1 /*
2 * Copyright (c) 2008, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "asm/assembler.hpp"
27 #include "assembler_arm.inline.hpp"
28 #include "gc/shared/barrierSet.hpp"
29 #include "gc/shared/barrierSetAssembler.hpp"
30 #include "interpreter/interpreter.hpp"
31 #include "memory/universe.hpp"
32 #include "nativeInst_arm.hpp"
33 #include "oops/instanceOop.hpp"
34 #include "oops/method.hpp"
35 #include "oops/objArrayKlass.hpp"
36 #include "oops/oop.inline.hpp"
37 #include "prims/methodHandles.hpp"
38 #include "runtime/frame.inline.hpp"
39 #include "runtime/handles.inline.hpp"
40 #include "runtime/sharedRuntime.hpp"
41 #include "runtime/stubCodeGenerator.hpp"
42 #include "runtime/stubRoutines.hpp"
43 #include "utilities/align.hpp"
44 #include "utilities/powerOfTwo.hpp"
45 #ifdef COMPILER2
46 #include "opto/runtime.hpp"
47 #endif
48
49 // Declaration and definition of StubGenerator (no .hpp file).
50 // For a more detailed description of the stub routine structure
51 // see the comment in stubRoutines.hpp
52
53 #define __ _masm->
54
55 #ifdef PRODUCT
56 #define BLOCK_COMMENT(str) /* nothing */
57 #else
58 #define BLOCK_COMMENT(str) __ block_comment(str)
59 #endif
60
61 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
62
63 // -------------------------------------------------------------------------------------------------------------------------
64 // Stub Code definitions
65
66 // Platform dependent parameters for array copy stubs
67
68 // Note: we have noticed a huge change in behavior on a microbenchmark
69 // from platform to platform depending on the configuration.
70
71 // Instead of adding a series of command line options (which
72 // unfortunately have to be done in the shared file and cannot appear
73 // only in the ARM port), the tested result are hard-coded here in a set
74 // of options, selected by specifying 'ArmCopyPlatform'
75
76 // Currently, this 'platform' is hardcoded to a value that is a good
77 // enough trade-off. However, one can easily modify this file to test
78 // the hard-coded configurations or create new ones. If the gain is
79 // significant, we could decide to either add command line options or
80 // add code to automatically choose a configuration.
81
82 // see comments below for the various configurations created
83 #define DEFAULT_ARRAYCOPY_CONFIG 0
84 #define TEGRA2_ARRAYCOPY_CONFIG 1
85 #define IMX515_ARRAYCOPY_CONFIG 2
86
87 // Hard coded choices (XXX: could be changed to a command line option)
88 #define ArmCopyPlatform DEFAULT_ARRAYCOPY_CONFIG
89
90 #define ArmCopyCacheLineSize 32 // not worth optimizing to 64 according to measured gains
91
92 // configuration for each kind of loop
93 typedef struct {
94 int pld_distance; // prefetch distance (0 => no prefetch, <0: prefetch_before);
95 bool split_ldm; // if true, split each STM in STMs with fewer registers
96 bool split_stm; // if true, split each LTM in LTMs with fewer registers
97 } arraycopy_loop_config;
98
99 // configuration for all loops
100 typedef struct {
101 // const char *description;
102 arraycopy_loop_config forward_aligned;
103 arraycopy_loop_config backward_aligned;
104 arraycopy_loop_config forward_shifted;
105 arraycopy_loop_config backward_shifted;
106 } arraycopy_platform_config;
107
108 // configured platforms
109 static arraycopy_platform_config arraycopy_configurations[] = {
110 // configuration parameters for arraycopy loops
111
112 // Configurations were chosen based on manual analysis of benchmark
113 // results, minimizing overhead with respect to best results on the
114 // different test cases.
115
116 // Prefetch before is always favored since it avoids dirtying the
117 // cache uselessly for small copies. Code for prefetch after has
118 // been kept in case the difference is significant for some
119 // platforms but we might consider dropping it.
120
121 // distance, ldm, stm
122 {
123 // default: tradeoff tegra2/imx515/nv-tegra2,
124 // Notes on benchmarking:
125 // - not far from optimal configuration on nv-tegra2
126 // - within 5% of optimal configuration except for backward aligned on IMX
127 // - up to 40% from optimal configuration for backward shifted and backward align for tegra2
128 // but still on par with the operating system copy
129 {-256, true, true }, // forward aligned
130 {-256, true, true }, // backward aligned
131 {-256, false, false }, // forward shifted
132 {-256, true, true } // backward shifted
133 },
134 {
135 // configuration tuned on tegra2-4.
136 // Warning: should not be used on nv-tegra2 !
137 // Notes:
138 // - prefetch after gives 40% gain on backward copies on tegra2-4,
139 // resulting in better number than the operating system
140 // copy. However, this can lead to a 300% loss on nv-tegra and has
141 // more impact on the cache (fetches futher than what is
142 // copied). Use this configuration with care, in case it improves
143 // reference benchmarks.
144 {-256, true, true }, // forward aligned
145 {96, false, false }, // backward aligned
146 {-256, false, false }, // forward shifted
147 {96, false, false } // backward shifted
148 },
149 {
150 // configuration tuned on imx515
151 // Notes:
152 // - smaller prefetch distance is sufficient to get good result and might be more stable
153 // - refined backward aligned options within 5% of optimal configuration except for
154 // tests were the arrays fit in the cache
155 {-160, false, false }, // forward aligned
156 {-160, false, false }, // backward aligned
157 {-160, false, false }, // forward shifted
158 {-160, true, true } // backward shifted
159 }
160 };
161
162 class StubGenerator: public StubCodeGenerator {
163
164 #ifdef PRODUCT
165 #define inc_counter_np(a,b,c) ((void)0)
166 #else
167 #define inc_counter_np(counter, t1, t2) \
168 BLOCK_COMMENT("inc_counter " #counter); \
169 __ inc_counter(&counter, t1, t2);
170 #endif
171
172 private:
173
generate_call_stub(address & return_address)174 address generate_call_stub(address& return_address) {
175 StubCodeMark mark(this, "StubRoutines", "call_stub");
176 address start = __ pc();
177
178
179 assert(frame::entry_frame_call_wrapper_offset == 0, "adjust this code");
180
181 __ mov(Rtemp, SP);
182 __ push(RegisterSet(FP) | RegisterSet(LR));
183 __ fpush_hardfp(FloatRegisterSet(D8, 8));
184 __ stmdb(SP, RegisterSet(R0, R2) | RegisterSet(R4, R6) | RegisterSet(R8, R10) | altFP_7_11, writeback);
185 __ mov(Rmethod, R3);
186 __ ldmia(Rtemp, RegisterSet(R1, R3) | Rthread); // stacked arguments
187
188 // XXX: TODO
189 // Would be better with respect to native tools if the following
190 // setting of FP was changed to conform to the native ABI, with FP
191 // pointing to the saved FP slot (and the corresponding modifications
192 // for entry_frame_call_wrapper_offset and frame::real_fp).
193 __ mov(FP, SP);
194
195 {
196 Label no_parameters, pass_parameters;
197 __ cmp(R3, 0);
198 __ b(no_parameters, eq);
199
200 __ bind(pass_parameters);
201 __ ldr(Rtemp, Address(R2, wordSize, post_indexed)); // Rtemp OK, unused and scratchable
202 __ subs(R3, R3, 1);
203 __ push(Rtemp);
204 __ b(pass_parameters, ne);
205 __ bind(no_parameters);
206 }
207
208 __ mov(Rsender_sp, SP);
209 __ blx(R1);
210 return_address = __ pc();
211
212 __ add(SP, FP, wordSize); // Skip link to JavaCallWrapper
213 __ pop(RegisterSet(R2, R3));
214 #ifndef __ABI_HARD__
215 __ cmp(R3, T_LONG);
216 __ cmp(R3, T_DOUBLE, ne);
217 __ str(R0, Address(R2));
218 __ str(R1, Address(R2, wordSize), eq);
219 #else
220 Label cont, l_float, l_double;
221
222 __ cmp(R3, T_DOUBLE);
223 __ b(l_double, eq);
224
225 __ cmp(R3, T_FLOAT);
226 __ b(l_float, eq);
227
228 __ cmp(R3, T_LONG);
229 __ str(R0, Address(R2));
230 __ str(R1, Address(R2, wordSize), eq);
231 __ b(cont);
232
233
234 __ bind(l_double);
235 __ fstd(D0, Address(R2));
236 __ b(cont);
237
238 __ bind(l_float);
239 __ fsts(S0, Address(R2));
240
241 __ bind(cont);
242 #endif
243
244 __ pop(RegisterSet(R4, R6) | RegisterSet(R8, R10) | altFP_7_11);
245 __ fpop_hardfp(FloatRegisterSet(D8, 8));
246 __ pop(RegisterSet(FP) | RegisterSet(PC));
247
248 return start;
249 }
250
251
252 // (in) Rexception_obj: exception oop
generate_catch_exception()253 address generate_catch_exception() {
254 StubCodeMark mark(this, "StubRoutines", "catch_exception");
255 address start = __ pc();
256
257 __ str(Rexception_obj, Address(Rthread, Thread::pending_exception_offset()));
258 __ b(StubRoutines::_call_stub_return_address);
259
260 return start;
261 }
262
263
264 // (in) Rexception_pc: return address
generate_forward_exception()265 address generate_forward_exception() {
266 StubCodeMark mark(this, "StubRoutines", "forward exception");
267 address start = __ pc();
268
269 __ mov(c_rarg0, Rthread);
270 __ mov(c_rarg1, Rexception_pc);
271 __ call_VM_leaf(CAST_FROM_FN_PTR(address,
272 SharedRuntime::exception_handler_for_return_address),
273 c_rarg0, c_rarg1);
274 __ ldr(Rexception_obj, Address(Rthread, Thread::pending_exception_offset()));
275 const Register Rzero = __ zero_register(Rtemp); // Rtemp OK (cleared by above call)
276 __ str(Rzero, Address(Rthread, Thread::pending_exception_offset()));
277
278 #ifdef ASSERT
279 // make sure exception is set
280 { Label L;
281 __ cbnz(Rexception_obj, L);
282 __ stop("StubRoutines::forward exception: no pending exception (2)");
283 __ bind(L);
284 }
285 #endif
286
287 // Verify that there is really a valid exception in RAX.
288 __ verify_oop(Rexception_obj);
289
290 __ jump(R0); // handler is returned in R0 by runtime function
291 return start;
292 }
293
294
295
296 // Integer division shared routine
297 // Input:
298 // R0 - dividend
299 // R2 - divisor
300 // Output:
301 // R0 - remainder
302 // R1 - quotient
303 // Destroys:
304 // R2
305 // LR
generate_idiv_irem()306 address generate_idiv_irem() {
307 Label positive_arguments, negative_or_zero, call_slow_path;
308 Register dividend = R0;
309 Register divisor = R2;
310 Register remainder = R0;
311 Register quotient = R1;
312 Register tmp = LR;
313 assert(dividend == remainder, "must be");
314
315 address start = __ pc();
316
317 // Check for special cases: divisor <= 0 or dividend < 0
318 __ cmp(divisor, 0);
319 __ orrs(quotient, dividend, divisor, ne);
320 __ b(negative_or_zero, le);
321
322 __ bind(positive_arguments);
323 // Save return address on stack to free one extra register
324 __ push(LR);
325 // Approximate the mamximum order of the quotient
326 __ clz(tmp, dividend);
327 __ clz(quotient, divisor);
328 __ subs(tmp, quotient, tmp);
329 __ mov(quotient, 0);
330 // Jump to the appropriate place in the unrolled loop below
331 __ ldr(PC, Address(PC, tmp, lsl, 2), pl);
332 // If divisor is greater than dividend, return immediately
333 __ pop(PC);
334
335 // Offset table
336 Label offset_table[32];
337 int i;
338 for (i = 0; i <= 31; i++) {
339 __ emit_address(offset_table[i]);
340 }
341
342 // Unrolled loop of 32 division steps
343 for (i = 31; i >= 0; i--) {
344 __ bind(offset_table[i]);
345 __ cmp(remainder, AsmOperand(divisor, lsl, i));
346 __ sub(remainder, remainder, AsmOperand(divisor, lsl, i), hs);
347 __ add(quotient, quotient, 1 << i, hs);
348 }
349 __ pop(PC);
350
351 __ bind(negative_or_zero);
352 // Find the combination of argument signs and jump to corresponding handler
353 __ andr(quotient, dividend, 0x80000000, ne);
354 __ orr(quotient, quotient, AsmOperand(divisor, lsr, 31), ne);
355 __ add(PC, PC, AsmOperand(quotient, ror, 26), ne);
356 __ str(LR, Address(Rthread, JavaThread::saved_exception_pc_offset()));
357
358 // The leaf runtime function can destroy R0-R3 and R12 registers which are still alive
359 RegisterSet saved_registers = RegisterSet(R3) | RegisterSet(R12);
360 #if R9_IS_SCRATCHED
361 // Safer to save R9 here since callers may have been written
362 // assuming R9 survives. This is suboptimal but may not be worth
363 // revisiting for this slow case.
364
365 // save also R10 for alignment
366 saved_registers = saved_registers | RegisterSet(R9, R10);
367 #endif
368 {
369 // divisor == 0
370 FixedSizeCodeBlock zero_divisor(_masm, 8, true);
371 __ push(saved_registers);
372 __ mov(R0, Rthread);
373 __ mov(R1, LR);
374 __ mov(R2, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
375 __ b(call_slow_path);
376 }
377
378 {
379 // divisor > 0 && dividend < 0
380 FixedSizeCodeBlock positive_divisor_negative_dividend(_masm, 8, true);
381 __ push(LR);
382 __ rsb(dividend, dividend, 0);
383 __ bl(positive_arguments);
384 __ rsb(remainder, remainder, 0);
385 __ rsb(quotient, quotient, 0);
386 __ pop(PC);
387 }
388
389 {
390 // divisor < 0 && dividend > 0
391 FixedSizeCodeBlock negative_divisor_positive_dividend(_masm, 8, true);
392 __ push(LR);
393 __ rsb(divisor, divisor, 0);
394 __ bl(positive_arguments);
395 __ rsb(quotient, quotient, 0);
396 __ pop(PC);
397 }
398
399 {
400 // divisor < 0 && dividend < 0
401 FixedSizeCodeBlock negative_divisor_negative_dividend(_masm, 8, true);
402 __ push(LR);
403 __ rsb(dividend, dividend, 0);
404 __ rsb(divisor, divisor, 0);
405 __ bl(positive_arguments);
406 __ rsb(remainder, remainder, 0);
407 __ pop(PC);
408 }
409
410 __ bind(call_slow_path);
411 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::continuation_for_implicit_exception));
412 __ pop(saved_registers);
413 __ bx(R0);
414
415 return start;
416 }
417
418
419 // As per atomic.hpp the Atomic read-modify-write operations must be logically implemented as:
420 // <fence>; <op>; <membar StoreLoad|StoreStore>
421 // But for load-linked/store-conditional based systems a fence here simply means
422 // no load/store can be reordered with respect to the initial load-linked, so we have:
423 // <membar storeload|loadload> ; load-linked; <op>; store-conditional; <membar storeload|storestore>
424 // There are no memory actions in <op> so nothing further is needed.
425 //
426 // So we define the following for convenience:
427 #define MEMBAR_ATOMIC_OP_PRE \
428 MacroAssembler::Membar_mask_bits(MacroAssembler::StoreLoad|MacroAssembler::LoadLoad)
429 #define MEMBAR_ATOMIC_OP_POST \
430 MacroAssembler::Membar_mask_bits(MacroAssembler::StoreLoad|MacroAssembler::StoreStore)
431
432 // Note: JDK 9 only supports ARMv7+ so we always have ldrexd available even though the
433 // code below allows for it to be otherwise. The else clause indicates an ARMv5 system
434 // for which we do not support MP and so membars are not necessary. This ARMv5 code will
435 // be removed in the future.
