1 /*
2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "classfile/systemDictionary.hpp"
27 #include "gc/shared/barrierSet.hpp"
28 #include "gc/shared/c2/barrierSetC2.hpp"
29 #include "memory/allocation.inline.hpp"
30 #include "memory/resourceArea.hpp"
31 #include "oops/objArrayKlass.hpp"
32 #include "opto/addnode.hpp"
33 #include "opto/castnode.hpp"
34 #include "opto/cfgnode.hpp"
35 #include "opto/connode.hpp"
36 #include "opto/convertnode.hpp"
37 #include "opto/loopnode.hpp"
38 #include "opto/machnode.hpp"
39 #include "opto/movenode.hpp"
40 #include "opto/narrowptrnode.hpp"
41 #include "opto/mulnode.hpp"
42 #include "opto/phaseX.hpp"
43 #include "opto/regmask.hpp"
44 #include "opto/runtime.hpp"
45 #include "opto/subnode.hpp"
46 #include "opto/vectornode.hpp"
47 #include "utilities/vmError.hpp"
48 
49 // Portions of code courtesy of Clifford Click
50 
51 // Optimization - Graph Style
52 
53 //=============================================================================
54 //------------------------------Value------------------------------------------
55 // Compute the type of the RegionNode.
Value(PhaseGVN * phase) const56 const Type* RegionNode::Value(PhaseGVN* phase) const {
57   for( uint i=1; i<req(); ++i ) {       // For all paths in
58     Node *n = in(i);            // Get Control source
59     if( !n ) continue;          // Missing inputs are TOP
60     if( phase->type(n) == Type::CONTROL )
61       return Type::CONTROL;
62   }
63   return Type::TOP;             // All paths dead?  Then so are we
64 }
65 
66 //------------------------------Identity---------------------------------------
67 // Check for Region being Identity.
Identity(PhaseGVN * phase)68 Node* RegionNode::Identity(PhaseGVN* phase) {
69   // Cannot have Region be an identity, even if it has only 1 input.
70   // Phi users cannot have their Region input folded away for them,
71   // since they need to select the proper data input
72   return this;
73 }
74 
75 //------------------------------merge_region-----------------------------------
76 // If a Region flows into a Region, merge into one big happy merge.  This is
77 // hard to do if there is stuff that has to happen
merge_region(RegionNode * region,PhaseGVN * phase)78 static Node *merge_region(RegionNode *region, PhaseGVN *phase) {
79   if( region->Opcode() != Op_Region ) // Do not do to LoopNodes
80     return NULL;
81   Node *progress = NULL;        // Progress flag
82   PhaseIterGVN *igvn = phase->is_IterGVN();
83 
84   uint rreq = region->req();
85   for( uint i = 1; i < rreq; i++ ) {
86     Node *r = region->in(i);
87     if( r && r->Opcode() == Op_Region && // Found a region?
88         r->in(0) == r &&        // Not already collapsed?
89         r != region &&          // Avoid stupid situations
90         r->outcnt() == 2 ) {    // Self user and 'region' user only?
91       assert(!r->as_Region()->has_phi(), "no phi users");
92       if( !progress ) {         // No progress
93         if (region->has_phi()) {
94           return NULL;        // Only flatten if no Phi users
95           // igvn->hash_delete( phi );
96         }
97         igvn->hash_delete( region );
98         progress = region;      // Making progress
99       }
100       igvn->hash_delete( r );
101 
102       // Append inputs to 'r' onto 'region'
103       for( uint j = 1; j < r->req(); j++ ) {
104         // Move an input from 'r' to 'region'
105         region->add_req(r->in(j));
106         r->set_req(j, phase->C->top());
107         // Update phis of 'region'
108         //for( uint k = 0; k < max; k++ ) {
109         //  Node *phi = region->out(k);
110         //  if( phi->is_Phi() ) {
111         //    phi->add_req(phi->in(i));
112         //  }
113         //}
114 
115         rreq++;                 // One more input to Region
116       } // Found a region to merge into Region
117       igvn->_worklist.push(r);
118       // Clobber pointer to the now dead 'r'
119       region->set_req(i, phase->C->top());
120     }
121   }
122 
123   return progress;
124 }
125 
126 
127 
128 //--------------------------------has_phi--------------------------------------
129 // Helper function: Return any PhiNode that uses this region or NULL
has_phi() const130 PhiNode* RegionNode::has_phi() const {
131   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
132     Node* phi = fast_out(i);
133     if (phi->is_Phi()) {   // Check for Phi users
134       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
135       return phi->as_Phi();  // this one is good enough
136     }
137   }
138 
139   return NULL;
140 }
141 
142 
143 //-----------------------------has_unique_phi----------------------------------
144 // Helper function: Return the only PhiNode that uses this region or NULL
has_unique_phi() const145 PhiNode* RegionNode::has_unique_phi() const {
146   // Check that only one use is a Phi
147   PhiNode* only_phi = NULL;
148   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
149     Node* phi = fast_out(i);
150     if (phi->is_Phi()) {   // Check for Phi users
151       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
152       if (only_phi == NULL) {
153         only_phi = phi->as_Phi();
154       } else {
155         return NULL;  // multiple phis
156       }
157     }
158   }
159 
160   return only_phi;
161 }
162 
163 
164 //------------------------------check_phi_clipping-----------------------------
165 // Helper function for RegionNode's identification of FP clipping
166 // Check inputs to the Phi
check_phi_clipping(PhiNode * phi,ConNode * & min,uint & min_idx,ConNode * & max,uint & max_idx,Node * & val,uint & val_idx)167 static bool check_phi_clipping( PhiNode *phi, ConNode * &min, uint &min_idx, ConNode * &max, uint &max_idx, Node * &val, uint &val_idx ) {
168   min     = NULL;
169   max     = NULL;
170   val     = NULL;
171   min_idx = 0;
172   max_idx = 0;
173   val_idx = 0;
174   uint  phi_max = phi->req();
175   if( phi_max == 4 ) {
176     for( uint j = 1; j < phi_max; ++j ) {
177       Node *n = phi->in(j);
178       int opcode = n->Opcode();
179       switch( opcode ) {
180       case Op_ConI:
181         {
182           if( min == NULL ) {
183             min     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
184             min_idx = j;
185           } else {
186             max     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
187             max_idx = j;
188             if( min->get_int() > max->get_int() ) {
189               // Swap min and max
190               ConNode *temp;
191               uint     temp_idx;
192               temp     = min;     min     = max;     max     = temp;
193               temp_idx = min_idx; min_idx = max_idx; max_idx = temp_idx;
194             }
195           }
196         }
197         break;
198       default:
199         {
200           val = n;
201           val_idx = j;
202         }
203         break;
204       }
205     }
206   }
207   return ( min && max && val && (min->get_int() <= 0) && (max->get_int() >=0) );
208 }
209 
210 
211 //------------------------------check_if_clipping------------------------------
212 // Helper function for RegionNode's identification of FP clipping
213 // Check that inputs to Region come from two IfNodes,
214 //
215 //            If
216 //      False    True
217 //       If        |
218 //  False  True    |
219 //    |      |     |
220 //  RegionNode_inputs
221 //
check_if_clipping(const RegionNode * region,IfNode * & bot_if,IfNode * & top_if)222 static bool check_if_clipping( const RegionNode *region, IfNode * &bot_if, IfNode * &top_if ) {
223   top_if = NULL;
224   bot_if = NULL;
225 
226   // Check control structure above RegionNode for (if  ( if  ) )
227   Node *in1 = region->in(1);
228   Node *in2 = region->in(2);
229   Node *in3 = region->in(3);
230   // Check that all inputs are projections
231   if( in1->is_Proj() && in2->is_Proj() && in3->is_Proj() ) {
232     Node *in10 = in1->in(0);
233     Node *in20 = in2->in(0);
234     Node *in30 = in3->in(0);
235     // Check that #1 and #2 are ifTrue and ifFalse from same If
236     if( in10 != NULL && in10->is_If() &&
237         in20 != NULL && in20->is_If() &&
238         in30 != NULL && in30->is_If() && in10 == in20 &&
239         (in1->Opcode() != in2->Opcode()) ) {
240       Node  *in100 = in10->in(0);
241       Node *in1000 = (in100 != NULL && in100->is_Proj()) ? in100->in(0) : NULL;
242       // Check that control for in10 comes from other branch of IF from in3
243       if( in1000 != NULL && in1000->is_If() &&
244           in30 == in1000 && (in3->Opcode() != in100->Opcode()) ) {
245         // Control pattern checks
246         top_if = (IfNode*)in1000;
247         bot_if = (IfNode*)in10;
248       }
249     }
250   }
251 
252   return (top_if != NULL);
253 }
254 
255 
256 //------------------------------check_convf2i_clipping-------------------------
257 // Helper function for RegionNode's identification of FP clipping
258 // Verify that the value input to the phi comes from "ConvF2I; LShift; RShift"
check_convf2i_clipping(PhiNode * phi,uint idx,ConvF2INode * & convf2i,Node * min,Node * max)259 static bool check_convf2i_clipping( PhiNode *phi, uint idx, ConvF2INode * &convf2i, Node *min, Node *max) {
260   convf2i = NULL;
261 
262   // Check for the RShiftNode
263   Node *rshift = phi->in(idx);
264   assert( rshift, "Previous checks ensure phi input is present");
265   if( rshift->Opcode() != Op_RShiftI )  { return false; }
266 
267   // Check for the LShiftNode
268   Node *lshift = rshift->in(1);
269   assert( lshift, "Previous checks ensure phi input is present");
270   if( lshift->Opcode() != Op_LShiftI )  { return false; }
271 
272   // Check for the ConvF2INode
273   Node *conv = lshift->in(1);
274   if( conv->Opcode() != Op_ConvF2I ) { return false; }
275 
276   // Check that shift amounts are only to get sign bits set after F2I
277   jint max_cutoff     = max->get_int();
278   jint min_cutoff     = min->get_int();
279   jint left_shift     = lshift->in(2)->get_int();
280   jint right_shift    = rshift->in(2)->get_int();
281   jint max_post_shift = nth_bit(BitsPerJavaInteger - left_shift - 1);
282   if( left_shift != right_shift ||
283       0 > left_shift || left_shift >= BitsPerJavaInteger ||
284       max_post_shift < max_cutoff ||
285       max_post_shift < -min_cutoff ) {
286     // Shifts are necessary but current transformation eliminates them
287     return false;
288   }
289 
290   // OK to return the result of ConvF2I without shifting
291   convf2i = (ConvF2INode*)conv;
292   return true;
293 }
294 
295 
296 //------------------------------check_compare_clipping-------------------------
297 // Helper function for RegionNode's identification of FP clipping
check_compare_clipping(bool less_than,IfNode * iff,ConNode * limit,Node * & input)298 static bool check_compare_clipping( bool less_than, IfNode *iff, ConNode *limit, Node * & input ) {
299   Node *i1 = iff->in(1);
300   if ( !i1->is_Bool() ) { return false; }
301   BoolNode *bool1 = i1->as_Bool();
302   if(       less_than && bool1->_test._test != BoolTest::le ) { return false; }
303   else if( !less_than && bool1->_test._test != BoolTest::lt ) { return false; }
304   const Node *cmpF = bool1->in(1);
305   if( cmpF->Opcode() != Op_CmpF )      { return false; }
306   // Test that the float value being compared against
307   // is equivalent to the int value used as a limit
308   Node *nodef = cmpF->in(2);
309   if( nodef->Opcode() != Op_ConF ) { return false; }
310   jfloat conf = nodef->getf();
311   jint   coni = limit->get_int();
312   if( ((int)conf) != coni )        { return false; }
313   input = cmpF->in(1);
314   return true;
315 }
316 
317 //------------------------------is_unreachable_region--------------------------
318 // Find if the Region node is reachable from the root.
