1 /*
2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_OPTO_BLOCK_HPP
26 #define SHARE_OPTO_BLOCK_HPP
27 
28 #include "opto/multnode.hpp"
29 #include "opto/node.hpp"
30 #include "opto/phase.hpp"
31 #include "utilities/powerOfTwo.hpp"
32 
33 // Optimization - Graph Style
34 
35 class Block;
36 class CFGLoop;
37 class MachCallNode;
38 class Matcher;
39 class RootNode;
40 class VectorSet;
41 class PhaseChaitin;
42 struct Tarjan;
43 
44 //------------------------------Block_Array------------------------------------
45 // Map dense integer indices to Blocks.  Uses classic doubling-array trick.
46 // Abstractly provides an infinite array of Block*'s, initialized to NULL.
47 // Note that the constructor just zeros things, and since I use Arena
48 // allocation I do not need a destructor to reclaim storage.
49 class Block_Array : public ResourceObj {
50   friend class VMStructs;
51   uint _size;                   // allocated size, as opposed to formal limit
52   debug_only(uint _limit;)      // limit to formal domain
53   Arena *_arena;                // Arena to allocate in
54 protected:
55   Block **_blocks;
56   void grow( uint i );          // Grow array node to fit
57 
58 public:
Block_Array(Arena * a)59   Block_Array(Arena *a) : _size(OptoBlockListSize), _arena(a) {
60     debug_only(_limit=0);
61     _blocks = NEW_ARENA_ARRAY( a, Block *, OptoBlockListSize );
62     for( int i = 0; i < OptoBlockListSize; i++ ) {
63       _blocks[i] = NULL;
64     }
65   }
lookup(uint i) const66   Block *lookup( uint i ) const // Lookup, or NULL for not mapped
67   { return (i<Max()) ? _blocks[i] : (Block*)NULL; }
operator [](uint i) const68   Block *operator[] ( uint i ) const // Lookup, or assert for not mapped
69   { assert( i < Max(), "oob" ); return _blocks[i]; }
70   // Extend the mapping: index i maps to Block *n.
map(uint i,Block * n)71   void map( uint i, Block *n ) { if( i>=Max() ) grow(i); _blocks[i] = n; }
Max() const72   uint Max() const { debug_only(return _limit); return _size; }
73 };
74 
75 
76 class Block_List : public Block_Array {
77   friend class VMStructs;
78 public:
79   uint _cnt;
Block_List()80   Block_List() : Block_Array(Thread::current()->resource_area()), _cnt(0) {}
push(Block * b)81   void push( Block *b ) {  map(_cnt++,b); }
pop()82   Block *pop() { return _blocks[--_cnt]; }
rpop()83   Block *rpop() { Block *b = _blocks[0]; _blocks[0]=_blocks[--_cnt]; return b;}
84   void remove( uint i );
85   void insert( uint i, Block *n );
size() const86   uint size() const { return _cnt; }
reset()87   void reset() { _cnt = 0; }
88   void print();
89 };
90 
91 
92 class CFGElement : public ResourceObj {
93   friend class VMStructs;
94  public:
95   double _freq; // Execution frequency (estimate)
96 
CFGElement()97   CFGElement() : _freq(0.0) {}
is_block()98   virtual bool is_block() { return false; }
is_loop()99   virtual bool is_loop()  { return false; }
as_Block()100   Block*   as_Block() { assert(is_block(), "must be block"); return (Block*)this; }
as_CFGLoop()101   CFGLoop* as_CFGLoop()  { assert(is_loop(),  "must be loop");  return (CFGLoop*)this;  }
102 };
103 
104 //------------------------------Block------------------------------------------
105 // This class defines a Basic Block.
106 // Basic blocks are used during the output routines, and are not used during
107 // any optimization pass.  They are created late in the game.