436
437 // Implementation of atomic_add(jint add_value, volatile jint* dest)
438 // used by Atomic::add(volatile jint* dest, jint add_value)
439 //
440 // Arguments :
441 //
442 // add_value: R0
443 // dest: R1
444 //
445 // Results:
446 //
447 // R0: the new stored in dest
448 //
449 // Overwrites:
450 //
451 // R1, R2, R3
452 //
generate_atomic_add()453 address generate_atomic_add() {
454 address start;
455
456 StubCodeMark mark(this, "StubRoutines", "atomic_add");
457 Label retry;
458 start = __ pc();
459 Register addval = R0;
460 Register dest = R1;
461 Register prev = R2;
462 Register ok = R2;
463 Register newval = R3;
464
465 if (VM_Version::supports_ldrex()) {
466 __ membar(MEMBAR_ATOMIC_OP_PRE, prev);
467 __ bind(retry);
468 __ ldrex(newval, Address(dest));
469 __ add(newval, addval, newval);
470 __ strex(ok, newval, Address(dest));
471 __ cmp(ok, 0);
472 __ b(retry, ne);
473 __ mov (R0, newval);
474 __ membar(MEMBAR_ATOMIC_OP_POST, prev);
475 } else {
476 __ bind(retry);
477 __ ldr (prev, Address(dest));
478 __ add(newval, addval, prev);
479 __ atomic_cas_bool(prev, newval, dest, 0, noreg/*ignored*/);
480 __ b(retry, ne);
481 __ mov (R0, newval);
482 }
483 __ bx(LR);
484
485 return start;
486 }
487
488 // Implementation of jint atomic_xchg(jint exchange_value, volatile jint* dest)
489 // used by Atomic::add(volatile jint* dest, jint exchange_value)
490 //
491 // Arguments :
492 //
493 // exchange_value: R0
494 // dest: R1
495 //
496 // Results:
497 //
498 // R0: the value previously stored in dest
499 //
500 // Overwrites:
501 //
502 // R1, R2, R3
503 //
generate_atomic_xchg()504 address generate_atomic_xchg() {
505 address start;
506
507 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
508 start = __ pc();
509 Register newval = R0;
510 Register dest = R1;
511 Register prev = R2;
512
513 Label retry;
514
515 if (VM_Version::supports_ldrex()) {
516 Register ok=R3;
517 __ membar(MEMBAR_ATOMIC_OP_PRE, prev);
518 __ bind(retry);
519 __ ldrex(prev, Address(dest));
520 __ strex(ok, newval, Address(dest));
521 __ cmp(ok, 0);
522 __ b(retry, ne);
523 __ mov (R0, prev);
524 __ membar(MEMBAR_ATOMIC_OP_POST, prev);
525 } else {
526 __ bind(retry);
527 __ ldr (prev, Address(dest));
528 __ atomic_cas_bool(prev, newval, dest, 0, noreg/*ignored*/);
529 __ b(retry, ne);
530 __ mov (R0, prev);
531 }
532 __ bx(LR);
533
534 return start;
535 }
536
537 // Implementation of jint atomic_cmpxchg(jint exchange_value, volatile jint *dest, jint compare_value)
538 // used by Atomic::cmpxchg(volatile jint *dest, jint compare_value, jint exchange_value)
539 //
540 // Arguments :
541 //
542 // compare_value: R0
543 // exchange_value: R1
544 // dest: R2
545 //
546 // Results:
547 //
548 // R0: the value previously stored in dest
549 //
550 // Overwrites:
551 //
552 // R0, R1, R2, R3, Rtemp
553 //
generate_atomic_cmpxchg()554 address generate_atomic_cmpxchg() {
555 address start;
556
557 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
558 start = __ pc();
559 Register cmp = R0;
560 Register newval = R1;
561 Register dest = R2;
562 Register temp1 = R3;
563 Register temp2 = Rtemp; // Rtemp free (native ABI)
564
565 __ membar(MEMBAR_ATOMIC_OP_PRE, temp1);
566
567 // atomic_cas returns previous value in R0
568 __ atomic_cas(temp1, temp2, cmp, newval, dest, 0);
569
570 __ membar(MEMBAR_ATOMIC_OP_POST, temp1);
571
572 __ bx(LR);
573
574 return start;
575 }
576
577 // Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value)
578 // reordered before by a wrapper to (jlong compare_value, jlong exchange_value, volatile jlong *dest)
579 //
580 // Arguments :
581 //
582 // compare_value: R1 (High), R0 (Low)
583 // exchange_value: R3 (High), R2 (Low)
584 // dest: SP+0
585 //
586 // Results:
587 //
588 // R0:R1: the value previously stored in dest
589 //
590 // Overwrites:
591 //
generate_atomic_cmpxchg_long()592 address generate_atomic_cmpxchg_long() {
593 address start;
594
595 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
596 start = __ pc();
597 Register cmp_lo = R0;
598 Register cmp_hi = R1;
599 Register newval_lo = R2;
600 Register newval_hi = R3;
601 Register addr = Rtemp; /* After load from stack */
602 Register temp_lo = R4;
603 Register temp_hi = R5;
604 Register temp_result = R8;
605 assert_different_registers(cmp_lo, newval_lo, temp_lo, addr, temp_result, R7);
606 assert_different_registers(cmp_hi, newval_hi, temp_hi, addr, temp_result, R7);
607
608 __ membar(MEMBAR_ATOMIC_OP_PRE, Rtemp); // Rtemp free (native ABI)
609
610 // Stack is unaligned, maintain double word alignment by pushing
611 // odd number of regs.
612 __ push(RegisterSet(temp_result) | RegisterSet(temp_lo, temp_hi));
613 __ ldr(addr, Address(SP, 12));
614
615 // atomic_cas64 returns previous value in temp_lo, temp_hi
616 __ atomic_cas64(temp_lo, temp_hi, temp_result, cmp_lo, cmp_hi,
617 newval_lo, newval_hi, addr, 0);
618 __ mov(R0, temp_lo);
619 __ mov(R1, temp_hi);
620
621 __ pop(RegisterSet(temp_result) | RegisterSet(temp_lo, temp_hi));
622
623 __ membar(MEMBAR_ATOMIC_OP_POST, Rtemp); // Rtemp free (native ABI)
624 __ bx(LR);
625
626 return start;
627 }
628
generate_atomic_load_long()629 address generate_atomic_load_long() {
630 address start;
631
632 StubCodeMark mark(this, "StubRoutines", "atomic_load_long");
633 start = __ pc();
634 Register result_lo = R0;
635 Register result_hi = R1;
636 Register src = R0;
637
638 if (!os::is_MP()) {
639 __ ldmia(src, RegisterSet(result_lo, result_hi));
640 __ bx(LR);
641 } else if (VM_Version::supports_ldrexd()) {
642 __ ldrexd(result_lo, Address(src));
643 __ clrex(); // FIXME: safe to remove?
644 __ bx(LR);
645 } else {
646 __ stop("Atomic load(jlong) unsupported on this platform");
647 __ bx(LR);
648 }
649
650 return start;
651 }
652
generate_atomic_store_long()653 address generate_atomic_store_long() {
654 address start;
655
656 StubCodeMark mark(this, "StubRoutines", "atomic_store_long");
657 start = __ pc();
658 Register newval_lo = R0;
659 Register newval_hi = R1;
660 Register dest = R2;
661 Register scratch_lo = R2;
662 Register scratch_hi = R3; /* After load from stack */
663 Register result = R3;
664
665 if (!os::is_MP()) {
666 __ stmia(dest, RegisterSet(newval_lo, newval_hi));
667 __ bx(LR);
668 } else if (VM_Version::supports_ldrexd()) {
669 __ mov(Rtemp, dest); // get dest to Rtemp
670 Label retry;
671 __ bind(retry);
672 __ ldrexd(scratch_lo, Address(Rtemp));
673 __ strexd(result, R0, Address(Rtemp));
674 __ rsbs(result, result, 1);
675 __ b(retry, eq);
676 __ bx(LR);
677 } else {
678 __ stop("Atomic store(jlong) unsupported on this platform");
679 __ bx(LR);
680 }
681
682 return start;
683 }
684
685
686
687 #ifdef COMPILER2
688 // Support for uint StubRoutine::Arm::partial_subtype_check( Klass sub, Klass super );
689 // Arguments :
690 //
691 // ret : R0, returned
692 // icc/xcc: set as R0 (depending on wordSize)
693 // sub : R1, argument, not changed
694 // super: R2, argument, not changed
695 // raddr: LR, blown by call
generate_partial_subtype_check()696 address generate_partial_subtype_check() {
697 __ align(CodeEntryAlignment);
698 StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
699 address start = __ pc();
700
701 // based on SPARC check_klass_subtype_[fast|slow]_path (without CompressedOops)
702
703 // R0 used as tmp_reg (in addition to return reg)
704 Register sub_klass = R1;
705 Register super_klass = R2;
706 Register tmp_reg2 = R3;
707 Register tmp_reg3 = R4;
708 #define saved_set tmp_reg2, tmp_reg3
709
710 Label L_loop, L_fail;
711
712 int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
713
714 // fast check should be redundant
715
716 // slow check
717 {
718 __ raw_push(saved_set);
719
720 // a couple of useful fields in sub_klass:
721 int ss_offset = in_bytes(Klass::secondary_supers_offset());
722
723 // Do a linear scan of the secondary super-klass chain.
724 // This code is rarely used, so simplicity is a virtue here.
725
726 inc_counter_np(SharedRuntime::_partial_subtype_ctr, tmp_reg2, tmp_reg3);
727
728 Register scan_temp = tmp_reg2;
729 Register count_temp = tmp_reg3;
730
731 // We will consult the secondary-super array.
732 __ ldr(scan_temp, Address(sub_klass, ss_offset));
733
734 Register search_key = super_klass;
735
736 // Load the array length.
737 __ ldr_s32(count_temp, Address(scan_temp, Array<Klass*>::length_offset_in_bytes()));
738 __ add(scan_temp, scan_temp, Array<Klass*>::base_offset_in_bytes());
739
740 __ add(count_temp, count_temp, 1);
741
742 // Top of search loop
743 __ bind(L_loop);
744 // Notes:
745 // scan_temp starts at the array elements
746 // count_temp is 1+size
747 __ subs(count_temp, count_temp, 1);
748 __ b(L_fail, eq); // not found in the array
749
750 // Load next super to check
751 // In the array of super classes elements are pointer sized.
752 int element_size = wordSize;
753 __ ldr(R0, Address(scan_temp, element_size, post_indexed));
754
755 // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
756 __ subs(R0, R0, search_key); // set R0 to 0 on success (and flags to eq)
757
758 // A miss means we are NOT a subtype and need to keep looping
759 __ b(L_loop, ne);
760
761 // Falling out the bottom means we found a hit; we ARE a subtype
762
763 // Success. Cache the super we found and proceed in triumph.
764 __ str(super_klass, Address(sub_klass, sc_offset));
765
766 // Return success
767 // R0 is already 0 and flags are already set to eq
768 __ raw_pop(saved_set);
769 __ ret();
770
771 // Return failure
772 __ bind(L_fail);
773 __ movs(R0, 1); // sets the flags
774 __ raw_pop(saved_set);
775 __ ret();
776 }
777 return start;
778 }
779 #undef saved_set
780 #endif // COMPILER2
781
782
783 //----------------------------------------------------------------------------------------------------
784 // Non-destructive plausibility checks for oops
785
generate_verify_oop()786 address generate_verify_oop() {
787 StubCodeMark mark(this, "StubRoutines", "verify_oop");
788 address start = __ pc();
789
790 // Incoming arguments:
791 //
792 // R0: error message (char* )
793 // R1: address of register save area
794 // R2: oop to verify
795 //
796 // All registers are saved before calling this stub. However, condition flags should be saved here.
797
798 const Register oop = R2;
799 const Register klass = R3;
800 const Register tmp1 = R6;
801 const Register tmp2 = R8;
802
803 const Register flags = Rtmp_save0; // R4/R19
804 const Register ret_addr = Rtmp_save1; // R5/R20
805 assert_different_registers(oop, klass, tmp1, tmp2, flags, ret_addr, R7);
806
807 Label exit, error;
808 InlinedAddress verify_oop_count((address) StubRoutines::verify_oop_count_addr());
809
810 __ mrs(Assembler::CPSR, flags);
811
812 __ ldr_literal(tmp1, verify_oop_count);
813 __ ldr_s32(tmp2, Address(tmp1));
814 __ add(tmp2, tmp2, 1);
815 __ str_32(tmp2, Address(tmp1));
816
817 // make sure object is 'reasonable'
818 __ cbz(oop, exit); // if obj is NULL it is ok
819
820 // Check if the oop is in the right area of memory
821 // Note: oop_mask and oop_bits must be updated if the code is saved/reused
822 const address oop_mask = (address) Universe::verify_oop_mask();
823 const address oop_bits = (address) Universe::verify_oop_bits();
824 __ mov_address(tmp1, oop_mask);
825 __ andr(tmp2, oop, tmp1);
826 __ mov_address(tmp1, oop_bits);
827 __ cmp(tmp2, tmp1);
828 __ b(error, ne);
829
830 // make sure klass is 'reasonable'
831 __ load_klass(klass, oop); // get klass
832 __ cbz(klass, error); // if klass is NULL it is broken
833
834 // return if everything seems ok
835 __ bind(exit);
836
837 __ msr(Assembler::CPSR_f, flags);
838
839 __ ret();
840
841 // handle errors
842 __ bind(error);
843
844 __ mov(ret_addr, LR); // save return address
845
846 // R0: error message
847 // R1: register save area
848 __ call(CAST_FROM_FN_PTR(address, MacroAssembler::debug));
849
850 __ mov(LR, ret_addr);
851 __ b(exit);
852
853 __ bind_literal(verify_oop_count);
854
855 return start;
856 }
857
858 //----------------------------------------------------------------------------------------------------
859 // Array copy stubs
860
861 //
862 // Generate overlap test for array copy stubs
863 //
864 // Input:
865 // R0 - array1
866 // R1 - array2
867 // R2 - element count, 32-bit int
868 //
869 // input registers are preserved
870 //
array_overlap_test(address no_overlap_target,int log2_elem_size,Register tmp1,Register tmp2)871 void array_overlap_test(address no_overlap_target, int log2_elem_size, Register tmp1, Register tmp2) {
872 assert(no_overlap_target != NULL, "must be generated");
873 array_overlap_test(no_overlap_target, NULL, log2_elem_size, tmp1, tmp2);
874 }
array_overlap_test(Label & L_no_overlap,int log2_elem_size,Register tmp1,Register tmp2)875 void array_overlap_test(Label& L_no_overlap, int log2_elem_size, Register tmp1, Register tmp2) {
876 array_overlap_test(NULL, &L_no_overlap, log2_elem_size, tmp1, tmp2);
877 }
array_overlap_test(address no_overlap_target,Label * NOLp,int log2_elem_size,Register tmp1,Register tmp2)878 void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size, Register tmp1, Register tmp2) {
879 const Register from = R0;
880 const Register to = R1;
881 const Register count = R2;
882 const Register to_from = tmp1; // to - from
883 const Register byte_count = (log2_elem_size == 0) ? count : tmp2; // count << log2_elem_size
884 assert_different_registers(from, to, count, tmp1, tmp2);
885
886 // no_overlap version works if 'to' lower (unsigned) than 'from'
887 // and or 'to' more than (count*size) from 'from'
888
889 BLOCK_COMMENT("Array Overlap Test:");
890 __ subs(to_from, to, from);
891 if (log2_elem_size != 0) {
892 __ mov(byte_count, AsmOperand(count, lsl, log2_elem_size));
893 }
894 if (NOLp == NULL)
895 __ b(no_overlap_target,lo);
896 else
897 __ b((*NOLp), lo);
898 __ cmp(to_from, byte_count);
899 if (NOLp == NULL)
900 __ b(no_overlap_target, ge);
901 else
902 __ b((*NOLp), ge);
903 }
904
905
906 // probably we should choose between "prefetch-store before or after store", not "before or after load".
prefetch(Register from,Register to,int offset,int to_delta=0)907 void prefetch(Register from, Register to, int offset, int to_delta = 0) {
908 __ prefetch_read(Address(from, offset));
909 }
910
911 // Generate the inner loop for forward aligned array copy
912 //
913 // Arguments
914 // from: src address, 64 bits aligned
915 // to: dst address, wordSize aligned
916 // count: number of elements (32-bit int)
917 // bytes_per_count: number of bytes for each unit of 'count'
918 //
919 // Return the minimum initial value for count
920 //
921 // Notes:
922 // - 'from' aligned on 64-bit (recommended for 32-bit ARM in case this speeds up LDMIA)
923 // - 'to' aligned on wordSize
924 // - 'count' must be greater or equal than the returned value
925 //
926 // Increases 'from' and 'to' by count*bytes_per_count.
927 //
928 // Scratches 'count', R3.
929 // R4-R10 are preserved (saved/restored).
