1 /*
2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "compiler/compileLog.hpp"
27 #include "ci/bcEscapeAnalyzer.hpp"
28 #include "compiler/oopMap.hpp"
29 #include "gc/shared/barrierSet.hpp"
30 #include "gc/shared/c2/barrierSetC2.hpp"
31 #include "interpreter/interpreter.hpp"
32 #include "opto/callGenerator.hpp"
33 #include "opto/callnode.hpp"
34 #include "opto/castnode.hpp"
35 #include "opto/convertnode.hpp"
36 #include "opto/escape.hpp"
37 #include "opto/locknode.hpp"
38 #include "opto/machnode.hpp"
39 #include "opto/matcher.hpp"
40 #include "opto/parse.hpp"
41 #include "opto/regalloc.hpp"
42 #include "opto/regmask.hpp"
43 #include "opto/rootnode.hpp"
44 #include "opto/runtime.hpp"
45 #include "runtime/sharedRuntime.hpp"
46 #include "utilities/powerOfTwo.hpp"
47 #include "code/vmreg.hpp"
48 
49 // Portions of code courtesy of Clifford Click
50 
51 // Optimization - Graph Style
52 
53 //=============================================================================
size_of() const54 uint StartNode::size_of() const { return sizeof(*this); }
cmp(const Node & n) const55 bool StartNode::cmp( const Node &n ) const
56 { return _domain == ((StartNode&)n)._domain; }
bottom_type() const57 const Type *StartNode::bottom_type() const { return _domain; }
Value(PhaseGVN * phase) const58 const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; }
59 #ifndef PRODUCT
dump_spec(outputStream * st) const60 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
dump_compact_spec(outputStream * st) const61 void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ }
62 #endif
63 
64 //------------------------------Ideal------------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)65 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
66   return remove_dead_region(phase, can_reshape) ? this : NULL;
67 }
68 
69 //------------------------------calling_convention-----------------------------
calling_convention(BasicType * sig_bt,VMRegPair * parm_regs,uint argcnt) const70 void StartNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
71   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
72 }
73 
74 //------------------------------Registers--------------------------------------
in_RegMask(uint) const75 const RegMask &StartNode::in_RegMask(uint) const {
76   return RegMask::Empty;
77 }
78 
79 //------------------------------match------------------------------------------
80 // Construct projections for incoming parameters, and their RegMask info
match(const ProjNode * proj,const Matcher * match)81 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
82   switch (proj->_con) {
83   case TypeFunc::Control:
84   case TypeFunc::I_O:
85   case TypeFunc::Memory:
86     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
87   case TypeFunc::FramePtr:
88     return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
89   case TypeFunc::ReturnAdr:
90     return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
91   case TypeFunc::Parms:
92   default: {
93       uint parm_num = proj->_con - TypeFunc::Parms;
94       const Type *t = _domain->field_at(proj->_con);
95       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
96         return new ConNode(Type::TOP);
97       uint ideal_reg = t->ideal_reg();
98       RegMask &rm = match->_calling_convention_mask[parm_num];
99       return new MachProjNode(this,proj->_con,rm,ideal_reg);
100     }
101   }
102   return NULL;
103 }
104 
105 //------------------------------StartOSRNode----------------------------------
106 // The method start node for an on stack replacement adapter
107 
108 //------------------------------osr_domain-----------------------------
osr_domain()109 const TypeTuple *StartOSRNode::osr_domain() {
110   const Type **fields = TypeTuple::fields(2);
111   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
112 
113   return TypeTuple::make(TypeFunc::Parms+1, fields);
114 }
115 
116 //=============================================================================
117 const char * const ParmNode::names[TypeFunc::Parms+1] = {
118   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
119 };
120 
121 #ifndef PRODUCT
dump_spec(outputStream * st) const122 void ParmNode::dump_spec(outputStream *st) const {
123   if( _con < TypeFunc::Parms ) {
124     st->print("%s", names[_con]);
125   } else {
126     st->print("Parm%d: ",_con-TypeFunc::Parms);
127     // Verbose and WizardMode dump bottom_type for all nodes
128     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
129   }
130 }
131 
dump_compact_spec(outputStream * st) const132 void ParmNode::dump_compact_spec(outputStream *st) const {
133   if (_con < TypeFunc::Parms) {
134     st->print("%s", names[_con]);
135   } else {
136     st->print("%d:", _con-TypeFunc::Parms);
137     // unconditionally dump bottom_type
138     bottom_type()->dump_on(st);
139   }
140 }
141 
142 // For a ParmNode, all immediate inputs and outputs are considered relevant
143 // both in compact and standard representation.
related(GrowableArray<Node * > * in_rel,GrowableArray<Node * > * out_rel,bool compact) const144 void ParmNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
145   this->collect_nodes(in_rel, 1, false, false);
146   this->collect_nodes(out_rel, -1, false, false);
147 }
148 #endif
149 
ideal_reg() const150 uint ParmNode::ideal_reg() const {
151   switch( _con ) {
152   case TypeFunc::Control  : // fall through
153   case TypeFunc::I_O      : // fall through
154   case TypeFunc::Memory   : return 0;
155   case TypeFunc::FramePtr : // fall through
156   case TypeFunc::ReturnAdr: return Op_RegP;
157   default                 : assert( _con > TypeFunc::Parms, "" );
158     // fall through
159   case TypeFunc::Parms    : {
160     // Type of argument being passed
161     const Type *t = in(0)->as_Start()->_domain->field_at(_con);
162     return t->ideal_reg();
163   }
164   }
165   ShouldNotReachHere();
166   return 0;
167 }
168 
169 //=============================================================================
ReturnNode(uint edges,Node * cntrl,Node * i_o,Node * memory,Node * frameptr,Node * retadr)170 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
171   init_req(TypeFunc::Control,cntrl);
172   init_req(TypeFunc::I_O,i_o);
173   init_req(TypeFunc::Memory,memory);
174   init_req(TypeFunc::FramePtr,frameptr);
175   init_req(TypeFunc::ReturnAdr,retadr);
176 }
177 
Ideal(PhaseGVN * phase,bool can_reshape)178 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
179   return remove_dead_region(phase, can_reshape) ? this : NULL;
180 }
181 
Value(PhaseGVN * phase) const182 const Type* ReturnNode::Value(PhaseGVN* phase) const {
183   return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
184     ? Type::TOP
185     : Type::BOTTOM;
186 }
187 
188 // Do we Match on this edge index or not?  No edges on return nodes
match_edge(uint idx) const189 uint ReturnNode::match_edge(uint idx) const {
190   return 0;
191 }
192 
193 
194 #ifndef PRODUCT
dump_req(outputStream * st) const195 void ReturnNode::dump_req(outputStream *st) const {
196   // Dump the required inputs, enclosed in '(' and ')'
197   uint i;                       // Exit value of loop
198   for (i = 0; i < req(); i++) {    // For all required inputs
199     if (i == TypeFunc::Parms) st->print("returns");
200     if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
201     else st->print("_ ");
202   }
203 }
204 #endif
205 
206 //=============================================================================
RethrowNode(Node * cntrl,Node * i_o,Node * memory,Node * frameptr,Node * ret_adr,Node * exception)207 RethrowNode::RethrowNode(
208   Node* cntrl,
209   Node* i_o,
210   Node* memory,
211   Node* frameptr,
212   Node* ret_adr,
213   Node* exception
214 ) : Node(TypeFunc::Parms + 1) {
215   init_req(TypeFunc::Control  , cntrl    );
216   init_req(TypeFunc::I_O      , i_o      );
217   init_req(TypeFunc::Memory   , memory   );
218   init_req(TypeFunc::FramePtr , frameptr );
219   init_req(TypeFunc::ReturnAdr, ret_adr);
220   init_req(TypeFunc::Parms    , exception);
221 }
222 
Ideal(PhaseGVN * phase,bool can_reshape)223 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
224   return remove_dead_region(phase, can_reshape) ? this : NULL;
225 }
226 
Value(PhaseGVN * phase) const227 const Type* RethrowNode::Value(PhaseGVN* phase) const {
228   return (phase->type(in(TypeFunc::Control)) == Type::TOP)
229     ? Type::TOP
230     : Type::BOTTOM;
231 }
232 
match_edge(uint idx) const233 uint RethrowNode::match_edge(uint idx) const {
234   return 0;
235 }
236 
237 #ifndef PRODUCT
dump_req(outputStream * st) const238 void RethrowNode::dump_req(outputStream *st) const {
239   // Dump the required inputs, enclosed in '(' and ')'
240   uint i;                       // Exit value of loop
241   for (i = 0; i < req(); i++) {    // For all required inputs
242     if (i == TypeFunc::Parms) st->print("exception");
243     if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
244     else st->print("_ ");
245   }
246 }
247 #endif
248 
249 //=============================================================================
250 // Do we Match on this edge index or not?  Match only target address & method
match_edge(uint idx) const251 uint TailCallNode::match_edge(uint idx) const {
252   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
253 }
254 
255 //=============================================================================
256 // Do we Match on this edge index or not?  Match only target address & oop
match_edge(uint idx) const257 uint TailJumpNode::match_edge(uint idx) const {
258   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
259 }
260 
261 //=============================================================================
JVMState(ciMethod * method,JVMState * caller)262 JVMState::JVMState(ciMethod* method, JVMState* caller) :
263   _method(method) {
264   assert(method != NULL, "must be valid call site");
265   _bci = InvocationEntryBci;
266   _reexecute = Reexecute_Undefined;
267   debug_only(_bci = -99);  // random garbage value
268   debug_only(_map = (SafePointNode*)-1);
269   _caller = caller;
270   _depth  = 1 + (caller == NULL ? 0 : caller->depth());
271   _locoff = TypeFunc::Parms;
272   _stkoff = _locoff + _method->max_locals();
273   _monoff = _stkoff + _method->max_stack();
274   _scloff = _monoff;
275   _endoff = _monoff;
276   _sp = 0;
277 }
JVMState(int stack_size)278 JVMState::JVMState(int stack_size) :
279   _method(NULL) {
280   _bci = InvocationEntryBci;
281   _reexecute = Reexecute_Undefined;
282   debug_only(_map = (SafePointNode*)-1);
283   _caller = NULL;
284   _depth  = 1;
285   _locoff = TypeFunc::Parms;
286   _stkoff = _locoff;
287   _monoff = _stkoff + stack_size;
288   _scloff = _monoff;
289   _endoff = _monoff;
290   _sp = 0;
291 }
292 
293 //--------------------------------of_depth-------------------------------------
of_depth(int d) const294 JVMState* JVMState::of_depth(int d) const {
295   const JVMState* jvmp = this;
296   assert(0 < d && (uint)d <= depth(), "oob");
297   for (int skip = depth() - d; skip > 0; skip--) {
298     jvmp = jvmp->caller();
299   }
300   assert(jvmp->depth() == (uint)d, "found the right one");
301   return (JVMState*)jvmp;
302 }
303 
304 //-----------------------------same_calls_as-----------------------------------
same_calls_as(const JVMState * that) const305 bool JVMState::same_calls_as(const JVMState* that) const {
306   if (this == that)                    return true;
307   if (this->depth() != that->depth())  return false;
308   const JVMState* p = this;
309   const JVMState* q = that;
310   for (;;) {
311     if (p->_method != q->_method)    return false;
312     if (p->_method == NULL)          return true;   // bci is irrelevant
313     if (p->_bci    != q->_bci)       return false;
314     if (p->_reexecute != q->_reexecute)  return false;
315     p = p->caller();
316     q = q->caller();
317     if (p == q)                      return true;
318     assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
319   }
320 }
321 
322 //------------------------------debug_start------------------------------------
debug_start() const323 uint JVMState::debug_start()  const {
324   debug_only(JVMState* jvmroot = of_depth(1));
325   assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
326   return of_depth(1)->locoff();
327 }
328 
329 //-------------------------------debug_end-------------------------------------
debug_end() const330 uint JVMState::debug_end() const {
331   debug_only(JVMState* jvmroot = of_depth(1));
332   assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
333   return endoff();
334 }
335 
336 //------------------------------debug_depth------------------------------------
debug_depth() const337 uint JVMState::debug_depth() const {
338   uint total = 0;
339   for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
340     total += jvmp->debug_size();
341   }
342   return total;
343 }
344 
345 #ifndef PRODUCT
346 
347 //------------------------------format_helper----------------------------------
348 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
349 // any defined value or not.  If it does, print out the register or constant.
