);
120 }
121 
uimm(uint32_t val,int hi,int lo)122 static inline uint32_t uimm(uint32_t val, int hi, int lo)
123 {
124   return pickbits32(val, hi, lo);
125 }
126 
127 // SPEC bits(M*N) Replicate(bits(M) x, integer N);
128 // this is just an educated guess
129 
replicate(uint64_t bits,int nbits,int count)130 uint64_t replicate(uint64_t bits, int nbits, int count)
131 {
132   uint64_t result = 0;
133   // nbits may be 64 in which case we want mask to be -1
134   uint64_t mask = ones(nbits);
135   for (int i = 0; i < count ; i++) {
136     result <<= nbits;
137     result |= (bits & mask);
138   }
139   return result;
140 }
141 
142 // this function writes the supplied bimm reference and returns a
143 // boolean to indicate success (1) or fail (0) because an illegal
144 // encoding must be treated as an UNALLOC instruction
145 
146 // construct a 32 bit immediate value for a logical immediate operation
expandLogicalImmediate(uint32_t immN,uint32_t immr,uint32_t imms,uint64_t & bimm)147 int expandLogicalImmediate(uint32_t immN, uint32_t immr,
148                             uint32_t imms, uint64_t &bimm)
149 {
150   int len;                 // ought to be <= 6
151   uint32_t levels;         // 6 bits
152   uint32_t tmask_and;      // 6 bits
153   uint32_t wmask_and;      // 6 bits
154   uint32_t tmask_or;       // 6 bits
155   uint32_t wmask_or;       // 6 bits
156   uint64_t imm64;          // 64 bits
157   uint64_t tmask, wmask;   // 64 bits
158   uint32_t S, R, diff;     // 6 bits?
159 
160   if (immN == 1) {
161     len = 6; // looks like 7 given the spec above but this cannot be!
162   } else {
163     len = 0;
164     uint32_t val = (~imms & 0x3f);
165     for (int i = 5; i > 0; i--) {
166       if (val & (1 << i)) {
167         len = i;
168         break;
169       }
170     }
171     if (len < 1) {
172       return 0;
173     }
174     // for valid inputs leading 1s in immr must be less than leading
175     // zeros in imms
176     int len2 = 0;                   // ought to be < len
177     uint32_t val2 = (~immr & 0x3f);
178     for (int i = 5; i > 0; i--) {
179       if (!(val2 & (1 << i))) {
180         len2 = i;
181         break;
182       }
183     }
184     if (len2 >= len) {
185       return 0;
186     }
187   }
188 
189   levels = (1 << len) - 1;
190 
191   if ((imms & levels) == levels) {
192     return 0;
193   }
194 
195   S = imms & levels;
196   R = immr & levels;
197 
198  // 6 bit arithmetic!
199   diff = S - R;
200   tmask_and = (diff | ~levels) & 0x3f;
201   tmask_or = (diff & levels) & 0x3f;
202   tmask = 0xffffffffffffffffULL;
203 
204   for (int i = 0; i < 6; i++) {
205     int nbits = 1 << i;
206     uint64_t and_bit = pickbit(tmask_and, i);
207     uint64_t or_bit = pickbit(tmask_or, i);
208     uint64_t and_bits_sub = replicate(and_bit, 1, nbits);
209     uint64_t or_bits_sub = replicate(or_bit, 1, nbits);
210     uint64_t and_bits_top = (and_bits_sub << nbits) | ones(nbits);
211     uint64_t or_bits_top = (0 << nbits) | or_bits_sub;
212 
213     tmask = ((tmask
214               & (replicate(and_bits_top, 2 * nbits, 32 / nbits)))
215              | replicate(or_bits_top, 2 * nbits, 32 / nbits));
216   }
217 
218   wmask_and = (immr | ~levels) & 0x3f;
219   wmask_or = (immr & levels) & 0x3f;
220 
221   wmask = 0;
222 
223   for (int i = 0; i < 6; i++) {
224     int nbits = 1 << i;
225     uint64_t and_bit = pickbit(wmask_and, i);
226     uint64_t or_bit = pickbit(wmask_or, i);
227     uint64_t and_bits_sub = replicate(and_bit, 1, nbits);
228     uint64_t or_bits_sub = replicate(or_bit, 1, nbits);
229     uint64_t and_bits_top = (ones(nbits) << nbits) | and_bits_sub;
230     uint64_t or_bits_top = (or_bits_sub << nbits) | 0;
231 
232     wmask = ((wmask
233               & (replicate(and_bits_top, 2 * nbits, 32 / nbits)))
234              | replicate(or_bits_top, 2 * nbits, 32 / nbits));
