1 /*
2  * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "opto/addnode.hpp"
27 #include "opto/callnode.hpp"
28 #include "opto/castnode.hpp"
29 #include "opto/connode.hpp"
30 #include "opto/matcher.hpp"
31 #include "opto/phaseX.hpp"
32 #include "opto/subnode.hpp"
33 #include "opto/type.hpp"
34 
35 //=============================================================================
36 // If input is already higher or equal to cast type, then this is an identity.
Identity(PhaseGVN * phase)37 Node* ConstraintCastNode::Identity(PhaseGVN* phase) {
38   Node* dom = dominating_cast(phase, phase);
39   if (dom != NULL) {
40     return dom;
41   }
42   if (_carry_dependency) {
43     return this;
44   }
45   return phase->type(in(1))->higher_equal_speculative(_type) ? in(1) : this;
46 }
47 
48 //------------------------------Value------------------------------------------
49 // Take 'join' of input and cast-up type
Value(PhaseGVN * phase) const50 const Type* ConstraintCastNode::Value(PhaseGVN* phase) const {
51   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
52   const Type* ft = phase->type(in(1))->filter_speculative(_type);
53 
54 #ifdef ASSERT
55   // Previous versions of this function had some special case logic,
56   // which is no longer necessary.  Make sure of the required effects.
57   switch (Opcode()) {
58     case Op_CastII:
59     {
60       const Type* t1 = phase->type(in(1));
61       if( t1 == Type::TOP )  assert(ft == Type::TOP, "special case #1");
62       const Type* rt = t1->join_speculative(_type);
63       if (rt->empty())       assert(ft == Type::TOP, "special case #2");
64       break;
65     }
66     case Op_CastPP:
67     if (phase->type(in(1)) == TypePtr::NULL_PTR &&
68         _type->isa_ptr() && _type->is_ptr()->_ptr == TypePtr::NotNull)
69     assert(ft == Type::TOP, "special case #3");
70     break;
71   }
72 #endif //ASSERT
73 
74   return ft;
75 }
76 
77 //------------------------------Ideal------------------------------------------
78 // Return a node which is more "ideal" than the current node.  Strip out
79 // control copies
Ideal(PhaseGVN * phase,bool can_reshape)80 Node *ConstraintCastNode::Ideal(PhaseGVN *phase, bool can_reshape) {
81   return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
82 }
83 
cmp(const Node & n) const84 bool ConstraintCastNode::cmp(const Node &n) const {
85   return TypeNode::cmp(n) && ((ConstraintCastNode&)n)._carry_dependency == _carry_dependency;
86 }
87 
size_of() const88 uint ConstraintCastNode::size_of() const {
89   return sizeof(*this);
90 }
91 
make_cast(int opcode,Node * c,Node * n,const Type * t,bool carry_dependency)92 Node* ConstraintCastNode::make_cast(int opcode, Node* c, Node *n, const Type *t, bool carry_dependency) {
93   switch(opcode) {
94   case Op_CastII: {
95     Node* cast = new CastIINode(n, t, carry_dependency);
96     cast->set_req(0, c);
97     return cast;
98   }
99   case Op_CastLL: {
100     Node* cast = new CastLLNode(n, t, carry_dependency);
101     cast->set_req(0, c);
102     return cast;
103   }
104   case Op_CastPP: {
105     Node* cast = new CastPPNode(n, t, carry_dependency);
106     cast->set_req(0, c);
107     return cast;
108   }
109   case Op_CheckCastPP: return new CheckCastPPNode(c, n, t, carry_dependency);
110   default:
111     fatal("Bad opcode %d", opcode);
112   }
113   return NULL;
114 }
115 
make(Node * c,Node * n,const Type * t,BasicType bt)116 Node* ConstraintCastNode::make(Node* c, Node *n, const Type *t, BasicType bt) {
117   switch(bt) {
118   case T_INT: {
119     return make_cast(Op_CastII, c, n, t, false);
120   }
121   case T_LONG: {
122     return make_cast(Op_CastLL, c, n, t, false);
123   }
124   default:
125     fatal("Bad basic type %s", type2name(bt));
126   }
127   return NULL;
128 }
129 
dominating_cast(PhaseGVN * gvn,PhaseTransform * pt) const130 TypeNode* ConstraintCastNode::dominating_cast(PhaseGVN* gvn, PhaseTransform* pt) const {
131   Node* val = in(1);
132   Node* ctl = in(0);
133   int opc = Opcode();
134   if (ctl == NULL) {
135     return NULL;
136   }
137   // Range check CastIIs may all end up under a single range check and
138   // in that case only the narrower CastII would be kept by the code
139   // below which would be incorrect.