format_helper(PhaseRegAlloc * regalloc,outputStream * st,Node * n,const char * msg,uint i,GrowableArray<SafePointScalarObjectNode * > * scobjs)350 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
351   if (n == NULL) { st->print(" NULL"); return; }
352   if (n->is_SafePointScalarObject()) {
353     // Scalar replacement.
354     SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
355     scobjs->append_if_missing(spobj);
356     int sco_n = scobjs->find(spobj);
357     assert(sco_n >= 0, "");
358     st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
359     return;
360   }
361   if (regalloc->node_regs_max_index() > 0 &&
362       OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
363     char buf[50];
364     regalloc->dump_register(n,buf);
365     st->print(" %s%d]=%s",msg,i,buf);
366   } else {                      // No register, but might be constant
367     const Type *t = n->bottom_type();
368     switch (t->base()) {
369     case Type::Int:
370       st->print(" %s%d]=#" INT32_FORMAT,msg,i,t->is_int()->get_con());
371       break;
372     case Type::AnyPtr:
373       assert( t == TypePtr::NULL_PTR || n->in_dump(), "" );
374       st->print(" %s%d]=#NULL",msg,i);
375       break;
376     case Type::AryPtr:
377     case Type::InstPtr:
378       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop()));
379       break;
380     case Type::KlassPtr:
381       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->klass()));
382       break;
383     case Type::MetadataPtr:
384       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata()));
385       break;
386     case Type::NarrowOop:
387       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop()));
388       break;
389     case Type::RawPtr:
390       st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr()));
391       break;
392     case Type::DoubleCon:
393       st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
394       break;
395     case Type::FloatCon:
396       st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
397       break;
398     case Type::Long:
399       st->print(" %s%d]=#" INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con()));
400       break;
401     case Type::Half:
402     case Type::Top:
403       st->print(" %s%d]=_",msg,i);
404       break;
405     default: ShouldNotReachHere();
406     }
407   }
408 }
409 
410 //---------------------print_method_with_lineno--------------------------------
print_method_with_lineno(outputStream * st,bool show_name) const411 void JVMState::print_method_with_lineno(outputStream* st, bool show_name) const {
412   if (show_name) _method->print_short_name(st);
413 
414   int lineno = _method->line_number_from_bci(_bci);
415   if (lineno != -1) {
416     st->print(" @ bci:%d (line %d)", _bci, lineno);
417   } else {
418     st->print(" @ bci:%d", _bci);
419   }
420 }
421 
422 //------------------------------format-----------------------------------------
format(PhaseRegAlloc * regalloc,const Node * n,outputStream * st) const423 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
424   st->print("        #");
425   if (_method) {
426     print_method_with_lineno(st, true);
427   } else {
428     st->print_cr(" runtime stub ");
429     return;
430   }
431   if (n->is_MachSafePoint()) {
432     GrowableArray<SafePointScalarObjectNode*> scobjs;
433     MachSafePointNode *mcall = n->as_MachSafePoint();
434     uint i;
435     // Print locals
436     for (i = 0; i < (uint)loc_size(); i++)
437       format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs);
438     // Print stack
439     for (i = 0; i < (uint)stk_size(); i++) {
440       if ((uint)(_stkoff + i) >= mcall->len())
441         st->print(" oob ");
442       else
443        format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs);
444     }
445     for (i = 0; (int)i < nof_monitors(); i++) {
446       Node *box = mcall->monitor_box(this, i);
447       Node *obj = mcall->monitor_obj(this, i);
448       if (regalloc->node_regs_max_index() > 0 &&
449           OptoReg::is_valid(regalloc->get_reg_first(box))) {
450         box = BoxLockNode::box_node(box);
451         format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs);
452       } else {
453         OptoReg::Name box_reg = BoxLockNode::reg(box);
454         st->print(" MON-BOX%d=%s+%d",
455                    i,
456                    OptoReg::regname(OptoReg::c_frame_pointer),
457                    regalloc->reg2offset(box_reg));
458       }
459       const char* obj_msg = "MON-OBJ[";
460       if (EliminateLocks) {
461         if (BoxLockNode::box_node(box)->is_eliminated())
462           obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
463       }
464       format_helper(regalloc, st, obj, obj_msg, i, &scobjs);
465     }
466 
467     for (i = 0; i < (uint)scobjs.length(); i++) {
468       // Scalar replaced objects.
469       st->cr();
470       st->print("        # ScObj" INT32_FORMAT " ", i);
471       SafePointScalarObjectNode* spobj = scobjs.at(i);
472       ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass();
473       assert(cik->is_instance_klass() ||
474              cik->is_array_klass(), "Not supported allocation.");
475       ciInstanceKlass *iklass = NULL;
476       if (cik->is_instance_klass()) {
477         cik->print_name_on(st);
478         iklass = cik->as_instance_klass();
479       } else if (cik->is_type_array_klass()) {
480         cik->as_array_klass()->base_element_type()->print_name_on(st);
481         st->print("[%d]", spobj->n_fields());
482       } else if (cik->is_obj_array_klass()) {
483         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
484         if (cie->is_instance_klass()) {
485           cie->print_name_on(st);
486         } else if (cie->is_type_array_klass()) {
487           cie->as_array_klass()->base_element_type()->print_name_on(st);
488         } else {
489           ShouldNotReachHere();
490         }
491         st->print("[%d]", spobj->n_fields());
492         int ndim = cik->as_array_klass()->dimension() - 1;
493         while (ndim-- > 0) {
494           st->print("[]");
495         }
496       }
497       st->print("={");
498       uint nf = spobj->n_fields();
499       if (nf > 0) {
500         uint first_ind = spobj->first_index(mcall->jvms());
501         Node* fld_node = mcall->in(first_ind);
502         ciField* cifield;
503         if (iklass != NULL) {
504           st->print(" [");
505           cifield = iklass->nonstatic_field_at(0);
506           cifield->print_name_on(st);
507           format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
508         } else {
509           format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
510         }
511         for (uint j = 1; j < nf; j++) {
512           fld_node = mcall->in(first_ind+j);
513           if (iklass != NULL) {
514             st->print(", [");
515             cifield = iklass->nonstatic_field_at(j);
516             cifield->print_name_on(st);
517             format_helper(regalloc, st, fld_node, ":", j, &scobjs);
518           } else {
519             format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
520           }
521         }
522       }
523       st->print(" }");
524     }
525   }
526   st->cr();
527   if (caller() != NULL) caller()->format(regalloc, n, st);
528 }
529 
530 
dump_spec(outputStream * st) const531 void JVMState::dump_spec(outputStream *st) const {
532   if (_method != NULL) {
533     bool printed = false;
534     if (!Verbose) {
535       // The JVMS dumps make really, really long lines.
536       // Take out the most boring parts, which are the package prefixes.
537       char buf[500];
538       stringStream namest(buf, sizeof(buf));
539       _method->print_short_name(&namest);
540       if (namest.count() < sizeof(buf)) {
541         const char* name = namest.base();
542         if (name[0] == ' ')  ++name;
543         const char* endcn = strchr(name, ':');  // end of class name
544         if (endcn == NULL)  endcn = strchr(name, '(');
545         if (endcn == NULL)  endcn = name + strlen(name);
546         while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
547           --endcn;
548         st->print(" %s", endcn);
549         printed = true;
550       }
551     }
552     print_method_with_lineno(st, !printed);
553     if(_reexecute == Reexecute_True)
554       st->print(" reexecute");
555   } else {
556     st->print(" runtime stub");
557   }
558   if (caller() != NULL)  caller()->dump_spec(st);
559 }
560 
561 
dump_on(outputStream * st) const562 void JVMState::dump_on(outputStream* st) const {
563   bool print_map = _map && !((uintptr_t)_map & 1) &&
564                   ((caller() == NULL) || (caller()->map() != _map));
565   if (print_map) {
566     if (_map->len() > _map->req()) {  // _map->has_exceptions()
567       Node* ex = _map->in(_map->req());  // _map->next_exception()
568       // skip the first one; it's already being printed
569       while (ex != NULL && ex->len() > ex->req()) {
570         ex = ex->in(ex->req());  // ex->next_exception()
571         ex->dump(1);
572       }
573     }
574     _map->dump(Verbose ? 2 : 1);
575   }
576   if (caller() != NULL) {
577     caller()->dump_on(st);
578   }
579   st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
580              depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
581   if (_method == NULL) {
582     st->print_cr("(none)");
583   } else {
584     _method->print_name(st);
585     st->cr();
586     if (bci() >= 0 && bci() < _method->code_size()) {
587       st->print("    bc: ");
588       _method->print_codes_on(bci(), bci()+1, st);
589     }
590   }
591 }
592 
593 // Extra way to dump a jvms from the debugger,
594 // to avoid a bug with C++ member function calls.
dump_jvms(JVMState * jvms)595 void dump_jvms(JVMState* jvms) {
596   jvms->dump();
597 }
598 #endif
599 
600 //--------------------------clone_shallow--------------------------------------
clone_shallow(Compile * C) const601 JVMState* JVMState::clone_shallow(Compile* C) const {
602   JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
603   n->set_bci(_bci);
604   n->_reexecute = _reexecute;
605   n->set_locoff(_locoff);
606   n->set_stkoff(_stkoff);
607   n->set_monoff(_monoff);
608   n->set_scloff(_scloff);
609   n->set_endoff(_endoff);
610   n->set_sp(_sp);
611   n->set_map(_map);
612   return n;
613 }
614 
615 //---------------------------clone_deep----------------------------------------
clone_deep(Compile * C) const616 JVMState* JVMState::clone_deep(Compile* C) const {
617   JVMState* n = clone_shallow(C);
618   for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
619     p->_caller = p->_caller->clone_shallow(C);
620   }
621   assert(n->depth() == depth(), "sanity");
622   assert(n->debug_depth() == debug_depth(), "sanity");
623   return n;
624 }
625 
626 /**
627  * Reset map for all callers
628  */
set_map_deep(SafePointNode * map)629 void JVMState::set_map_deep(SafePointNode* map) {
630   for (JVMState* p = this; p != NULL; p = p->_caller) {
631     p->set_map(map);
632   }
633 }
634 
635 // Adapt offsets in in-array after adding or removing an edge.