235   }
236 
237   if (diff & (1U << 6)) {
238     imm64 = tmask & wmask;
239   } else {
240     imm64 = tmask | wmask;
241   }
242 
243 
244   bimm = imm64;
245   return 1;
246 }
247 
248 // constructor to initialise the lookup tables
249 
250 static void initLITables();
251 // Use an empty struct with a construtor as MSVC doesn't support `__attribute__ ((constructor))`
252 // See https://stackoverflow.com/questions/1113409/attribute-constructor-equivalent-in-vc
initLITables_tinitLITables_t253 static struct initLITables_t { initLITables_t(void) { initLITables(); } } _initLITables;
initLITables()254 static void initLITables()
255 {
256   li_table_entry_count = 0;
257   for (unsigned index = 0; index < LI_TABLE_SIZE; index++) {
258     uint32_t N = uimm(index, 12, 12);
259     uint32_t immr = uimm(index, 11, 6);
260     uint32_t imms = uimm(index, 5, 0);
261     if (expandLogicalImmediate(N, immr, imms, LITable[index])) {
262       InverseLITable[li_table_entry_count].immediate = LITable[index];
263       InverseLITable[li_table_entry_count].encoding = index;
264       li_table_entry_count++;
265     }
266   }
267   // now sort the inverse table
268   qsort(InverseLITable, li_table_entry_count,
269         sizeof(InverseLITable[0]), compare_immediate_pair);
270 }
271 
272 // public APIs provided for logical immediate lookup and reverse lookup
273 
logical_immediate_for_encoding(uint32_t encoding)274 uint64_t logical_immediate_for_encoding(uint32_t encoding)
275 {
276   return LITable[encoding];
277 }
278 
encoding_for_logical_immediate(uint64_t immediate)279 uint32_t encoding_for_logical_immediate(uint64_t immediate)
280 {
281   struct li_pair pair;
282   struct li_pair *result;
283 
284   pair.immediate = immediate;
285 
286   result = (struct li_pair *)
287     bsearch(&pair, InverseLITable, li_table_entry_count,
288             sizeof(InverseLITable[0]), compare_immediate_pair);
289 
290   if (result) {
291     return result->encoding;
292   }
293 
294   return 0xffffffff;
295 }
296 
297 // floating point immediates are encoded in 8 bits
298 // fpimm[7] = sign bit
299 // fpimm[6:4] = signed exponent
300 // fpimm[3:0] = fraction (assuming leading 1)
301 // i.e. F = s * 1.f * 2^(e - b)
302 
fp_immediate_for_encoding(uint32_t imm8,int is_dp)303 uint64_t fp_immediate_for_encoding(uint32_t imm8, int is_dp)
304 {
305   union {
306     float fpval;
307     double dpval;
308     uint64_t val;
309   };
310 
311   uint32_t s, e, f;
312   s = (imm8 >> 7 ) & 0x1;
313   e = (imm8 >> 4) & 0x7;
314   f = imm8 & 0xf;
315   // the fp value is s * n/16 * 2r where n is 16+e
316   fpval = (16.0 + f) / 16.0;
317   // n.b. exponent is signed
318   if (e < 4) {
319     int epos = e;
320     for (int i = 0; i <= epos; i++) {
321       fpval *= 2.0;
322     }
323   } else {
324     int eneg = 7 - e;
325     for (int i = 0; i < eneg; i++) {
326       fpval /= 2.0;
327     }
328   }
329 
330   if (s) {
331     fpval = -fpval;
332   }
333   if (is_dp) {
334     dpval = (double)fpval;
335   }
336   return val;
337 }
338 
encoding_for_fp_immediate(float immediate)339 uint32_t encoding_for_fp_immediate(float immediate)
340 {
341   // given a float which is of the form
342   //
343   //     s * n/16 * 2r
344   //
345   // where n is 16+f and imm1:s, imm4:f, simm3:r
346   // return the imm8 result [s:r:f]
347   //
348 
349   union {
350     float fpval;
351     uint32_t val;
352   };
353   fpval = immediate;
354   uint32_t s, r, f, res;
355   // sign bit is 31
356   s = (val >> 31) & 0x1;
357   // exponent is bits 30-23 but we only want the bottom 3 bits
358   // strictly we ought to check that the bits bits 30-25 are
359   // either all 1s or all 0s
360   r = (val >> 23) & 0x7;
361   // fraction is bits 22-0
362   f = (val >> 19) & 0xf;
363   res = (s << 7) | (r << 4) | f;
364   return res;
365 }
366 
367