930 //
generate_forward_aligned_copy_loop(Register from,Register to,Register count,int bytes_per_count,bool unsafe_copy=false)931 int generate_forward_aligned_copy_loop(Register from, Register to, Register count, int bytes_per_count, bool unsafe_copy = false) {
932 assert (from == R0 && to == R1 && count == R2, "adjust the implementation below");
933
934 const int bytes_per_loop = 8*wordSize; // 8 registers are read and written on every loop iteration
935 arraycopy_loop_config *config=&arraycopy_configurations[ArmCopyPlatform].forward_aligned;
936 int pld_offset = config->pld_distance;
937 const int count_per_loop = bytes_per_loop / bytes_per_count;
938
939 bool split_read= config->split_ldm;
940 bool split_write= config->split_stm;
941
942 // XXX optim: use VLDM/VSTM when available (Neon) with PLD
943 // NEONCopyPLD
944 // PLD [r1, #0xC0]
945 // VLDM r1!,{d0-d7}
946 // VSTM r0!,{d0-d7}
947 // SUBS r2,r2,#0x40
948 // BGE NEONCopyPLD
949
950 __ push(RegisterSet(R4,R10));
951
952 const bool prefetch_before = pld_offset < 0;
953 const bool prefetch_after = pld_offset > 0;
954
955 Label L_skip_pld;
956
957 {
958 // UnsafeCopyMemory page error: continue after ucm
959 UnsafeCopyMemoryMark ucmm(this, unsafe_copy, true);
960 // predecrease to exit when there is less than count_per_loop
961 __ sub_32(count, count, count_per_loop);
962
963 if (pld_offset != 0) {
964 pld_offset = (pld_offset < 0) ? -pld_offset : pld_offset;
965
966 prefetch(from, to, 0);
967
968 if (prefetch_before) {
969 // If prefetch is done ahead, final PLDs that overflow the
970 // copied area can be easily avoided. 'count' is predecreased
971 // by the prefetch distance to optimize the inner loop and the
972 // outer loop skips the PLD.
973 __ subs_32(count, count, (bytes_per_loop+pld_offset)/bytes_per_count);
974
975 // skip prefetch for small copies
976 __ b(L_skip_pld, lt);
977 }
978
979 int offset = ArmCopyCacheLineSize;
980 while (offset <= pld_offset) {
981 prefetch(from, to, offset);
982 offset += ArmCopyCacheLineSize;
983 };
984 }
985
986 {
987 // 32-bit ARM note: we have tried implementing loop unrolling to skip one
988 // PLD with 64 bytes cache line but the gain was not significant.
989
990 Label L_copy_loop;
991 __ align(OptoLoopAlignment);
992 __ BIND(L_copy_loop);
993
994 if (prefetch_before) {
995 prefetch(from, to, bytes_per_loop + pld_offset);
996 __ BIND(L_skip_pld);
997 }
998
999 if (split_read) {
1000 // Split the register set in two sets so that there is less
1001 // latency between LDM and STM (R3-R6 available while R7-R10
1002 // still loading) and less register locking issue when iterating
1003 // on the first LDM.
1004 __ ldmia(from, RegisterSet(R3, R6), writeback);
1005 __ ldmia(from, RegisterSet(R7, R10), writeback);
1006 } else {
1007 __ ldmia(from, RegisterSet(R3, R10), writeback);
1008 }
1009
1010 __ subs_32(count, count, count_per_loop);
1011
1012 if (prefetch_after) {
1013 prefetch(from, to, pld_offset, bytes_per_loop);
1014 }
1015
1016 if (split_write) {
1017 __ stmia(to, RegisterSet(R3, R6), writeback);
1018 __ stmia(to, RegisterSet(R7, R10), writeback);
1019 } else {
1020 __ stmia(to, RegisterSet(R3, R10), writeback);
1021 }
1022
1023 __ b(L_copy_loop, ge);
1024
1025 if (prefetch_before) {
1026 // the inner loop may end earlier, allowing to skip PLD for the last iterations
1027 __ cmn_32(count, (bytes_per_loop + pld_offset)/bytes_per_count);
1028 __ b(L_skip_pld, ge);
1029 }
1030 }
1031 BLOCK_COMMENT("Remaining bytes:");
1032 // still 0..bytes_per_loop-1 aligned bytes to copy, count already decreased by (at least) bytes_per_loop bytes
1033
1034 // __ add(count, count, ...); // addition useless for the bit tests
1035 assert (pld_offset % bytes_per_loop == 0, "decreasing count by pld_offset before loop must not change tested bits");
1036
1037 __ tst(count, 16 / bytes_per_count);
1038 __ ldmia(from, RegisterSet(R3, R6), writeback, ne); // copy 16 bytes
1039 __ stmia(to, RegisterSet(R3, R6), writeback, ne);
1040
1041 __ tst(count, 8 / bytes_per_count);
1042 __ ldmia(from, RegisterSet(R3, R4), writeback, ne); // copy 8 bytes
1043 __ stmia(to, RegisterSet(R3, R4), writeback, ne);
1044
1045 if (bytes_per_count <= 4) {
1046 __ tst(count, 4 / bytes_per_count);
1047 __ ldr(R3, Address(from, 4, post_indexed), ne); // copy 4 bytes
1048 __ str(R3, Address(to, 4, post_indexed), ne);
1049 }
1050
1051 if (bytes_per_count <= 2) {
1052 __ tst(count, 2 / bytes_per_count);
1053 __ ldrh(R3, Address(from, 2, post_indexed), ne); // copy 2 bytes
1054 __ strh(R3, Address(to, 2, post_indexed), ne);
1055 }
1056
1057 if (bytes_per_count == 1) {
1058 __ tst(count, 1);
1059 __ ldrb(R3, Address(from, 1, post_indexed), ne);
1060 __ strb(R3, Address(to, 1, post_indexed), ne);
1061 }
1062 }
1063
1064 __ pop(RegisterSet(R4,R10));
1065
1066 return count_per_loop;
1067 }
1068
1069
1070 // Generate the inner loop for backward aligned array copy
1071 //
1072 // Arguments
1073 // end_from: src end address, 64 bits aligned
1074 // end_to: dst end address, wordSize aligned
1075 // count: number of elements (32-bit int)
1076 // bytes_per_count: number of bytes for each unit of 'count'
1077 //
1078 // Return the minimum initial value for count
1079 //
1080 // Notes:
1081 // - 'end_from' aligned on 64-bit (recommended for 32-bit ARM in case this speeds up LDMIA)
1082 // - 'end_to' aligned on wordSize
1083 // - 'count' must be greater or equal than the returned value
1084 //
1085 // Decreases 'end_from' and 'end_to' by count*bytes_per_count.
1086 //
1087 // Scratches 'count', R3.
1088 // ARM R4-R10 are preserved (saved/restored).
1089 //
generate_backward_aligned_copy_loop(Register end_from,Register end_to,Register count,int bytes_per_count,bool unsafe_copy=false)1090 int generate_backward_aligned_copy_loop(Register end_from, Register end_to, Register count, int bytes_per_count, bool unsafe_copy = false) {
1091 assert (end_from == R0 && end_to == R1 && count == R2, "adjust the implementation below");
1092
1093 const int bytes_per_loop = 8*wordSize; // 8 registers are read and written on every loop iteration
1094 const int count_per_loop = bytes_per_loop / bytes_per_count;
1095
1096 arraycopy_loop_config *config=&arraycopy_configurations[ArmCopyPlatform].backward_aligned;
1097 int pld_offset = config->pld_distance;
1098
1099 bool split_read= config->split_ldm;
1100 bool split_write= config->split_stm;
1101
1102 // See the forward copy variant for additional comments.
1103
1104 __ push(RegisterSet(R4,R10));
1105
1106 {
1107 // UnsafeCopyMemory page error: continue after ucm
1108 UnsafeCopyMemoryMark ucmm(this, unsafe_copy, true);
1109 __ sub_32(count, count, count_per_loop);
1110
1111 const bool prefetch_before = pld_offset < 0;
1112 const bool prefetch_after = pld_offset > 0;
1113
1114 Label L_skip_pld;
1115
1116 if (pld_offset != 0) {
1117 pld_offset = (pld_offset < 0) ? -pld_offset : pld_offset;
1118
1119 prefetch(end_from, end_to, -wordSize);
1120
1121 if (prefetch_before) {
1122 __ subs_32(count, count, (bytes_per_loop + pld_offset) / bytes_per_count);
1123 __ b(L_skip_pld, lt);
1124 }
1125
1126 int offset = ArmCopyCacheLineSize;
1127 while (offset <= pld_offset) {
1128 prefetch(end_from, end_to, -(wordSize + offset));
1129 offset += ArmCopyCacheLineSize;
1130 };
1131 }
1132
1133 {
1134 // 32-bit ARM note: we have tried implementing loop unrolling to skip one
1135 // PLD with 64 bytes cache line but the gain was not significant.
1136
1137 Label L_copy_loop;
1138 __ align(OptoLoopAlignment);
1139 __ BIND(L_copy_loop);
1140
1141 if (prefetch_before) {
1142 prefetch(end_from, end_to, -(wordSize + bytes_per_loop + pld_offset));
1143 __ BIND(L_skip_pld);
1144 }
1145
1146 if (split_read) {
1147 __ ldmdb(end_from, RegisterSet(R7, R10), writeback);
1148 __ ldmdb(end_from, RegisterSet(R3, R6), writeback);
1149 } else {
1150 __ ldmdb(end_from, RegisterSet(R3, R10), writeback);
1151 }
1152
1153 __ subs_32(count, count, count_per_loop);
1154
1155 if (prefetch_after) {
1156 prefetch(end_from, end_to, -(wordSize + pld_offset), -bytes_per_loop);
1157 }
1158
1159 if (split_write) {
1160 __ stmdb(end_to, RegisterSet(R7, R10), writeback);
1161 __ stmdb(end_to, RegisterSet(R3, R6), writeback);
1162 } else {
1163 __ stmdb(end_to, RegisterSet(R3, R10), writeback);
1164 }
1165
1166 __ b(L_copy_loop, ge);
1167
1168 if (prefetch_before) {
1169 __ cmn_32(count, (bytes_per_loop + pld_offset)/bytes_per_count);
1170 __ b(L_skip_pld, ge);
1171 }
1172 }
1173 BLOCK_COMMENT("Remaining bytes:");
1174 // still 0..bytes_per_loop-1 aligned bytes to copy, count already decreased by (at least) bytes_per_loop bytes
1175
1176 // __ add(count, count, ...); // addition useless for the bit tests
1177 assert (pld_offset % bytes_per_loop == 0, "decreasing count by pld_offset before loop must not change tested bits");
1178
1179 __ tst(count, 16 / bytes_per_count);
1180 __ ldmdb(end_from, RegisterSet(R3, R6), writeback, ne); // copy 16 bytes
1181 __ stmdb(end_to, RegisterSet(R3, R6), writeback, ne);
1182
1183 __ tst(count, 8 / bytes_per_count);
1184 __ ldmdb(end_from, RegisterSet(R3, R4), writeback, ne); // copy 8 bytes
1185 __ stmdb(end_to, RegisterSet(R3, R4), writeback, ne);
1186
1187 if (bytes_per_count <= 4) {
1188 __ tst(count, 4 / bytes_per_count);
1189 __ ldr(R3, Address(end_from, -4, pre_indexed), ne); // copy 4 bytes
1190 __ str(R3, Address(end_to, -4, pre_indexed), ne);
1191 }
1192
1193 if (bytes_per_count <= 2) {
1194 __ tst(count, 2 / bytes_per_count);
1195 __ ldrh(R3, Address(end_from, -2, pre_indexed), ne); // copy 2 bytes
1196 __ strh(R3, Address(end_to, -2, pre_indexed), ne);
1197 }
1198
1199 if (bytes_per_count == 1) {
1200 __ tst(count, 1);
1201 __ ldrb(R3, Address(end_from, -1, pre_indexed), ne);
1202 __ strb(R3, Address(end_to, -1, pre_indexed), ne);
1203 }
1204 }
1205 __ pop(RegisterSet(R4,R10));
1206
1207 return count_per_loop;
1208 }
1209
1210
1211 // Generate the inner loop for shifted forward array copy (unaligned copy).
1212 // It can be used when bytes_per_count < wordSize, i.e. byte/short copy
1213 //
1214 // Arguments
1215 // from: start src address, 64 bits aligned
1216 // to: start dst address, (now) wordSize aligned
1217 // count: number of elements (32-bit int)
1218 // bytes_per_count: number of bytes for each unit of 'count'
1219 // lsr_shift: shift applied to 'old' value to skipped already written bytes
1220 // lsl_shift: shift applied to 'new' value to set the high bytes of the next write
1221 //
1222 // Return the minimum initial value for count
1223 //
1224 // Notes:
1225 // - 'from' aligned on 64-bit (recommended for 32-bit ARM in case this speeds up LDMIA)
1226 // - 'to' aligned on wordSize
1227 // - 'count' must be greater or equal than the returned value
1228 // - 'lsr_shift' + 'lsl_shift' = BitsPerWord
1229 // - 'bytes_per_count' is 1 or 2
1230 //
1231 // Increases 'to' by count*bytes_per_count.
1232 //
1233 // Scratches 'from' and 'count', R3-R10, R12
1234 //
1235 // On entry:
1236 // - R12 is preloaded with the first 'BitsPerWord' bits read just before 'from'
1237 // - (R12 >> lsr_shift) is the part not yet written (just before 'to')
1238 // --> (*to) = (R12 >> lsr_shift) | (*from) << lsl_shift); ...
1239 //
1240 // This implementation may read more bytes than required.
1241 // Actually, it always reads exactly all data from the copied region with upper bound aligned up by wordSize,
1242 // so excessive read do not cross a word bound and is thus harmless.
1243 //
generate_forward_shifted_copy_loop(Register from,Register to,Register count,int bytes_per_count,int lsr_shift,int lsl_shift)1244 int generate_forward_shifted_copy_loop(Register from, Register to, Register count, int bytes_per_count, int lsr_shift, int lsl_shift) {
1245 assert (from == R0 && to == R1 && count == R2, "adjust the implementation below");
1246
1247 const int bytes_per_loop = 8*wordSize; // 8 registers are read and written on every loop iter
1248 const int count_per_loop = bytes_per_loop / bytes_per_count;
1249
1250 arraycopy_loop_config *config=&arraycopy_configurations[ArmCopyPlatform].forward_shifted;
1251 int pld_offset = config->pld_distance;
1252
1253 bool split_read= config->split_ldm;
1254 bool split_write= config->split_stm;
1255
1256 const bool prefetch_before = pld_offset < 0;
1257 const bool prefetch_after = pld_offset > 0;
1258 Label L_skip_pld, L_last_read, L_done;
1259 if (pld_offset != 0) {
1260
1261 pld_offset = (pld_offset < 0) ? -pld_offset : pld_offset;
1262
1263 prefetch(from, to, 0);
1264
1265 if (prefetch_before) {
1266 __ cmp_32(count, count_per_loop);
1267 __ b(L_last_read, lt);
1268 // skip prefetch for small copies
1269 // warning: count is predecreased by the prefetch distance to optimize the inner loop
1270 __ subs_32(count, count, ((bytes_per_loop + pld_offset) / bytes_per_count) + count_per_loop);
1271 __ b(L_skip_pld, lt);
1272 }
1273
1274 int offset = ArmCopyCacheLineSize;
1275 while (offset <= pld_offset) {
1276 prefetch(from, to, offset);
1277 offset += ArmCopyCacheLineSize;
1278 };
1279 }
1280
1281 Label L_shifted_loop;
1282
1283 __ align(OptoLoopAlignment);
1284 __ BIND(L_shifted_loop);
1285
1286 if (prefetch_before) {
1287 // do it early if there might be register locking issues
1288 prefetch(from, to, bytes_per_loop + pld_offset);
1289 __ BIND(L_skip_pld);
1290 } else {
1291 __ cmp_32(count, count_per_loop);
1292 __ b(L_last_read, lt);
1293 }
1294
1295 // read 32 bytes
1296 if (split_read) {
1297 // if write is not split, use less registers in first set to reduce locking
1298 RegisterSet set1 = split_write ? RegisterSet(R4, R7) : RegisterSet(R4, R5);
1299 RegisterSet set2 = (split_write ? RegisterSet(R8, R10) : RegisterSet(R6, R10)) | R12;
1300 __ ldmia(from, set1, writeback);
1301 __ mov(R3, AsmOperand(R12, lsr, lsr_shift)); // part of R12 not yet written
1302 __ ldmia(from, set2, writeback);
1303 __ subs(count, count, count_per_loop); // XXX: should it be before the 2nd LDM ? (latency vs locking)
1304 } else {
1305 __ mov(R3, AsmOperand(R12, lsr, lsr_shift)); // part of R12 not yet written
1306 __ ldmia(from, RegisterSet(R4, R10) | R12, writeback); // Note: small latency on R4
1307 __ subs(count, count, count_per_loop);
1308 }
1309
1310 if (prefetch_after) {
1311 // do it after the 1st ldm/ldp anyway (no locking issues with early STM/STP)
1312 prefetch(from, to, pld_offset, bytes_per_loop);
1313 }
1314
1315 // prepare (shift) the values in R3..R10
1316 __ orr(R3, R3, AsmOperand(R4, lsl, lsl_shift)); // merged below low bytes of next val
1317 __ logical_shift_right(R4, R4, lsr_shift); // unused part of next val
1318 __ orr(R4, R4, AsmOperand(R5, lsl, lsl_shift)); // ...