is_unreachable_region(const PhaseGVN * phase)319 bool RegionNode::is_unreachable_region(const PhaseGVN* phase) {
320   Node* top = phase->C->top();
321   assert(req() == 2 || (req() == 3 && in(1) != NULL && in(2) == top), "sanity check arguments");
322   if (_is_unreachable_region) {
323     // Return cached result from previous evaluation which should still be valid
324     assert(is_unreachable_from_root(phase), "walk the graph again and check if its indeed unreachable");
325     return true;
326   }
327 
328   // First, cut the simple case of fallthrough region when NONE of
329   // region's phis references itself directly or through a data node.
330   if (is_possible_unsafe_loop(phase)) {
331     // If we have a possible unsafe loop, check if the region node is actually unreachable from root.
332     if (is_unreachable_from_root(phase)) {
333       _is_unreachable_region = true;
334       return true;
335     }
336   }
337   return false;
338 }
339 
is_possible_unsafe_loop(const PhaseGVN * phase) const340 bool RegionNode::is_possible_unsafe_loop(const PhaseGVN* phase) const {
341   uint max = outcnt();
342   uint i;
343   for (i = 0; i < max; i++) {
344     Node* n = raw_out(i);
345     if (n != NULL && n->is_Phi()) {
346       PhiNode* phi = n->as_Phi();
347       assert(phi->in(0) == this, "sanity check phi");
348       if (phi->outcnt() == 0) {
349         continue; // Safe case - no loops
350       }
351       if (phi->outcnt() == 1) {
352         Node* u = phi->raw_out(0);
353         // Skip if only one use is an other Phi or Call or Uncommon trap.
354         // It is safe to consider this case as fallthrough.
355         if (u != NULL && (u->is_Phi() || u->is_CFG())) {
356           continue;
357         }
358       }
359       // Check when phi references itself directly or through an other node.
360       if (phi->as_Phi()->simple_data_loop_check(phi->in(1)) >= PhiNode::Unsafe) {
361         break; // Found possible unsafe data loop.
362       }
363     }
364   }
365   if (i >= max) {
366     return false; // An unsafe case was NOT found - don't need graph walk.
367   }
368   return true;
369 }
370 
is_unreachable_from_root(const PhaseGVN * phase) const371 bool RegionNode::is_unreachable_from_root(const PhaseGVN* phase) const {
372   ResourceMark rm;
373   Node_List nstack;
374   VectorSet visited;
375 
376   // Mark all control nodes reachable from root outputs
377   Node *n = (Node*)phase->C->root();
378   nstack.push(n);
379   visited.set(n->_idx);
380   while (nstack.size() != 0) {
381     n = nstack.pop();
382     uint max = n->outcnt();
383     for (uint i = 0; i < max; i++) {
384       Node* m = n->raw_out(i);
385       if (m != NULL && m->is_CFG()) {
386         if (m == this) {
387           return false; // We reached the Region node - it is not dead.
388         }
389         if (!visited.test_set(m->_idx))
390           nstack.push(m);
391       }
392     }
393   }
394   return true; // The Region node is unreachable - it is dead.
395 }
396 
try_clean_mem_phi(PhaseGVN * phase)397 bool RegionNode::try_clean_mem_phi(PhaseGVN *phase) {
398   // Incremental inlining + PhaseStringOpts sometimes produce:
399   //
400   // cmpP with 1 top input
401   //           |
402   //          If
403   //         /  \
404   //   IfFalse  IfTrue  /- Some Node
405   //         \  /      /    /
406   //        Region    / /-MergeMem
407   //             \---Phi
408   //
409   //
410   // It's expected by PhaseStringOpts that the Region goes away and is
411   // replaced by If's control input but because there's still a Phi,
412   // the Region stays in the graph. The top input from the cmpP is
413   // propagated forward and a subgraph that is useful goes away. The
414   // code below replaces the Phi with the MergeMem so that the Region
415   // is simplified.
416 
417   PhiNode* phi = has_unique_phi();
418   if (phi && phi->type() == Type::MEMORY && req() == 3 && phi->is_diamond_phi(true)) {
419     MergeMemNode* m = NULL;
420     assert(phi->req() == 3, "same as region");
421     for (uint i = 1; i < 3; ++i) {
422       Node *mem = phi->in(i);
423       if (mem && mem->is_MergeMem() && in(i)->outcnt() == 1) {
424         // Nothing is control-dependent on path #i except the region itself.
425         m = mem->as_MergeMem();
426         uint j = 3 - i;
427         Node* other = phi->in(j);
428         if (other && other == m->base_memory()) {
429           // m is a successor memory to other, and is not pinned inside the diamond, so push it out.
430           // This will allow the diamond to collapse completely.
431           phase->is_IterGVN()->replace_node(phi, m);
432           return true;
433         }
434       }
435     }
436   }
437   return false;
438 }
439 
440 //------------------------------Ideal------------------------------------------
441 // Return a node which is more "ideal" than the current node.  Must preserve
442 // the CFG, but we can still strip out dead paths.
Ideal(PhaseGVN * phase,bool can_reshape)443 Node *RegionNode::Ideal(PhaseGVN *phase, bool can_reshape) {
444   if( !can_reshape && !in(0) ) return NULL;     // Already degraded to a Copy
445   assert(!in(0) || !in(0)->is_Root(), "not a specially hidden merge");
446 
447   // Check for RegionNode with no Phi users and both inputs come from either
448   // arm of the same IF.  If found, then the control-flow split is useless.
449   bool has_phis = false;
450   if (can_reshape) {            // Need DU info to check for Phi users
451     has_phis = (has_phi() != NULL);       // Cache result
452     if (has_phis && try_clean_mem_phi(phase)) {
453       has_phis = false;
454     }
455 
456     if (!has_phis) {            // No Phi users?  Nothing merging?
457       for (uint i = 1; i < req()-1; i++) {
458         Node *if1 = in(i);
459         if( !if1 ) continue;
460         Node *iff = if1->in(0);
461         if( !iff || !iff->is_If() ) continue;
462         for( uint j=i+1; j<req(); j++ ) {
463           if( in(j) && in(j)->in(0) == iff &&
464               if1->Opcode() != in(j)->Opcode() ) {
465             // Add the IF Projections to the worklist. They (and the IF itself)
466             // will be eliminated if dead.
467             phase->is_IterGVN()->add_users_to_worklist(iff);
468             set_req(i, iff->in(0));// Skip around the useless IF diamond
469             set_req(j, NULL);
470             return this;      // Record progress
471           }
472         }
473       }
474     }
475   }
476 
477   // Remove TOP or NULL input paths. If only 1 input path remains, this Region
478   // degrades to a copy.
479   bool add_to_worklist = false;
480   bool modified = false;
481   int cnt = 0;                  // Count of values merging
482   DEBUG_ONLY( int cnt_orig = req(); ) // Save original inputs count
483   int del_it = 0;               // The last input path we delete
484   // For all inputs...