108 class Block : public CFGElement {
109   friend class VMStructs;
110 
111 private:
112   // Nodes in this block, in order
113   Node_List _nodes;
114 
115 public:
116 
117   // Get the node at index 'at_index', if 'at_index' is out of bounds return NULL
get_node(uint at_index) const118   Node* get_node(uint at_index) const {
119     return _nodes[at_index];
120   }
121 
122   // Get the number of nodes in this block
number_of_nodes() const123   uint number_of_nodes() const {
124     return _nodes.size();
125   }
126 
127   // Map a node 'node' to index 'to_index' in the block, if the index is out of bounds the size of the node list is increased
map_node(Node * node,uint to_index)128   void map_node(Node* node, uint to_index) {
129     _nodes.map(to_index, node);
130   }
131 
132   // Insert a node 'node' at index 'at_index', moving all nodes that are on a higher index one step, if 'at_index' is out of bounds we crash
insert_node(Node * node,uint at_index)133   void insert_node(Node* node, uint at_index) {
134     _nodes.insert(at_index, node);
135   }
136 
137   // Remove a node at index 'at_index'
remove_node(uint at_index)138   void remove_node(uint at_index) {
139     _nodes.remove(at_index);
140   }
141 
142   // Push a node 'node' onto the node list
push_node(Node * node)143   void push_node(Node* node) {
144     _nodes.push(node);
145   }
146 
147   // Pop the last node off the node list
pop_node()148   Node* pop_node() {
149     return _nodes.pop();
150   }
151 
152   // Basic blocks have a Node which defines Control for all Nodes pinned in
153   // this block.  This Node is a RegionNode.  Exception-causing Nodes
154   // (division, subroutines) and Phi functions are always pinned.  Later,
155   // every Node will get pinned to some block.
head() const156   Node *head() const { return get_node(0); }
157 
158   // CAUTION: num_preds() is ONE based, so that predecessor numbers match
159   // input edges to Regions and Phis.
num_preds() const160   uint num_preds() const { return head()->req(); }
pred(uint i) const161   Node *pred(uint i) const { return head()->in(i); }
162 
163   // Array of successor blocks, same size as projs array
164   Block_Array _succs;
165 
166   // Basic blocks have some number of Nodes which split control to all
167   // following blocks.  These Nodes are always Projections.  The field in
168   // the Projection and the block-ending Node determine which Block follows.
169   uint _num_succs;
170 
171   // Basic blocks also carry all sorts of good old fashioned DFS information
172   // used to find loops, loop nesting depth, dominators, etc.
173   uint _pre_order;              // Pre-order DFS number
174 
175   // Dominator tree
176   uint _dom_depth;              // Depth in dominator tree for fast LCA
177   Block* _idom;                 // Immediate dominator block
178 
179   CFGLoop *_loop;               // Loop to which this block belongs
180   uint _rpo;                    // Number in reverse post order walk
181 
is_block()182   virtual bool is_block() { return true; }
183   float succ_prob(uint i);      // return probability of i'th successor
184   int num_fall_throughs();      // How many fall-through candidate this block has
185   void update_uncommon_branch(Block* un); // Lower branch prob to uncommon code
186   bool succ_fall_through(uint i); // Is successor "i" is a fall-through candidate
187   Block* lone_fall_through();   // Return lone fall-through Block or null
188 
189   Block* dom_lca(Block* that);  // Compute LCA in dominator tree.
190 
dominates(Block * that)191   bool dominates(Block* that) {
192     int dom_diff = this->_dom_depth - that->_dom_depth;
193     if (dom_diff > 0)  return false;
194     for (; dom_diff < 0; dom_diff++)  that = that->_idom;
195     return this == that;
196   }
197 
198   // Report the alignment required by this block.  Must be a power of 2.
199   // The previous block will insert nops to get this alignment.
200   uint code_alignment() const;
201   uint compute_loop_alignment();
202 
203   // BLOCK_FREQUENCY is a sentinel to mark uses of constant block frequencies.
204   // It is currently also used to scale such frequencies relative to
205   // FreqCountInvocations relative to the old value of 1500.
206 #define BLOCK_FREQUENCY(f) ((f * (double) 1500) / FreqCountInvocations)
207 
208   // Register Pressure (estimate) for Splitting heuristic
209   uint _reg_pressure;
210   uint _ihrp_index;
211   uint _freg_pressure;
212   uint _fhrp_index;
213 
214   // Mark and visited bits for an LCA calculation in insert_anti_dependences.
215   // Since they hold unique node indexes, they do not need reinitialization.
216   node_idx_t _raise_LCA_mark;
set_raise_LCA_mark(node_idx_t x)217   void    set_raise_LCA_mark(node_idx_t x)    { _raise_LCA_mark = x; }
raise_LCA_mark() const218   node_idx_t  raise_LCA_mark() const          { return _raise_LCA_mark; }
219   node_idx_t _raise_LCA_visited;
set_raise_LCA_visited(node_idx_t x)220   void    set_raise_LCA_visited(node_idx_t x) { _raise_LCA_visited = x; }
raise_LCA_visited() const221   node_idx_t  raise_LCA_visited() const       { return _raise_LCA_visited; }
222 
223   // Estimated size in bytes of first instructions in a loop.