636 // Prerequisite is that the JVMState is used by only one node.
adapt_position(int delta)637 void JVMState::adapt_position(int delta) {
638   for (JVMState* jvms = this; jvms != NULL; jvms = jvms->caller()) {
639     jvms->set_locoff(jvms->locoff() + delta);
640     jvms->set_stkoff(jvms->stkoff() + delta);
641     jvms->set_monoff(jvms->monoff() + delta);
642     jvms->set_scloff(jvms->scloff() + delta);
643     jvms->set_endoff(jvms->endoff() + delta);
644   }
645 }
646 
647 // Mirror the stack size calculation in the deopt code
648 // How much stack space would we need at this point in the program in
649 // case of deoptimization?
interpreter_frame_size() const650 int JVMState::interpreter_frame_size() const {
651   const JVMState* jvms = this;
652   int size = 0;
653   int callee_parameters = 0;
654   int callee_locals = 0;
655   int extra_args = method()->max_stack() - stk_size();
656 
657   while (jvms != NULL) {
658     int locks = jvms->nof_monitors();
659     int temps = jvms->stk_size();
660     bool is_top_frame = (jvms == this);
661     ciMethod* method = jvms->method();
662 
663     int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
664                                                                  temps + callee_parameters,
665                                                                  extra_args,
666                                                                  locks,
667                                                                  callee_parameters,
668                                                                  callee_locals,
669                                                                  is_top_frame);
670     size += frame_size;
671 
672     callee_parameters = method->size_of_parameters();
673     callee_locals = method->max_locals();
674     extra_args = 0;
675     jvms = jvms->caller();
676   }
677   return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
678 }
679 
680 //=============================================================================
cmp(const Node & n) const681 bool CallNode::cmp( const Node &n ) const
682 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
683 #ifndef PRODUCT
dump_req(outputStream * st) const684 void CallNode::dump_req(outputStream *st) const {
685   // Dump the required inputs, enclosed in '(' and ')'
686   uint i;                       // Exit value of loop
687   for (i = 0; i < req(); i++) {    // For all required inputs
688     if (i == TypeFunc::Parms) st->print("(");
689     if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
690     else st->print("_ ");
691   }
692   st->print(")");
693 }
694 
dump_spec(outputStream * st) const695 void CallNode::dump_spec(outputStream *st) const {
696   st->print(" ");
697   if (tf() != NULL)  tf()->dump_on(st);
698   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
699   if (jvms() != NULL)  jvms()->dump_spec(st);
700 }
701 #endif
702 
bottom_type() const703 const Type *CallNode::bottom_type() const { return tf()->range(); }
Value(PhaseGVN * phase) const704 const Type* CallNode::Value(PhaseGVN* phase) const {
705   if (phase->type(in(0)) == Type::TOP)  return Type::TOP;
706   return tf()->range();
707 }
708 
709 //------------------------------calling_convention-----------------------------
calling_convention(BasicType * sig_bt,VMRegPair * parm_regs,uint argcnt) const710 void CallNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
711   // Use the standard compiler calling convention
712   SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
713 }
714 
715 
716 //------------------------------match------------------------------------------
717 // Construct projections for control, I/O, memory-fields, ..., and
718 // return result(s) along with their RegMask info
match(const ProjNode * proj,const Matcher * match)719 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
720   switch (proj->_con) {
721   case TypeFunc::Control:
722   case TypeFunc::I_O:
723   case TypeFunc::Memory:
724     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
725 
726   case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
727     assert(tf()->range()->field_at(TypeFunc::Parms+1) == Type::HALF, "");
728     // 2nd half of doubles and longs
729     return new MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
730 
731   case TypeFunc::Parms: {       // Normal returns
732     uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg();
733     OptoRegPair regs = is_CallRuntime()
734       ? match->c_return_value(ideal_reg)  // Calls into C runtime
735       : match->  return_value(ideal_reg); // Calls into compiled Java code
736     RegMask rm = RegMask(regs.first());
737     if( OptoReg::is_valid(regs.second()) )
738       rm.Insert( regs.second() );
739     return new MachProjNode(this,proj->_con,rm,ideal_reg);
740   }
741 
742   case TypeFunc::ReturnAdr:
743   case TypeFunc::FramePtr:
744   default:
745     ShouldNotReachHere();
746   }
747   return NULL;
748 }
749 
750 // Do we Match on this edge index or not?  Match no edges
match_edge(uint idx) const751 uint CallNode::match_edge(uint idx) const {
752   return 0;
753 }
754 
755 //
756 // Determine whether the call could modify the field of the specified
757 // instance at the specified offset.
758 //
may_modify(const TypeOopPtr * t_oop,PhaseTransform * phase)759 bool CallNode::may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) {
760   assert((t_oop != NULL), "sanity");
761   if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) {
762     const TypeTuple* args = _tf->domain();
763     Node* dest = NULL;
764     // Stubs that can be called once an ArrayCopyNode is expanded have
765     // different signatures. Look for the second pointer argument,
766     // that is the destination of the copy.
767     for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
768       if (args->field_at(i)->isa_ptr()) {
769         j++;
770         if (j == 2) {
771           dest = in(i);
772           break;
773         }
774       }
775     }
776     guarantee(dest != NULL, "Call had only one ptr in, broken IR!");
777     if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) {
778       return true;
779     }
780     return false;
781   }
782   if (t_oop->is_known_instance()) {
783     // The instance_id is set only for scalar-replaceable allocations which
784     // are not passed as arguments according to Escape Analysis.
785     return false;
786   }
787   if (t_oop->is_ptr_to_boxed_value()) {
788     ciKlass* boxing_klass = t_oop->klass();
789     if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) {
790       // Skip unrelated boxing methods.
791       Node* proj = proj_out_or_null(TypeFunc::Parms);
792       if ((proj == NULL) || (phase->type(proj)->is_instptr()->klass() != boxing_klass)) {
793         return false;
794       }
795     }
796     if (is_CallJava() && as_CallJava()->method() != NULL) {
797       ciMethod* meth = as_CallJava()->method();
798       if (meth->is_getter()) {
799         return false;
800       }
801       // May modify (by reflection) if an boxing object is passed
802       // as argument or returned.
803       Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : NULL;
804       if (proj != NULL) {
805         const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
806         if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
807                                  (inst_t->klass() == boxing_klass))) {
808           return true;
809         }
810       }
811       const TypeTuple* d = tf()->domain();
812       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
813         const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
814         if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
815                                  (inst_t->klass() == boxing_klass))) {
816           return true;
817         }
818       }
819       return false;
820     }
821   }
822   return true;
823 }
824 
825 // Does this call have a direct reference to n other than debug information?
has_non_debug_use(Node * n)826 bool CallNode::has_non_debug_use(Node *n) {
827   const TypeTuple * d = tf()->domain();
828   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
829     Node *arg = in(i);
830     if (arg == n) {
831       return true;
832     }
833   }
834   return false;
835 }
836 
837 // Returns the unique CheckCastPP of a call
838 // or 'this' if there are several CheckCastPP or unexpected uses
839 // or returns NULL if there is no one.
result_cast()840 Node *CallNode::result_cast() {
841   Node *cast = NULL;
842 
843   Node *p = proj_out_or_null(TypeFunc::Parms);
844   if (p == NULL)
845     return NULL;
846 
847   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
848     Node *use = p->fast_out(i);
849     if (use->is_CheckCastPP()) {
850       if (cast != NULL) {
851         return this;  // more than 1 CheckCastPP
852       }
853       cast = use;
854     } else if (!use->is_Initialize() &&
855                !use->is_AddP() &&
856                use->Opcode() != Op_MemBarStoreStore) {
857       // Expected uses are restricted to a CheckCastPP, an Initialize
858       // node, a MemBarStoreStore (clone) and AddP nodes. If we
859       // encounter any other use (a Phi node can be seen in rare
860       // cases) return this to prevent incorrect optimizations.
861       return this;
862     }
863   }
864   return cast;
865 }
866 
867 
extract_projections(CallProjections * projs,bool separate_io_proj,bool do_asserts)868 void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj, bool do_asserts) {
869   projs->fallthrough_proj      = NULL;
870   projs->fallthrough_catchproj = NULL;
871   projs->fallthrough_ioproj    = NULL;
872   projs->catchall_ioproj       = NULL;
873   projs->catchall_catchproj    = NULL;
874   projs->fallthrough_memproj   = NULL;
875   projs->catchall_memproj      = NULL;
876   projs->resproj               = NULL;
877   projs->exobj                 = NULL;
878 
879   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
880     ProjNode *pn = fast_out(i)->as_Proj();
881     if (pn->outcnt() == 0) continue;
882     switch (pn->_con) {
883     case TypeFunc::Control:
884       {
885         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
886         projs->fallthrough_proj = pn;
887         const Node *cn = pn->unique_ctrl_out();
888         if (cn != NULL && cn->is_Catch()) {
889           ProjNode *cpn = NULL;
890           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
891             cpn = cn->fast_out(k)->as_Proj();
892             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
893             if (cpn->_con == CatchProjNode::fall_through_index)
894               projs->fallthrough_catchproj = cpn;
895             else {
896               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
897               projs->catchall_catchproj = cpn;
898             }
899           }
900         }
901         break;
902       }
903     case TypeFunc::I_O:
904       if (pn->_is_io_use)
905         projs->catchall_ioproj = pn;
906       else
907         projs->fallthrough_ioproj = pn;
908       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
909         Node* e = pn->out(j);
910         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
911           assert(projs->exobj == NULL, "only one");
912           projs->exobj = e;
913         }
914       }
915       break;
916     case TypeFunc::Memory:
917       if (pn->_is_io_use)
918         projs->catchall_memproj = pn;
919       else
920         projs->fallthrough_memproj = pn;
921       break;
922     case TypeFunc::Parms:
923       projs->resproj = pn;
924       break;
925     default:
926       assert(false, "unexpected projection from allocation node.");
927     }
928   }
929 
930   // The resproj may not exist because the result could be ignored
931   // and the exception object may not exist if an exception handler
932   // swallows the exception but all the other must exist and be found.