1319 __ logical_shift_right(R5, R5, lsr_shift);
1320 __ orr(R5, R5, AsmOperand(R6, lsl, lsl_shift));
1321 __ logical_shift_right(R6, R6, lsr_shift);
1322 __ orr(R6, R6, AsmOperand(R7, lsl, lsl_shift));
1323 if (split_write) {
1324 // write the first half as soon as possible to reduce stm locking
1325 __ stmia(to, RegisterSet(R3, R6), writeback, prefetch_before ? gt : ge);
1326 }
1327 __ logical_shift_right(R7, R7, lsr_shift);
1328 __ orr(R7, R7, AsmOperand(R8, lsl, lsl_shift));
1329 __ logical_shift_right(R8, R8, lsr_shift);
1330 __ orr(R8, R8, AsmOperand(R9, lsl, lsl_shift));
1331 __ logical_shift_right(R9, R9, lsr_shift);
1332 __ orr(R9, R9, AsmOperand(R10, lsl, lsl_shift));
1333 __ logical_shift_right(R10, R10, lsr_shift);
1334 __ orr(R10, R10, AsmOperand(R12, lsl, lsl_shift));
1335
1336 if (split_write) {
1337 __ stmia(to, RegisterSet(R7, R10), writeback, prefetch_before ? gt : ge);
1338 } else {
1339 __ stmia(to, RegisterSet(R3, R10), writeback, prefetch_before ? gt : ge);
1340 }
1341 __ b(L_shifted_loop, gt); // no need to loop if 0 (when count need not be precise modulo bytes_per_loop)
1342
1343 if (prefetch_before) {
1344 // the first loop may end earlier, allowing to skip pld at the end
1345 __ cmn_32(count, (bytes_per_loop + pld_offset)/bytes_per_count);
1346 __ stmia(to, RegisterSet(R3, R10), writeback); // stmia was skipped
1347 __ b(L_skip_pld, ge);
1348 __ adds_32(count, count, ((bytes_per_loop + pld_offset) / bytes_per_count) + count_per_loop);
1349 }
1350
1351 __ BIND(L_last_read);
1352 __ b(L_done, eq);
1353
1354 switch (bytes_per_count) {
1355 case 2:
1356 __ mov(R3, AsmOperand(R12, lsr, lsr_shift));
1357 __ tst(count, 8);
1358 __ ldmia(from, RegisterSet(R4, R7), writeback, ne);
1359 __ orr(R3, R3, AsmOperand(R4, lsl, lsl_shift), ne); // merged below low bytes of next val
1360 __ mov(R4, AsmOperand(R4, lsr, lsr_shift), ne); // unused part of next val
1361 __ orr(R4, R4, AsmOperand(R5, lsl, lsl_shift), ne); // ...
1362 __ mov(R5, AsmOperand(R5, lsr, lsr_shift), ne);
1363 __ orr(R5, R5, AsmOperand(R6, lsl, lsl_shift), ne);
1364 __ mov(R6, AsmOperand(R6, lsr, lsr_shift), ne);
1365 __ orr(R6, R6, AsmOperand(R7, lsl, lsl_shift), ne);
1366 __ stmia(to, RegisterSet(R3, R6), writeback, ne);
1367 __ mov(R3, AsmOperand(R7, lsr, lsr_shift), ne);
1368
1369 __ tst(count, 4);
1370 __ ldmia(from, RegisterSet(R4, R5), writeback, ne);
1371 __ orr(R3, R3, AsmOperand(R4, lsl, lsl_shift), ne); // merged below low bytes of next val
1372 __ mov(R4, AsmOperand(R4, lsr, lsr_shift), ne); // unused part of next val
1373 __ orr(R4, R4, AsmOperand(R5, lsl, lsl_shift), ne); // ...
1374 __ stmia(to, RegisterSet(R3, R4), writeback, ne);
1375 __ mov(R3, AsmOperand(R5, lsr, lsr_shift), ne);
1376
1377 __ tst(count, 2);
1378 __ ldr(R4, Address(from, 4, post_indexed), ne);
1379 __ orr(R3, R3, AsmOperand(R4, lsl, lsl_shift), ne);
1380 __ str(R3, Address(to, 4, post_indexed), ne);
1381 __ mov(R3, AsmOperand(R4, lsr, lsr_shift), ne);
1382
1383 __ tst(count, 1);
1384 __ strh(R3, Address(to, 2, post_indexed), ne); // one last short
1385 break;
1386
1387 case 1:
1388 __ mov(R3, AsmOperand(R12, lsr, lsr_shift));
1389 __ tst(count, 16);
1390 __ ldmia(from, RegisterSet(R4, R7), writeback, ne);
1391 __ orr(R3, R3, AsmOperand(R4, lsl, lsl_shift), ne); // merged below low bytes of next val
1392 __ mov(R4, AsmOperand(R4, lsr, lsr_shift), ne); // unused part of next val
1393 __ orr(R4, R4, AsmOperand(R5, lsl, lsl_shift), ne); // ...
1394 __ mov(R5, AsmOperand(R5, lsr, lsr_shift), ne);
1395 __ orr(R5, R5, AsmOperand(R6, lsl, lsl_shift), ne);
1396 __ mov(R6, AsmOperand(R6, lsr, lsr_shift), ne);
1397 __ orr(R6, R6, AsmOperand(R7, lsl, lsl_shift), ne);
1398 __ stmia(to, RegisterSet(R3, R6), writeback, ne);
1399 __ mov(R3, AsmOperand(R7, lsr, lsr_shift), ne);
1400
1401 __ tst(count, 8);
1402 __ ldmia(from, RegisterSet(R4, R5), writeback, ne);
1403 __ orr(R3, R3, AsmOperand(R4, lsl, lsl_shift), ne); // merged below low bytes of next val
1404 __ mov(R4, AsmOperand(R4, lsr, lsr_shift), ne); // unused part of next val
1405 __ orr(R4, R4, AsmOperand(R5, lsl, lsl_shift), ne); // ...
1406 __ stmia(to, RegisterSet(R3, R4), writeback, ne);
1407 __ mov(R3, AsmOperand(R5, lsr, lsr_shift), ne);
1408
1409 __ tst(count, 4);
1410 __ ldr(R4, Address(from, 4, post_indexed), ne);
1411 __ orr(R3, R3, AsmOperand(R4, lsl, lsl_shift), ne);
1412 __ str(R3, Address(to, 4, post_indexed), ne);
1413 __ mov(R3, AsmOperand(R4, lsr, lsr_shift), ne);
1414
1415 __ andr(count, count, 3);
1416 __ cmp(count, 2);
1417
1418 // Note: R3 might contain enough bytes ready to write (3 needed at most),
1419 // thus load on lsl_shift==24 is not needed (in fact forces reading
1420 // beyond source buffer end boundary)
1421 if (lsl_shift == 8) {
1422 __ ldr(R4, Address(from, 4, post_indexed), ge);
1423 __ orr(R3, R3, AsmOperand(R4, lsl, lsl_shift), ge);
1424 } else if (lsl_shift == 16) {
1425 __ ldr(R4, Address(from, 4, post_indexed), gt);
1426 __ orr(R3, R3, AsmOperand(R4, lsl, lsl_shift), gt);
1427 }
1428
1429 __ strh(R3, Address(to, 2, post_indexed), ge); // two last bytes
1430 __ mov(R3, AsmOperand(R3, lsr, 16), gt);
1431
1432 __ tst(count, 1);
1433 __ strb(R3, Address(to, 1, post_indexed), ne); // one last byte
1434 break;
1435 }
1436
1437 __ BIND(L_done);
1438 return 0; // no minimum
1439 }
1440
1441 // Generate the inner loop for shifted backward array copy (unaligned copy).
1442 // It can be used when bytes_per_count < wordSize, i.e. byte/short copy
1443 //
1444 // Arguments
1445 // end_from: end src address, 64 bits aligned
1446 // end_to: end dst address, (now) wordSize aligned
1447 // count: number of elements (32-bit int)
1448 // bytes_per_count: number of bytes for each unit of 'count'
1449 // lsl_shift: shift applied to 'old' value to skipped already written bytes
1450 // lsr_shift: shift applied to 'new' value to set the low bytes of the next write
1451 //
1452 // Return the minimum initial value for count
1453 //
1454 // Notes:
1455 // - 'end_from' aligned on 64-bit (recommended for 32-bit ARM in case this speeds up LDMIA)
1456 // - 'end_to' aligned on wordSize
1457 // - 'count' must be greater or equal than the returned value
1458 // - 'lsr_shift' + 'lsl_shift' = 'BitsPerWord'
1459 // - 'bytes_per_count' is 1 or 2 on 32-bit ARM
1460 //
1461 // Decreases 'end_to' by count*bytes_per_count.
1462 //
1463 // Scratches 'end_from', 'count', R3-R10, R12
1464 //
1465 // On entry:
1466 // - R3 is preloaded with the first 'BitsPerWord' bits read just after 'from'
1467 // - (R3 << lsl_shift) is the part not yet written
1468 // --> (*--to) = (R3 << lsl_shift) | (*--from) >> lsr_shift); ...
1469 //
1470 // This implementation may read more bytes than required.
1471 // Actually, it always reads exactly all data from the copied region with beginning aligned down by wordSize,
1472 // so excessive read do not cross a word bound and is thus harmless.
1473 //
generate_backward_shifted_copy_loop(Register end_from,Register end_to,Register count,int bytes_per_count,int lsr_shift,int lsl_shift)1474 int generate_backward_shifted_copy_loop(Register end_from, Register end_to, Register count, int bytes_per_count, int lsr_shift, int lsl_shift) {
1475 assert (end_from == R0 && end_to == R1 && count == R2, "adjust the implementation below");
1476
1477 const int bytes_per_loop = 8*wordSize; // 8 registers are read and written on every loop iter
1478 const int count_per_loop = bytes_per_loop / bytes_per_count;
1479
1480 arraycopy_loop_config *config=&arraycopy_configurations[ArmCopyPlatform].backward_shifted;
1481 int pld_offset = config->pld_distance;
1482
1483 bool split_read= config->split_ldm;
1484 bool split_write= config->split_stm;
1485
1486
1487 const bool prefetch_before = pld_offset < 0;
1488 const bool prefetch_after = pld_offset > 0;
1489
1490 Label L_skip_pld, L_done, L_last_read;
1491 if (pld_offset != 0) {
1492
1493 pld_offset = (pld_offset < 0) ? -pld_offset : pld_offset;
1494
1495 prefetch(end_from, end_to, -wordSize);
1496
1497 if (prefetch_before) {
1498 __ cmp_32(count, count_per_loop);
1499 __ b(L_last_read, lt);
1500
1501 // skip prefetch for small copies
1502 // warning: count is predecreased by the prefetch distance to optimize the inner loop
1503 __ subs_32(count, count, ((bytes_per_loop + pld_offset)/bytes_per_count) + count_per_loop);
1504 __ b(L_skip_pld, lt);
1505 }
1506
1507 int offset = ArmCopyCacheLineSize;
1508 while (offset <= pld_offset) {
1509 prefetch(end_from, end_to, -(wordSize + offset));
1510 offset += ArmCopyCacheLineSize;
1511 };
1512 }
1513
1514 Label L_shifted_loop;
1515 __ align(OptoLoopAlignment);
1516 __ BIND(L_shifted_loop);
1517
1518 if (prefetch_before) {
1519 // do the 1st ldm/ldp first anyway (no locking issues with early STM/STP)
1520 prefetch(end_from, end_to, -(wordSize + bytes_per_loop + pld_offset));
1521 __ BIND(L_skip_pld);
1522 } else {
1523 __ cmp_32(count, count_per_loop);
1524 __ b(L_last_read, lt);
1525 }
1526
1527 if (split_read) {
1528 __ ldmdb(end_from, RegisterSet(R7, R10), writeback);
1529 __ mov(R12, AsmOperand(R3, lsl, lsl_shift)); // part of R3 not yet written
1530 __ ldmdb(end_from, RegisterSet(R3, R6), writeback);
1531 } else {
1532 __ mov(R12, AsmOperand(R3, lsl, lsl_shift)); // part of R3 not yet written
1533 __ ldmdb(end_from, RegisterSet(R3, R10), writeback);
1534 }
1535
1536 __ subs_32(count, count, count_per_loop);
1537
1538 if (prefetch_after) { // do prefetch during ldm/ldp latency
1539 prefetch(end_from, end_to, -(wordSize + pld_offset), -bytes_per_loop);
1540 }
1541
1542 // prepare the values in R4..R10,R12
1543 __ orr(R12, R12, AsmOperand(R10, lsr, lsr_shift)); // merged above high bytes of prev val
1544 __ logical_shift_left(R10, R10, lsl_shift); // unused part of prev val
1545 __ orr(R10, R10, AsmOperand(R9, lsr, lsr_shift)); // ...
1546 __ logical_shift_left(R9, R9, lsl_shift);
1547 __ orr(R9, R9, AsmOperand(R8, lsr, lsr_shift));
1548 __ logical_shift_left(R8, R8, lsl_shift);
1549 __ orr(R8, R8, AsmOperand(R7, lsr, lsr_shift));
1550 __ logical_shift_left(R7, R7, lsl_shift);
1551 __ orr(R7, R7, AsmOperand(R6, lsr, lsr_shift));
1552 __ logical_shift_left(R6, R6, lsl_shift);
1553 __ orr(R6, R6, AsmOperand(R5, lsr, lsr_shift));
1554 if (split_write) {
1555 // store early to reduce locking issues
1556 __ stmdb(end_to, RegisterSet(R6, R10) | R12, writeback, prefetch_before ? gt : ge);
1557 }
1558 __ logical_shift_left(R5, R5, lsl_shift);
1559 __ orr(R5, R5, AsmOperand(R4, lsr, lsr_shift));
1560 __ logical_shift_left(R4, R4, lsl_shift);
1561 __ orr(R4, R4, AsmOperand(R3, lsr, lsr_shift));
1562
1563 if (split_write) {
1564 __ stmdb(end_to, RegisterSet(R4, R5), writeback, prefetch_before ? gt : ge);
1565 } else {
1566 __ stmdb(end_to, RegisterSet(R4, R10) | R12, writeback, prefetch_before ? gt : ge);
1567 }
1568
1569 __ b(L_shifted_loop, gt); // no need to loop if 0 (when count need not be precise modulo bytes_per_loop)
1570
1571 if (prefetch_before) {
1572 // the first loop may end earlier, allowing to skip pld at the end
1573 __ cmn_32(count, ((bytes_per_loop + pld_offset)/bytes_per_count));
1574 __ stmdb(end_to, RegisterSet(R4, R10) | R12, writeback); // stmdb was skipped
1575 __ b(L_skip_pld, ge);
1576 __ adds_32(count, count, ((bytes_per_loop + pld_offset) / bytes_per_count) + count_per_loop);
1577 }
1578
1579 __ BIND(L_last_read);
1580 __ b(L_done, eq);
1581
1582 switch(bytes_per_count) {
1583 case 2:
1584 __ mov(R12, AsmOperand(R3, lsl, lsl_shift)); // part of R3 not yet written
1585 __ tst(count, 8);
1586 __ ldmdb(end_from, RegisterSet(R7,R10), writeback, ne);
1587 __ orr(R12, R12, AsmOperand(R10, lsr, lsr_shift), ne);
1588 __ mov(R10, AsmOperand(R10, lsl, lsl_shift),ne); // unused part of prev val
1589 __ orr(R10, R10, AsmOperand(R9, lsr, lsr_shift),ne); // ...