485   for( uint i=1; i<req(); ++i ){// For all paths in
486     Node *n = in(i);            // Get the input
487     if( n != NULL ) {
488       // Remove useless control copy inputs
489       if( n->is_Region() && n->as_Region()->is_copy() ) {
490         set_req(i, n->nonnull_req());
491         modified = true;
492         i--;
493         continue;
494       }
495       if( n->is_Proj() ) {      // Remove useless rethrows
496         Node *call = n->in(0);
497         if (call->is_Call() && call->as_Call()->entry_point() == OptoRuntime::rethrow_stub()) {
498           set_req(i, call->in(0));
499           modified = true;
500           i--;
501           continue;
502         }
503       }
504       if( phase->type(n) == Type::TOP ) {
505         set_req(i, NULL);       // Ignore TOP inputs
506         modified = true;
507         i--;
508         continue;
509       }
510       cnt++;                    // One more value merging
511 
512     } else if (can_reshape) {   // Else found dead path with DU info
513       PhaseIterGVN *igvn = phase->is_IterGVN();
514       del_req(i);               // Yank path from self
515       del_it = i;
516       uint max = outcnt();
517       DUIterator j;
518       bool progress = true;
519       while(progress) {         // Need to establish property over all users
520         progress = false;
521         for (j = outs(); has_out(j); j++) {
522           Node *n = out(j);
523           if( n->req() != req() && n->is_Phi() ) {
524             assert( n->in(0) == this, "" );
525             igvn->hash_delete(n); // Yank from hash before hacking edges
526             n->set_req_X(i,NULL,igvn);// Correct DU info
527             n->del_req(i);        // Yank path from Phis
528             if( max != outcnt() ) {
529               progress = true;
530               j = refresh_out_pos(j);
531               max = outcnt();
532             }
533           }
534         }
535       }
536       add_to_worklist = true;
537       i--;
538     }
539   }
540 
541   if (can_reshape && cnt == 1) {
542     // Is it dead loop?
543     // If it is LoopNopde it had 2 (+1 itself) inputs and
544     // one of them was cut. The loop is dead if it was EntryContol.
545     // Loop node may have only one input because entry path
546     // is removed in PhaseIdealLoop::Dominators().
547     assert(!this->is_Loop() || cnt_orig <= 3, "Loop node should have 3 or less inputs");
548     if ((this->is_Loop() && (del_it == LoopNode::EntryControl ||
549                              (del_it == 0 && is_unreachable_region(phase)))) ||
550         (!this->is_Loop() && has_phis && is_unreachable_region(phase))) {
551       // Yes,  the region will be removed during the next step below.
552       // Cut the backedge input and remove phis since no data paths left.
553       // We don't cut outputs to other nodes here since we need to put them
554       // on the worklist.
555       PhaseIterGVN *igvn = phase->is_IterGVN();
556       if (in(1)->outcnt() == 1) {
557         igvn->_worklist.push(in(1));
558       }
559       del_req(1);
560       cnt = 0;
561       assert( req() == 1, "no more inputs expected" );
562       uint max = outcnt();
563       bool progress = true;
564       Node *top = phase->C->top();
565       DUIterator j;
566       while(progress) {
567         progress = false;
568         for (j = outs(); has_out(j); j++) {
569           Node *n = out(j);
570           if( n->is_Phi() ) {
571             assert(n->in(0) == this, "");
572             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
573             // Break dead loop data path.
574             // Eagerly replace phis with top to avoid regionless phis.
575             igvn->replace_node(n, top);
576             if( max != outcnt() ) {
577               progress = true;
578               j = refresh_out_pos(j);
579               max = outcnt();
580             }
581           }
582         }
583       }
584       add_to_worklist = true;
585     }
586   }
587   if (add_to_worklist) {
588     phase->is_IterGVN()->add_users_to_worklist(this); // Revisit collapsed Phis
589   }
590 
591   if( cnt <= 1 ) {              // Only 1 path in?
592     set_req(0, NULL);           // Null control input for region copy
593     if( cnt == 0 && !can_reshape) { // Parse phase - leave the node as it is.
594       // No inputs or all inputs are NULL.
595       return NULL;
596     } else if (can_reshape) {   // Optimization phase - remove the node
597       PhaseIterGVN *igvn = phase->is_IterGVN();
598       // Strip mined (inner) loop is going away, remove outer loop.
599       if (is_CountedLoop() &&
600           as_Loop()->is_strip_mined()) {
601         Node* outer_sfpt = as_CountedLoop()->outer_safepoint();
602         Node* outer_out = as_CountedLoop()->outer_loop_exit();
603         if (outer_sfpt != NULL && outer_out != NULL) {
604           Node* in = outer_sfpt->in(0);
605           igvn->replace_node(outer_out, in);
606           LoopNode* outer = as_CountedLoop()->outer_loop();
607           igvn->replace_input_of(outer, LoopNode::LoopBackControl, igvn->C->top());
608         }
609       }
610       Node *parent_ctrl;
611       if( cnt == 0 ) {
612         assert( req() == 1, "no inputs expected" );
613         // During IGVN phase such region will be subsumed by TOP node
614         // so region's phis will have TOP as control node.
615         // Kill phis here to avoid it.
616         // Also set other user's input to top.
617         parent_ctrl = phase->C->top();
618       } else {
619         // The fallthrough case since we already checked dead loops above.
620         parent_ctrl = in(1);
621         assert(parent_ctrl != NULL, "Region is a copy of some non-null control");
622         assert(parent_ctrl != this, "Close dead loop");
623       }
624       if (!add_to_worklist)
625         igvn->add_users_to_worklist(this); // Check for further allowed opts
626       for (DUIterator_Last imin, i = last_outs(imin); i >= imin; --i) {
627         Node* n = last_out(i);
628         igvn->hash_delete(n); // Remove from worklist before modifying edges
629         if( n->is_Phi() ) {   // Collapse all Phis
630           // Eagerly replace phis to avoid regionless phis.
631           Node* in;
632           if( cnt == 0 ) {
633             assert( n->req() == 1, "No data inputs expected" );
634             in = parent_ctrl; // replaced by top
635           } else {
636             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
637             in = n->in(1);               // replaced by unique input
638             if( n->as_Phi()->is_unsafe_data_reference(in) )
639               in = phase->C->top();      // replaced by top
640           }
641           igvn->replace_node(n, in);
642         }
643         else if( n->is_Region() ) { // Update all incoming edges
644           assert(n != this, "Must be removed from DefUse edges");
645           uint uses_found = 0;
646           for( uint k=1; k < n->req(); k++ ) {
647             if( n->in(k) == this ) {
648               n->set_req(k, parent_ctrl);
649               uses_found++;
650             }
651           }
652           if( uses_found > 1 ) { // (--i) done at the end of the loop.
653             i -= (uses_found - 1);
654           }
655         }
656         else {
657           assert(n->in(0) == this, "Expect RegionNode to be control parent");
658           n->set_req(0, parent_ctrl);
659         }
660 #ifdef ASSERT
661         for( uint k=0; k < n->req(); k++ ) {
662           assert(n->in(k) != this, "All uses of RegionNode should be gone");
663         }
664 #endif
665       }
666       // Remove the RegionNode itself from DefUse info
667       igvn->remove_dead_node(this);
668       return NULL;
669     }
670     return this;                // Record progress
671   }
672 
673 
674   // If a Region flows into a Region, merge into one big happy merge.
675   if (can_reshape) {
676     Node *m = merge_region(this, phase);
677     if (m != NULL)  return m;
678   }
679 
680   // Check if this region is the root of a clipping idiom on floats
681   if( ConvertFloat2IntClipping && can_reshape && req() == 4 ) {
682     // Check that only one use is a Phi and that it simplifies to two constants +
683     PhiNode* phi = has_unique_phi();
684     if (phi != NULL) {          // One Phi user
685       // Check inputs to the Phi
686       ConNode *min;
687       ConNode *max;
688       Node    *val;
689       uint     min_idx;
690       uint     max_idx;
691       uint     val_idx;
692       if( check_phi_clipping( phi, min, min_idx, max, max_idx, val, val_idx )  ) {
693         IfNode *top_if;
694         IfNode *bot_if;
695         if( check_if_clipping( this, bot_if, top_if ) ) {
696           // Control pattern checks, now verify compares
697           Node   *top_in = NULL;   // value being compared against
698           Node   *bot_in = NULL;
699           if( check_compare_clipping( true,  bot_if, min, bot_in ) &&
700               check_compare_clipping( false, top_if, max, top_in ) ) {
701             if( bot_in == top_in ) {
702               PhaseIterGVN *gvn = phase->is_IterGVN();
703               assert( gvn != NULL, "Only had DefUse info in IterGVN");
704               // Only remaining check is that bot_in == top_in == (Phi's val + mods)
705 
706               // Check for the ConvF2INode
707               ConvF2INode *convf2i;
708               if( check_convf2i_clipping( phi, val_idx, convf2i, min, max ) &&
709                 convf2i->in(1) == bot_in ) {
710                 // Matched pattern, including LShiftI; RShiftI, replace with integer compares
711                 // max test
712                 Node *cmp   = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, min ));
713                 Node *boo   = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::lt ));
714                 IfNode *iff = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( top_if->in(0), boo, PROB_UNLIKELY_MAG(5), top_if->_fcnt ));
715                 Node *if_min= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
716                 Node *ifF   = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
717                 // min test
718                 cmp         = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, max ));
719                 boo         = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::gt ));
720                 iff         = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( ifF, boo, PROB_UNLIKELY_MAG(5), bot_if->_fcnt ));
721                 Node *if_max= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
722                 ifF         = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
723                 // update input edges to region node
724                 set_req_X( min_idx, if_min, gvn );
725                 set_req_X( max_idx, if_max, gvn );
726                 set_req_X( val_idx, ifF,    gvn );
727                 // remove unnecessary 'LShiftI; RShiftI' idiom
728                 gvn->hash_delete(phi);
729                 phi->set_req_X( val_idx, convf2i, gvn );
730                 gvn->hash_find_insert(phi);
731                 // Return transformed region node
732                 return this;
733               }
734             }
735           }
736         }
737       }
738     }
739   }
740 
741   if (can_reshape) {
742     modified |= optimize_trichotomy(phase->is_IterGVN());
743   }
744 
745   return modified ? this : NULL;
746 }
747 
748 //------------------------------optimize_trichotomy--------------------------
749 // Optimize nested comparisons of the following kind:
750 //
751 // int compare(int a, int b) {
752 //   return (a < b) ? -1 : (a == b) ? 0 : 1;
753 // }
754 //
755 // Shape 1:
756 // if (compare(a, b) == 1) { ... } -> if (a > b) { ... }
757 //
758 // Shape 2:
759 // if (compare(a, b) == 0) { ... } -> if (a == b) { ... }
760 //
761 // Above code leads to the following IR shapes where both Ifs compare the
762 // same value and two out of three region inputs idx1 and idx2 map to
763 // the same value and control flow.