224   uint _first_inst_size;
first_inst_size() const225   uint first_inst_size() const     { return _first_inst_size; }
set_first_inst_size(uint s)226   void set_first_inst_size(uint s) { _first_inst_size = s; }
227 
228   // Compute the size of first instructions in this block.
229   uint compute_first_inst_size(uint& sum_size, uint inst_cnt, PhaseRegAlloc* ra);
230 
231   // Compute alignment padding if the block needs it.
232   // Align a loop if loop's padding is less or equal to padding limit
233   // or the size of first instructions in the loop > padding.
alignment_padding(int current_offset)234   uint alignment_padding(int current_offset) {
235     int block_alignment = code_alignment();
236     int max_pad = block_alignment-relocInfo::addr_unit();
237     if( max_pad > 0 ) {
238       assert(is_power_of_2(max_pad+relocInfo::addr_unit()), "");
239       int current_alignment = current_offset & max_pad;
240       if( current_alignment != 0 ) {
241         uint padding = (block_alignment-current_alignment) & max_pad;
242         if( has_loop_alignment() &&
243             padding > (uint)MaxLoopPad &&
244             first_inst_size() <= padding ) {
245           return 0;
246         }
247         return padding;
248       }
249     }
250     return 0;
251   }
252 
253   // Connector blocks. Connector blocks are basic blocks devoid of
254   // instructions, but may have relevant non-instruction Nodes, such as
255   // Phis or MergeMems. Such blocks are discovered and marked during the
256   // RemoveEmpty phase, and elided during Output.
257   bool _connector;
set_connector()258   void set_connector() { _connector = true; }
is_connector() const259   bool is_connector() const { return _connector; };
260 
261   // Loop_alignment will be set for blocks which are at the top of loops.
262   // The block layout pass may rotate loops such that the loop head may not
263   // be the sequentially first block of the loop encountered in the linear
264   // list of blocks.  If the layout pass is not run, loop alignment is set
265   // for each block which is the head of a loop.
266   uint _loop_alignment;
set_loop_alignment(Block * loop_top)267   void set_loop_alignment(Block *loop_top) {
268     uint new_alignment = loop_top->compute_loop_alignment();
269     if (new_alignment > _loop_alignment) {
270       _loop_alignment = new_alignment;
271     }
272   }
loop_alignment() const273   uint loop_alignment() const { return _loop_alignment; }
has_loop_alignment() const274   bool has_loop_alignment() const { return loop_alignment() > 0; }
275 
276   // Create a new Block with given head Node.
277   // Creates the (empty) predecessor arrays.
Block(Arena * a,Node * headnode)278   Block( Arena *a, Node *headnode )
279     : CFGElement(),
280       _nodes(a),
281       _succs(a),
282       _num_succs(0),
283       _pre_order(0),
284       _idom(0),
285       _loop(NULL),
286       _reg_pressure(0),
287       _ihrp_index(1),
288       _freg_pressure(0),
289       _fhrp_index(1),
290       _raise_LCA_mark(0),
291       _raise_LCA_visited(0),
292       _first_inst_size(999999),
293       _connector(false),
294       _loop_alignment(0) {
295     _nodes.push(headnode);
296   }
297 
298   // Index of 'end' Node
end_idx() const299   uint end_idx() const {
300     // %%%%% add a proj after every goto
301     // so (last->is_block_proj() != last) always, then simplify this code
302     // This will not give correct end_idx for block 0 when it only contains root.
303     int last_idx = _nodes.size() - 1;
304     Node *last  = _nodes[last_idx];
305     assert(last->is_block_proj() == last || last->is_block_proj() == _nodes[last_idx - _num_succs], "");
306     return (last->is_block_proj() == last) ? last_idx : (last_idx - _num_succs);
307   }
308 
309   // Basic blocks have a Node which ends them.  This Node determines which
310   // basic block follows this one in the program flow.  This Node is either an
311   // IfNode, a GotoNode, a JmpNode, or a ReturnNode.
end() const312   Node *end() const { return _nodes[end_idx()]; }
313 
314   // Add an instruction to an existing block.  It must go after the head
315   // instruction and before the end instruction.
add_inst(Node * n)316   void add_inst( Node *n ) { insert_node(n, end_idx()); }
317   // Find node in block. Fails if node not in block.