1590 __ mov(R9, AsmOperand(R9, lsl, lsl_shift),ne);
1591 __ orr(R9, R9, AsmOperand(R8, lsr, lsr_shift),ne);
1592 __ mov(R8, AsmOperand(R8, lsl, lsl_shift),ne);
1593 __ orr(R8, R8, AsmOperand(R7, lsr, lsr_shift),ne);
1594 __ stmdb(end_to, RegisterSet(R8,R10)|R12, writeback, ne);
1595 __ mov(R12, AsmOperand(R7, lsl, lsl_shift), ne);
1596
1597 __ tst(count, 4);
1598 __ ldmdb(end_from, RegisterSet(R9, R10), writeback, ne);
1599 __ orr(R12, R12, AsmOperand(R10, lsr, lsr_shift), ne);
1600 __ mov(R10, AsmOperand(R10, lsl, lsl_shift),ne); // unused part of prev val
1601 __ orr(R10, R10, AsmOperand(R9, lsr,lsr_shift),ne); // ...
1602 __ stmdb(end_to, RegisterSet(R10)|R12, writeback, ne);
1603 __ mov(R12, AsmOperand(R9, lsl, lsl_shift), ne);
1604
1605 __ tst(count, 2);
1606 __ ldr(R10, Address(end_from, -4, pre_indexed), ne);
1607 __ orr(R12, R12, AsmOperand(R10, lsr, lsr_shift), ne);
1608 __ str(R12, Address(end_to, -4, pre_indexed), ne);
1609 __ mov(R12, AsmOperand(R10, lsl, lsl_shift), ne);
1610
1611 __ tst(count, 1);
1612 __ mov(R12, AsmOperand(R12, lsr, lsr_shift),ne);
1613 __ strh(R12, Address(end_to, -2, pre_indexed), ne); // one last short
1614 break;
1615
1616 case 1:
1617 __ mov(R12, AsmOperand(R3, lsl, lsl_shift)); // part of R3 not yet written
1618 __ tst(count, 16);
1619 __ ldmdb(end_from, RegisterSet(R7,R10), writeback, ne);
1620 __ orr(R12, R12, AsmOperand(R10, lsr, lsr_shift), ne);
1621 __ mov(R10, AsmOperand(R10, lsl, lsl_shift),ne); // unused part of prev val
1622 __ orr(R10, R10, AsmOperand(R9, lsr, lsr_shift),ne); // ...
1623 __ mov(R9, AsmOperand(R9, lsl, lsl_shift),ne);
1624 __ orr(R9, R9, AsmOperand(R8, lsr, lsr_shift),ne);
1625 __ mov(R8, AsmOperand(R8, lsl, lsl_shift),ne);
1626 __ orr(R8, R8, AsmOperand(R7, lsr, lsr_shift),ne);
1627 __ stmdb(end_to, RegisterSet(R8,R10)|R12, writeback, ne);
1628 __ mov(R12, AsmOperand(R7, lsl, lsl_shift), ne);
1629
1630 __ tst(count, 8);
1631 __ ldmdb(end_from, RegisterSet(R9,R10), writeback, ne);
1632 __ orr(R12, R12, AsmOperand(R10, lsr, lsr_shift), ne);
1633 __ mov(R10, AsmOperand(R10, lsl, lsl_shift),ne); // unused part of prev val
1634 __ orr(R10, R10, AsmOperand(R9, lsr, lsr_shift),ne); // ...
1635 __ stmdb(end_to, RegisterSet(R10)|R12, writeback, ne);
1636 __ mov(R12, AsmOperand(R9, lsl, lsl_shift), ne);
1637
1638 __ tst(count, 4);
1639 __ ldr(R10, Address(end_from, -4, pre_indexed), ne);
1640 __ orr(R12, R12, AsmOperand(R10, lsr, lsr_shift), ne);
1641 __ str(R12, Address(end_to, -4, pre_indexed), ne);
1642 __ mov(R12, AsmOperand(R10, lsl, lsl_shift), ne);
1643
1644 __ tst(count, 2);
1645 if (lsr_shift != 24) {
1646 // avoid useless reading R10 when we already have 3 bytes ready in R12
1647 __ ldr(R10, Address(end_from, -4, pre_indexed), ne);
1648 __ orr(R12, R12, AsmOperand(R10, lsr,lsr_shift), ne);
1649 }
1650
1651 // Note: R12 contains enough bytes ready to write (3 needed at most)
1652 // write the 2 MSBs
1653 __ mov(R9, AsmOperand(R12, lsr, 16), ne);
1654 __ strh(R9, Address(end_to, -2, pre_indexed), ne);
1655 // promote remaining to MSB
1656 __ mov(R12, AsmOperand(R12, lsl, 16), ne);
1657
1658 __ tst(count, 1);
1659 // write the MSB of R12
1660 __ mov(R12, AsmOperand(R12, lsr, 24), ne);
1661 __ strb(R12, Address(end_to, -1, pre_indexed), ne);
1662
1663 break;
1664 }
1665
1666 __ BIND(L_done);
1667 return 0; // no minimum
1668 }
1669
1670 // This method is very useful for merging forward/backward implementations
get_addr_with_indexing(Register base,int delta,bool forward)1671 Address get_addr_with_indexing(Register base, int delta, bool forward) {
1672 if (forward) {
1673 return Address(base, delta, post_indexed);
1674 } else {
1675 return Address(base, -delta, pre_indexed);
1676 }
1677 }
1678
load_one(Register rd,Register from,int size_in_bytes,bool forward,AsmCondition cond=al,Register rd2=noreg)1679 void load_one(Register rd, Register from, int size_in_bytes, bool forward, AsmCondition cond = al, Register rd2 = noreg) {
1680 assert_different_registers(from, rd, rd2);
1681 if (size_in_bytes < 8) {
1682 Address addr = get_addr_with_indexing(from, size_in_bytes, forward);
1683 __ load_sized_value(rd, addr, size_in_bytes, false, cond);
1684 } else {
1685 assert (rd2 != noreg, "second value register must be specified");
1686 assert (rd->encoding() < rd2->encoding(), "wrong value register set");
1687
1688 if (forward) {
1689 __ ldmia(from, RegisterSet(rd) | rd2, writeback, cond);
1690 } else {
1691 __ ldmdb(from, RegisterSet(rd) | rd2, writeback, cond);
1692 }
1693 }
1694 }
1695
store_one(Register rd,Register to,int size_in_bytes,bool forward,AsmCondition cond=al,Register rd2=noreg)1696 void store_one(Register rd, Register to, int size_in_bytes, bool forward, AsmCondition cond = al, Register rd2 = noreg) {
1697 assert_different_registers(to, rd, rd2);
1698 if (size_in_bytes < 8) {
1699 Address addr = get_addr_with_indexing(to, size_in_bytes, forward);
1700 __ store_sized_value(rd, addr, size_in_bytes, cond);
1701 } else {
1702 assert (rd2 != noreg, "second value register must be specified");
1703 assert (rd->encoding() < rd2->encoding(), "wrong value register set");
1704
1705 if (forward) {
1706 __ stmia(to, RegisterSet(rd) | rd2, writeback, cond);
1707 } else {
1708 __ stmdb(to, RegisterSet(rd) | rd2, writeback, cond);
1709 }
1710 }
1711 }
1712
1713 // Copies data from 'from' to 'to' in specified direction to align 'from' by 64 bits.
1714 // (on 32-bit ARM 64-bit alignment is better for LDM).
1715 //
1716 // Arguments:
1717 // from: beginning (if forward) or upper bound (if !forward) of the region to be read
1718 // to: beginning (if forward) or upper bound (if !forward) of the region to be written
1719 // count: 32-bit int, maximum number of elements which can be copied
1720 // bytes_per_count: size of an element
1721 // forward: specifies copy direction
1722 //
1723 // Notes:
1724 // 'from' and 'to' must be aligned by 'bytes_per_count'
1725 // 'count' must not be less than the returned value
1726 // shifts 'from' and 'to' by the number of copied bytes in corresponding direction
1727 // decreases 'count' by the number of elements copied
1728 //
1729 // Returns maximum number of bytes which may be copied.
align_src(Register from,Register to,Register count,Register tmp,int bytes_per_count,bool forward)1730 int align_src(Register from, Register to, Register count, Register tmp, int bytes_per_count, bool forward) {
1731 assert_different_registers(from, to, count, tmp);
1732 if (bytes_per_count < 8) {
1733 Label L_align_src;
1734 __ BIND(L_align_src);
1735 __ tst(from, 7);
1736 // ne => not aligned: copy one element and (if bytes_per_count < 4) loop
1737 __ sub(count, count, 1, ne);
1738 load_one(tmp, from, bytes_per_count, forward, ne);
1739 store_one(tmp, to, bytes_per_count, forward, ne);
1740 if (bytes_per_count < 4) {
1741 __ b(L_align_src, ne); // if bytes_per_count == 4, then 0 or 1 loop iterations are enough
1742 }
1743 }
1744 return 7/bytes_per_count;
1745 }
1746
1747 // Copies 'count' of 'bytes_per_count'-sized elements in the specified direction.
1748 //
1749 // Arguments:
1750 // from: beginning (if forward) or upper bound (if !forward) of the region to be read
1751 // to: beginning (if forward) or upper bound (if !forward) of the region to be written
1752 // count: 32-bit int, number of elements to be copied
1753 // entry: copy loop entry point
1754 // bytes_per_count: size of an element
1755 // forward: specifies copy direction
1756 //
1757 // Notes:
1758 // shifts 'from' and 'to'
copy_small_array(Register from,Register to,Register count,Register tmp,Register tmp2,int bytes_per_count,bool forward,Label & entry,bool unsafe_copy=false)1759 void copy_small_array(Register from, Register to, Register count, Register tmp, Register tmp2, int bytes_per_count, bool forward, Label & entry, bool unsafe_copy = false) {
1760 assert_different_registers(from, to, count, tmp);
1761
1762 {
1763 // UnsafeCopyMemory page error: continue after ucm
1764 UnsafeCopyMemoryMark ucmm(this, unsafe_copy, true);
1765 __ align(OptoLoopAlignment);
1766 Label L_small_loop;
1767 __ BIND(L_small_loop);
1768 store_one(tmp, to, bytes_per_count, forward, al, tmp2);
1769 __ BIND(entry); // entry point
1770 __ subs(count, count, 1);
1771 load_one(tmp, from, bytes_per_count, forward, ge, tmp2);
1772 __ b(L_small_loop, ge);
1773 }
1774 }
1775
1776 // Aligns 'to' by reading one word from 'from' and writting its part to 'to'.
1777 //
1778 // Arguments:
1779 // to: beginning (if forward) or upper bound (if !forward) of the region to be written
1780 // count: 32-bit int, number of elements allowed to be copied
1781 // to_remainder: remainder of dividing 'to' by wordSize
1782 // bytes_per_count: size of an element
1783 // forward: specifies copy direction
1784 // Rval: contains an already read but not yet written word;
1785 // its' LSBs (if forward) or MSBs (if !forward) are to be written to align 'to'.
1786 //
1787 // Notes:
1788 // 'count' must not be less then the returned value
1789 // 'to' must be aligned by bytes_per_count but must not be aligned by wordSize
1790 // shifts 'to' by the number of written bytes (so that it becomes the bound of memory to be written)
1791 // decreases 'count' by the the number of elements written
1792 // Rval's MSBs or LSBs remain to be written further by generate_{forward,backward}_shifted_copy_loop
align_dst(Register to,Register count,Register Rval,Register tmp,int to_remainder,int bytes_per_count,bool forward)1793 int align_dst(Register to, Register count, Register Rval, Register tmp,
1794 int to_remainder, int bytes_per_count, bool forward) {
1795 assert_different_registers(to, count, tmp, Rval);
1796
1797 assert (0 < to_remainder && to_remainder < wordSize, "to_remainder is not valid");
1798 assert (to_remainder % bytes_per_count == 0, "to must be aligned by bytes_per_count");
1799
1800 int bytes_to_write = forward ? (wordSize - to_remainder) : to_remainder;
1801
1802 int offset = 0;
1803
1804 for (int l = 0; l < LogBytesPerWord; ++l) {
1805 int s = (1 << l);
1806 if (bytes_to_write & s) {
1807 int new_offset = offset + s*BitsPerByte;
1808 if (forward) {
1809 if (offset == 0) {
1810 store_one(Rval, to, s, forward);
1811 } else {
1812 __ logical_shift_right(tmp, Rval, offset);
1813 store_one(tmp, to, s, forward);
1814 }
1815 } else {
1816 __ logical_shift_right(tmp, Rval, BitsPerWord - new_offset);
1817 store_one(tmp, to, s, forward);
1818 }
1819
1820 offset = new_offset;
1821 }
1822 }
1823
1824 assert (offset == bytes_to_write * BitsPerByte, "all bytes must be copied");
1825
1826 __ sub_32(count, count, bytes_to_write/bytes_per_count);
1827
1828 return bytes_to_write / bytes_per_count;
1829 }
1830
1831 // Copies 'count' of elements using shifted copy loop
1832 //
1833 // Arguments:
1834 // from: beginning (if forward) or upper bound (if !forward) of the region to be read
1835 // to: beginning (if forward) or upper bound (if !forward) of the region to be written
1836 // count: 32-bit int, number of elements to be copied
1837 // to_remainder: remainder of dividing 'to' by wordSize
1838 // bytes_per_count: size of an element
1839 // forward: specifies copy direction
1840 // Rval: contains an already read but not yet written word
1841 //
1842 //
1843 // Notes:
1844 // 'count' must not be less then the returned value
1845 // 'from' must be aligned by wordSize
1846 // 'to' must be aligned by bytes_per_count but must not be aligned by wordSize
1847 // shifts 'to' by the number of copied bytes
1848 //
1849 // Scratches R3-R10, R12
align_dst_and_generate_shifted_copy_loop(Register from,Register to,Register count,Register Rval,int to_remainder,int bytes_per_count,bool forward)1850 int align_dst_and_generate_shifted_copy_loop(Register from, Register to, Register count, Register Rval,
1851 int to_remainder, int bytes_per_count, bool forward) {
1852
1853 assert (0 < to_remainder && to_remainder < wordSize, "to_remainder is invalid");
1854
1855 const Register tmp = forward ? R3 : R12;
1856 assert_different_registers(from, to, count, Rval, tmp);
1857
1858 int required_to_align = align_dst(to, count, Rval, tmp, to_remainder, bytes_per_count, forward);
1859
1860 int lsr_shift = (wordSize - to_remainder) * BitsPerByte;
1861 int lsl_shift = to_remainder * BitsPerByte;
1862
1863 int min_copy;
1864 if (forward) {
1865 min_copy = generate_forward_shifted_copy_loop(from, to, count, bytes_per_count, lsr_shift, lsl_shift);
1866 } else {
1867 min_copy = generate_backward_shifted_copy_loop(from, to, count, bytes_per_count, lsr_shift, lsl_shift);
1868 }
1869
1870 return min_copy + required_to_align;
1871 }
1872
1873 // Copies 'count' of elements using shifted copy loop
1874 //
1875 // Arguments:
1876 // from: beginning (if forward) or upper bound (if !forward) of the region to be read
1877 // to: beginning (if forward) or upper bound (if !forward) of the region to be written
1878 // count: 32-bit int, number of elements to be copied
1879 // bytes_per_count: size of an element
1880 // forward: specifies copy direction
1881 //
1882 // Notes:
1883 // 'count' must not be less then the returned value
1884 // 'from' must be aligned by wordSize
1885 // 'to' must be aligned by bytes_per_count but must not be aligned by wordSize
1886 // shifts 'to' by the number of copied bytes
1887 //
1888 // Scratches 'from', 'count', R3 and R12.
1889 // R4-R10 saved for use.
align_dst_and_generate_shifted_copy_loop(Register from,Register to,Register count,int bytes_per_count,bool forward,bool unsafe_copy=false)1890 int align_dst_and_generate_shifted_copy_loop(Register from, Register to, Register count, int bytes_per_count, bool forward, bool unsafe_copy = false) {
1891
1892 const Register Rval = forward ? R12 : R3; // as generate_{forward,backward}_shifted_copy_loop expect
1893
1894 int min_copy = 0;
1895
1896 // Note: if {seq} is a sequence of numbers, L{seq} means that if the execution reaches this point,
1897 // then the remainder of 'to' divided by wordSize is one of elements of {seq}.