933   assert(projs->fallthrough_proj      != NULL, "must be found");
934   do_asserts = do_asserts && !Compile::current()->inlining_incrementally();
935   assert(!do_asserts || projs->fallthrough_catchproj != NULL, "must be found");
936   assert(!do_asserts || projs->fallthrough_memproj   != NULL, "must be found");
937   assert(!do_asserts || projs->fallthrough_ioproj    != NULL, "must be found");
938   assert(!do_asserts || projs->catchall_catchproj    != NULL, "must be found");
939   if (separate_io_proj) {
940     assert(!do_asserts || projs->catchall_memproj    != NULL, "must be found");
941     assert(!do_asserts || projs->catchall_ioproj     != NULL, "must be found");
942   }
943 }
944 
Ideal(PhaseGVN * phase,bool can_reshape)945 Node* CallNode::Ideal(PhaseGVN* phase, bool can_reshape) {
946 #ifdef ASSERT
947   // Validate attached generator
948   CallGenerator* cg = generator();
949   if (cg != NULL) {
950     assert(is_CallStaticJava()  && cg->is_mh_late_inline() ||
951            is_CallDynamicJava() && cg->is_virtual_late_inline(), "mismatch");
952   }
953 #endif // ASSERT
954   return SafePointNode::Ideal(phase, can_reshape);
955 }
956 
is_call_to_arraycopystub() const957 bool CallNode::is_call_to_arraycopystub() const {
958   if (_name != NULL && strstr(_name, "arraycopy") != 0) {
959     return true;
960   }
961   return false;
962 }
963 
964 //=============================================================================
size_of() const965 uint CallJavaNode::size_of() const { return sizeof(*this); }
cmp(const Node & n) const966 bool CallJavaNode::cmp( const Node &n ) const {
967   CallJavaNode &call = (CallJavaNode&)n;
968   return CallNode::cmp(call) && _method == call._method &&
969          _override_symbolic_info == call._override_symbolic_info;
970 }
971 
copy_call_debug_info(PhaseIterGVN * phase,SafePointNode * sfpt)972 void CallJavaNode::copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {
973   // Copy debug information and adjust JVMState information
974   uint old_dbg_start = sfpt->is_Call() ? sfpt->as_Call()->tf()->domain()->cnt() : (uint)TypeFunc::Parms+1;
975   uint new_dbg_start = tf()->domain()->cnt();
976   int jvms_adj  = new_dbg_start - old_dbg_start;
977   assert (new_dbg_start == req(), "argument count mismatch");
978   Compile* C = phase->C;
979 
980   // SafePointScalarObject node could be referenced several times in debug info.
981   // Use Dict to record cloned nodes.
982   Dict* sosn_map = new Dict(cmpkey,hashkey);
983   for (uint i = old_dbg_start; i < sfpt->req(); i++) {
984     Node* old_in = sfpt->in(i);
985     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
986     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
987       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
988       bool new_node;
989       Node* new_in = old_sosn->clone(sosn_map, new_node);
990       if (new_node) { // New node?
991         new_in->set_req(0, C->root()); // reset control edge
992         new_in = phase->transform(new_in); // Register new node.
993       }
994       old_in = new_in;
995     }
996     add_req(old_in);
997   }
998 
999   // JVMS may be shared so clone it before we modify it
1000   set_jvms(sfpt->jvms() != NULL ? sfpt->jvms()->clone_deep(C) : NULL);
1001   for (JVMState *jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
1002     jvms->set_map(this);
1003     jvms->set_locoff(jvms->locoff()+jvms_adj);
1004     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
1005     jvms->set_monoff(jvms->monoff()+jvms_adj);
1006     jvms->set_scloff(jvms->scloff()+jvms_adj);
1007     jvms->set_endoff(jvms->endoff()+jvms_adj);
1008   }
1009 }
1010 
1011 #ifdef ASSERT
validate_symbolic_info() const1012 bool CallJavaNode::validate_symbolic_info() const {
1013   if (method() == NULL) {
1014     return true; // call into runtime or uncommon trap
1015   }
1016   ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(_bci);
1017   ciMethod* callee = method();
1018   if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) {
1019     assert(override_symbolic_info(), "should be set");
1020   }
1021   assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info");
1022   return true;
1023 }
1024 #endif
1025 
1026 #ifndef PRODUCT
dump_spec(outputStream * st) const1027 void CallJavaNode::dump_spec(outputStream* st) const {
1028   if( _method ) _method->print_short_name(st);
1029   CallNode::dump_spec(st);
1030 }
1031 
dump_compact_spec(outputStream * st) const1032 void CallJavaNode::dump_compact_spec(outputStream* st) const {
1033   if (_method) {
1034     _method->print_short_name(st);
1035   } else {
1036     st->print("<?>");
1037   }
1038 }
1039 #endif
1040 
1041 //=============================================================================
size_of() const1042 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
cmp(const Node & n) const1043 bool CallStaticJavaNode::cmp( const Node &n ) const {
1044   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
1045   return CallJavaNode::cmp(call);
1046 }
1047 
Ideal(PhaseGVN * phase,bool can_reshape)1048 Node* CallStaticJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1049   CallGenerator* cg = generator();
1050   if (can_reshape && cg != NULL) {
1051     assert(IncrementalInlineMH, "required");
1052     assert(cg->call_node() == this, "mismatch");
1053     assert(cg->is_mh_late_inline(), "not virtual");
1054 
1055     // Check whether this MH handle call becomes a candidate for inlining.
1056     ciMethod* callee = cg->method();
1057     vmIntrinsics::ID iid = callee->intrinsic_id();
1058     if (iid == vmIntrinsics::_invokeBasic) {
1059       if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
1060         phase->C->prepend_late_inline(cg);
1061         set_generator(NULL);
1062       }
1063     } else {
1064       assert(callee->has_member_arg(), "wrong type of call?");
1065       if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
1066         phase->C->prepend_late_inline(cg);
1067         set_generator(NULL);
1068       }
1069     }
1070   }
1071   return CallNode::Ideal(phase, can_reshape);
1072 }
1073 
1074 //----------------------------uncommon_trap_request----------------------------
1075 // If this is an uncommon trap, return the request code, else zero.
uncommon_trap_request() const1076 int CallStaticJavaNode::uncommon_trap_request() const {
1077   if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
1078     return extract_uncommon_trap_request(this);
1079   }
1080   return 0;
1081 }
extract_uncommon_trap_request(const Node * call)1082 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
1083 #ifndef PRODUCT
1084   if (!(call->req() > TypeFunc::Parms &&
1085         call->in(TypeFunc::Parms) != NULL &&
1086         call->in(TypeFunc::Parms)->is_Con() &&
1087         call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
1088     assert(in_dump() != 0, "OK if dumping");
1089     tty->print("[bad uncommon trap]");
1090     return 0;
1091   }
1092 #endif
1093   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
1094 }
1095 
1096 #ifndef PRODUCT
dump_spec(outputStream * st) const1097 void CallStaticJavaNode::dump_spec(outputStream *st) const {
1098   st->print("# Static ");
1099   if (_name != NULL) {
1100     st->print("%s", _name);
1101     int trap_req = uncommon_trap_request();
1102     if (trap_req != 0) {
1103       char buf[100];
1104       st->print("(%s)",
1105                  Deoptimization::format_trap_request(buf, sizeof(buf),
1106                                                      trap_req));
1107     }
1108     st->print(" ");
1109   }
1110   CallJavaNode::dump_spec(st);
1111 }
1112 
dump_compact_spec(outputStream * st) const1113 void CallStaticJavaNode::dump_compact_spec(outputStream* st) const {
1114   if (_method) {
1115     _method->print_short_name(st);
1116   } else if (_name) {
1117     st->print("%s", _name);
1118   } else {
1119     st->print("<?>");
1120   }
1121 }
1122 #endif
1123 
1124 //=============================================================================
size_of() const1125 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
cmp(const Node & n) const1126 bool CallDynamicJavaNode::cmp( const Node &n ) const {
1127   CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
1128   return CallJavaNode::cmp(call);
1129 }
1130 
Ideal(PhaseGVN * phase,bool can_reshape)1131 Node* CallDynamicJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1132   CallGenerator* cg = generator();
1133   if (can_reshape && cg != NULL) {
1134     assert(IncrementalInlineVirtual, "required");
1135     assert(cg->call_node() == this, "mismatch");
1136     assert(cg->is_virtual_late_inline(), "not virtual");
1137 
1138     // Recover symbolic info for method resolution.
1139     ciMethod* caller = jvms()->method();
1140     ciBytecodeStream iter(caller);
1141     iter.force_bci(jvms()->bci());
1142 
1143     bool             not_used1;
1144     ciSignature*     not_used2;
1145     ciMethod*        orig_callee  = iter.get_method(not_used1, &not_used2);  // callee in the bytecode
1146     ciKlass*         holder       = iter.get_declared_method_holder();
1147     if (orig_callee->is_method_handle_intrinsic()) {
1148       assert(_override_symbolic_info, "required");
1149       orig_callee = method();
1150       holder = method()->holder();
1151     }
1152 
1153     ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder);
1154 
1155     Node* receiver_node = in(TypeFunc::Parms);
1156     const TypeOopPtr* receiver_type = phase->type(receiver_node)->isa_oopptr();
1157 
1158     int  not_used3;
1159     bool call_does_dispatch;
1160     ciMethod* callee = phase->C->optimize_virtual_call(caller, klass, holder, orig_callee, receiver_type, true /*is_virtual*/,
1161                                                        call_does_dispatch, not_used3);  // out-parameters
1162     if (!call_does_dispatch) {
1163       // Register for late inlining.