140   if (is_CastII() && as_CastII()->has_range_check()) {
141     return NULL;
142   }
143   if (type()->isa_rawptr() && (gvn->type_or_null(val) == NULL || gvn->type(val)->isa_oopptr())) {
144     return NULL;
145   }
146   for (DUIterator_Fast imax, i = val->fast_outs(imax); i < imax; i++) {
147     Node* u = val->fast_out(i);
148     if (u != this &&
149         u->outcnt() > 0 &&
150         u->Opcode() == opc &&
151         u->in(0) != NULL &&
152         u->bottom_type()->higher_equal(type())) {
153       if (pt->is_dominator(u->in(0), ctl)) {
154         return u->as_Type();
155       }
156       if (is_CheckCastPP() && u->in(1)->is_Proj() && u->in(1)->in(0)->is_Allocate() &&
157           u->in(0)->is_Proj() && u->in(0)->in(0)->is_Initialize() &&
158           u->in(1)->in(0)->as_Allocate()->initialization() == u->in(0)->in(0)) {
159         // CheckCastPP following an allocation always dominates all
160         // use of the allocation result
161         return u->as_Type();
162       }
163     }
164   }
165   return NULL;
166 }
167 
168 #ifndef PRODUCT
dump_spec(outputStream * st) const169 void ConstraintCastNode::dump_spec(outputStream *st) const {
170   TypeNode::dump_spec(st);
171   if (_carry_dependency) {
172     st->print(" carry dependency");
173   }
174 }
175 #endif
176 
Value(PhaseGVN * phase) const177 const Type* CastIINode::Value(PhaseGVN* phase) const {
178   const Type *res = ConstraintCastNode::Value(phase);
179 
180   // Try to improve the type of the CastII if we recognize a CmpI/If
181   // pattern.
182   if (_carry_dependency) {
183     if (in(0) != NULL && in(0)->in(0) != NULL && in(0)->in(0)->is_If()) {
184       assert(in(0)->is_IfFalse() || in(0)->is_IfTrue(), "should be If proj");
185       Node* proj = in(0);
186       if (proj->in(0)->in(1)->is_Bool()) {
187         Node* b = proj->in(0)->in(1);
188         if (b->in(1)->Opcode() == Op_CmpI) {
189           Node* cmp = b->in(1);
190           if (cmp->in(1) == in(1) && phase->type(cmp->in(2))->isa_int()) {
191             const TypeInt* in2_t = phase->type(cmp->in(2))->is_int();
192             const Type* t = TypeInt::INT;
193             BoolTest test = b->as_Bool()->_test;
194             if (proj->is_IfFalse()) {
195               test = test.negate();
196             }
197             BoolTest::mask m = test._test;
198             jlong lo_long = min_jint;
199             jlong hi_long = max_jint;
200             if (m == BoolTest::le || m == BoolTest::lt) {
201               hi_long = in2_t->_hi;
202               if (m == BoolTest::lt) {
203                 hi_long -= 1;
204               }
205             } else if (m == BoolTest::ge || m == BoolTest::gt) {
206               lo_long = in2_t->_lo;
207               if (m == BoolTest::gt) {
208                 lo_long += 1;
209               }
210             } else if (m == BoolTest::eq) {
211               lo_long = in2_t->_lo;
212               hi_long = in2_t->_hi;
213             } else if (m == BoolTest::ne) {
214               // can't do any better
215             } else {
216               stringStream ss;
217               test.dump_on(&ss);
218               fatal("unexpected comparison %s", ss.as_string());
219             }
220             int lo_int = (int)lo_long;
221             int hi_int = (int)hi_long;
222 
223             if (lo_long != (jlong)lo_int) {
224               lo_int = min_jint;
225             }
226             if (hi_long != (jlong)hi_int) {
227               hi_int = max_jint;
228             }
229 
230             t = TypeInt::make(lo_int, hi_int, Type::WidenMax);
231 
232             res = res->filter_speculative(t);
233 
234             return res;
235           }
236         }
237       }
238     }
239   }
240   return res;
241 }
242 
find_or_make_CastII(PhaseIterGVN * igvn,Node * parent,Node * control,const TypeInt * type)243 static Node* find_or_make_CastII(PhaseIterGVN* igvn, Node* parent, Node* control,
244                                  const TypeInt* type) {
245   Node* n = new CastIINode(parent, type);
246   n->set_req(0, control);
247   Node* existing = igvn->hash_find_insert(n);
248   if (existing != NULL) {
249     n->destruct(igvn);
250     return existing;
251   }
252   return igvn->register_new_node_with_optimizer(n);
253 }
254 
Ideal(PhaseGVN * phase,bool can_reshape)255 Node *CastIINode::Ideal(PhaseGVN *phase, bool can_reshape) {
256   Node* progress = ConstraintCastNode::Ideal(phase, can_reshape);
257   if (progress != NULL) {
258     return progress;
259   }
260 
261   PhaseIterGVN *igvn = phase->is_IterGVN();
262   const TypeInt* this_type = this->type()->is_int();
263   Node* z = in(1);
264   const TypeInteger* rx = NULL;
265   const TypeInteger* ry = NULL;
266   // Similar to ConvI2LNode::Ideal() for the same reasons
267   if (!_range_check_dependency && Compile::push_thru_add(phase, z, this_type, rx, ry, T_INT)) {
268     if (igvn == NULL) {
269       // Postpone this optimization to iterative GVN, where we can handle deep
270       // AddI chains without an exponential number of recursive Ideal() calls.