1898
1899 __ push(RegisterSet(R4,R10));
1900
1901 {
1902 // UnsafeCopyMemory page error: continue after ucm
1903 UnsafeCopyMemoryMark ucmm(this, unsafe_copy, true);
1904 load_one(Rval, from, wordSize, forward);
1905
1906 switch (bytes_per_count) {
1907 case 2:
1908 min_copy = align_dst_and_generate_shifted_copy_loop(from, to, count, Rval, 2, bytes_per_count, forward);
1909 break;
1910 case 1:
1911 {
1912 Label L1, L2, L3;
1913 int min_copy1, min_copy2, min_copy3;
1914
1915 Label L_loop_finished;
1916
1917 if (forward) {
1918 __ tbz(to, 0, L2);
1919 __ tbz(to, 1, L1);
1920
1921 __ BIND(L3);
1922 min_copy3 = align_dst_and_generate_shifted_copy_loop(from, to, count, Rval, 3, bytes_per_count, forward);
1923 __ b(L_loop_finished);
1924
1925 __ BIND(L1);
1926 min_copy1 = align_dst_and_generate_shifted_copy_loop(from, to, count, Rval, 1, bytes_per_count, forward);
1927 __ b(L_loop_finished);
1928
1929 __ BIND(L2);
1930 min_copy2 = align_dst_and_generate_shifted_copy_loop(from, to, count, Rval, 2, bytes_per_count, forward);
1931 } else {
1932 __ tbz(to, 0, L2);
1933 __ tbnz(to, 1, L3);
1934
1935 __ BIND(L1);
1936 min_copy1 = align_dst_and_generate_shifted_copy_loop(from, to, count, Rval, 1, bytes_per_count, forward);
1937 __ b(L_loop_finished);
1938
1939 __ BIND(L3);
1940 min_copy3 = align_dst_and_generate_shifted_copy_loop(from, to, count, Rval, 3, bytes_per_count, forward);
1941 __ b(L_loop_finished);
1942
1943 __ BIND(L2);
1944 min_copy2 = align_dst_and_generate_shifted_copy_loop(from, to, count, Rval, 2, bytes_per_count, forward);
1945 }
1946
1947 min_copy = MAX2(MAX2(min_copy1, min_copy2), min_copy3);
1948
1949 __ BIND(L_loop_finished);
1950
1951 break;
1952 }
1953 default:
1954 ShouldNotReachHere();
1955 break;
1956 }
1957 }
1958 __ pop(RegisterSet(R4,R10));
1959
1960 return min_copy;
1961 }
1962
1963 #ifndef PRODUCT
get_arraycopy_counter(int bytes_per_count)1964 int * get_arraycopy_counter(int bytes_per_count) {
1965 switch (bytes_per_count) {
1966 case 1:
1967 return &SharedRuntime::_jbyte_array_copy_ctr;
1968 case 2:
1969 return &SharedRuntime::_jshort_array_copy_ctr;
1970 case 4:
1971 return &SharedRuntime::_jint_array_copy_ctr;
1972 case 8:
1973 return &SharedRuntime::_jlong_array_copy_ctr;
1974 default:
1975 ShouldNotReachHere();
1976 return NULL;
1977 }
1978 }
1979 #endif // !PRODUCT
1980
generate_unsafecopy_common_error_exit()1981 address generate_unsafecopy_common_error_exit() {
1982 address start_pc = __ pc();
1983 __ mov(R0, 0);
1984 __ ret();
1985 return start_pc;
1986 }
1987
1988 //
1989 // Generate stub for primitive array copy. If "aligned" is true, the
1990 // "from" and "to" addresses are assumed to be heapword aligned.
1991 //
1992 // If "disjoint" is true, arrays are assumed to be disjoint, otherwise they may overlap and
1993 // "nooverlap_target" must be specified as the address to jump if they don't.
1994 //
1995 // Arguments for generated stub:
1996 // from: R0
1997 // to: R1
1998 // count: R2 treated as signed 32-bit int
1999 //
generate_primitive_copy(bool aligned,const char * name,bool status,int bytes_per_count,bool disjoint,address nooverlap_target=NULL)2000 address generate_primitive_copy(bool aligned, const char * name, bool status, int bytes_per_count, bool disjoint, address nooverlap_target = NULL) {
2001 __ align(CodeEntryAlignment);
2002 StubCodeMark mark(this, "StubRoutines", name);
2003 address start = __ pc();
2004
2005 const Register from = R0; // source array address
2006 const Register to = R1; // destination array address
2007 const Register count = R2; // elements count
2008 const Register tmp1 = R3;
2009 const Register tmp2 = R12;
2010
2011 if (!aligned) {
2012 BLOCK_COMMENT("Entry:");
2013 }
2014
2015 __ zap_high_non_significant_bits(R2);
2016
2017 if (!disjoint) {
2018 assert (nooverlap_target != NULL, "must be specified for conjoint case");
2019 array_overlap_test(nooverlap_target, exact_log2(bytes_per_count), tmp1, tmp2);
2020 }
2021
2022 inc_counter_np(*get_arraycopy_counter(bytes_per_count), tmp1, tmp2);
2023
2024 // Conjoint case: since execution reaches this point, the arrays overlap, so performing backward copy
2025 // Disjoint case: perform forward copy
2026 bool forward = disjoint;
2027
2028
2029 if (!forward) {
2030 // Set 'from' and 'to' to upper bounds
2031 int log_bytes_per_count = exact_log2(bytes_per_count);
2032 __ add_ptr_scaled_int32(to, to, count, log_bytes_per_count);
2033 __ add_ptr_scaled_int32(from, from, count, log_bytes_per_count);
2034 }
2035
2036 // There are two main copy loop implementations:
2037 // *) The huge and complex one applicable only for large enough arrays
2038 // *) The small and simple one applicable for any array (but not efficient for large arrays).
2039 // Currently "small" implementation is used if and only if the "large" one could not be used.
2040 // XXX optim: tune the limit higher ?
2041 // Large implementation lower applicability bound is actually determined by
2042 // aligned copy loop which require <=7 bytes for src alignment, and 8 words for aligned copy loop.
2043 const int small_copy_limit = (8*wordSize + 7) / bytes_per_count;
2044
2045 Label L_small_array;
2046 __ cmp_32(count, small_copy_limit);
2047 __ b(L_small_array, le);
2048
2049 // Otherwise proceed with large implementation.
2050
2051 bool from_is_aligned = (bytes_per_count >= 8);
2052 if (aligned && forward && (HeapWordSize % 8 == 0)) {
2053 // if 'from' is heapword aligned and HeapWordSize is divisible by 8,
2054 // then from is aligned by 8
2055 from_is_aligned = true;
2056 }
2057
2058 int count_required_to_align = 0;
2059 {
2060 // UnsafeCopyMemoryMark page error: continue at UnsafeCopyMemory common_error_exit
2061 UnsafeCopyMemoryMark ucmm(this, !aligned, false);
2062 count_required_to_align = from_is_aligned ? 0 : align_src(from, to, count, tmp1, bytes_per_count, forward);
2063 assert (small_copy_limit >= count_required_to_align, "alignment could exhaust count");
2064 }
2065
2066 // now 'from' is aligned
2067
2068 bool to_is_aligned = false;
2069
2070 if (bytes_per_count >= wordSize) {
2071 // 'to' is aligned by bytes_per_count, so it is aligned by wordSize
2072 to_is_aligned = true;
2073 } else {
2074 if (aligned && (8 % HeapWordSize == 0) && (HeapWordSize % wordSize == 0)) {
2075 // Originally 'from' and 'to' were heapword aligned;
2076 // (from - to) has not been changed, so since now 'from' is 8-byte aligned, then it is also heapword aligned,
2077 // so 'to' is also heapword aligned and thus aligned by wordSize.
2078 to_is_aligned = true;
2079 }
2080 }
2081
2082 Label L_unaligned_dst;
2083
2084 if (!to_is_aligned) {
2085 BLOCK_COMMENT("Check dst alignment:");
2086 __ tst(to, wordSize - 1);
2087 __ b(L_unaligned_dst, ne); // 'to' is not aligned
2088 }
2089
2090 // 'from' and 'to' are properly aligned
2091
2092 int min_copy;
2093 if (forward) {
2094 min_copy = generate_forward_aligned_copy_loop(from, to, count, bytes_per_count, !aligned /*add UnsafeCopyMemory entry*/);
2095 } else {
2096 min_copy = generate_backward_aligned_copy_loop(from, to, count, bytes_per_count, !aligned /*add UnsafeCopyMemory entry*/);
2097 }
2098 assert(small_copy_limit >= count_required_to_align + min_copy, "first loop might exhaust count");
2099
2100 if (status) {
2101 __ mov(R0, 0); // OK
2102 }
2103
2104 __ ret();
2105
2106 {
2107 copy_small_array(from, to, count, tmp1, tmp2, bytes_per_count, forward, L_small_array /* entry */, !aligned /*add UnsafeCopyMemory entry*/);
2108
2109 if (status) {
2110 __ mov(R0, 0); // OK
2111 }
2112
2113 __ ret();
2114 }
2115
2116 if (! to_is_aligned) {
2117 __ BIND(L_unaligned_dst);
2118 int min_copy_shifted = align_dst_and_generate_shifted_copy_loop(from, to, count, bytes_per_count, forward, !aligned /*add UnsafeCopyMemory entry*/);
2119 assert (small_copy_limit >= count_required_to_align + min_copy_shifted, "first loop might exhaust count");
2120
2121 if (status) {
2122 __ mov(R0, 0); // OK
2123 }
2124
2125 __ ret();
2126 }
2127
2128 return start;
2129 }
2130
2131
2132 // Generates pattern of code to be placed after raw data copying in generate_oop_copy
2133 // Includes return from arraycopy stub.
2134 //
2135 // Arguments:
2136 // to: destination pointer after copying.
2137 // if 'forward' then 'to' == upper bound, else 'to' == beginning of the modified region
2138 // count: total number of copied elements, 32-bit int
2139 //
2140 // Blows all volatile R0-R3, Rtemp, LR) and 'to', 'count', 'tmp' registers.
oop_arraycopy_stub_epilogue_helper(Register to,Register count,Register tmp,bool status,bool forward,DecoratorSet decorators)2141 void oop_arraycopy_stub_epilogue_helper(Register to, Register count, Register tmp, bool status, bool forward, DecoratorSet decorators) {
2142 assert_different_registers(to, count, tmp);
2143
2144 if (forward) {
2145 // 'to' is upper bound of the modified region
2146 // restore initial dst:
2147 __ sub_ptr_scaled_int32(to, to, count, LogBytesPerHeapOop);
2148 }
2149
2150 // 'to' is the beginning of the region
2151
2152 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
2153 bs->arraycopy_epilogue(_masm, decorators, true, to, count, tmp);
2154
2155 if (status) {
2156 __ mov(R0, 0); // OK
2157 }
2158
2159 __ pop(PC);
2160 }
2161
2162
2163 // Generate stub for assign-compatible oop copy. If "aligned" is true, the
2164 // "from" and "to" addresses are assumed to be heapword aligned.
2165 //
2166 // If "disjoint" is true, arrays are assumed to be disjoint, otherwise they may overlap and
2167 // "nooverlap_target" must be specified as the address to jump if they don't.
2168 //
2169 // Arguments for generated stub:
2170 // from: R0
2171 // to: R1
2172 // count: R2 treated as signed 32-bit int
2173 //
generate_oop_copy(bool aligned,const char * name,bool status,bool disjoint,address nooverlap_target=NULL)2174 address generate_oop_copy(bool aligned, const char * name, bool status, bool disjoint, address nooverlap_target = NULL) {
2175 __ align(CodeEntryAlignment);
2176 StubCodeMark mark(this, "StubRoutines", name);
2177 address start = __ pc();
2178
2179 Register from = R0;
2180 Register to = R1;
2181 Register count = R2;
2182 Register tmp1 = R3;
2183 Register tmp2 = R12;
2184
2185
2186 if (!aligned) {
2187 BLOCK_COMMENT("Entry:");
2188 }
2189
2190 __ zap_high_non_significant_bits(R2);
2191
2192 if (!disjoint) {
2193 assert (nooverlap_target != NULL, "must be specified for conjoint case");
2194 array_overlap_test(nooverlap_target, LogBytesPerHeapOop, tmp1, tmp2);
2195 }
2196
2197 inc_counter_np(SharedRuntime::_oop_array_copy_ctr, tmp1, tmp2);
2198
2199 // Conjoint case: since execution reaches this point, the arrays overlap, so performing backward copy
2200 // Disjoint case: perform forward copy
2201 bool forward = disjoint;
2202
2203 const int bytes_per_count = BytesPerHeapOop;
2204 const int log_bytes_per_count = LogBytesPerHeapOop;
2205
2206 const Register saved_count = LR;
2207 const int callee_saved_regs = 3; // R0-R2
2208
2209 // LR is used later to save barrier args
2210 __ push(LR);
2211
2212 DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2213 if (disjoint) {
2214 decorators |= ARRAYCOPY_DISJOINT;
2215 }
2216 if (aligned) {
2217 decorators |= ARRAYCOPY_ALIGNED;
2218 }
2219
2220 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
2221 bs->arraycopy_prologue(_masm, decorators, true, to, count, callee_saved_regs);
2222
2223 // save arguments for barrier generation (after the pre barrier)
2224 __ mov(saved_count, count);
2225
2226 if (!forward) {
2227 __ add_ptr_scaled_int32(to, to, count, log_bytes_per_count);
2228 __ add_ptr_scaled_int32(from, from, count, log_bytes_per_count);
2229 }
2230
2231 // for short arrays, just do single element copy
2232 Label L_small_array;
2233 const int small_copy_limit = (8*wordSize + 7)/bytes_per_count; // XXX optim: tune the limit higher ?
2234 __ cmp_32(count, small_copy_limit);
2235 __ b(L_small_array, le);
2236
2237 bool from_is_aligned = (bytes_per_count >= 8);
2238 if (aligned && forward && (HeapWordSize % 8 == 0)) {
2239 // if 'from' is heapword aligned and HeapWordSize is divisible by 8,
2240 // then from is aligned by 8
2241 from_is_aligned = true;
2242 }
2243
2244 int count_required_to_align = from_is_aligned ? 0 : align_src(from, to, count, tmp1, bytes_per_count, forward);
2245 assert (small_copy_limit >= count_required_to_align, "alignment could exhaust count");
2246
2247 // now 'from' is aligned
2248
2249 bool to_is_aligned = false;
2250
2251 if (bytes_per_count >= wordSize) {
2252 // 'to' is aligned by bytes_per_count, so it is aligned by wordSize
2253 to_is_aligned = true;
2254 } else {
2255 if (aligned && (8 % HeapWordSize == 0) && (HeapWordSize % wordSize == 0)) {
2256 // Originally 'from' and 'to' were heapword aligned;
2257 // (from - to) has not been changed, so since now 'from' is 8-byte aligned, then it is also heapword aligned,
2258 // so 'to' is also heapword aligned and thus aligned by wordSize.
2259 to_is_aligned = true;
2260 }
2261 }
2262
2263 Label L_unaligned_dst;
2264
2265 if (!to_is_aligned) {
2266 BLOCK_COMMENT("Check dst alignment:");
2267 __ tst(to, wordSize - 1);
2268 __ b(L_unaligned_dst, ne); // 'to' is not aligned
2269 }
2270
2271 int min_copy;
2272 if (forward) {
2273 min_copy = generate_forward_aligned_copy_loop(from, to, count, bytes_per_count);
2274 } else {
2275 min_copy = generate_backward_aligned_copy_loop(from, to, count, bytes_per_count);
2276 }
2277 assert(small_copy_limit >= count_required_to_align + min_copy, "first loop might exhaust count");
2278
2279 oop_arraycopy_stub_epilogue_helper(to, saved_count, /* tmp */ tmp1, status, forward, decorators);
2280
2281 {
2282 copy_small_array(from, to, count, tmp1, noreg, bytes_per_count, forward, L_small_array);
2283
2284 oop_arraycopy_stub_epilogue_helper(to, saved_count, /* tmp */ tmp1, status, forward, decorators);
2285 }
2286
2287 if (!to_is_aligned) {
2288 __ BIND(L_unaligned_dst);
2289 ShouldNotReachHere();
2290 int min_copy_shifted = align_dst_and_generate_shifted_copy_loop(from, to, count, bytes_per_count, forward);
2291 assert (small_copy_limit >= count_required_to_align + min_copy_shifted, "first loop might exhaust count");
2292
2293 oop_arraycopy_stub_epilogue_helper(to, saved_count, /* tmp */ tmp1, status, forward, decorators);
2294 }
2295
2296 return start;
2297 }
2298
2299 // Generate 'unsafe' array copy stub
2300 // Though just as safe as the other stubs, it takes an unscaled
2301 // size_t argument instead of an element count.
2302 //
2303 // Arguments for generated stub:
2304 // from: R0
2305 // to: R1
2306 // count: R2 byte count, treated as ssize_t, can be zero
2307 //
2308 // Examines the alignment of the operands and dispatches
2309 // to a long, int, short, or byte copy loop.