764 //
765 // (1)   If                 (2)   If
766 //      /  \                     /  \
767 //   Proj  Proj               Proj  Proj
768 //     |      \                |      \
769 //     |       If              |      If                      If
770 //     |      /  \             |     /  \                    /  \
771 //     |   Proj  Proj          |  Proj  Proj      ==>     Proj  Proj
772 //     |   /      /            \    |    /                  |    /
773 //    Region     /              \   |   /                   |   /
774 //         \    /                \  |  /                    |  /
775 //         Region                Region                    Region
776 //
777 // The method returns true if 'this' is modified and false otherwise.
optimize_trichotomy(PhaseIterGVN * igvn)778 bool RegionNode::optimize_trichotomy(PhaseIterGVN* igvn) {
779   int idx1 = 1, idx2 = 2;
780   Node* region = NULL;
781   if (req() == 3 && in(1) != NULL && in(2) != NULL) {
782     // Shape 1: Check if one of the inputs is a region that merges two control
783     // inputs and has no other users (especially no Phi users).
784     region = in(1)->isa_Region() ? in(1) : in(2)->isa_Region();
785     if (region == NULL || region->outcnt() != 2 || region->req() != 3) {
786       return false; // No suitable region input found
787     }
788   } else if (req() == 4) {
789     // Shape 2: Check if two control inputs map to the same value of the unique phi
790     // user and treat these as if they would come from another region (shape (1)).
791     PhiNode* phi = has_unique_phi();
792     if (phi == NULL) {
793       return false; // No unique phi user
794     }
795     if (phi->in(idx1) != phi->in(idx2)) {
796       idx2 = 3;
797       if (phi->in(idx1) != phi->in(idx2)) {
798         idx1 = 2;
799         if (phi->in(idx1) != phi->in(idx2)) {
800           return false; // No equal phi inputs found
801         }
802       }
803     }
804     assert(phi->in(idx1) == phi->in(idx2), "must be"); // Region is merging same value
805     region = this;
806   }
807   if (region == NULL || region->in(idx1) == NULL || region->in(idx2) == NULL) {
808     return false; // Region does not merge two control inputs
809   }
810   // At this point we know that region->in(idx1) and region->(idx2) map to the same
811   // value and control flow. Now search for ifs that feed into these region inputs.
812   ProjNode* proj1 = region->in(idx1)->isa_Proj();
813   ProjNode* proj2 = region->in(idx2)->isa_Proj();
814   if (proj1 == NULL || proj1->outcnt() != 1 ||
815       proj2 == NULL || proj2->outcnt() != 1) {
816     return false; // No projection inputs with region as unique user found
817   }
818   assert(proj1 != proj2, "should be different projections");
819   IfNode* iff1 = proj1->in(0)->isa_If();
820   IfNode* iff2 = proj2->in(0)->isa_If();
821   if (iff1 == NULL || iff1->outcnt() != 2 ||
822       iff2 == NULL || iff2->outcnt() != 2) {
823     return false; // No ifs found
824   }
825   if (iff1 == iff2) {
826     igvn->add_users_to_worklist(iff1); // Make sure dead if is eliminated
827     igvn->replace_input_of(region, idx1, iff1->in(0));
828     igvn->replace_input_of(region, idx2, igvn->C->top());
829     return (region == this); // Remove useless if (both projections map to the same control/value)
830   }
831   BoolNode* bol1 = iff1->in(1)->isa_Bool();
832   BoolNode* bol2 = iff2->in(1)->isa_Bool();
833   if (bol1 == NULL || bol2 == NULL) {
834     return false; // No bool inputs found
835   }
836   Node* cmp1 = bol1->in(1);
837   Node* cmp2 = bol2->in(1);
838   bool commute = false;
839   if (!cmp1->is_Cmp() || !cmp2->is_Cmp()) {
840     return false; // No comparison
841   } else if (cmp1->Opcode() == Op_CmpF || cmp1->Opcode() == Op_CmpD ||
842              cmp2->Opcode() == Op_CmpF || cmp2->Opcode() == Op_CmpD ||
843              cmp1->Opcode() == Op_CmpP || cmp1->Opcode() == Op_CmpN ||
844              cmp2->Opcode() == Op_CmpP || cmp2->Opcode() == Op_CmpN ||
845              cmp1->is_SubTypeCheck() || cmp2->is_SubTypeCheck()) {
846     // Floats and pointers don't exactly obey trichotomy. To be on the safe side, don't transform their tests.
847     // SubTypeCheck is not commutative
848     return false;
849   } else if (cmp1 != cmp2) {
850     if (cmp1->in(1) == cmp2->in(2) &&
851         cmp1->in(2) == cmp2->in(1)) {
852       commute = true; // Same but swapped inputs, commute the test
853     } else {
854       return false; // Ifs are not comparing the same values
855     }
856   }
857   proj1 = proj1->other_if_proj();
858   proj2 = proj2->other_if_proj();
859   if (!((proj1->unique_ctrl_out() == iff2 &&
860          proj2->unique_ctrl_out() == this) ||
861         (proj2->unique_ctrl_out() == iff1 &&
862          proj1->unique_ctrl_out() == this))) {
863     return false; // Ifs are not connected through other projs
864   }
865   // Found 'iff -> proj -> iff -> proj -> this' shape where all other projs are merged
866   // through 'region' and map to the same value. Merge the boolean tests and replace
867   // the ifs by a single comparison.
868   BoolTest test1 = (proj1->_con == 1) ? bol1->_test : bol1->_test.negate();
869   BoolTest test2 = (proj2->_con == 1) ? bol2->_test : bol2->_test.negate();
870   test1 = commute ? test1.commute() : test1;
871   // After possibly commuting test1, if we can merge test1 & test2, then proj2/iff2/bol2 are the nodes to refine.
872   BoolTest::mask res = test1.merge(test2);
873   if (res == BoolTest::illegal) {
874     return false; // Unable to merge tests
875   }
876   // Adjust iff1 to always pass (only iff2 will remain)
877   igvn->replace_input_of(iff1, 1, igvn->intcon(proj1->_con));
878   if (res == BoolTest::never) {
879     // Merged test is always false, adjust iff2 to always fail
880     igvn->replace_input_of(iff2, 1, igvn->intcon(1 - proj2->_con));
881   } else {
882     // Replace bool input of iff2 with merged test
883     BoolNode* new_bol = new BoolNode(bol2->in(1), res);
884     igvn->replace_input_of(iff2, 1, igvn->transform((proj2->_con == 1) ? new_bol : new_bol->negate(igvn)));
885   }
886   return false;
887 }
888 
out_RegMask() const889 const RegMask &RegionNode::out_RegMask() const {
890   return RegMask::Empty;
891 }
892 
893 // Find the one non-null required input.  RegionNode only
nonnull_req() const894 Node *Node::nonnull_req() const {
895   assert( is_Region(), "" );
896   for( uint i = 1; i < _cnt; i++ )
897     if( in(i) )
898       return in(i);
899   ShouldNotReachHere();
900   return NULL;
901 }
902 
903 
904 //=============================================================================
905 // note that these functions assume that the _adr_type field is flattened
hash() const906 uint PhiNode::hash() const {
907   const Type* at = _adr_type;
908   return TypeNode::hash() + (at ? at->hash() : 0);
909 }
cmp(const Node & n) const910 bool PhiNode::cmp( const Node &n ) const {
911   return TypeNode::cmp(n) && _adr_type == ((PhiNode&)n)._adr_type;
912 }
913 static inline
flatten_phi_adr_type(const TypePtr * at)914 const TypePtr* flatten_phi_adr_type(const TypePtr* at) {
915   if (at == NULL || at == TypePtr::BOTTOM)  return at;
916   return Compile::current()->alias_type(at)->adr_type();
917 }
918 
919 //----------------------------make---------------------------------------------
920 // create a new phi with edges matching r and set (initially) to x
make(Node * r,Node * x,const Type * t,const TypePtr * at)921 PhiNode* PhiNode::make(Node* r, Node* x, const Type *t, const TypePtr* at) {
922   uint preds = r->req();   // Number of predecessor paths
923   assert(t != Type::MEMORY || at == flatten_phi_adr_type(at), "flatten at");
924   PhiNode* p = new PhiNode(r, t, at);
925   for (uint j = 1; j < preds; j++) {
926     // Fill in all inputs, except those which the region does not yet have
927     if (r->in(j) != NULL)
928       p->init_req(j, x);
929   }
930   return p;
931 }
make(Node * r,Node * x)932 PhiNode* PhiNode::make(Node* r, Node* x) {
933   const Type*    t  = x->bottom_type();
934   const TypePtr* at = NULL;
935   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
936   return make(r, x, t, at);
937 }
make_blank(Node * r,Node * x)938 PhiNode* PhiNode::make_blank(Node* r, Node* x) {
939   const Type*    t  = x->bottom_type();
940   const TypePtr* at = NULL;
941   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
942   return new PhiNode(r, t, at);
943 }
944 
945 
946 //------------------------slice_memory-----------------------------------------
947 // create a new phi with narrowed memory type
slice_memory(const TypePtr * adr_type) const948 PhiNode* PhiNode::slice_memory(const TypePtr* adr_type) const {
949   PhiNode* mem = (PhiNode*) clone();
950   *(const TypePtr**)&mem->_adr_type = adr_type;
951   // convert self-loops, or else we get a bad graph
952   for (uint i = 1; i < req(); i++) {
953     if ((const Node*)in(i) == this)  mem->set_req(i, mem);
954   }
955   mem->verify_adr_type();
956   return mem;
957 }
958 
959 //------------------------split_out_instance-----------------------------------
960 // Split out an instance type from a bottom phi.