318   uint find_node( const Node *n ) const;
319   // Find and remove n from block list
320   void find_remove( const Node *n );
321   // Check whether the node is in the block.
322   bool contains (const Node *n) const;
323 
324   // Return the empty status of a block
325   enum { not_empty, empty_with_goto, completely_empty };
326   int is_Empty() const;
327 
328   // Forward through connectors
non_connector()329   Block* non_connector() {
330     Block* s = this;
331     while (s->is_connector()) {
332       s = s->_succs[0];
333     }
334     return s;
335   }
336 
337   // Return true if b is a successor of this block
has_successor(Block * b) const338   bool has_successor(Block* b) const {
339     for (uint i = 0; i < _num_succs; i++ ) {
340       if (non_connector_successor(i) == b) {
341         return true;
342       }
343     }
344     return false;
345   }
346 
347   // Successor block, after forwarding through connectors
non_connector_successor(int i) const348   Block* non_connector_successor(int i) const {
349     return _succs[i]->non_connector();
350   }
351 
352   // Examine block's code shape to predict if it is not commonly executed.
353   bool has_uncommon_code() const;
354 
355 #ifndef PRODUCT
356   // Debugging print of basic block
357   void dump_bidx(const Block* orig, outputStream* st = tty) const;
358   void dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st = tty) const;
359   void dump_head(const PhaseCFG* cfg, outputStream* st = tty) const;
360   void dump() const;
361   void dump(const PhaseCFG* cfg) const;
362 #endif
363 };
364 
365 
366 //------------------------------PhaseCFG---------------------------------------
367 // Build an array of Basic Block pointers, one per Node.
368 class PhaseCFG : public Phase {
369   friend class VMStructs;
370  private:
371   // Root of whole program
372   RootNode* _root;
373 
374   // The block containing the root node
375   Block* _root_block;
376 
377   // List of basic blocks that are created during CFG creation
378   Block_List _blocks;
379 
380   // Count of basic blocks
381   uint _number_of_blocks;
382 
383   // Arena for the blocks to be stored in
384   Arena* _block_arena;
385 
386   // Info used for scheduling
387   PhaseChaitin* _regalloc;
388 
389   // Register pressure heuristic used?
390   bool _scheduling_for_pressure;
391 
392   // The matcher for this compilation
393   Matcher& _matcher;
394 
395   // Map nodes to owning basic block
396   Block_Array _node_to_block_mapping;
397 
398   // Loop from the root
399   CFGLoop* _root_loop;
400 
401   // Outmost loop frequency
402   double _outer_loop_frequency;
403 
404   // Per node latency estimation, valid only during GCM
405   GrowableArray<uint>* _node_latency;
406 
407   // Build a proper looking cfg.  Return count of basic blocks
408   uint build_cfg();
409 
410   // Build the dominator tree so that we know where we can move instructions
411   void build_dominator_tree();
412 
413   // Estimate block frequencies based on IfNode probabilities, so that we know where we want to move instructions
414   void estimate_block_frequency();
415 
416   // Global Code Motion.  See Click's PLDI95 paper.  Place Nodes in specific
417   // basic blocks; i.e. _node_to_block_mapping now maps _idx for all Nodes to some Block.
418   // Move nodes to ensure correctness from GVN and also try to move nodes out of loops.
419   void global_code_motion();
420 
421   // Schedule Nodes early in their basic blocks.
422   bool schedule_early(VectorSet &visited, Node_Stack &roots);
423 
424   // For each node, find the latest block it can be scheduled into
425   // and then select the cheapest block between the latest and earliest
426   // block to place the node.
427   void schedule_late(VectorSet &visited, Node_Stack &stack);
428 
429   // Compute the (backwards) latency of a node from a single use
430   int latency_from_use(Node *n, const Node *def, Node *use);
431 
432   // Compute the (backwards) latency of a node from the uses of this instruction
433   void partial_latency_of_defs(Node *n);
434 
435   // Compute the instruction global latency with a backwards walk
436   void compute_latencies_backwards(VectorSet &visited, Node_Stack &stack);
437 
438   // Pick a block between early and late that is a cheaper alternative
439   // to late. Helper for schedule_late.