1164       cg->set_callee_method(callee);
1165       phase->C->prepend_late_inline(cg); // MH late inlining prepends to the list, so do the same
1166       set_generator(NULL);
1167     }
1168   }
1169   return CallNode::Ideal(phase, can_reshape);
1170 }
1171 
1172 #ifndef PRODUCT
dump_spec(outputStream * st) const1173 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
1174   st->print("# Dynamic ");
1175   CallJavaNode::dump_spec(st);
1176 }
1177 #endif
1178 
1179 //=============================================================================
size_of() const1180 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
cmp(const Node & n) const1181 bool CallRuntimeNode::cmp( const Node &n ) const {
1182   CallRuntimeNode &call = (CallRuntimeNode&)n;
1183   return CallNode::cmp(call) && !strcmp(_name,call._name);
1184 }
1185 #ifndef PRODUCT
dump_spec(outputStream * st) const1186 void CallRuntimeNode::dump_spec(outputStream *st) const {
1187   st->print("# ");
1188   st->print("%s", _name);
1189   CallNode::dump_spec(st);
1190 }
1191 #endif
1192 
1193 //=============================================================================
size_of() const1194 uint CallNativeNode::size_of() const { return sizeof(*this); }
cmp(const Node & n) const1195 bool CallNativeNode::cmp( const Node &n ) const {
1196   CallNativeNode &call = (CallNativeNode&)n;
1197   return CallNode::cmp(call) && !strcmp(_name,call._name)
1198     && _arg_regs == call._arg_regs && _ret_regs == call._ret_regs;
1199 }
match(const ProjNode * proj,const Matcher * matcher)1200 Node* CallNativeNode::match(const ProjNode *proj, const Matcher *matcher) {
1201   switch (proj->_con) {
1202     case TypeFunc::Control:
1203     case TypeFunc::I_O:
1204     case TypeFunc::Memory:
1205       return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
1206     case TypeFunc::ReturnAdr:
1207     case TypeFunc::FramePtr:
1208       ShouldNotReachHere();
1209     case TypeFunc::Parms: {
1210       const Type* field_at_con = tf()->range()->field_at(proj->_con);
1211       const BasicType bt = field_at_con->basic_type();
1212       OptoReg::Name optoreg = OptoReg::as_OptoReg(_ret_regs.at(proj->_con - TypeFunc::Parms));
1213       OptoRegPair regs;
1214       if (bt == T_DOUBLE || bt == T_LONG) {
1215         regs.set2(optoreg);
1216       } else {
1217         regs.set1(optoreg);
1218       }
1219       RegMask rm = RegMask(regs.first());
1220       if(OptoReg::is_valid(regs.second()))
1221         rm.Insert(regs.second());
1222       return new MachProjNode(this, proj->_con, rm, field_at_con->ideal_reg());
1223     }
1224     case TypeFunc::Parms + 1: {
1225       assert(tf()->range()->field_at(proj->_con) == Type::HALF, "Expected HALF");
1226       assert(_ret_regs.at(proj->_con - TypeFunc::Parms) == VMRegImpl::Bad(), "Unexpected register for Type::HALF");
1227       // 2nd half of doubles and longs
1228       return new MachProjNode(this, proj->_con, RegMask::Empty, (uint) OptoReg::Bad);
1229     }
1230     default:
1231       ShouldNotReachHere();
1232   }
1233   return NULL;
1234 }
1235 #ifndef PRODUCT
print_regs(const GrowableArray<VMReg> & regs,outputStream * st)1236 void CallNativeNode::print_regs(const GrowableArray<VMReg>& regs, outputStream* st) {
1237   st->print("{ ");
1238   for (int i = 0; i < regs.length(); i++) {
1239     regs.at(i)->print_on(st);
1240     if (i < regs.length() - 1) {
1241       st->print(", ");
1242     }
1243   }
1244   st->print(" } ");
1245 }
1246 
dump_spec(outputStream * st) const1247 void CallNativeNode::dump_spec(outputStream *st) const {
1248   st->print("# ");
1249   st->print("%s ", _name);
1250   st->print("_arg_regs: ");
1251   print_regs(_arg_regs, st);
1252   st->print("_ret_regs: ");
1253   print_regs(_ret_regs, st);
1254   CallNode::dump_spec(st);
1255 }
1256 #endif
1257 
1258 //------------------------------calling_convention-----------------------------
calling_convention(BasicType * sig_bt,VMRegPair * parm_regs,uint argcnt) const1259 void CallRuntimeNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
1260   SharedRuntime::c_calling_convention(sig_bt, parm_regs, /*regs2=*/nullptr, argcnt);
1261 }
1262 
calling_convention(BasicType * sig_bt,VMRegPair * parm_regs,uint argcnt) const1263 void CallNativeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1264   assert((tf()->domain()->cnt() - TypeFunc::Parms) == argcnt, "arg counts must match!");
1265 #ifdef ASSERT
1266   for (uint i = 0; i < argcnt; i++) {
1267     assert(tf()->domain()->field_at(TypeFunc::Parms + i)->basic_type() == sig_bt[i], "types must match!");
1268   }
1269 #endif
1270   for (uint i = 0; i < argcnt; i++) {
1271     switch (sig_bt[i]) {
1272       case T_BOOLEAN:
1273       case T_CHAR:
1274       case T_BYTE:
1275       case T_SHORT:
1276       case T_INT:
1277       case T_FLOAT:
1278         parm_regs[i].set1(_arg_regs.at(i));
1279         break;
1280       case T_LONG:
1281       case T_DOUBLE:
1282         assert((i + 1) < argcnt && sig_bt[i + 1] == T_VOID, "expecting half");
1283         parm_regs[i].set2(_arg_regs.at(i));
1284         break;
1285       case T_VOID: // Halves of longs and doubles
1286         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
1287         assert(_arg_regs.at(i) == VMRegImpl::Bad(), "expecting bad reg");
1288         parm_regs[i].set_bad();
1289         break;
1290       default:
1291         ShouldNotReachHere();
1292         break;
1293     }
1294   }
1295 }
1296 
1297 //=============================================================================
1298 //------------------------------calling_convention-----------------------------
1299 
1300 
1301 //=============================================================================
1302 #ifndef PRODUCT
dump_spec(outputStream * st) const1303 void CallLeafNode::dump_spec(outputStream *st) const {
1304   st->print("# ");
1305   st->print("%s", _name);
1306   CallNode::dump_spec(st);
1307 }
1308 #endif
1309 
1310 //=============================================================================
1311 
set_local(JVMState * jvms,uint idx,Node * c)1312 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
1313   assert(verify_jvms(jvms), "jvms must match");
1314   int loc = jvms->locoff() + idx;
1315   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1316     // If current local idx is top then local idx - 1 could
1317     // be a long/double that needs to be killed since top could
1318     // represent the 2nd half ofthe long/double.
1319     uint ideal = in(loc -1)->ideal_reg();
1320     if (ideal == Op_RegD || ideal == Op_RegL) {
1321       // set other (low index) half to top
1322       set_req(loc - 1, in(loc));
1323     }
1324   }
1325   set_req(loc, c);
1326 }
1327 
size_of() const1328 uint SafePointNode::size_of() const { return sizeof(*this); }
cmp(const Node & n) const1329 bool SafePointNode::cmp( const Node &n ) const {
1330   return (&n == this);          // Always fail except on self
1331 }
1332 
1333 //-------------------------set_next_exception----------------------------------
set_next_exception(SafePointNode * n)1334 void SafePointNode::set_next_exception(SafePointNode* n) {
1335   assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
1336   if (len() == req()) {
1337     if (n != NULL)  add_prec(n);
1338   } else {
1339     set_prec(req(), n);
1340   }
1341 }
1342 
1343 
1344 //----------------------------next_exception-----------------------------------
next_exception() const1345 SafePointNode* SafePointNode::next_exception() const {
1346   if (len() == req()) {
1347     return NULL;
1348   } else {
1349     Node* n = in(req());
1350     assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1351     return (SafePointNode*) n;
1352   }
1353 }
1354 
1355 
1356 //------------------------------Ideal------------------------------------------
1357 // Skip over any collapsed Regions
Ideal(PhaseGVN * phase,bool can_reshape)1358 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1359   return remove_dead_region(phase, can_reshape) ? this : NULL;
1360 }
1361 
1362 //------------------------------Identity---------------------------------------
1363 // Remove obviously duplicate safepoints
Identity(PhaseGVN * phase)1364 Node* SafePointNode::Identity(PhaseGVN* phase) {
1365 
1366   // If you have back to back safepoints, remove one
1367   if( in(TypeFunc::Control)->is_SafePoint() )
1368     return in(TypeFunc::Control);
1369 
1370   // Transforming long counted loops requires a safepoint node. Do not
1371   // eliminate a safepoint until loop opts are over.
1372   if (in(0)->is_Proj() && !phase->C->major_progress()) {
1373     Node *n0 = in(0)->in(0);
1374     // Check if he is a call projection (except Leaf Call)
1375     if( n0->is_Catch() ) {
1376       n0 = n0->in(0)->in(0);
1377       assert( n0->is_Call(), "expect a call here" );
1378     }
1379     if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
1380       // Don't remove a safepoint belonging to an OuterStripMinedLoopEndNode.
1381       // If the loop dies, they will be removed together.
1382       if (has_out_with(Op_OuterStripMinedLoopEnd)) {
1383         return this;
1384       }
1385       // Useless Safepoint, so remove it
1386       return in(TypeFunc::Control);
1387     }
1388   }
1389 
1390   return this;
1391 }
1392 
1393 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const1394 const Type* SafePointNode::Value(PhaseGVN* phase) const {
1395   if (phase->type(in(0)) == Type::TOP) {
1396     return Type::TOP;
1397   }
1398   if (in(0) == this) {
1399     return Type::TOP; // Dead infinite loop
1400   }
1401   return Type::CONTROL;
1402 }
1403 
1404 #ifndef PRODUCT
dump_spec(outputStream * st) const1405 void SafePointNode::dump_spec(outputStream *st) const {
1406   st->print(" SafePoint ");
1407   _replaced_nodes.dump(st);
1408 }
1409 
1410 // The related nodes of a SafepointNode are all data inputs, excluding the
1411 // control boundary, as well as all outputs till level 2 (to include projection
1412 // nodes and targets). In compact mode, just include inputs till level 1 and
1413 // outputs as before.
related(GrowableArray<Node * > * in_rel,GrowableArray<Node * > * out_rel,bool compact) const1414 void SafePointNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
1415   if (compact) {
1416     this->collect_nodes(in_rel, 1, false, false);
1417   } else {
1418     this->collect_nodes_in_all_data(in_rel, false);
1419   }
1420   this->collect_nodes(out_rel, -2, false, false);
1421 }
1422 #endif
1423 
in_RegMask(uint idx) const1424 const RegMask &SafePointNode::in_RegMask(uint idx) const {
1425   if( idx < TypeFunc::Parms ) return RegMask::Empty;
1426   // Values outside the domain represent debug info
1427   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1428 }
out_RegMask() const1429 const RegMask &SafePointNode::out_RegMask() const {
1430   return RegMask::Empty;
1431 }
1432 
1433 
grow_stack(JVMState * jvms,uint grow_by)1434 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
1435   assert((int)grow_by > 0, "sanity");
1436   int monoff = jvms->monoff();
1437   int scloff = jvms->scloff();
1438   int endoff = jvms->endoff();
1439   assert(endoff == (int)req(), "no other states or debug info after me");
1440   Node* top = Compile::current()->top();
1441   for (uint i = 0; i < grow_by; i++) {
1442     ins_req(monoff, top);
1443   }
1444   jvms->set_monoff(monoff + grow_by);
1445   jvms->set_scloff(scloff + grow_by);
1446   jvms->set_endoff(endoff + grow_by);
1447 }
1448 
push_monitor(const FastLockNode * lock)1449 void SafePointNode::push_monitor(const FastLockNode *lock) {
1450   // Add a LockNode, which points to both the original BoxLockNode (the
1451   // stack space for the monitor) and the Object being locked.