split_out_instance(const TypePtr * at,PhaseIterGVN * igvn) const961 PhiNode* PhiNode::split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const {
962   const TypeOopPtr *t_oop = at->isa_oopptr();
963   assert(t_oop != NULL && t_oop->is_known_instance(), "expecting instance oopptr");
964   const TypePtr *t = adr_type();
965   assert(type() == Type::MEMORY &&
966          (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
967           t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
968           t->is_oopptr()->cast_to_exactness(true)
969            ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
970            ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop),
971          "bottom or raw memory required");
972 
973   // Check if an appropriate node already exists.
974   Node *region = in(0);
975   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
976     Node* use = region->fast_out(k);
977     if( use->is_Phi()) {
978       PhiNode *phi2 = use->as_Phi();
979       if (phi2->type() == Type::MEMORY && phi2->adr_type() == at) {
980         return phi2;
981       }
982     }
983   }
984   Compile *C = igvn->C;
985   Arena *a = Thread::current()->resource_area();
986   Node_Array node_map = new Node_Array(a);
987   Node_Stack stack(a, C->live_nodes() >> 4);
988   PhiNode *nphi = slice_memory(at);
989   igvn->register_new_node_with_optimizer( nphi );
990   node_map.map(_idx, nphi);
991   stack.push((Node *)this, 1);
992   while(!stack.is_empty()) {
993     PhiNode *ophi = stack.node()->as_Phi();
994     uint i = stack.index();
995     assert(i >= 1, "not control edge");
996     stack.pop();
997     nphi = node_map[ophi->_idx]->as_Phi();
998     for (; i < ophi->req(); i++) {
999       Node *in = ophi->in(i);
1000       if (in == NULL || igvn->type(in) == Type::TOP)
1001         continue;
1002       Node *opt = MemNode::optimize_simple_memory_chain(in, t_oop, NULL, igvn);
1003       PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : NULL;
1004       if (optphi != NULL && optphi->adr_type() == TypePtr::BOTTOM) {
1005         opt = node_map[optphi->_idx];
1006         if (opt == NULL) {
1007           stack.push(ophi, i);
1008           nphi = optphi->slice_memory(at);
1009           igvn->register_new_node_with_optimizer( nphi );
1010           node_map.map(optphi->_idx, nphi);
1011           ophi = optphi;
1012           i = 0; // will get incremented at top of loop
1013           continue;
1014         }
1015       }
1016       nphi->set_req(i, opt);
1017     }
1018   }
1019   return nphi;
1020 }
1021 
1022 //------------------------verify_adr_type--------------------------------------
1023 #ifdef ASSERT
verify_adr_type(VectorSet & visited,const TypePtr * at) const1024 void PhiNode::verify_adr_type(VectorSet& visited, const TypePtr* at) const {
1025   if (visited.test_set(_idx))  return;  //already visited
1026 
1027   // recheck constructor invariants:
1028   verify_adr_type(false);
1029 
1030   // recheck local phi/phi consistency:
1031   assert(_adr_type == at || _adr_type == TypePtr::BOTTOM,
1032          "adr_type must be consistent across phi nest");
1033 
1034   // walk around
1035   for (uint i = 1; i < req(); i++) {
1036     Node* n = in(i);
1037     if (n == NULL)  continue;
1038     const Node* np = in(i);
1039     if (np->is_Phi()) {
1040       np->as_Phi()->verify_adr_type(visited, at);
1041     } else if (n->bottom_type() == Type::TOP
1042                || (n->is_Mem() && n->in(MemNode::Address)->bottom_type() == Type::TOP)) {
1043       // ignore top inputs
1044     } else {
1045       const TypePtr* nat = flatten_phi_adr_type(n->adr_type());
1046       // recheck phi/non-phi consistency at leaves:
1047       assert((nat != NULL) == (at != NULL), "");
1048       assert(nat == at || nat == TypePtr::BOTTOM,
1049              "adr_type must be consistent at leaves of phi nest");
1050     }
1051   }
1052 }
1053 
1054 // Verify a whole nest of phis rooted at this one.
verify_adr_type(bool recursive) const1055 void PhiNode::verify_adr_type(bool recursive) const {
1056   if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
1057   if (Node::in_dump())               return;  // muzzle asserts when printing
1058 
1059   assert((_type == Type::MEMORY) == (_adr_type != NULL), "adr_type for memory phis only");
1060 
1061   if (!VerifyAliases)       return;  // verify thoroughly only if requested
1062 
1063   assert(_adr_type == flatten_phi_adr_type(_adr_type),
1064          "Phi::adr_type must be pre-normalized");
1065 
1066   if (recursive) {
1067     VectorSet visited;
1068     verify_adr_type(visited, _adr_type);
1069   }
1070 }
1071 #endif
1072 
1073 
1074 //------------------------------Value------------------------------------------
1075 // Compute the type of the PhiNode
Value(PhaseGVN * phase) const1076 const Type* PhiNode::Value(PhaseGVN* phase) const {
1077   Node *r = in(0);              // RegionNode
1078   if( !r )                      // Copy or dead
1079     return in(1) ? phase->type(in(1)) : Type::TOP;
1080 
1081   // Note: During parsing, phis are often transformed before their regions.
1082   // This means we have to use type_or_null to defend against untyped regions.
1083   if( phase->type_or_null(r) == Type::TOP )  // Dead code?
1084     return Type::TOP;
1085 
1086   // Check for trip-counted loop.  If so, be smarter.
1087   BaseCountedLoopNode* l = r->is_BaseCountedLoop() ? r->as_BaseCountedLoop() : NULL;
1088   if (l && ((const Node*)l->phi() == this)) { // Trip counted loop!
1089     // protect against init_trip() or limit() returning NULL
1090     if (l->can_be_counted_loop(phase)) {
1091       const Node* init = l->init_trip();
1092       const Node* limit = l->limit();
1093       const Node* stride = l->stride();
1094       if (init != NULL && limit != NULL && stride != NULL) {
1095         const TypeInteger* lo = phase->type(init)->isa_integer(l->bt());
1096         const TypeInteger* hi = phase->type(limit)->isa_integer(l->bt());
1097         const TypeInteger* stride_t = phase->type(stride)->isa_integer(l->bt());
1098         if (lo != NULL && hi != NULL && stride_t != NULL) { // Dying loops might have TOP here
1099           assert(stride_t->hi_as_long() >= stride_t->lo_as_long(), "bad stride type");
1100           BoolTest::mask bt = l->loopexit()->test_trip();
1101           // If the loop exit condition is "not equal", the condition
1102           // would not trigger if init > limit (if stride > 0) or if
1103           // init < limit if (stride > 0) so we can't deduce bounds
1104           // for the iv from the exit condition.
1105           if (bt != BoolTest::ne) {
1106             if (stride_t->hi_as_long() < 0) {          // Down-counter loop
1107               swap(lo, hi);
1108               return TypeInteger::make(MIN2(lo->lo_as_long(), hi->lo_as_long()), hi->hi_as_long(), 3, l->bt())->filter_speculative(_type);
1109             } else if (stride_t->lo_as_long() >= 0) {
1110               return TypeInteger::make(lo->lo_as_long(), MAX2(lo->hi_as_long(), hi->hi_as_long()), 3, l->bt())->filter_speculative(_type);
1111             }
1112           }
1113         }
1114       }
1115     } else if (l->in(LoopNode::LoopBackControl) != NULL &&
1116                in(LoopNode::EntryControl) != NULL &&
1117                phase->type(l->in(LoopNode::LoopBackControl)) == Type::TOP) {
1118       // During CCP, if we saturate the type of a counted loop's Phi
1119       // before the special code for counted loop above has a chance
1120       // to run (that is as long as the type of the backedge's control
1121       // is top), we might end up with non monotonic types
1122       return phase->type(in(LoopNode::EntryControl))->filter_speculative(_type);
1123     }
1124   }
1125 
1126   // Until we have harmony between classes and interfaces in the type
1127   // lattice, we must tread carefully around phis which implicitly
1128   // convert the one to the other.
1129   const TypePtr* ttp = _type->make_ptr();
1130   const TypeInstPtr* ttip = (ttp != NULL) ? ttp->isa_instptr() : NULL;
1131   const TypeKlassPtr* ttkp = (ttp != NULL) ? ttp->isa_klassptr() : NULL;
1132   bool is_intf = false;
1133   if (ttip != NULL) {
1134     ciKlass* k = ttip->klass();
1135     if (k->is_loaded() && k->is_interface())
1136       is_intf = true;
1137   }
1138   if (ttkp != NULL) {
1139     ciKlass* k = ttkp->klass();
1140     if (k->is_loaded() && k->is_interface())
1141       is_intf = true;
1142   }
1143 
1144   // Default case: merge all inputs
1145   const Type *t = Type::TOP;        // Merged type starting value
1146   for (uint i = 1; i < req(); ++i) {// For all paths in
1147     // Reachable control path?