440   Block* hoist_to_cheaper_block(Block* LCA, Block* early, Node* self);
441 
442   bool schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t* recacl_pressure_nodes);
443   void set_next_call(Block* block, Node* n, VectorSet& next_call);
444   void needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call);
445 
446   // Perform basic-block local scheduling
447   Node* select(Block* block, Node_List& worklist, GrowableArray<int>& ready_cnt, VectorSet& next_call, uint sched_slot,
448                intptr_t* recacl_pressure_nodes);
449   void adjust_register_pressure(Node* n, Block* block, intptr_t *recalc_pressure_nodes, bool finalize_mode);
450 
451   // Schedule a call next in the block
452   uint sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call);
453 
454   // Cleanup if any code lands between a Call and his Catch
455   void call_catch_cleanup(Block* block);
456 
457   Node* catch_cleanup_find_cloned_def(Block* use_blk, Node* def, Block* def_blk, int n_clone_idx);
458   void  catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx);
459 
460   // Detect implicit-null-check opportunities.  Basically, find NULL checks
461   // with suitable memory ops nearby.  Use the memory op to do the NULL check.
462   // I can generate a memory op if there is not one nearby.
463   void implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons);
464 
465   // Perform a Depth First Search (DFS).
466   // Setup 'vertex' as DFS to vertex mapping.
467   // Setup 'semi' as vertex to DFS mapping.
468   // Set 'parent' to DFS parent.
469   uint do_DFS(Tarjan* tarjan, uint rpo_counter);
470 
471   // Helper function to insert a node into a block
472   void schedule_node_into_block( Node *n, Block *b );
473 
474   void replace_block_proj_ctrl( Node *n );
475 
476   // Set the basic block for pinned Nodes
477   void schedule_pinned_nodes( VectorSet &visited );
478 
479   // I'll need a few machine-specific GotoNodes.  Clone from this one.
480   // Used when building the CFG and creating end nodes for blocks.
481   MachNode* _goto;
482 
483   Block* insert_anti_dependences(Block* LCA, Node* load, bool verify = false);
verify_anti_dependences(Block * LCA,Node * load) const484   void verify_anti_dependences(Block* LCA, Node* load) const {
485     assert(LCA == get_block_for_node(load), "should already be scheduled");
486     const_cast<PhaseCFG*>(this)->insert_anti_dependences(LCA, load, true);
487   }
488 
489   bool move_to_next(Block* bx, uint b_index);
490   void move_to_end(Block* bx, uint b_index);
491 
492   void insert_goto_at(uint block_no, uint succ_no);
493 
494   // Check for NeverBranch at block end.  This needs to become a GOTO to the
495   // true target.  NeverBranch are treated as a conditional branch that always
496   // goes the same direction for most of the optimizer and are used to give a
497   // fake exit path to infinite loops.  At this late stage they need to turn
498   // into Goto's so that when you enter the infinite loop you indeed hang.
499   void convert_NeverBranch_to_Goto(Block *b);
500 
501   CFGLoop* create_loop_tree();
502   bool is_dominator(Node* dom_node, Node* node);
503   bool is_CFG(Node* n);
504   bool is_control_proj_or_safepoint(Node* n) const;
505   Block* find_block_for_node(Node* n) const;
506   bool is_dominating_control(Node* dom_ctrl, Node* n);
507   #ifndef PRODUCT
508   bool _trace_opto_pipelining;  // tracing flag
509   #endif
510 
511  public:
512   PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher);
513 
set_latency_for_node(Node * node,int latency)514   void set_latency_for_node(Node* node, int latency) {
515     _node_latency->at_put_grow(node->_idx, latency);
516   }
517 
get_latency_for_node(Node * node)518   uint get_latency_for_node(Node* node) {
519     return _node_latency->at_grow(node->_idx);
520   }
521 
522   // Get the outer most frequency
get_outer_loop_frequency() const523   double get_outer_loop_frequency() const {
524     return _outer_loop_frequency;
525   }
526 
527   // Get the root node of the CFG
get_root_node() const528   RootNode* get_root_node() const {
529     return _root;
530   }
531 
532   // Get the block of the root node
get_root_block() const533   Block* get_root_block() const {
534     return _root_block;
535   }
536 
537   // Add a block at a position and moves the later ones one step
add_block_at(uint pos,Block * block)538   void add_block_at(uint pos, Block* block) {
539     _blocks.insert(pos, block);