1452   const int MonitorEdges = 2;
1453   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1454   assert(req() == jvms()->endoff(), "correct sizing");
1455   int nextmon = jvms()->scloff();
1456   if (GenerateSynchronizationCode) {
1457     ins_req(nextmon,   lock->box_node());
1458     ins_req(nextmon+1, lock->obj_node());
1459   } else {
1460     Node* top = Compile::current()->top();
1461     ins_req(nextmon, top);
1462     ins_req(nextmon, top);
1463   }
1464   jvms()->set_scloff(nextmon + MonitorEdges);
1465   jvms()->set_endoff(req());
1466 }
1467 
pop_monitor()1468 void SafePointNode::pop_monitor() {
1469   // Delete last monitor from debug info
1470   debug_only(int num_before_pop = jvms()->nof_monitors());
1471   const int MonitorEdges = 2;
1472   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1473   int scloff = jvms()->scloff();
1474   int endoff = jvms()->endoff();
1475   int new_scloff = scloff - MonitorEdges;
1476   int new_endoff = endoff - MonitorEdges;
1477   jvms()->set_scloff(new_scloff);
1478   jvms()->set_endoff(new_endoff);
1479   while (scloff > new_scloff)  del_req_ordered(--scloff);
1480   assert(jvms()->nof_monitors() == num_before_pop-1, "");
1481 }
1482 
peek_monitor_box() const1483 Node *SafePointNode::peek_monitor_box() const {
1484   int mon = jvms()->nof_monitors() - 1;
1485   assert(mon >= 0, "must have a monitor");
1486   return monitor_box(jvms(), mon);
1487 }
1488 
peek_monitor_obj() const1489 Node *SafePointNode::peek_monitor_obj() const {
1490   int mon = jvms()->nof_monitors() - 1;
1491   assert(mon >= 0, "must have a monitor");
1492   return monitor_obj(jvms(), mon);
1493 }
1494 
1495 // Do we Match on this edge index or not?  Match no edges
match_edge(uint idx) const1496 uint SafePointNode::match_edge(uint idx) const {
1497   return (TypeFunc::Parms == idx);
1498 }
1499 
disconnect_from_root(PhaseIterGVN * igvn)1500 void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) {
1501   assert(Opcode() == Op_SafePoint, "only value for safepoint in loops");
1502   int nb = igvn->C->root()->find_prec_edge(this);
1503   if (nb != -1) {
1504     igvn->C->root()->rm_prec(nb);
1505   }
1506 }
1507 
1508 //==============  SafePointScalarObjectNode  ==============
1509 
SafePointScalarObjectNode(const TypeOopPtr * tp,AllocateNode * alloc,uint first_index,uint n_fields)1510 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
1511 #ifdef ASSERT
1512                                                      AllocateNode* alloc,
1513 #endif
1514                                                      uint first_index,
1515                                                      uint n_fields) :
1516   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1517   _first_index(first_index),
1518   _n_fields(n_fields)
1519 #ifdef ASSERT
1520   , _alloc(alloc)
1521 #endif
1522 {
1523   init_class_id(Class_SafePointScalarObject);
1524 }
1525 
1526 // Do not allow value-numbering for SafePointScalarObject node.
hash() const1527 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
cmp(const Node & n) const1528 bool SafePointScalarObjectNode::cmp( const Node &n ) const {
1529   return (&n == this); // Always fail except on self
1530 }
1531 
ideal_reg() const1532 uint SafePointScalarObjectNode::ideal_reg() const {
1533   return 0; // No matching to machine instruction
1534 }
1535 
in_RegMask(uint idx) const1536 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1537   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1538 }
1539 
out_RegMask() const1540 const RegMask &SafePointScalarObjectNode::out_RegMask() const {
1541   return RegMask::Empty;
1542 }
1543 
match_edge(uint idx) const1544 uint SafePointScalarObjectNode::match_edge(uint idx) const {
1545   return 0;
1546 }
1547 
1548 SafePointScalarObjectNode*
clone(Dict * sosn_map,bool & new_node) const1549 SafePointScalarObjectNode::clone(Dict* sosn_map, bool& new_node) const {
1550   void* cached = (*sosn_map)[(void*)this];
1551   if (cached != NULL) {
1552     new_node = false;
1553     return (SafePointScalarObjectNode*)cached;
1554   }
1555   new_node = true;
1556   SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1557   sosn_map->Insert((void*)this, (void*)res);
1558   return res;
1559 }
1560 
1561 
1562 #ifndef PRODUCT
dump_spec(outputStream * st) const1563 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1564   st->print(" # fields@[%d..%d]", first_index(),
1565              first_index() + n_fields() - 1);
1566 }
1567 
1568 #endif
1569 
1570 //=============================================================================
size_of() const1571 uint AllocateNode::size_of() const { return sizeof(*this); }
1572 
AllocateNode(Compile * C,const TypeFunc * atype,Node * ctrl,Node * mem,Node * abio,Node * size,Node * klass_node,Node * initial_test)1573 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1574                            Node *ctrl, Node *mem, Node *abio,
1575                            Node *size, Node *klass_node, Node *initial_test)
1576   : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
1577 {
1578   init_class_id(Class_Allocate);
1579   init_flags(Flag_is_macro);
1580   _is_scalar_replaceable = false;
1581   _is_non_escaping = false;
1582   _is_allocation_MemBar_redundant = false;
1583   Node *topnode = C->top();
1584 
1585   init_req( TypeFunc::Control  , ctrl );
1586   init_req( TypeFunc::I_O      , abio );
1587   init_req( TypeFunc::Memory   , mem );
1588   init_req( TypeFunc::ReturnAdr, topnode );
1589   init_req( TypeFunc::FramePtr , topnode );
1590   init_req( AllocSize          , size);
1591   init_req( KlassNode          , klass_node);
1592   init_req( InitialTest        , initial_test);
1593   init_req( ALength            , topnode);
1594   C->add_macro_node(this);
1595 }
1596 
compute_MemBar_redundancy(ciMethod * initializer)1597 void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer)
1598 {
1599   assert(initializer != NULL &&
1600          initializer->is_initializer() &&
1601          !initializer->is_static(),
1602              "unexpected initializer method");
1603   BCEscapeAnalyzer* analyzer = initializer->get_bcea();
1604   if (analyzer == NULL) {
1605     return;
1606   }
1607 
1608   // Allocation node is first parameter in its initializer
1609   if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) {
1610     _is_allocation_MemBar_redundant = true;
1611   }
1612 }
make_ideal_mark(PhaseGVN * phase,Node * obj,Node * control,Node * mem)1613 Node *AllocateNode::make_ideal_mark(PhaseGVN *phase, Node* obj, Node* control, Node* mem) {
1614   Node* mark_node = NULL;
1615   // For now only enable fast locking for non-array types
1616   if (UseBiasedLocking && Opcode() == Op_Allocate) {
1617     Node* klass_node = in(AllocateNode::KlassNode);
1618     Node* proto_adr = phase->transform(new AddPNode(klass_node, klass_node, phase->MakeConX(in_bytes(Klass::prototype_header_offset()))));
1619     mark_node = LoadNode::make(*phase, control, mem, proto_adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
1620   } else {
1621     mark_node = phase->MakeConX(markWord::prototype().value());
1622   }
1623   return mark_node;
1624 }
1625 
1626 //=============================================================================
Ideal(PhaseGVN * phase,bool can_reshape)1627 Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1628   if (remove_dead_region(phase, can_reshape))  return this;
1629   // Don't bother trying to transform a dead node
1630   if (in(0) && in(0)->is_top())  return NULL;
1631 
1632   const Type* type = phase->type(Ideal_length());
1633   if (type->isa_int() && type->is_int()->_hi < 0) {
1634     if (can_reshape) {
1635       PhaseIterGVN *igvn = phase->is_IterGVN();
1636       // Unreachable fall through path (negative array length),
1637       // the allocation can only throw so disconnect it.
1638       Node* proj = proj_out_or_null(TypeFunc::Control);
1639       Node* catchproj = NULL;
1640       if (proj != NULL) {
1641         for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) {
1642           Node *cn = proj->fast_out(i);
1643           if (cn->is_Catch()) {
1644             catchproj = cn->as_Multi()->proj_out_or_null(CatchProjNode::fall_through_index);
1645             break;
1646           }
1647         }
1648       }
1649       if (catchproj != NULL && catchproj->outcnt() > 0 &&
1650           (catchproj->outcnt() > 1 ||
1651            catchproj->unique_out()->Opcode() != Op_Halt)) {
1652         assert(catchproj->is_CatchProj(), "must be a CatchProjNode");
1653         Node* nproj = catchproj->clone();
1654         igvn->register_new_node_with_optimizer(nproj);
1655 
1656         Node *frame = new ParmNode( phase->C->start(), TypeFunc::FramePtr );
1657         frame = phase->transform(frame);
1658         // Halt & Catch Fire
1659         Node* halt = new HaltNode(nproj, frame, "unexpected negative array length");
1660         phase->C->root()->add_req(halt);
1661         phase->transform(halt);
1662 
1663         igvn->replace_node(catchproj, phase->C->top());
1664         return this;
1665       }
1666     } else {
1667       // Can't correct it during regular GVN so register for IGVN
1668       phase->C->record_for_igvn(this);
1669     }
1670   }
1671   return NULL;
1672 }
1673 
1674 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
1675 // CastII, if appropriate.  If we are not allowed to create new nodes, and
1676 // a CastII is appropriate, return NULL.
make_ideal_length(const TypeOopPtr * oop_type,PhaseTransform * phase,bool allow_new_nodes)1677 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
1678   Node *length = in(AllocateNode::ALength);
1679   assert(length != NULL, "length is not null");
1680 
1681   const TypeInt* length_type = phase->find_int_type(length);
1682   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1683 
1684   if (ary_type != NULL && length_type != NULL) {
1685     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1686     if (narrow_length_type != length_type) {
1687       // Assert one of:
1688       //   - the narrow_length is 0
1689       //   - the narrow_length is not wider than length
1690       assert(narrow_length_type == TypeInt::ZERO ||
1691              length_type->is_con() && narrow_length_type->is_con() &&
1692                 (narrow_length_type->_hi <= length_type->_lo) ||
1693              (narrow_length_type->_hi <= length_type->_hi &&
1694               narrow_length_type->_lo >= length_type->_lo),
1695              "narrow type must be narrower than length type");
1696 
1697       // Return NULL if new nodes are not allowed
1698       if (!allow_new_nodes) return NULL;
1699       // Create a cast which is control dependent on the initialization to
1700       // propagate the fact that the array length must be positive.
1701       InitializeNode* init = initialization();
1702       assert(init != NULL, "initialization not found");
1703       length = new CastIINode(length, narrow_length_type);
1704       length->set_req(0, init->proj_out_or_null(0));
1705     }
1706   }
1707 
1708   return length;
1709 }
1710 
1711 //=============================================================================
size_of() const1712 uint LockNode::size_of() const { return sizeof(*this); }
1713 
1714 // Redundant lock elimination
1715 //
1716 // There are various patterns of locking where we release and
1717 // immediately reacquire a lock in a piece of code where no operations
1718 // occur in between that would be observable.  In those cases we can
1719 // skip releasing and reacquiring the lock without violating any
1720 // fairness requirements.  Doing this around a loop could cause a lock
1721 // to be held for a very long time so we concentrate on non-looping
1722 // control flow.  We also require that the operations are fully
1723 // redundant meaning that we don't introduce new lock operations on
1724 // some paths so to be able to eliminate it on others ala PRE.  This
1725 // would probably require some more extensive graph manipulation to
1726 // guarantee that the memory edges were all handled correctly.