2310 //
generate_unsafe_copy(const char * name)2311 address generate_unsafe_copy(const char* name) {
2312
2313 const Register R0_from = R0; // source array address
2314 const Register R1_to = R1; // destination array address
2315 const Register R2_count = R2; // elements count
2316
2317 const Register R3_bits = R3; // test copy of low bits
2318
2319 __ align(CodeEntryAlignment);
2320 StubCodeMark mark(this, "StubRoutines", name);
2321 address start = __ pc();
2322 const Register tmp = Rtemp;
2323
2324 // bump this on entry, not on exit:
2325 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, R3, tmp);
2326
2327 __ orr(R3_bits, R0_from, R1_to);
2328 __ orr(R3_bits, R2_count, R3_bits);
2329
2330 __ tst(R3_bits, BytesPerLong-1);
2331 __ mov(R2_count,AsmOperand(R2_count,asr,LogBytesPerLong), eq);
2332 __ jump(StubRoutines::_jlong_arraycopy, relocInfo::runtime_call_type, tmp, eq);
2333
2334 __ tst(R3_bits, BytesPerInt-1);
2335 __ mov(R2_count,AsmOperand(R2_count,asr,LogBytesPerInt), eq);
2336 __ jump(StubRoutines::_jint_arraycopy, relocInfo::runtime_call_type, tmp, eq);
2337
2338 __ tst(R3_bits, BytesPerShort-1);
2339 __ mov(R2_count,AsmOperand(R2_count,asr,LogBytesPerShort), eq);
2340 __ jump(StubRoutines::_jshort_arraycopy, relocInfo::runtime_call_type, tmp, eq);
2341
2342 __ jump(StubRoutines::_jbyte_arraycopy, relocInfo::runtime_call_type, tmp);
2343 return start;
2344 }
2345
2346 // Helper for generating a dynamic type check.
2347 // Smashes only the given temp registers.
generate_type_check(Register sub_klass,Register super_check_offset,Register super_klass,Register tmp1,Register tmp2,Register tmp3,Label & L_success)2348 void generate_type_check(Register sub_klass,
2349 Register super_check_offset,
2350 Register super_klass,
2351 Register tmp1,
2352 Register tmp2,
2353 Register tmp3,
2354 Label& L_success) {
2355 assert_different_registers(sub_klass, super_check_offset, super_klass, tmp1, tmp2, tmp3);
2356
2357 BLOCK_COMMENT("type_check:");
2358
2359 // If the pointers are equal, we are done (e.g., String[] elements).
2360
2361 __ cmp(super_klass, sub_klass);
2362 __ b(L_success, eq); // fast success
2363
2364
2365 Label L_loop, L_fail;
2366
2367 int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
2368
2369 // Check the supertype display:
2370 __ ldr(tmp1, Address(sub_klass, super_check_offset));
2371 __ cmp(tmp1, super_klass);
2372 __ b(L_success, eq);
2373
2374 __ cmp(super_check_offset, sc_offset);
2375 __ b(L_fail, ne); // failure
2376
2377 BLOCK_COMMENT("type_check_slow_path:");
2378
2379 // a couple of useful fields in sub_klass:
2380 int ss_offset = in_bytes(Klass::secondary_supers_offset());
2381
2382 // Do a linear scan of the secondary super-klass chain.
2383
2384 #ifndef PRODUCT
2385 int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
2386 __ inc_counter((address) pst_counter, tmp1, tmp2);
2387 #endif
2388
2389 Register scan_temp = tmp1;
2390 Register count_temp = tmp2;
2391
2392 // We will consult the secondary-super array.
2393 __ ldr(scan_temp, Address(sub_klass, ss_offset));
2394
2395 Register search_key = super_klass;
2396
2397 // Load the array length.
2398 __ ldr_s32(count_temp, Address(scan_temp, Array<Klass*>::length_offset_in_bytes()));
2399 __ add(scan_temp, scan_temp, Array<Klass*>::base_offset_in_bytes());
2400
2401 __ add(count_temp, count_temp, 1);
2402
2403 // Top of search loop
2404 __ bind(L_loop);
2405 // Notes:
2406 // scan_temp starts at the array elements
2407 // count_temp is 1+size
2408
2409 __ subs(count_temp, count_temp, 1);
2410 __ b(L_fail, eq); // not found
2411
2412 // Load next super to check
2413 // In the array of super classes elements are pointer sized.
2414 int element_size = wordSize;
2415 __ ldr(tmp3, Address(scan_temp, element_size, post_indexed));
2416
2417 // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
2418 __ cmp(tmp3, search_key);
2419
2420 // A miss means we are NOT a subtype and need to keep looping
2421 __ b(L_loop, ne);
2422
2423 // Falling out the bottom means we found a hit; we ARE a subtype
2424
2425 // Success. Cache the super we found and proceed in triumph.
2426 __ str(super_klass, Address(sub_klass, sc_offset));
2427
2428 // Jump to success
2429 __ b(L_success);
2430
2431 // Fall through on failure!
2432 __ bind(L_fail);
2433 }
2434
2435 // Generate stub for checked oop copy.
2436 //
2437 // Arguments for generated stub:
2438 // from: R0
2439 // to: R1
2440 // count: R2 treated as signed 32-bit int
2441 // ckoff: R3 (super_check_offset)
2442 // ckval: R4 (super_klass)
2443 // ret: R0 zero for success; (-1^K) where K is partial transfer count (32-bit)
2444 //
generate_checkcast_copy(const char * name)2445 address generate_checkcast_copy(const char * name) {
2446 __ align(CodeEntryAlignment);
2447 StubCodeMark mark(this, "StubRoutines", name);
2448 address start = __ pc();
2449
2450 const Register from = R0; // source array address
2451 const Register to = R1; // destination array address
2452 const Register count = R2; // elements count
2453
2454 const Register R3_ckoff = R3; // super_check_offset
2455 const Register R4_ckval = R4; // super_klass
2456
2457 const int callee_saved_regs = 4; // LR saved differently
2458
2459 Label load_element, store_element, do_epilogue, fail;
2460
2461 BLOCK_COMMENT("Entry:");
2462
2463 __ zap_high_non_significant_bits(R2);
2464
2465 int pushed = 0;
2466 __ push(LR);
2467 pushed+=1;
2468
2469 DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_CHECKCAST;
2470
2471 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
2472 bs->arraycopy_prologue(_masm, decorators, true, to, count, callee_saved_regs);
2473
2474 const RegisterSet caller_saved_regs = RegisterSet(R4,R6) | RegisterSet(R8,R9) | altFP_7_11;
2475 __ push(caller_saved_regs);
2476 assert(caller_saved_regs.size() == 6, "check the count");
2477 pushed+=6;
2478
2479 __ ldr(R4_ckval,Address(SP, wordSize*pushed)); // read the argument that was on the stack
2480
2481 // Save arguments for barrier generation (after the pre barrier):
2482 // - must be a caller saved register and not LR
2483 // - ARM32: avoid R10 in case RThread is needed
2484 const Register saved_count = altFP_7_11;
2485 __ movs(saved_count, count); // and test count
2486 __ b(load_element,ne);
2487
2488 // nothing to copy
2489 __ mov(R0, 0);
2490
2491 __ pop(caller_saved_regs);
2492 __ pop(PC);
2493
2494 // ======== begin loop ========
2495 // (Loop is rotated; its entry is load_element.)
2496 __ align(OptoLoopAlignment);
2497 __ BIND(store_element);
2498 if (UseCompressedOops) {
2499 __ store_heap_oop(Address(to, BytesPerHeapOop, post_indexed), R5); // store the oop, changes flags
2500 __ subs_32(count,count,1);
2501 } else {
2502 __ subs_32(count,count,1);
2503 __ str(R5, Address(to, BytesPerHeapOop, post_indexed)); // store the oop
2504 }
2505 __ b(do_epilogue, eq); // count exhausted
2506
2507 // ======== loop entry is here ========
2508 __ BIND(load_element);
2509 __ load_heap_oop(R5, Address(from, BytesPerHeapOop, post_indexed)); // load the oop
2510 __ cbz(R5, store_element); // NULL
2511
2512 __ load_klass(R6, R5);
2513
2514 generate_type_check(R6, R3_ckoff, R4_ckval, /*tmps*/ R12, R8, R9,
2515 // branch to this on success:
2516 store_element);
2517 // ======== end loop ========
2518
2519 // It was a real error; we must depend on the caller to finish the job.
2520 // Register count has number of *remaining* oops, saved_count number of *total* oops.
2521 // Emit GC store barriers for the oops we have copied
2522 // and report their number to the caller (0 or (-1^n))
2523 __ BIND(fail);
2524
2525 // Note: fail marked by the fact that count differs from saved_count
2526
2527 __ BIND(do_epilogue);
2528
2529 Register copied = R4; // saved
2530 Label L_not_copied;
2531
2532 __ subs_32(copied, saved_count, count); // copied count (in saved reg)
2533 __ b(L_not_copied, eq); // nothing was copied, skip post barrier
2534 __ sub(to, to, AsmOperand(copied, lsl, LogBytesPerHeapOop)); // initial to value
2535 __ mov(R12, copied); // count arg scratched by post barrier
2536
2537 bs->arraycopy_epilogue(_masm, decorators, true, to, R12, R3);
2538
2539 assert_different_registers(R3,R12,LR,copied,saved_count);
2540 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, R3, R12);
2541
2542 __ BIND(L_not_copied);
2543 __ cmp_32(copied, saved_count); // values preserved in saved registers
2544
2545 __ mov(R0, 0, eq); // 0 if all copied
2546 __ mvn(R0, copied, ne); // else NOT(copied)
2547 __ pop(caller_saved_regs);
2548 __ pop(PC);
2549
2550 return start;
2551 }
2552
2553 // Perform range checks on the proposed arraycopy.
2554 // Kills the two temps, but nothing else.
arraycopy_range_checks(Register src,Register src_pos,Register dst,Register dst_pos,Register length,Register temp1,Register temp2,Label & L_failed)2555 void arraycopy_range_checks(Register src, // source array oop
2556 Register src_pos, // source position (32-bit int)
2557 Register dst, // destination array oop
2558 Register dst_pos, // destination position (32-bit int)
2559 Register length, // length of copy (32-bit int)
2560 Register temp1, Register temp2,
2561 Label& L_failed) {
2562
2563 BLOCK_COMMENT("arraycopy_range_checks:");
2564
2565 // if (src_pos + length > arrayOop(src)->length() ) FAIL;
2566
2567 const Register array_length = temp1; // scratch
2568 const Register end_pos = temp2; // scratch
2569
2570 __ add_32(end_pos, length, src_pos); // src_pos + length
2571 __ ldr_s32(array_length, Address(src, arrayOopDesc::length_offset_in_bytes()));
2572 __ cmp_32(end_pos, array_length);
2573 __ b(L_failed, hi);
2574
2575 // if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
2576 __ add_32(end_pos, length, dst_pos); // dst_pos + length
2577 __ ldr_s32(array_length, Address(dst, arrayOopDesc::length_offset_in_bytes()));
2578 __ cmp_32(end_pos, array_length);
2579 __ b(L_failed, hi);
2580
2581 BLOCK_COMMENT("arraycopy_range_checks done");
2582 }
2583
2584 //
2585 // Generate generic array copy stubs
2586 //
2587 // Input:
2588 // R0 - src oop
2589 // R1 - src_pos (32-bit int)
2590 // R2 - dst oop
2591 // R3 - dst_pos (32-bit int)
2592 // SP[0] - element count (32-bit int)
2593 //
2594 // Output: (32-bit int)
2595 // R0 == 0 - success
2596 // R0 < 0 - need to call System.arraycopy
2597 //
generate_generic_copy(const char * name)2598 address generate_generic_copy(const char *name) {
2599 Label L_failed, L_objArray;
2600
2601 // Input registers
2602 const Register src = R0; // source array oop
2603 const Register src_pos = R1; // source position
2604 const Register dst = R2; // destination array oop
2605 const Register dst_pos = R3; // destination position
2606
2607 // registers used as temp
2608 const Register R5_src_klass = R5; // source array klass
2609 const Register R6_dst_klass = R6; // destination array klass
2610 const Register R_lh = altFP_7_11; // layout handler
2611 const Register R8_temp = R8;
2612
2613 __ align(CodeEntryAlignment);
2614 StubCodeMark mark(this, "StubRoutines", name);
2615 address start = __ pc();
2616
2617 __ zap_high_non_significant_bits(R1);
2618 __ zap_high_non_significant_bits(R3);
2619 __ zap_high_non_significant_bits(R4);
2620
2621 int pushed = 0;
2622 const RegisterSet saved_regs = RegisterSet(R4,R6) | RegisterSet(R8,R9) | altFP_7_11;
2623 __ push(saved_regs);
2624 assert(saved_regs.size() == 6, "check the count");
2625 pushed+=6;
2626
2627 // bump this on entry, not on exit:
2628 inc_counter_np(SharedRuntime::_generic_array_copy_ctr, R5, R12);
2629
2630 const Register length = R4; // elements count
2631 __ ldr(length, Address(SP,4*pushed));
2632
2633
2634 //-----------------------------------------------------------------------
2635 // Assembler stubs will be used for this call to arraycopy
2636 // if the following conditions are met:
2637 //
2638 // (1) src and dst must not be null.
2639 // (2) src_pos must not be negative.
2640 // (3) dst_pos must not be negative.
2641 // (4) length must not be negative.
2642 // (5) src klass and dst klass should be the same and not NULL.
2643 // (6) src and dst should be arrays.
2644 // (7) src_pos + length must not exceed length of src.
2645 // (8) dst_pos + length must not exceed length of dst.
2646 BLOCK_COMMENT("arraycopy initial argument checks");
2647
2648 // if (src == NULL) return -1;
2649 __ cbz(src, L_failed);
2650
2651 // if (src_pos < 0) return -1;
2652 __ cmp_32(src_pos, 0);
2653 __ b(L_failed, lt);
2654
2655 // if (dst == NULL) return -1;
2656 __ cbz(dst, L_failed);
2657
2658 // if (dst_pos < 0) return -1;
2659 __ cmp_32(dst_pos, 0);
2660 __ b(L_failed, lt);
2661
2662 // if (length < 0) return -1;
2663 __ cmp_32(length, 0);
2664 __ b(L_failed, lt);
2665
2666 BLOCK_COMMENT("arraycopy argument klass checks");
2667 // get src->klass()
2668 __ load_klass(R5_src_klass, src);
2669
2670 // Load layout helper
2671 //
2672 // |array_tag| | header_size | element_type | |log2_element_size|
2673 // 32 30 24 16 8 2 0
2674 //
2675 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
2676 //
2677
2678 int lh_offset = in_bytes(Klass::layout_helper_offset());
2679 __ ldr_u32(R_lh, Address(R5_src_klass, lh_offset));
2680
2681 __ load_klass(R6_dst_klass, dst);
2682
2683 // Handle objArrays completely differently...
2684 juint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2685 __ mov_slow(R8_temp, objArray_lh);
2686 __ cmp_32(R_lh, R8_temp);
2687 __ b(L_objArray,eq);
2688
2689 // if (src->klass() != dst->klass()) return -1;
2690 __ cmp(R5_src_klass, R6_dst_klass);
2691 __ b(L_failed, ne);
2692
2693 // if (!src->is_Array()) return -1;
2694 __ cmp_32(R_lh, Klass::_lh_neutral_value); // < 0
2695 __ b(L_failed, ge);
2696
2697 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
2698 R8_temp, R6_dst_klass, L_failed);
2699
2700 {
2701 // TypeArrayKlass
2702 //
2703 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
2704 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
2705 //
2706
2707 const Register R6_offset = R6_dst_klass; // array offset
2708 const Register R12_elsize = R12; // log2 element size
2709
2710 __ logical_shift_right(R6_offset, R_lh, Klass::_lh_header_size_shift);
2711 __ andr(R6_offset, R6_offset, (unsigned int)Klass::_lh_header_size_mask); // array_offset
2712 __ add(src, src, R6_offset); // src array offset
2713 __ add(dst, dst, R6_offset); // dst array offset
2714 __ andr(R12_elsize, R_lh, (unsigned int)Klass::_lh_log2_element_size_mask); // log2 element size
2715
2716 // next registers should be set before the jump to corresponding stub
2717 const Register from = R0; // source array address
2718 const Register to = R1; // destination array address
2719 const Register count = R2; // elements count
2720
2721 // 'from', 'to', 'count' registers should be set in this order
2722 // since they are the same as 'src', 'src_pos', 'dst'.