540     _number_of_blocks++;
541   }
542 
543   // Adds a block to the top of the block list
add_block(Block * block)544   void add_block(Block* block) {
545     _blocks.push(block);
546     _number_of_blocks++;
547   }
548 
549   // Clear the list of blocks
clear_blocks()550   void clear_blocks() {
551     _blocks.reset();
552     _number_of_blocks = 0;
553   }
554 
555   // Get the block at position pos in _blocks
get_block(uint pos) const556   Block* get_block(uint pos) const {
557     return _blocks[pos];
558   }
559 
560   // Number of blocks
number_of_blocks() const561   uint number_of_blocks() const {
562     return _number_of_blocks;
563   }
564 
565   // set which block this node should reside in
map_node_to_block(const Node * node,Block * block)566   void map_node_to_block(const Node* node, Block* block) {
567     _node_to_block_mapping.map(node->_idx, block);
568   }
569 
570   // removes the mapping from a node to a block
unmap_node_from_block(const Node * node)571   void unmap_node_from_block(const Node* node) {
572     _node_to_block_mapping.map(node->_idx, NULL);
573   }
574 
575   // get the block in which this node resides
get_block_for_node(const Node * node) const576   Block* get_block_for_node(const Node* node) const {
577     return _node_to_block_mapping[node->_idx];
578   }
579 
580   // does this node reside in a block; return true
has_block(const Node * node) const581   bool has_block(const Node* node) const {
582     return (_node_to_block_mapping.lookup(node->_idx) != NULL);
583   }
584 
585   // Use frequency calculations and code shape to predict if the block
586   // is uncommon.
587   bool is_uncommon(const Block* block);
588 
589 #ifdef ASSERT
590   Unique_Node_List _raw_oops;
591 #endif
592 
593   // Do global code motion by first building dominator tree and estimate block frequency
594   // Returns true on success
595   bool do_global_code_motion();
596 
597   // Compute the (backwards) latency of a node from the uses
598   void latency_from_uses(Node *n);
599 
600   // Set loop alignment
601   void set_loop_alignment();
602 
603   // Remove empty basic blocks
604   void remove_empty_blocks();
605   Block *fixup_trap_based_check(Node *branch, Block *block, int block_pos, Block *bnext);
606   void fixup_flow();
607 
608   // Insert a node into a block at index and map the node to the block
insert(Block * b,uint idx,Node * n)609   void insert(Block *b, uint idx, Node *n) {
610     b->insert_node(n , idx);
611     map_node_to_block(n, b);
612   }
613 
614   // Check all nodes and postalloc_expand them if necessary.
615   void postalloc_expand(PhaseRegAlloc* _ra);
616 
617 #ifndef PRODUCT
trace_opto_pipelining() const618   bool trace_opto_pipelining() const { return _trace_opto_pipelining; }
619 
620   // Debugging print of CFG
621   void dump( ) const;           // CFG only
622   void _dump_cfg( const Node *end, VectorSet &visited  ) const;
623   void verify() const;
624   void dump_headers();
625 #else
trace_opto_pipelining() const626   bool trace_opto_pipelining() const { return false; }
627 #endif
628 };
629 
630 
631 //------------------------------UnionFind--------------------------------------
632 // Map Block indices to a block-index for a cfg-cover.
633 // Array lookup in the optimized case.
634 class UnionFind : public ResourceObj {
635   uint _cnt, _max;
636   uint* _indices;
637   ReallocMark _nesting;  // assertion check for reallocations
638 public:
639   UnionFind( uint max );
640   void reset( uint max );  // Reset to identity map for [0..max]
641 
lookup(uint nidx) const642   uint lookup( uint nidx ) const {
643     return _indices[nidx];
644   }
operator [](uint nidx) const645   uint operator[] (uint nidx) const { return lookup(nidx); }
646 
map(uint from_idx,uint to_idx)647   void map( uint from_idx, uint to_idx ) {
648     assert( from_idx < _cnt, "oob" );
649     _indices[from_idx] = to_idx;
650   }
651   void extend( uint from_idx, uint to_idx );
652 
Size() const653   uint Size() const { return _cnt; }
654 
Find(uint idx)655   uint Find( uint idx ) {
656     assert( idx < 65536, "Must fit into uint");
657     uint uf_idx = lookup(idx);
658     return (uf_idx == idx) ? uf_idx : Find_compress(idx);
659   }
660   uint Find_compress( uint idx );
661   uint Find_const( uint idx ) const;
662   void Union( uint idx1, uint idx2 );
663 
664 };
665 
666 //----------------------------BlockProbPair---------------------------
667 // Ordered pair of Node*.