1727 //
1728 // Assuming p is a simple predicate which can't trap in any way and s
1729 // is a synchronized method consider this code:
1730 //
1731 //   s();
1732 //   if (p)
1733 //     s();
1734 //   else
1735 //     s();
1736 //   s();
1737 //
1738 // 1. The unlocks of the first call to s can be eliminated if the
1739 // locks inside the then and else branches are eliminated.
1740 //
1741 // 2. The unlocks of the then and else branches can be eliminated if
1742 // the lock of the final call to s is eliminated.
1743 //
1744 // Either of these cases subsumes the simple case of sequential control flow
1745 //
1746 // Addtionally we can eliminate versions without the else case:
1747 //
1748 //   s();
1749 //   if (p)
1750 //     s();
1751 //   s();
1752 //
1753 // 3. In this case we eliminate the unlock of the first s, the lock
1754 // and unlock in the then case and the lock in the final s.
1755 //
1756 // Note also that in all these cases the then/else pieces don't have
1757 // to be trivial as long as they begin and end with synchronization
1758 // operations.
1759 //
1760 //   s();
1761 //   if (p)
1762 //     s();
1763 //     f();
1764 //     s();
1765 //   s();
1766 //
1767 // The code will work properly for this case, leaving in the unlock
1768 // before the call to f and the relock after it.
1769 //
1770 // A potentially interesting case which isn't handled here is when the
1771 // locking is partially redundant.
1772 //
1773 //   s();
1774 //   if (p)
1775 //     s();
1776 //
1777 // This could be eliminated putting unlocking on the else case and
1778 // eliminating the first unlock and the lock in the then side.
1779 // Alternatively the unlock could be moved out of the then side so it
1780 // was after the merge and the first unlock and second lock
1781 // eliminated.  This might require less manipulation of the memory
1782 // state to get correct.
1783 //
1784 // Additionally we might allow work between a unlock and lock before
1785 // giving up eliminating the locks.  The current code disallows any
1786 // conditional control flow between these operations.  A formulation
1787 // similar to partial redundancy elimination computing the
1788 // availability of unlocking and the anticipatability of locking at a
1789 // program point would allow detection of fully redundant locking with
1790 // some amount of work in between.  I'm not sure how often I really
1791 // think that would occur though.  Most of the cases I've seen
1792 // indicate it's likely non-trivial work would occur in between.
1793 // There may be other more complicated constructs where we could
1794 // eliminate locking but I haven't seen any others appear as hot or
1795 // interesting.
1796 //
1797 // Locking and unlocking have a canonical form in ideal that looks
1798 // roughly like this:
1799 //
1800 //              <obj>
1801 //                | \\------+
1802 //                |  \       \
1803 //                | BoxLock   \
1804 //                |  |   |     \
1805 //                |  |    \     \
1806 //                |  |   FastLock
1807 //                |  |   /
1808 //                |  |  /
1809 //                |  |  |
1810 //
1811 //               Lock
1812 //                |
1813 //            Proj #0
1814 //                |
1815 //            MembarAcquire
1816 //                |
1817 //            Proj #0
1818 //
1819 //            MembarRelease
1820 //                |
1821 //            Proj #0
1822 //                |
1823 //              Unlock
1824 //                |
1825 //            Proj #0
1826 //
1827 //
1828 // This code proceeds by processing Lock nodes during PhaseIterGVN
1829 // and searching back through its control for the proper code
1830 // patterns.  Once it finds a set of lock and unlock operations to
1831 // eliminate they are marked as eliminatable which causes the
1832 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
1833 //
1834 //=============================================================================
1835 
1836 //
1837 // Utility function to skip over uninteresting control nodes.  Nodes skipped are:
1838 //   - copy regions.  (These may not have been optimized away yet.)
1839 //   - eliminated locking nodes
1840 //
next_control(Node * ctrl)1841 static Node *next_control(Node *ctrl) {
1842   if (ctrl == NULL)
1843     return NULL;
1844   while (1) {
1845     if (ctrl->is_Region()) {
1846       RegionNode *r = ctrl->as_Region();
1847       Node *n = r->is_copy();
1848       if (n == NULL)
1849         break;  // hit a region, return it
1850       else
1851         ctrl = n;
1852     } else if (ctrl->is_Proj()) {
1853       Node *in0 = ctrl->in(0);
1854       if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
1855         ctrl = in0->in(0);
1856       } else {
1857         break;
1858       }
1859     } else {
1860       break; // found an interesting control
1861     }
1862   }
1863   return ctrl;
1864 }
1865 //
1866 // Given a control, see if it's the control projection of an Unlock which
1867 // operating on the same object as lock.
1868 //
find_matching_unlock(const Node * ctrl,LockNode * lock,GrowableArray<AbstractLockNode * > & lock_ops)1869 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
1870                                             GrowableArray<AbstractLockNode*> &lock_ops) {
1871   ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
1872   if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
1873     Node *n = ctrl_proj->in(0);
1874     if (n != NULL && n->is_Unlock()) {
1875       UnlockNode *unlock = n->as_Unlock();
1876       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1877       Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
1878       Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node());
1879       if (lock_obj->eqv_uncast(unlock_obj) &&
1880           BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
1881           !unlock->is_eliminated()) {
1882         lock_ops.append(unlock);
1883         return true;
1884       }
1885     }
1886   }
1887   return false;
1888 }
1889 
1890 //
1891 // Find the lock matching an unlock.  Returns null if a safepoint
1892 // or complicated control is encountered first.
find_matching_lock(UnlockNode * unlock)1893 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
1894   LockNode *lock_result = NULL;
1895   // find the matching lock, or an intervening safepoint
1896   Node *ctrl = next_control(unlock->in(0));
1897   while (1) {
1898     assert(ctrl != NULL, "invalid control graph");
1899     assert(!ctrl->is_Start(), "missing lock for unlock");
1900     if (ctrl->is_top()) break;  // dead control path
1901     if (ctrl->is_Proj()) ctrl = ctrl->in(0);
1902     if (ctrl->is_SafePoint()) {
1903         break;  // found a safepoint (may be the lock we are searching for)
1904     } else if (ctrl->is_Region()) {
1905       // Check for a simple diamond pattern.  Punt on anything more complicated
1906       if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
1907         Node *in1 = next_control(ctrl->in(1));
1908         Node *in2 = next_control(ctrl->in(2));
1909         if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
1910              (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
1911           ctrl = next_control(in1->in(0)->in(0));
1912         } else {
1913           break;
1914         }
1915       } else {
1916         break;
1917       }
1918     } else {
1919       ctrl = next_control(ctrl->in(0));  // keep searching
1920     }
1921   }
1922   if (ctrl->is_Lock()) {
1923     LockNode *lock = ctrl->as_Lock();
1924     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1925     Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
1926     Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node());
1927     if (lock_obj->eqv_uncast(unlock_obj) &&
1928         BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
1929       lock_result = lock;
1930     }
1931   }
1932   return lock_result;
1933 }
1934 
1935 // This code corresponds to case 3 above.
1936 
find_lock_and_unlock_through_if(Node * node,LockNode * lock,GrowableArray<AbstractLockNode * > & lock_ops)1937 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
1938                                                        GrowableArray<AbstractLockNode*> &lock_ops) {
1939   Node* if_node = node->in(0);
1940   bool  if_true = node->is_IfTrue();
1941 
1942   if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
1943     Node *lock_ctrl = next_control(if_node->in(0));
1944     if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
1945       Node* lock1_node = NULL;
1946       ProjNode* proj = if_node->as_If()->proj_out(!if_true);
1947       if (if_true) {
1948         if (proj->is_IfFalse() && proj->outcnt() == 1) {
1949           lock1_node = proj->unique_out();
1950         }
1951       } else {
1952         if (proj->is_IfTrue() && proj->outcnt() == 1) {
1953           lock1_node = proj->unique_out();
1954         }
1955       }
1956       if (lock1_node != NULL && lock1_node->is_Lock()) {
1957         LockNode *lock1 = lock1_node->as_Lock();
1958         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1959         Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
1960         Node* lock1_obj = bs->step_over_gc_barrier(lock1->obj_node());
1961         if (lock_obj->eqv_uncast(lock1_obj) &&
1962             BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
1963             !lock1->is_eliminated()) {
1964           lock_ops.append(lock1);
1965           return true;
1966         }
1967       }
1968     }
1969   }
1970 
1971   lock_ops.trunc_to(0);
1972   return false;
1973 }
1974 
find_unlocks_for_region(const RegionNode * region,LockNode * lock,GrowableArray<AbstractLockNode * > & lock_ops)1975 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1976                                GrowableArray<AbstractLockNode*> &lock_ops) {
1977   // check each control merging at this point for a matching unlock.
1978   // in(0) should be self edge so skip it.
1979   for (int i = 1; i < (int)region->req(); i++) {
1980     Node *in_node = next_control(region->in(i));
1981     if (in_node != NULL) {
1982       if (find_matching_unlock(in_node, lock, lock_ops)) {
1983         // found a match so keep on checking.
1984         continue;
1985       } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
1986         continue;
1987       }
1988 
1989       // If we fall through to here then it was some kind of node we
1990       // don't understand or there wasn't a matching unlock, so give
1991       // up trying to merge locks.
1992       lock_ops.trunc_to(0);
1993       return false;
1994     }
1995   }
1996   return true;
1997 
1998 }
1999 
2000 #ifndef PRODUCT
2001 //
2002 // Create a counter which counts the number of times this lock is acquired
2003 //
create_lock_counter(JVMState * state)2004 void AbstractLockNode::create_lock_counter(JVMState* state) {
2005   _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
2006 }
2007 
set_eliminated_lock_counter()2008 void AbstractLockNode::set_eliminated_lock_counter() {
2009   if (_counter) {
2010     // Update the counter to indicate that this lock was eliminated.
2011     // The counter update code will stay around even though the
2012     // optimizer will eliminate the lock operation itself.