2723
2724
2725 BLOCK_COMMENT("scale indexes to element size");
2726 __ add(from, src, AsmOperand(src_pos, lsl, R12_elsize)); // src_addr
2727 __ add(to, dst, AsmOperand(dst_pos, lsl, R12_elsize)); // dst_addr
2728
2729 __ mov(count, length); // length
2730
2731 // XXX optim: avoid later push in arraycopy variants ?
2732
2733 __ pop(saved_regs);
2734
2735 BLOCK_COMMENT("choose copy loop based on element size");
2736 __ cmp(R12_elsize, 0);
2737 __ b(StubRoutines::_jbyte_arraycopy,eq);
2738
2739 __ cmp(R12_elsize, LogBytesPerShort);
2740 __ b(StubRoutines::_jshort_arraycopy,eq);
2741
2742 __ cmp(R12_elsize, LogBytesPerInt);
2743 __ b(StubRoutines::_jint_arraycopy,eq);
2744
2745 __ b(StubRoutines::_jlong_arraycopy);
2746
2747 }
2748
2749 // ObjArrayKlass
2750 __ BIND(L_objArray);
2751 // live at this point: R5_src_klass, R6_dst_klass, src[_pos], dst[_pos], length
2752
2753 Label L_plain_copy, L_checkcast_copy;
2754 // test array classes for subtyping
2755 __ cmp(R5_src_klass, R6_dst_klass); // usual case is exact equality
2756 __ b(L_checkcast_copy, ne);
2757
2758 BLOCK_COMMENT("Identically typed arrays");
2759 {
2760 // Identically typed arrays can be copied without element-wise checks.
2761 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
2762 R8_temp, R_lh, L_failed);
2763
2764 // next registers should be set before the jump to corresponding stub
2765 const Register from = R0; // source array address
2766 const Register to = R1; // destination array address
2767 const Register count = R2; // elements count
2768
2769 __ add(src, src, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); //src offset
2770 __ add(dst, dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); //dst offset
2771 __ add_ptr_scaled_int32(from, src, src_pos, LogBytesPerHeapOop); // src_addr
2772 __ add_ptr_scaled_int32(to, dst, dst_pos, LogBytesPerHeapOop); // dst_addr
2773 __ BIND(L_plain_copy);
2774 __ mov(count, length);
2775
2776 __ pop(saved_regs); // XXX optim: avoid later push in oop_arraycopy ?
2777 __ b(StubRoutines::_oop_arraycopy);
2778 }
2779
2780 {
2781 __ BIND(L_checkcast_copy);
2782 // live at this point: R5_src_klass, R6_dst_klass
2783
2784 // Before looking at dst.length, make sure dst is also an objArray.
2785 __ ldr_u32(R8_temp, Address(R6_dst_klass, lh_offset));
2786 __ cmp_32(R_lh, R8_temp);
2787 __ b(L_failed, ne);
2788
2789 // It is safe to examine both src.length and dst.length.
2790
2791 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
2792 R8_temp, R_lh, L_failed);
2793
2794 // next registers should be set before the jump to corresponding stub
2795 const Register from = R0; // source array address
2796 const Register to = R1; // destination array address
2797 const Register count = R2; // elements count
2798
2799 // Marshal the base address arguments now, freeing registers.
2800 __ add(src, src, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); //src offset
2801 __ add(dst, dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); //dst offset
2802 __ add_ptr_scaled_int32(from, src, src_pos, LogBytesPerHeapOop); // src_addr
2803 __ add_ptr_scaled_int32(to, dst, dst_pos, LogBytesPerHeapOop); // dst_addr
2804
2805 __ mov(count, length); // length (reloaded)
2806
2807 Register sco_temp = R3; // this register is free now
2808 assert_different_registers(from, to, count, sco_temp,
2809 R6_dst_klass, R5_src_klass);
2810
2811 // Generate the type check.
2812 int sco_offset = in_bytes(Klass::super_check_offset_offset());
2813 __ ldr_u32(sco_temp, Address(R6_dst_klass, sco_offset));
2814 generate_type_check(R5_src_klass, sco_temp, R6_dst_klass,
2815 R8_temp, R9,
2816 R12,
2817 L_plain_copy);
2818
2819 // Fetch destination element klass from the ObjArrayKlass header.
2820 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
2821
2822 // the checkcast_copy loop needs two extra arguments:
2823 const Register Rdst_elem_klass = R3;
2824 __ ldr(Rdst_elem_klass, Address(R6_dst_klass, ek_offset)); // dest elem klass
2825 __ pop(saved_regs); // XXX optim: avoid later push in oop_arraycopy ?
2826 __ str(Rdst_elem_klass, Address(SP,0)); // dest elem klass argument
2827 __ ldr_u32(R3, Address(Rdst_elem_klass, sco_offset)); // sco of elem klass
2828 __ b(StubRoutines::_checkcast_arraycopy);
2829 }
2830
2831 __ BIND(L_failed);
2832
2833 __ pop(saved_regs);
2834 __ mvn(R0, 0); // failure, with 0 copied
2835 __ ret();
2836
2837 return start;
2838 }
2839
2840 // Safefetch stubs.
generate_safefetch(const char * name,int size,address * entry,address * fault_pc,address * continuation_pc)2841 void generate_safefetch(const char* name, int size, address* entry, address* fault_pc, address* continuation_pc) {
2842 // safefetch signatures:
2843 // int SafeFetch32(int* adr, int errValue);
2844 // intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
2845 //
2846 // arguments:
2847 // R0 = adr
2848 // R1 = errValue
2849 //
2850 // result:
2851 // R0 = *adr or errValue
2852
2853 StubCodeMark mark(this, "StubRoutines", name);
2854
2855 // Entry point, pc or function descriptor.
2856 *entry = __ pc();
2857
2858 // Load *adr into c_rarg2, may fault.
2859 *fault_pc = __ pc();
2860
2861 switch (size) {
2862 case 4: // int32_t
2863 __ ldr_s32(R1, Address(R0));
2864 break;
2865
2866 case 8: // int64_t
2867 Unimplemented();
2868 break;
2869
2870 default:
2871 ShouldNotReachHere();
2872 }
2873
2874 // return errValue or *adr
2875 *continuation_pc = __ pc();
2876 __ mov(R0, R1);
2877 __ ret();
2878 }
2879
generate_arraycopy_stubs()2880 void generate_arraycopy_stubs() {
2881
2882 // Note: the disjoint stubs must be generated first, some of
2883 // the conjoint stubs use them.
2884
2885 bool status = false; // non failing C2 stubs need not return a status in R0
2886
2887 #ifdef TEST_C2_GENERIC_ARRAYCOPY /* Internal development flag */
2888 // With this flag, the C2 stubs are tested by generating calls to
2889 // generic_arraycopy instead of Runtime1::arraycopy
2890
2891 // Runtime1::arraycopy return a status in R0 (0 if OK, else ~copied)
2892 // and the result is tested to see whether the arraycopy stub should
2893 // be called.
2894
2895 // When we test arraycopy this way, we must generate extra code in the
2896 // arraycopy methods callable from C2 generic_arraycopy to set the
2897 // status to 0 for those who always succeed (calling the slow path stub might
2898 // lead to errors since the copy has already been performed).
2899
2900 status = true; // generate a status compatible with C1 calls
2901 #endif
2902
2903 address ucm_common_error_exit = generate_unsafecopy_common_error_exit();
2904 UnsafeCopyMemory::set_common_exit_stub_pc(ucm_common_error_exit);
2905
2906 // these need always status in case they are called from generic_arraycopy
2907 StubRoutines::_jbyte_disjoint_arraycopy = generate_primitive_copy(false, "jbyte_disjoint_arraycopy", true, 1, true);
2908 StubRoutines::_jshort_disjoint_arraycopy = generate_primitive_copy(false, "jshort_disjoint_arraycopy", true, 2, true);
2909 StubRoutines::_jint_disjoint_arraycopy = generate_primitive_copy(false, "jint_disjoint_arraycopy", true, 4, true);
2910 StubRoutines::_jlong_disjoint_arraycopy = generate_primitive_copy(false, "jlong_disjoint_arraycopy", true, 8, true);
2911 StubRoutines::_oop_disjoint_arraycopy = generate_oop_copy (false, "oop_disjoint_arraycopy", true, true);
2912
2913 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_primitive_copy(true, "arrayof_jbyte_disjoint_arraycopy", status, 1, true);
2914 StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_primitive_copy(true, "arrayof_jshort_disjoint_arraycopy",status, 2, true);
2915 StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_primitive_copy(true, "arrayof_jint_disjoint_arraycopy", status, 4, true);
2916 StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_primitive_copy(true, "arrayof_jlong_disjoint_arraycopy", status, 8, true);
2917 StubRoutines::_arrayof_oop_disjoint_arraycopy = generate_oop_copy (true, "arrayof_oop_disjoint_arraycopy", status, true);
2918
2919 // these need always status in case they are called from generic_arraycopy
2920 StubRoutines::_jbyte_arraycopy = generate_primitive_copy(false, "jbyte_arraycopy", true, 1, false, StubRoutines::_jbyte_disjoint_arraycopy);
2921 StubRoutines::_jshort_arraycopy = generate_primitive_copy(false, "jshort_arraycopy", true, 2, false, StubRoutines::_jshort_disjoint_arraycopy);
2922 StubRoutines::_jint_arraycopy = generate_primitive_copy(false, "jint_arraycopy", true, 4, false, StubRoutines::_jint_disjoint_arraycopy);
2923 StubRoutines::_jlong_arraycopy = generate_primitive_copy(false, "jlong_arraycopy", true, 8, false, StubRoutines::_jlong_disjoint_arraycopy);
2924 StubRoutines::_oop_arraycopy = generate_oop_copy (false, "oop_arraycopy", true, false, StubRoutines::_oop_disjoint_arraycopy);
2925
2926 StubRoutines::_arrayof_jbyte_arraycopy = generate_primitive_copy(true, "arrayof_jbyte_arraycopy", status, 1, false, StubRoutines::_arrayof_jbyte_disjoint_arraycopy);
2927 StubRoutines::_arrayof_jshort_arraycopy = generate_primitive_copy(true, "arrayof_jshort_arraycopy", status, 2, false, StubRoutines::_arrayof_jshort_disjoint_arraycopy);
2928 #ifdef _LP64
2929 // since sizeof(jint) < sizeof(HeapWord), there's a different flavor:
2930 StubRoutines::_arrayof_jint_arraycopy = generate_primitive_copy(true, "arrayof_jint_arraycopy", status, 4, false, StubRoutines::_arrayof_jint_disjoint_arraycopy);
2931 #else
2932 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
2933 #endif
2934 if (BytesPerHeapOop < HeapWordSize) {
2935 StubRoutines::_arrayof_oop_arraycopy = generate_oop_copy (true, "arrayof_oop_arraycopy", status, false, StubRoutines::_arrayof_oop_disjoint_arraycopy);
2936 } else {
2937 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
2938 }
2939 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
2940
2941 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
2942 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy");
2943 StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy");
2944
2945
2946 }
2947
2948 #define COMPILE_CRYPTO
2949 #include "stubRoutinesCrypto_arm.cpp"
2950
2951 private:
2952
2953 #undef __
2954 #define __ masm->
2955
2956 //------------------------------------------------------------------------------------------------------------------------
2957 // Continuation point for throwing of implicit exceptions that are not handled in
2958 // the current activation. Fabricates an exception oop and initiates normal
2959 // exception dispatching in this frame.
generate_throw_exception(const char * name,address runtime_entry)2960 address generate_throw_exception(const char* name, address runtime_entry) {
2961 int insts_size = 128;
2962 int locs_size = 32;
2963 CodeBuffer code(name, insts_size, locs_size);
2964 OopMapSet* oop_maps;
2965 int frame_size;
2966 int frame_complete;
2967
2968 oop_maps = new OopMapSet();
2969 MacroAssembler* masm = new MacroAssembler(&code);
2970
2971 address start = __ pc();
2972
2973 frame_size = 2;
2974 __ mov(Rexception_pc, LR);
2975 __ raw_push(FP, LR);
2976
2977 frame_complete = __ pc() - start;
2978
2979 // Any extra arguments are already supposed to be R1 and R2
2980 __ mov(R0, Rthread);
2981
2982 int pc_offset = __ set_last_Java_frame(SP, FP, false, Rtemp);
2983 assert(((__ pc()) - start) == __ offset(), "warning: start differs from code_begin");
2984 __ call(runtime_entry);
2985 if (pc_offset == -1) {
2986 pc_offset = __ offset();
2987 }
2988
2989 // Generate oop map
2990 OopMap* map = new OopMap(frame_size*VMRegImpl::slots_per_word, 0);
2991 oop_maps->add_gc_map(pc_offset, map);
2992 __ reset_last_Java_frame(Rtemp); // Rtemp free since scratched by far call
2993
2994 __ raw_pop(FP, LR);
2995 __ jump(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type, Rtemp);
2996
2997 RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete,
2998 frame_size, oop_maps, false);
2999 return stub->entry_point();
3000 }
3001
3002 //---------------------------------------------------------------------------
3003 // Initialization
3004
generate_initial()3005 void generate_initial() {
3006 // Generates all stubs and initializes the entry points
3007
3008 //------------------------------------------------------------------------------------------------------------------------
3009 // entry points that exist in all platforms
3010 // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
3011 // the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
3012 StubRoutines::_forward_exception_entry = generate_forward_exception();
3013
3014 StubRoutines::_call_stub_entry =
3015 generate_call_stub(StubRoutines::_call_stub_return_address);
3016 // is referenced by megamorphic call
3017 StubRoutines::_catch_exception_entry = generate_catch_exception();
3018
3019 // stub for throwing stack overflow error used both by interpreter and compiler
3020 StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
3021
3022 // integer division used both by interpreter and compiler
3023 StubRoutines::Arm::_idiv_irem_entry = generate_idiv_irem();
3024
3025 StubRoutines::_atomic_add_entry = generate_atomic_add();
3026 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
3027 StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
3028 StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
3029 StubRoutines::_atomic_load_long_entry = generate_atomic_load_long();
3030 StubRoutines::_atomic_store_long_entry = generate_atomic_store_long();
3031
3032 // Safefetch stubs.
3033 generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry,
3034 &StubRoutines::_safefetch32_fault_pc,
3035 &StubRoutines::_safefetch32_continuation_pc);
3036 assert (sizeof(int) == wordSize, "32-bit architecture");
3037 StubRoutines::_safefetchN_entry = StubRoutines::_safefetch32_entry;
3038 StubRoutines::_safefetchN_fault_pc = StubRoutines::_safefetch32_fault_pc;
3039 StubRoutines::_safefetchN_continuation_pc = StubRoutines::_safefetch32_continuation_pc;
3040 }
3041
generate_all()3042 void generate_all() {
3043 // Generates all stubs and initializes the entry points
3044
3045 #ifdef COMPILER2
3046 // Generate partial_subtype_check first here since its code depends on
3047 // UseZeroBaseCompressedOops which is defined after heap initialization.
3048 StubRoutines::Arm::_partial_subtype_check = generate_partial_subtype_check();
3049 #endif
3050 // These entry points require SharedInfo::stack0 to be set up in non-core builds
3051 // and need to be relocatable, so they each fabricate a RuntimeStub internally.
3052 StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
3053 StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
3054 StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
3055
3056 //------------------------------------------------------------------------------------------------------------------------
3057 // entry points that are platform specific
3058
3059 // support for verify_oop (must happen after universe_init)
3060 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
3061
3062 // arraycopy stubs used by compilers
3063 generate_arraycopy_stubs();
3064
3065 #ifdef COMPILE_CRYPTO
3066 // generate AES intrinsics code
3067 if (UseAESIntrinsics) {
3068 aes_init();
3069 StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
3070 StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
3071 StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
3072 StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt();
3073 }
3074 #endif // COMPILE_CRYPTO
3075 }
3076
3077
3078 public:
StubGenerator(CodeBuffer * code,bool all)3079 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
3080 if (all) {
3081 generate_all();
3082 } else {
3083 generate_initial();
3084 }
3085 }
3086 }; // end class declaration
3087
3088 #define UCM_TABLE_MAX_ENTRIES 32
StubGenerator_generate(CodeBuffer * code,bool all)3089 void StubGenerator_generate(CodeBuffer* code, bool all) {
3090 if (UnsafeCopyMemory::_table == NULL) {
3091 UnsafeCopyMemory::create_table(UCM_TABLE_MAX_ENTRIES);
3092 }
3093 StubGenerator g(code, all);
3094 }
3095