668 class BlockProbPair {
669 protected:
670   Block* _target;      // block target
671   double  _prob;        // probability of edge to block
672 public:
BlockProbPair()673   BlockProbPair() : _target(NULL), _prob(0.0) {}
BlockProbPair(Block * b,double p)674   BlockProbPair(Block* b, double p) : _target(b), _prob(p) {}
675 
get_target() const676   Block* get_target() const { return _target; }
get_prob() const677   double get_prob() const { return _prob; }
678 };
679 
680 //------------------------------CFGLoop-------------------------------------------
681 class CFGLoop : public CFGElement {
682   friend class VMStructs;
683   int _id;
684   int _depth;
685   CFGLoop *_parent;      // root of loop tree is the method level "pseudo" loop, it's parent is null
686   CFGLoop *_sibling;     // null terminated list
687   CFGLoop *_child;       // first child, use child's sibling to visit all immediately nested loops
688   GrowableArray<CFGElement*> _members; // list of members of loop
689   GrowableArray<BlockProbPair> _exits; // list of successor blocks and their probabilities
690   double _exit_prob;       // probability any loop exit is taken on a single loop iteration
691   void update_succ_freq(Block* b, double freq);
692 
693  public:
CFGLoop(int id)694   CFGLoop(int id) :
695     CFGElement(),
696     _id(id),
697     _depth(0),
698     _parent(NULL),
699     _sibling(NULL),
700     _child(NULL),
701     _exit_prob(1.0f) {}
parent()702   CFGLoop* parent() { return _parent; }
703   void push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg);
add_member(CFGElement * s)704   void add_member(CFGElement *s) { _members.push(s); }
705   void add_nested_loop(CFGLoop* cl);
head()706   Block* head() {
707     assert(_members.at(0)->is_block(), "head must be a block");
708     Block* hd = _members.at(0)->as_Block();
709     assert(hd->_loop == this, "just checking");
710     assert(hd->head()->is_Loop(), "must begin with loop head node");
711     return hd;
712   }
713   Block* backedge_block(); // Return the block on the backedge of the loop (else NULL)
714   void compute_loop_depth(int depth);
715   void compute_freq(); // compute frequency with loop assuming head freq 1.0f
716   void scale_freq();   // scale frequency by loop trip count (including outer loops)
717   double outer_loop_freq() const; // frequency of outer loop
718   bool in_loop_nest(Block* b);
trip_count() const719   double trip_count() const { return 1.0 / _exit_prob; }
is_loop()720   virtual bool is_loop()  { return true; }
id()721   int id() { return _id; }
722 
723 #ifndef PRODUCT
724   void dump( ) const;
725   void dump_tree() const;
726 #endif
727 };
728 
729 
730 //----------------------------------CFGEdge------------------------------------
731 // A edge between two basic blocks that will be embodied by a branch or a
732 // fall-through.
733 class CFGEdge : public ResourceObj {
734   friend class VMStructs;
735  private:
736   Block * _from;        // Source basic block
737   Block * _to;          // Destination basic block
738   double _freq;          // Execution frequency (estimate)
739   int   _state;
740   bool  _infrequent;
741   int   _from_pct;
742   int   _to_pct;
743 
744   // Private accessors
from_pct() const745   int  from_pct() const { return _from_pct; }
to_pct() const746   int  to_pct()   const { return _to_pct;   }
from_infrequent() const747   int  from_infrequent() const { return from_pct() < BlockLayoutMinDiamondPercentage; }
to_infrequent() const748   int  to_infrequent()   const { return to_pct()   < BlockLayoutMinDiamondPercentage; }
749 
750  public:
751   enum {
752     open,               // initial edge state; unprocessed
753     connected,          // edge used to connect two traces together
754     interior            // edge is interior to trace (could be backedge)
755   };
756 
CFGEdge(Block * from,Block * to,double freq,int from_pct,int to_pct)757   CFGEdge(Block *from, Block *to, double freq, int from_pct, int to_pct) :
758     _from(from), _to(to), _freq(freq),
759     _state(open), _from_pct(from_pct), _to_pct(to_pct) {
760     _infrequent = from_infrequent() || to_infrequent();
761   }
762 
freq() const763   double  freq() const { return _freq; }
from() const764   Block* from() const { return _from; }
to() const765   Block* to  () const { return _to;   }
infrequent() const766   int  infrequent() const { return _infrequent; }
state() const767   int state() const { return _state; }
768 
set_state(int state)769   void set_state(int state) { _state = state; }
770 
771 #ifndef PRODUCT
772   void dump( ) const;
773 #endif
774 };
775 
776 
777 //-----------------------------------Trace-------------------------------------
778 // An ordered list of basic blocks.