2013     _counter->set_tag(NamedCounter::EliminatedLockCounter);
2014   }
2015 }
2016 
2017 const char* AbstractLockNode::_kind_names[] = {"Regular", "NonEscObj", "Coarsened", "Nested"};
2018 
dump_spec(outputStream * st) const2019 void AbstractLockNode::dump_spec(outputStream* st) const {
2020   st->print("%s ", _kind_names[_kind]);
2021   CallNode::dump_spec(st);
2022 }
2023 
dump_compact_spec(outputStream * st) const2024 void AbstractLockNode::dump_compact_spec(outputStream* st) const {
2025   st->print("%s", _kind_names[_kind]);
2026 }
2027 
2028 // The related set of lock nodes includes the control boundary.
related(GrowableArray<Node * > * in_rel,GrowableArray<Node * > * out_rel,bool compact) const2029 void AbstractLockNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2030   if (compact) {
2031       this->collect_nodes(in_rel, 1, false, false);
2032     } else {
2033       this->collect_nodes_in_all_data(in_rel, true);
2034     }
2035     this->collect_nodes(out_rel, -2, false, false);
2036 }
2037 #endif
2038 
2039 //=============================================================================
Ideal(PhaseGVN * phase,bool can_reshape)2040 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2041 
2042   // perform any generic optimizations first (returns 'this' or NULL)
2043   Node *result = SafePointNode::Ideal(phase, can_reshape);
2044   if (result != NULL)  return result;
2045   // Don't bother trying to transform a dead node
2046   if (in(0) && in(0)->is_top())  return NULL;
2047 
2048   // Now see if we can optimize away this lock.  We don't actually
2049   // remove the locking here, we simply set the _eliminate flag which
2050   // prevents macro expansion from expanding the lock.  Since we don't
2051   // modify the graph, the value returned from this function is the
2052   // one computed above.
2053   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
2054     //
2055     // If we are locking an unescaped object, the lock/unlock is unnecessary
2056     //
2057     ConnectionGraph *cgr = phase->C->congraph();
2058     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
2059       assert(!is_eliminated() || is_coarsened(), "sanity");
2060       // The lock could be marked eliminated by lock coarsening
2061       // code during first IGVN before EA. Replace coarsened flag
2062       // to eliminate all associated locks/unlocks.
2063 #ifdef ASSERT
2064       this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
2065 #endif
2066       this->set_non_esc_obj();
2067       return result;
2068     }
2069 
2070     //
2071     // Try lock coarsening
2072     //
2073     PhaseIterGVN* iter = phase->is_IterGVN();
2074     if (iter != NULL && !is_eliminated()) {
2075 
2076       GrowableArray<AbstractLockNode*>   lock_ops;
2077 
2078       Node *ctrl = next_control(in(0));
2079 
2080       // now search back for a matching Unlock
2081       if (find_matching_unlock(ctrl, this, lock_ops)) {
2082         // found an unlock directly preceding this lock.  This is the
2083         // case of single unlock directly control dependent on a
2084         // single lock which is the trivial version of case 1 or 2.
2085       } else if (ctrl->is_Region() ) {
2086         if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
2087         // found lock preceded by multiple unlocks along all paths
2088         // joining at this point which is case 3 in description above.
2089         }
2090       } else {
2091         // see if this lock comes from either half of an if and the
2092         // predecessors merges unlocks and the other half of the if
2093         // performs a lock.
2094         if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
2095           // found unlock splitting to an if with locks on both branches.
2096         }
2097       }
2098 
2099       if (lock_ops.length() > 0) {
2100         // add ourselves to the list of locks to be eliminated.
2101         lock_ops.append(this);
2102 
2103   #ifndef PRODUCT
2104         if (PrintEliminateLocks) {
2105           int locks = 0;
2106           int unlocks = 0;
2107           for (int i = 0; i < lock_ops.length(); i++) {
2108             AbstractLockNode* lock = lock_ops.at(i);
2109             if (lock->Opcode() == Op_Lock)
2110               locks++;
2111             else
2112               unlocks++;
2113             if (Verbose) {
2114               lock->dump(1);
2115             }
2116           }
2117           tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
2118         }
2119   #endif
2120 
2121         // for each of the identified locks, mark them
2122         // as eliminatable
2123         for (int i = 0; i < lock_ops.length(); i++) {
2124           AbstractLockNode* lock = lock_ops.at(i);
2125 
2126           // Mark it eliminated by coarsening and update any counters
2127 #ifdef ASSERT
2128           lock->log_lock_optimization(phase->C, "eliminate_lock_set_coarsened");
2129 #endif
2130           lock->set_coarsened();
2131         }
2132       } else if (ctrl->is_Region() &&
2133                  iter->_worklist.member(ctrl)) {
2134         // We weren't able to find any opportunities but the region this
2135         // lock is control dependent on hasn't been processed yet so put
2136         // this lock back on the worklist so we can check again once any
2137         // region simplification has occurred.
2138         iter->_worklist.push(this);
2139       }
2140     }
2141   }
2142 
2143   return result;
2144 }
2145 
2146 //=============================================================================
is_nested_lock_region()2147 bool LockNode::is_nested_lock_region() {
2148   return is_nested_lock_region(NULL);
2149 }
2150 
2151 // p is used for access to compilation log; no logging if NULL
is_nested_lock_region(Compile * c)2152 bool LockNode::is_nested_lock_region(Compile * c) {
2153   BoxLockNode* box = box_node()->as_BoxLock();
2154   int stk_slot = box->stack_slot();
2155   if (stk_slot <= 0) {
2156 #ifdef ASSERT
2157     this->log_lock_optimization(c, "eliminate_lock_INLR_1");
2158 #endif
2159     return false; // External lock or it is not Box (Phi node).
2160   }
2161 
2162   // Ignore complex cases: merged locks or multiple locks.
2163   Node* obj = obj_node();
2164   LockNode* unique_lock = NULL;
2165   if (!box->is_simple_lock_region(&unique_lock, obj)) {
2166 #ifdef ASSERT
2167     this->log_lock_optimization(c, "eliminate_lock_INLR_2a");
2168 #endif
2169     return false;
2170   }
2171   if (unique_lock != this) {
2172 #ifdef ASSERT
2173     this->log_lock_optimization(c, "eliminate_lock_INLR_2b");
2174 #endif
2175     return false;
2176   }
2177 
2178   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2179   obj = bs->step_over_gc_barrier(obj);
2180   // Look for external lock for the same object.
2181   SafePointNode* sfn = this->as_SafePoint();
2182   JVMState* youngest_jvms = sfn->jvms();
2183   int max_depth = youngest_jvms->depth();
2184   for (int depth = 1; depth <= max_depth; depth++) {
2185     JVMState* jvms = youngest_jvms->of_depth(depth);
2186     int num_mon  = jvms->nof_monitors();
2187     // Loop over monitors
2188     for (int idx = 0; idx < num_mon; idx++) {
2189       Node* obj_node = sfn->monitor_obj(jvms, idx);
2190       obj_node = bs->step_over_gc_barrier(obj_node);
2191       BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
2192       if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
2193         return true;
2194       }
2195     }
2196   }
2197 #ifdef ASSERT
2198   this->log_lock_optimization(c, "eliminate_lock_INLR_3");
2199 #endif
2200   return false;
2201 }
2202 
2203 //=============================================================================
size_of() const2204 uint UnlockNode::size_of() const { return sizeof(*this); }
2205 
2206 //=============================================================================
Ideal(PhaseGVN * phase,bool can_reshape)2207 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2208 
2209   // perform any generic optimizations first (returns 'this' or NULL)
2210   Node *result = SafePointNode::Ideal(phase, can_reshape);
2211   if (result != NULL)  return result;
2212   // Don't bother trying to transform a dead node
2213   if (in(0) && in(0)->is_top())  return NULL;
2214 
2215   // Now see if we can optimize away this unlock.  We don't actually
2216   // remove the unlocking here, we simply set the _eliminate flag which
2217   // prevents macro expansion from expanding the unlock.  Since we don't
2218   // modify the graph, the value returned from this function is the
2219   // one computed above.
2220   // Escape state is defined after Parse phase.
2221   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
2222     //
2223     // If we are unlocking an unescaped object, the lock/unlock is unnecessary.
2224     //
2225     ConnectionGraph *cgr = phase->C->congraph();
2226     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
2227       assert(!is_eliminated() || is_coarsened(), "sanity");
2228       // The lock could be marked eliminated by lock coarsening
2229       // code during first IGVN before EA. Replace coarsened flag
2230       // to eliminate all associated locks/unlocks.
2231 #ifdef ASSERT
2232       this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
2233 #endif
2234       this->set_non_esc_obj();
2235     }
2236   }
2237   return result;
2238 }
2239 
kind_as_string() const2240 const char * AbstractLockNode::kind_as_string() const {
2241   return is_coarsened()   ? "coarsened" :
2242          is_nested()      ? "nested" :
2243          is_non_esc_obj() ? "non_escaping" :
2244          "?";
2245 }
2246 
log_lock_optimization(Compile * C,const char * tag) const2247 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag)  const {
2248   if (C == NULL) {
2249     return;
2250   }
2251   CompileLog* log = C->log();
2252   if (log != NULL) {
2253     log->begin_head("%s lock='%d' compile_id='%d' class_id='%s' kind='%s'",
2254           tag, is_Lock(), C->compile_id(),
2255           is_Unlock() ? "unlock" : is_Lock() ? "lock" : "?",
2256           kind_as_string());
2257     log->stamp();
2258     log->end_head();
2259     JVMState* p = is_Unlock() ? (as_Unlock()->dbg_jvms()) : jvms();
2260     while (p != NULL) {
2261       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
2262       p = p->caller();
2263     }
2264     log->tail(tag);
2265   }
2266 }
2267 
may_modify_arraycopy_helper(const TypeOopPtr * dest_t,const TypeOopPtr * t_oop,PhaseTransform * phase)2268 bool CallNode::may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr *t_oop, PhaseTransform *phase) {
2269   if (dest_t->is_known_instance() && t_oop->is_known_instance()) {
2270     return dest_t->instance_id() == t_oop->instance_id();
2271   }
2272 
2273   if (dest_t->isa_instptr() && !dest_t->klass()->equals(phase->C->env()->Object_klass())) {
2274     // clone
2275     if (t_oop->isa_aryptr()) {
2276       return false;
2277     }
2278     if (!t_oop->isa_instptr()) {
2279       return true;
2280     }
2281     if (dest_t->klass()->is_subtype_of(t_oop->klass()) || t_oop->klass()->is_subtype_of(dest_t->klass())) {
2282       return true;
2283     }
2284     // unrelated
2285     return false;
2286   }
2287 
2288   if (dest_t->isa_aryptr()) {
2289     // arraycopy or array clone
2290     if (t_oop->isa_instptr()) {
2291       return false;
2292     }
2293     if (!t_oop->isa_aryptr()) {
2294       return true;
2295     }
2296 
2297     const Type* elem = dest_t->is_aryptr()->elem();
2298     if (elem == Type::BOTTOM) {
2299       // An array but we don't know what elements are
2300       return true;
2301     }
2302 
2303     dest_t = dest_t->add_offset(Type::OffsetBot)->is_oopptr();
2304     uint dest_alias = phase->C->get_alias_index(dest_t);
2305     uint t_oop_alias = phase->C->get_alias_index(t_oop);
2306 
2307     return dest_alias == t_oop_alias;
2308   }
2309 
2310   return true;
2311 }
2312