1148     if (r->in(i) && phase->type(r->in(i)) == Type::CONTROL) {
1149       const Type* ti = phase->type(in(i));
1150       // We assume that each input of an interface-valued Phi is a true
1151       // subtype of that interface.  This might not be true of the meet
1152       // of all the input types.  The lattice is not distributive in
1153       // such cases.  Ward off asserts in type.cpp by refusing to do
1154       // meets between interfaces and proper classes.
1155       const TypePtr* tip = ti->make_ptr();
1156       const TypeInstPtr* tiip = (tip != NULL) ? tip->isa_instptr() : NULL;
1157       if (tiip) {
1158         bool ti_is_intf = false;
1159         ciKlass* k = tiip->klass();
1160         if (k->is_loaded() && k->is_interface())
1161           ti_is_intf = true;
1162         if (is_intf != ti_is_intf)
1163           { t = _type; break; }
1164       }
1165       t = t->meet_speculative(ti);
1166     }
1167   }
1168 
1169   // The worst-case type (from ciTypeFlow) should be consistent with "t".
1170   // That is, we expect that "t->higher_equal(_type)" holds true.
1171   // There are various exceptions:
1172   // - Inputs which are phis might in fact be widened unnecessarily.
1173   //   For example, an input might be a widened int while the phi is a short.
1174   // - Inputs might be BotPtrs but this phi is dependent on a null check,
1175   //   and postCCP has removed the cast which encodes the result of the check.
1176   // - The type of this phi is an interface, and the inputs are classes.
1177   // - Value calls on inputs might produce fuzzy results.
1178   //   (Occurrences of this case suggest improvements to Value methods.)
1179   //
1180   // It is not possible to see Type::BOTTOM values as phi inputs,
1181   // because the ciTypeFlow pre-pass produces verifier-quality types.
1182   const Type* ft = t->filter_speculative(_type);  // Worst case type
1183 
1184 #ifdef ASSERT
1185   // The following logic has been moved into TypeOopPtr::filter.
1186   const Type* jt = t->join_speculative(_type);
1187   if (jt->empty()) {           // Emptied out???
1188 
1189     // Check for evil case of 't' being a class and '_type' expecting an
1190     // interface.  This can happen because the bytecodes do not contain
1191     // enough type info to distinguish a Java-level interface variable
1192     // from a Java-level object variable.  If we meet 2 classes which
1193     // both implement interface I, but their meet is at 'j/l/O' which
1194     // doesn't implement I, we have no way to tell if the result should
1195     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
1196     // into a Phi which "knows" it's an Interface type we'll have to
1197     // uplift the type.
1198     if (!t->empty() && ttip && ttip->is_loaded() && ttip->klass()->is_interface()) {
1199       assert(ft == _type, ""); // Uplift to interface
1200     } else if (!t->empty() && ttkp && ttkp->is_loaded() && ttkp->klass()->is_interface()) {
1201       assert(ft == _type, ""); // Uplift to interface
1202     } else {
1203       // We also have to handle 'evil cases' of interface- vs. class-arrays
1204       Type::get_arrays_base_elements(jt, _type, NULL, &ttip);
1205       if (!t->empty() && ttip != NULL && ttip->is_loaded() && ttip->klass()->is_interface()) {
1206           assert(ft == _type, "");   // Uplift to array of interface
1207       } else {
1208         // Otherwise it's something stupid like non-overlapping int ranges
1209         // found on dying counted loops.
1210         assert(ft == Type::TOP, ""); // Canonical empty value
1211       }
1212     }
1213   }
1214 
1215   else {
1216 
1217     // If we have an interface-typed Phi and we narrow to a class type, the join
1218     // should report back the class.  However, if we have a J/L/Object
1219     // class-typed Phi and an interface flows in, it's possible that the meet &
1220     // join report an interface back out.  This isn't possible but happens
1221     // because the type system doesn't interact well with interfaces.
1222     const TypePtr *jtp = jt->make_ptr();
1223     const TypeInstPtr *jtip = (jtp != NULL) ? jtp->isa_instptr() : NULL;
1224     const TypeKlassPtr *jtkp = (jtp != NULL) ? jtp->isa_klassptr() : NULL;
1225     if( jtip && ttip ) {
1226       if( jtip->is_loaded() &&  jtip->klass()->is_interface() &&
1227           ttip->is_loaded() && !ttip->klass()->is_interface() ) {
1228         assert(ft == ttip->cast_to_ptr_type(jtip->ptr()) ||
1229                ft->isa_narrowoop() && ft->make_ptr() == ttip->cast_to_ptr_type(jtip->ptr()), "");
1230         jt = ft;
1231       }
1232     }
1233     if( jtkp && ttkp ) {
1234       if( jtkp->is_loaded() &&  jtkp->klass()->is_interface() &&
1235           !jtkp->klass_is_exact() && // Keep exact interface klass (6894807)
1236           ttkp->is_loaded() && !ttkp->klass()->is_interface() ) {
1237         assert(ft == ttkp->cast_to_ptr_type(jtkp->ptr()) ||
1238                ft->isa_narrowklass() && ft->make_ptr() == ttkp->cast_to_ptr_type(jtkp->ptr()), "");
1239         jt = ft;
1240       }
1241     }
1242     if (jt != ft && jt->base() == ft->base()) {
1243       if (jt->isa_int() &&
1244           jt->is_int()->_lo == ft->is_int()->_lo &&
1245           jt->is_int()->_hi == ft->is_int()->_hi)
1246         jt = ft;
1247       if (jt->isa_long() &&
1248           jt->is_long()->_lo == ft->is_long()->_lo &&
1249           jt->is_long()->_hi == ft->is_long()->_hi)
1250         jt = ft;
1251     }
1252     if (jt != ft) {
1253       tty->print("merge type:  "); t->dump(); tty->cr();
1254       tty->print("kill type:   "); _type->dump(); tty->cr();
1255       tty->print("join type:   "); jt->dump(); tty->cr();
1256       tty->print("filter type: "); ft->dump(); tty->cr();
1257     }
1258     assert(jt == ft, "");
1259   }
1260 #endif //ASSERT
1261 
1262   // Deal with conversion problems found in data loops.
1263   ft = phase->saturate(ft, phase->type_or_null(this), _type);
1264 
1265   return ft;
1266 }
1267 
1268 
1269 //------------------------------is_diamond_phi---------------------------------
1270 // Does this Phi represent a simple well-shaped diamond merge?  Return the
1271 // index of the true path or 0 otherwise.
1272 // If check_control_only is true, do not inspect the If node at the
1273 // top, and return -1 (not an edge number) on success.
is_diamond_phi(bool check_control_only) const1274 int PhiNode::is_diamond_phi(bool check_control_only) const {
1275   // Check for a 2-path merge
1276   Node *region = in(0);
1277   if( !region ) return 0;
1278   if( region->req() != 3 ) return 0;
1279   if(         req() != 3 ) return 0;
1280   // Check that both paths come from the same If
1281   Node *ifp1 = region->in(1);
1282   Node *ifp2 = region->in(2);
1283   if( !ifp1 || !ifp2 ) return 0;
1284   Node *iff = ifp1->in(0);
1285   if( !iff || !iff->is_If() ) return 0;
1286   if( iff != ifp2->in(0) ) return 0;
1287   if (check_control_only)  return -1;
1288   // Check for a proper bool/cmp
1289   const Node *b = iff->in(1);
1290   if( !b->is_Bool() ) return 0;
1291   const Node *cmp = b->in(1);
1292   if( !cmp->is_Cmp() ) return 0;
1293 
1294   // Check for branching opposite expected
1295   if( ifp2->Opcode() == Op_IfTrue ) {
1296     assert( ifp1->Opcode() == Op_IfFalse, "" );
1297     return 2;
1298   } else {
1299     assert( ifp1->Opcode() == Op_IfTrue, "" );
1300     return 1;
1301   }
1302 }
1303 
1304 //----------------------------check_cmove_id-----------------------------------
1305 // Check for CMove'ing a constant after comparing against the constant.
1306 // Happens all the time now, since if we compare equality vs a constant in
1307 // the parser, we "know" the variable is constant on one path and we force
1308 // it.  Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
1309 // conditional move: "x = (x==0)?0:x;".  Yucko.  This fix is slightly more
1310 // general in that we don't need constants.  Since CMove's are only inserted
1311 // in very special circumstances, we do it here on generic Phi's.
is_cmove_id(PhaseTransform * phase,int true_path)1312 Node* PhiNode::is_cmove_id(PhaseTransform* phase, int true_path) {
1313   assert(true_path !=0, "only diamond shape graph expected");
1314 
1315   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1316   // phi->region->if_proj->ifnode->bool->cmp
1317   Node*     region = in(0);
1318   Node*     iff    = region->in(1)->in(0);
1319   BoolNode* b      = iff->in(1)->as_Bool();
1320   Node*     cmp    = b->in(1);
1321   Node*     tval   = in(true_path);
1322   Node*     fval   = in(3-true_path);
1323   Node*     id     = CMoveNode::is_cmove_id(phase, cmp, tval, fval, b);
1324   if (id == NULL)
1325     return NULL;
1326 
1327   // Either value might be a cast that depends on a branch of 'iff'.