779 class Trace : public ResourceObj {
780  private:
781   uint _id;             // Unique Trace id (derived from initial block)
782   Block ** _next_list;  // Array mapping index to next block
783   Block ** _prev_list;  // Array mapping index to previous block
784   Block * _first;       // First block in the trace
785   Block * _last;        // Last block in the trace
786 
787   // Return the block that follows "b" in the trace.
next(Block * b) const788   Block * next(Block *b) const { return _next_list[b->_pre_order]; }
set_next(Block * b,Block * n) const789   void set_next(Block *b, Block *n) const { _next_list[b->_pre_order] = n; }
790 
791   // Return the block that precedes "b" in the trace.
prev(Block * b) const792   Block * prev(Block *b) const { return _prev_list[b->_pre_order]; }
set_prev(Block * b,Block * p) const793   void set_prev(Block *b, Block *p) const { _prev_list[b->_pre_order] = p; }
794 
795   // We've discovered a loop in this trace. Reset last to be "b", and first as
796   // the block following "b
break_loop_after(Block * b)797   void break_loop_after(Block *b) {
798     _last = b;
799     _first = next(b);
800     set_prev(_first, NULL);
801     set_next(_last, NULL);
802   }
803 
804  public:
805 
Trace(Block * b,Block ** next_list,Block ** prev_list)806   Trace(Block *b, Block **next_list, Block **prev_list) :
807     _id(b->_pre_order),
808     _next_list(next_list),
809     _prev_list(prev_list),
810     _first(b),
811     _last(b) {
812     set_next(b, NULL);
813     set_prev(b, NULL);
814   };
815 
816   // Return the id number
id() const817   uint id() const { return _id; }
set_id(uint id)818   void set_id(uint id) { _id = id; }
819 
820   // Return the first block in the trace
first_block() const821   Block * first_block() const { return _first; }
822 
823   // Return the last block in the trace
last_block() const824   Block * last_block() const { return _last; }
825 
826   // Insert a trace in the middle of this one after b
insert_after(Block * b,Trace * tr)827   void insert_after(Block *b, Trace *tr) {
828     set_next(tr->last_block(), next(b));
829     if (next(b) != NULL) {
830       set_prev(next(b), tr->last_block());
831     }
832 
833     set_next(b, tr->first_block());
834     set_prev(tr->first_block(), b);
835 
836     if (b == _last) {
837       _last = tr->last_block();
838     }
839   }
840 
insert_before(Block * b,Trace * tr)841   void insert_before(Block *b, Trace *tr) {
842     Block *p = prev(b);
843     assert(p != NULL, "use append instead");
844     insert_after(p, tr);
845   }
846 
847   // Append another trace to this one.
append(Trace * tr)848   void append(Trace *tr) {
849     insert_after(_last, tr);
850   }
851 
852   // Append a block at the end of this trace
append(Block * b)853   void append(Block *b) {
854     set_next(_last, b);
855     set_prev(b, _last);
856     _last = b;
857   }
858 
859   // Adjust the the blocks in this trace
860   void fixup_blocks(PhaseCFG &cfg);
861   bool backedge(CFGEdge *e);
862 
863 #ifndef PRODUCT
864   void dump( ) const;
865 #endif
866 };
867 
868 //------------------------------PhaseBlockLayout-------------------------------
869 // Rearrange blocks into some canonical order, based on edges and their frequencies
870 class PhaseBlockLayout : public Phase {
871   friend class VMStructs;
872   PhaseCFG &_cfg;               // Control flow graph
873 
874   GrowableArray<CFGEdge *> *edges;
875   Trace **traces;
876   Block **next;
877   Block **prev;
878   UnionFind *uf;
879 
880   // Given a block, find its encompassing Trace
trace(Block * b)881   Trace * trace(Block *b) {
882     return traces[uf->Find_compress(b->_pre_order)];
883   }
884  public:
885   PhaseBlockLayout(PhaseCFG &cfg);
886 
887   void find_edges();
888   void grow_traces();
889   void merge_traces(bool loose_connections);
890   void reorder_traces(int count);
891   void union_traces(Trace* from, Trace* to);
892 };
893 
894 #endif // SHARE_OPTO_BLOCK_HPP
895