271       phase->record_for_igvn(this);
272       return NULL;
273     }
274     int op = z->Opcode();
275     Node* x = z->in(1);
276     Node* y = z->in(2);
277 
278     Node* cx = find_or_make_CastII(igvn, x, in(0), rx->is_int());
279     Node* cy = find_or_make_CastII(igvn, y, in(0), ry->is_int());
280     switch (op) {
281       case Op_AddI:  return new AddINode(cx, cy);
282       case Op_SubI:  return new SubINode(cx, cy);
283       default:       ShouldNotReachHere();
284     }
285   }
286 
287   // Similar to ConvI2LNode::Ideal() for the same reasons
288   // Do not narrow the type of range check dependent CastIINodes to
289   // avoid corruption of the graph if a CastII is replaced by TOP but
290   // the corresponding range check is not removed.
291   if (can_reshape && !_range_check_dependency) {
292     if (phase->C->post_loop_opts_phase()) {
293       const TypeInt* this_type = this->type()->is_int();
294       const TypeInt* in_type = phase->type(in(1))->isa_int();
295       if (in_type != NULL && this_type != NULL &&
296           (in_type->_lo != this_type->_lo ||
297            in_type->_hi != this_type->_hi)) {
298         jint lo1 = this_type->_lo;
299         jint hi1 = this_type->_hi;
300         int w1  = this_type->_widen;
301 
302         if (lo1 >= 0) {
303           // Keep a range assertion of >=0.
304           lo1 = 0;        hi1 = max_jint;
305         } else if (hi1 < 0) {
306           // Keep a range assertion of <0.
307           lo1 = min_jint; hi1 = -1;
308         } else {
309           lo1 = min_jint; hi1 = max_jint;
310         }
311         const TypeInt* wtype = TypeInt::make(MAX2(in_type->_lo, lo1),
312                                              MIN2(in_type->_hi, hi1),
313                                              MAX2((int)in_type->_widen, w1));
314         if (wtype != type()) {
315           set_type(wtype);
316           return this;
317         }
318       }
319     } else {
320       phase->C->record_for_post_loop_opts_igvn(this);
321     }
322   }
323   return NULL;
324 }
325 
Identity(PhaseGVN * phase)326 Node* CastIINode::Identity(PhaseGVN* phase) {
327   Node* progress = ConstraintCastNode::Identity(phase);
328   if (progress != this) {
329     return progress;
330   }
331   if (_range_check_dependency) {
332     if (phase->C->post_loop_opts_phase()) {
333       return this->in(1);
334     } else {
335       phase->C->record_for_post_loop_opts_igvn(this);
336     }
337   }
338   return this;
339 }
340 
cmp(const Node & n) const341 bool CastIINode::cmp(const Node &n) const {
342   return ConstraintCastNode::cmp(n) && ((CastIINode&)n)._range_check_dependency == _range_check_dependency;
343 }
344 
size_of() const345 uint CastIINode::size_of() const {
346   return sizeof(*this);
347 }
348 
349 #ifndef PRODUCT
dump_spec(outputStream * st) const350 void CastIINode::dump_spec(outputStream* st) const {
351   ConstraintCastNode::dump_spec(st);
352   if (_range_check_dependency) {
353     st->print(" range check dependency");
354   }
355 }
356 #endif
357 
358 //=============================================================================
359 //------------------------------Identity---------------------------------------
360 // If input is already higher or equal to cast type, then this is an identity.