1328   // Since the 'id' value will float free of the diamond, either
1329   // decast or return failure.
1330   Node* ctl = id->in(0);
1331   if (ctl != NULL && ctl->in(0) == iff) {
1332     if (id->is_ConstraintCast()) {
1333       return id->in(1);
1334     } else {
1335       // Don't know how to disentangle this value.
1336       return NULL;
1337     }
1338   }
1339 
1340   return id;
1341 }
1342 
1343 //------------------------------Identity---------------------------------------
1344 // Check for Region being Identity.
Identity(PhaseGVN * phase)1345 Node* PhiNode::Identity(PhaseGVN* phase) {
1346   // Check for no merging going on
1347   // (There used to be special-case code here when this->region->is_Loop.
1348   // It would check for a tributary phi on the backedge that the main phi
1349   // trivially, perhaps with a single cast.  The unique_input method
1350   // does all this and more, by reducing such tributaries to 'this'.)
1351   Node* uin = unique_input(phase, false);
1352   if (uin != NULL) {
1353     return uin;
1354   }
1355 
1356   int true_path = is_diamond_phi();
1357   if (true_path != 0) {
1358     Node* id = is_cmove_id(phase, true_path);
1359     if (id != NULL)  return id;
1360   }
1361 
1362   // Looking for phis with identical inputs.  If we find one that has
1363   // type TypePtr::BOTTOM, replace the current phi with the bottom phi.
1364   if (phase->is_IterGVN() && type() == Type::MEMORY && adr_type() !=
1365       TypePtr::BOTTOM && !adr_type()->is_known_instance()) {
1366     uint phi_len = req();
1367     Node* phi_reg = region();
1368     for (DUIterator_Fast imax, i = phi_reg->fast_outs(imax); i < imax; i++) {
1369       Node* u = phi_reg->fast_out(i);
1370       if (u->is_Phi() && u->as_Phi()->type() == Type::MEMORY &&
1371           u->adr_type() == TypePtr::BOTTOM && u->in(0) == phi_reg &&
1372           u->req() == phi_len) {
1373         for (uint j = 1; j < phi_len; j++) {
1374           if (in(j) != u->in(j)) {
1375             u = NULL;
1376             break;
1377           }
1378         }
1379         if (u != NULL) {
1380           return u;
1381         }
1382       }
1383     }
1384   }
1385 
1386   return this;                     // No identity
1387 }
1388 
1389 //-----------------------------unique_input------------------------------------
1390 // Find the unique value, discounting top, self-loops, and casts.
1391 // Return top if there are no inputs, and self if there are multiple.
unique_input(PhaseTransform * phase,bool uncast)1392 Node* PhiNode::unique_input(PhaseTransform* phase, bool uncast) {
1393   //  1) One unique direct input,
1394   // or if uncast is true:
1395   //  2) some of the inputs have an intervening ConstraintCast
1396   //  3) an input is a self loop
1397   //
1398   //  1) input   or   2) input     or   3) input __
1399   //     /   \           /   \               \  /  \
1400   //     \   /          |    cast             phi  cast
1401   //      phi            \   /               /  \  /
1402   //                      phi               /    --
1403 
1404   Node* r = in(0);                      // RegionNode
1405   Node* input = NULL; // The unique direct input (maybe uncasted = ConstraintCasts removed)
1406 
1407   for (uint i = 1, cnt = req(); i < cnt; ++i) {
1408     Node* rc = r->in(i);
1409     if (rc == NULL || phase->type(rc) == Type::TOP)
1410       continue;                 // ignore unreachable control path
1411     Node* n = in(i);
1412     if (n == NULL)
1413       continue;
1414     Node* un = n;
1415     if (uncast) {
1416 #ifdef ASSERT
1417       Node* m = un->uncast();
1418 #endif
1419       while (un != NULL && un->req() == 2 && un->is_ConstraintCast()) {
1420         Node* next = un->in(1);
1421         if (phase->type(next)->isa_rawptr() && phase->type(un)->isa_oopptr()) {
1422           // risk exposing raw ptr at safepoint
1423           break;
1424         }
1425         un = next;
1426       }
1427       assert(m == un || un->in(1) == m, "Only expected at CheckCastPP from allocation");
1428     }
1429     if (un == NULL || un == this || phase->type(un) == Type::TOP) {
1430       continue; // ignore if top, or in(i) and "this" are in a data cycle
1431     }
1432     // Check for a unique input (maybe uncasted)
1433     if (input == NULL) {
1434       input = un;
1435     } else if (input != un) {
1436       input = NodeSentinel; // no unique input
1437     }
1438   }
1439   if (input == NULL) {
1440     return phase->C->top();        // no inputs
1441   }
1442 
1443   if (input != NodeSentinel) {
1444     return input;           // one unique direct input
1445   }
1446 
1447   // Nothing.
1448   return NULL;
1449 }
1450 
1451 //------------------------------is_x2logic-------------------------------------
1452 // Check for simple convert-to-boolean pattern
1453 // If:(C Bool) Region:(IfF IfT) Phi:(Region 0 1)
1454 // Convert Phi to an ConvIB.
is_x2logic(PhaseGVN * phase,PhiNode * phi,int true_path)1455 static Node *is_x2logic( PhaseGVN *phase, PhiNode *phi, int true_path ) {
1456   assert(true_path !=0, "only diamond shape graph expected");
1457   // Convert the true/false index into an expected 0/1 return.
1458   // Map 2->0 and 1->1.
1459   int flipped = 2-true_path;
1460 
1461   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1462   // phi->region->if_proj->ifnode->bool->cmp
1463   Node *region = phi->in(0);
1464   Node *iff = region->in(1)->in(0);
1465   BoolNode *b = (BoolNode*)iff->in(1);
1466   const CmpNode *cmp = (CmpNode*)b->in(1);
1467 
1468   Node *zero = phi->in(1);
1469   Node *one  = phi->in(2);
1470   const Type *tzero = phase->type( zero );
1471   const Type *tone  = phase->type( one  );
1472 
1473   // Check for compare vs 0
1474   const Type *tcmp = phase->type(cmp->in(2));
1475   if( tcmp != TypeInt::ZERO && tcmp != TypePtr::NULL_PTR ) {
1476     // Allow cmp-vs-1 if the other input is bounded by 0-1
1477     if( !(tcmp == TypeInt::ONE && phase->type(cmp->in(1)) == TypeInt::BOOL) )
1478       return NULL;
1479     flipped = 1-flipped;        // Test is vs 1 instead of 0!
1480   }
1481 
1482   // Check for setting zero/one opposite expected
1483   if( tzero == TypeInt::ZERO ) {
1484     if( tone == TypeInt::ONE ) {
1485     } else return NULL;
1486   } else if( tzero == TypeInt::ONE ) {
1487     if( tone == TypeInt::ZERO ) {
1488       flipped = 1-flipped;
1489     } else return NULL;
1490   } else return NULL;
1491 
1492   // Check for boolean test backwards
1493   if( b->_test._test == BoolTest::ne ) {
1494   } else if( b->_test._test == BoolTest::eq ) {
1495     flipped = 1-flipped;
1496   } else return NULL;
1497 
1498   // Build int->bool conversion
1499   Node *n = new Conv2BNode(cmp->in(1));
1500   if( flipped )
1501     n = new XorINode( phase->transform(n), phase->intcon(1) );
1502 
1503   return n;
1504 }
1505 
1506 //------------------------------is_cond_add------------------------------------
1507 // Check for simple conditional add pattern:  "(P < Q) ? X+Y : X;"
1508 // To be profitable the control flow has to disappear; there can be no other
1509 // values merging here.  We replace the test-and-branch with:
1510 // "(sgn(P-Q))&Y) + X".  Basically, convert "(P < Q)" into 0 or -1 by
1511 // moving the carry bit from (P-Q) into a register with 'sbb EAX,EAX'.
1512 // Then convert Y to 0-or-Y and finally add.
1513 // This is a key transform for SpecJava _201_compress.
is_cond_add(PhaseGVN * phase,PhiNode * phi,int true_path)1514 static Node* is_cond_add(PhaseGVN *phase, PhiNode *phi, int true_path) {
1515   assert(true_path !=0, "only diamond shape graph expected");
1516 
1517   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1518   // phi->region->if_proj->ifnode->bool->cmp
1519   RegionNode *region = (RegionNode*)phi->in(0);
1520   Node *iff = region->in(1)->in(0);
1521   BoolNode* b = iff->in(1)->as_Bool();
1522   const CmpNode *cmp = (CmpNode*)b->in(1);
1523 
1524   // Make sure only merging this one phi here
1525   if (region->has_unique_phi() != phi)  return NULL;
1526 
1527   // Make sure each arm of the diamond has exactly one output, which we assume
1528   // is the region.  Otherwise, the control flow won't disappear.