Identity(PhaseGVN * phase)361 Node* CheckCastPPNode::Identity(PhaseGVN* phase) {
362   Node* dom = dominating_cast(phase, phase);
363   if (dom != NULL) {
364     return dom;
365   }
366   if (_carry_dependency) {
367     return this;
368   }
369   const Type* t = phase->type(in(1));
370   if (EnableVectorReboxing && in(1)->Opcode() == Op_VectorBox) {
371     if (t->higher_equal_speculative(phase->type(this))) {
372       return in(1);
373     }
374   } else if (t == phase->type(this)) {
375     // Toned down to rescue meeting at a Phi 3 different oops all implementing
376     // the same interface.
377     return in(1);
378   }
379   return this;
380 }
381 
382 //------------------------------Value------------------------------------------
383 // Take 'join' of input and cast-up type, unless working with an Interface
Value(PhaseGVN * phase) const384 const Type* CheckCastPPNode::Value(PhaseGVN* phase) const {
385   if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
386 
387   const Type *inn = phase->type(in(1));
388   if( inn == Type::TOP ) return Type::TOP;  // No information yet
389 
390   const TypePtr *in_type   = inn->isa_ptr();
391   const TypePtr *my_type   = _type->isa_ptr();
392   const Type *result = _type;
393   if( in_type != NULL && my_type != NULL ) {
394     TypePtr::PTR   in_ptr    = in_type->ptr();
395     if (in_ptr == TypePtr::Null) {
396       result = in_type;
397     } else if (in_ptr == TypePtr::Constant) {
398       if (my_type->isa_rawptr()) {
399         result = my_type;
400       } else {
401         const TypeOopPtr *jptr = my_type->isa_oopptr();
402         assert(jptr, "");
403         result = !in_type->higher_equal(_type)
404           ? my_type->cast_to_ptr_type(TypePtr::NotNull)
405           : in_type;
406       }
407     } else {
408       result =  my_type->cast_to_ptr_type( my_type->join_ptr(in_ptr) );
409     }
410   }
411 
412   // This is the code from TypePtr::xmeet() that prevents us from
413   // having 2 ways to represent the same type. We have to replicate it
414   // here because we don't go through meet/join.
415   if (result->remove_speculative() == result->speculative()) {
416     result = result->remove_speculative();
417   }
418 
419   // Same as above: because we don't go through meet/join, remove the
420   // speculative type if we know we won't use it.
421   return result->cleanup_speculative();
422 
423   // JOIN NOT DONE HERE BECAUSE OF INTERFACE ISSUES.
424   // FIX THIS (DO THE JOIN) WHEN UNION TYPES APPEAR!
425 
426   //
427   // Remove this code after overnight run indicates no performance
428   // loss from not performing JOIN at CheckCastPPNode
429   //
430   // const TypeInstPtr *in_oop = in->isa_instptr();
431   // const TypeInstPtr *my_oop = _type->isa_instptr();
432   // // If either input is an 'interface', return destination type
433   // assert (in_oop == NULL || in_oop->klass() != NULL, "");
434   // assert (my_oop == NULL || my_oop->klass() != NULL, "");
435   // if( (in_oop && in_oop->klass()->is_interface())
436   //   ||(my_oop && my_oop->klass()->is_interface()) ) {
437   //   TypePtr::PTR  in_ptr = in->isa_ptr() ? in->is_ptr()->_ptr : TypePtr::BotPTR;
438   //   // Preserve cast away nullness for interfaces
439   //   if( in_ptr == TypePtr::NotNull && my_oop && my_oop->_ptr == TypePtr::BotPTR ) {
440   //     return my_oop->cast_to_ptr_type(TypePtr::NotNull);
441   //   }
442   //   return _type;
443   // }
444   //
445   // // Neither the input nor the destination type is an interface,
446   //
447   // // history: JOIN used to cause weird corner case bugs
448   // //          return (in == TypeOopPtr::NULL_PTR) ? in : _type;
449   // // JOIN picks up NotNull in common instance-of/check-cast idioms, both oops.
450   // // JOIN does not preserve NotNull in other cases, e.g. RawPtr vs InstPtr
451   // const Type *join = in->join(_type);
452   // // Check if join preserved NotNull'ness for pointers
453   // if( join->isa_ptr() && _type->isa_ptr() ) {
454   //   TypePtr::PTR join_ptr = join->is_ptr()->_ptr;
455   //   TypePtr::PTR type_ptr = _type->is_ptr()->_ptr;
456   //   // If there isn't any NotNull'ness to preserve
457   //   // OR if join preserved NotNull'ness then return it
458   //   if( type_ptr == TypePtr::BotPTR  || type_ptr == TypePtr::Null ||
459   //       join_ptr == TypePtr::NotNull || join_ptr == TypePtr::Constant ) {
460   //     return join;
461   //   }
462   //   // ELSE return same old type as before
463   //   return _type;
464   // }
465   // // Not joining two pointers
466   // return join;
467 }
468 
469 //=============================================================================
470 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const471 const Type* CastX2PNode::Value(PhaseGVN* phase) const {
472   const Type* t = phase->type(in(1));
473   if (t == Type::TOP) return Type::TOP;
474   if (t->base() == Type_X && t->singleton()) {
475     uintptr_t bits = (uintptr_t) t->is_intptr_t()->get_con();
476     if (bits == 0)   return TypePtr::NULL_PTR;
477     return TypeRawPtr::make((address) bits);
478   }
479   return CastX2PNode::bottom_type();
480 }
481 
482 //------------------------------Idealize---------------------------------------
fits_in_int(const Type * t,bool but_not_min_int=false)483 static inline bool fits_in_int(const Type* t, bool but_not_min_int = false) {
484   if (t == Type::TOP)  return false;
485   const TypeX* tl = t->is_intptr_t();
486   jint lo = min_jint;
487   jint hi = max_jint;
488   if (but_not_min_int)  ++lo;  // caller wants to negate the value w/o overflow
489   return (tl->_lo >= lo) && (tl->_hi <= hi);
490 }
491 
addP_of_X2P(PhaseGVN * phase,Node * base,Node * dispX,bool negate=false)492 static inline Node* addP_of_X2P(PhaseGVN *phase,
493                                 Node* base,
494                                 Node* dispX,
495                                 bool negate = false) {
496   if (negate) {
497     dispX = phase->transform(new SubXNode(phase->MakeConX(0), dispX));
498   }
499   return new AddPNode(phase->C->top(),
500                       phase->transform(new CastX2PNode(base)),
501                       dispX);
502 }
503 
Ideal(PhaseGVN * phase,bool can_reshape)504 Node *CastX2PNode::Ideal(PhaseGVN *phase, bool can_reshape) {
505   // convert CastX2P(AddX(x, y)) to AddP(CastX2P(x), y) if y fits in an int
506   int op = in(1)->Opcode();
507   Node* x;
508   Node* y;
509   switch (op) {
510     case Op_SubX:
511     x = in(1)->in(1);
512     // Avoid ideal transformations ping-pong between this and AddP for raw pointers.
513     if (phase->find_intptr_t_con(x, -1) == 0)
514     break;
515     y = in(1)->in(2);
516     if (fits_in_int(phase->type(y), true)) {
517       return addP_of_X2P(phase, x, y, true);
518     }
519     break;
520     case Op_AddX:
521     x = in(1)->in(1);
522     y = in(1)->in(2);
523     if (fits_in_int(phase->type(y))) {
524       return addP_of_X2P(phase, x, y);
525     }
526     if (fits_in_int(phase->type(x))) {
527       return addP_of_X2P(phase, y, x);
528     }
529     break;
530   }
531   return NULL;
532 }
533 
534 //------------------------------Identity---------------------------------------
Identity(PhaseGVN * phase)535 Node* CastX2PNode::Identity(PhaseGVN* phase) {
536   if (in(1)->Opcode() == Op_CastP2X)  return in(1)->in(1);
537   return this;
538 }
539 
540 //=============================================================================
541 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const542 const Type* CastP2XNode::Value(PhaseGVN* phase) const {
543   const Type* t = phase->type(in(1));
544   if (t == Type::TOP) return Type::TOP;
545   if (t->base() == Type::RawPtr && t->singleton()) {
546     uintptr_t bits = (uintptr_t) t->is_rawptr()->get_con();
547     return TypeX::make(bits);
548   }
549   return CastP2XNode::bottom_type();
550 }
551 
Ideal(PhaseGVN * phase,bool can_reshape)552 Node *CastP2XNode::Ideal(PhaseGVN *phase, bool can_reshape) {
553   return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
554 }
555 
556 //------------------------------Identity---------------------------------------
Identity(PhaseGVN * phase)557 Node* CastP2XNode::Identity(PhaseGVN* phase) {
558   if (in(1)->Opcode() == Op_CastX2P)  return in(1)->in(1);
559   return this;
560 }
561