1529   if (region->in(1)->outcnt() != 1) return NULL;
1530   if (region->in(2)->outcnt() != 1) return NULL;
1531 
1532   // Check for "(P < Q)" of type signed int
1533   if (b->_test._test != BoolTest::lt)  return NULL;
1534   if (cmp->Opcode() != Op_CmpI)        return NULL;
1535 
1536   Node *p = cmp->in(1);
1537   Node *q = cmp->in(2);
1538   Node *n1 = phi->in(  true_path);
1539   Node *n2 = phi->in(3-true_path);
1540 
1541   int op = n1->Opcode();
1542   if( op != Op_AddI           // Need zero as additive identity
1543       /*&&op != Op_SubI &&
1544       op != Op_AddP &&
1545       op != Op_XorI &&
1546       op != Op_OrI*/ )
1547     return NULL;
1548 
1549   Node *x = n2;
1550   Node *y = NULL;
1551   if( x == n1->in(1) ) {
1552     y = n1->in(2);
1553   } else if( x == n1->in(2) ) {
1554     y = n1->in(1);
1555   } else return NULL;
1556 
1557   // Not so profitable if compare and add are constants
1558   if( q->is_Con() && phase->type(q) != TypeInt::ZERO && y->is_Con() )
1559     return NULL;
1560 
1561   Node *cmplt = phase->transform( new CmpLTMaskNode(p,q) );
1562   Node *j_and   = phase->transform( new AndINode(cmplt,y) );
1563   return new AddINode(j_and,x);
1564 }
1565 
1566 //------------------------------is_absolute------------------------------------
1567 // Check for absolute value.
is_absolute(PhaseGVN * phase,PhiNode * phi_root,int true_path)1568 static Node* is_absolute( PhaseGVN *phase, PhiNode *phi_root, int true_path) {
1569   assert(true_path !=0, "only diamond shape graph expected");
1570 
1571   int  cmp_zero_idx = 0;        // Index of compare input where to look for zero
1572   int  phi_x_idx = 0;           // Index of phi input where to find naked x
1573 
1574   // ABS ends with the merge of 2 control flow paths.
1575   // Find the false path from the true path. With only 2 inputs, 3 - x works nicely.
1576   int false_path = 3 - true_path;
1577 
1578   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1579   // phi->region->if_proj->ifnode->bool->cmp
1580   BoolNode *bol = phi_root->in(0)->in(1)->in(0)->in(1)->as_Bool();
1581   Node *cmp = bol->in(1);
1582 
1583   // Check bool sense
1584   if (cmp->Opcode() == Op_CmpF || cmp->Opcode() == Op_CmpD) {
1585     switch (bol->_test._test) {
1586     case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = true_path;  break;
1587     case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
1588     case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = true_path;  break;
1589     case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = false_path; break;
1590     default:           return NULL;                              break;
1591     }
1592   } else if (cmp->Opcode() == Op_CmpI || cmp->Opcode() == Op_CmpL) {
1593     switch (bol->_test._test) {
1594     case BoolTest::lt:
1595     case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
1596     case BoolTest::gt:
1597     case BoolTest::ge: cmp_zero_idx = 2; phi_x_idx = true_path;  break;
1598     default:           return NULL;                              break;
1599     }
1600   }
1601 
1602   // Test is next
1603   const Type *tzero = NULL;
1604   switch (cmp->Opcode()) {
1605   case Op_CmpI:    tzero = TypeInt::ZERO; break;  // Integer ABS
1606   case Op_CmpL:    tzero = TypeLong::ZERO; break; // Long ABS
1607   case Op_CmpF:    tzero = TypeF::ZERO; break; // Float ABS
1608   case Op_CmpD:    tzero = TypeD::ZERO; break; // Double ABS
1609   default: return NULL;
1610   }
1611 
1612   // Find zero input of compare; the other input is being abs'd
1613   Node *x = NULL;
1614   bool flip = false;
1615   if( phase->type(cmp->in(cmp_zero_idx)) == tzero ) {
1616     x = cmp->in(3 - cmp_zero_idx);
1617   } else if( phase->type(cmp->in(3 - cmp_zero_idx)) == tzero ) {
1618     // The test is inverted, we should invert the result...
1619     x = cmp->in(cmp_zero_idx);
1620     flip = true;
1621   } else {
1622     return NULL;
1623   }
1624 
1625   // Next get the 2 pieces being selected, one is the original value
1626   // and the other is the negated value.
1627   if( phi_root->in(phi_x_idx) != x ) return NULL;
1628 
1629   // Check other phi input for subtract node
1630   Node *sub = phi_root->in(3 - phi_x_idx);
1631 
1632   bool is_sub = sub->Opcode() == Op_SubF || sub->Opcode() == Op_SubD ||
1633                 sub->Opcode() == Op_SubI || sub->Opcode() == Op_SubL;
1634 
1635   // Allow only Sub(0,X) and fail out for all others; Neg is not OK
1636   if (!is_sub || phase->type(sub->in(1)) != tzero || sub->in(2) != x) return NULL;
1637 
1638   if (tzero == TypeF::ZERO) {
1639     x = new AbsFNode(x);
1640     if (flip) {
1641       x = new SubFNode(sub->in(1), phase->transform(x));
1642     }
1643   } else if (tzero == TypeD::ZERO) {
1644     x = new AbsDNode(x);
1645     if (flip) {
1646       x = new SubDNode(sub->in(1), phase->transform(x));
1647     }
1648   } else if (tzero == TypeInt::ZERO && Matcher::match_rule_supported(Op_AbsI)) {
1649     x = new AbsINode(x);
1650     if (flip) {
1651       x = new SubINode(sub->in(1), phase->transform(x));
1652     }
1653   } else if (tzero == TypeLong::ZERO && Matcher::match_rule_supported(Op_AbsL)) {
1654     x = new AbsLNode(x);
1655     if (flip) {
1656       x = new SubLNode(sub->in(1), phase->transform(x));
1657     }
1658   } else return NULL;
1659 
1660   return x;
1661 }
1662 
1663 //------------------------------split_once-------------------------------------
1664 // Helper for split_flow_path
split_once(PhaseIterGVN * igvn,Node * phi,Node * val,Node * n,Node * newn)1665 static void split_once(PhaseIterGVN *igvn, Node *phi, Node *val, Node *n, Node *newn) {
1666   igvn->hash_delete(n);         // Remove from hash before hacking edges
1667 
1668   uint j = 1;
1669   for (uint i = phi->req()-1; i > 0; i--) {
1670     if (phi->in(i) == val) {   // Found a path with val?
1671       // Add to NEW Region/Phi, no DU info
1672       newn->set_req( j++, n->in(i) );
1673       // Remove from OLD Region/Phi
1674       n->del_req(i);
1675     }
1676   }
1677 
1678   // Register the new node but do not transform it.  Cannot transform until the
1679   // entire Region/Phi conglomerate has been hacked as a single huge transform.
1680   igvn->register_new_node_with_optimizer( newn );
1681 
1682   // Now I can point to the new node.
1683   n->add_req(newn);
1684   igvn->_worklist.push(n);
1685 }
1686 
1687 //------------------------------split_flow_path--------------------------------
1688 // Check for merging identical values and split flow paths
split_flow_path(PhaseGVN * phase,PhiNode * phi)1689 static Node* split_flow_path(PhaseGVN *phase, PhiNode *phi) {
1690   BasicType bt = phi->type()->basic_type();
1691   if( bt == T_ILLEGAL || type2size[bt] <= 0 )
1692     return NULL;                // Bail out on funny non-value stuff
1693   if( phi->req() <= 3 )         // Need at least 2 matched inputs and a
1694     return NULL;                // third unequal input to be worth doing
1695 
1696   // Scan for a constant
1697   uint i;
1698   for( i = 1; i < phi->req()-1; i++ ) {
1699     Node *n = phi->in(i);
1700     if( !n ) return NULL;
1701     if( phase->type(n) == Type::TOP ) return NULL;
1702     if( n->Opcode() == Op_ConP || n->Opcode() == Op_ConN || n->Opcode() == Op_ConNKlass )
1703       break;
1704   }
1705   if( i >= phi->req() )         // Only split for constants
1706     return NULL;
1707 
1708   Node *val = phi->in(i);       // Constant to split for
1709   uint hit = 0;                 // Number of times it occurs
1710   Node *r = phi->region();
1711 
1712   for( ; i < phi->req(); i++ ){ // Count occurrences of constant
1713     Node *n = phi->in(i);
1714     if( !n ) return NULL;
1715     if( phase->type(n) == Type::TOP ) return NULL;
1716     if( phi->in(i) == val ) {
1717       hit++;
1718       if (PhaseIdealLoop::find_predicate(r->in(i)) != NULL) {
1719         return NULL;            // don't split loop entry path
1720       }
1721     }
1722   }
1723 
1724   if( hit <= 1 ||               // Make sure we find 2 or more
1725       hit == phi->req()-1 )     // and not ALL the same value
1726     return NULL;
1727 
1728   // Now start splitting out the flow paths that merge the same value.
1729   // Split first the RegionNode.
1730   PhaseIterGVN *igvn = phase->is_IterGVN();
1731   RegionNode *newr = new RegionNode(hit+1);
1732   split_once(igvn, phi, val, r, newr);
1733 
1734   // Now split all other Phis than this one
1735   for (DUIterator_Fast kmax, k = r->fast_outs(kmax); k < kmax; k++) {
1736     Node* phi2 = r->fast_out(k);
1737     if( phi2->is_Phi() && phi2->as_Phi() != phi ) {
1738       PhiNode *newphi = PhiNode::make_blank(newr, phi2);
1739       split_once(igvn, phi, val, phi2, newphi);
1740     }
1741   }
1742 
1743   // Clean up this guy
1744   igvn->hash_delete(phi);
1745   for( i = phi->req()-1; i > 0; i-- ) {
1746     if( phi->in(i) == val ) {
1747       phi->del_req(i);
1748     }
1749   }
1750   phi->add_req(val);
1751 
1752   return phi;
1753 }
1754 
1755 //=============================================================================
1756 //------------------------------simple_data_loop_check-------------------------
1757 //  Try to determining if the phi node in a simple safe/unsafe data loop.
1758 //  Returns:
1759 // enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
1760 // Safe       - safe case when the phi and it's inputs reference only safe data
1761 //              nodes;
1762 // Unsafe     - the phi and it's inputs reference unsafe data nodes but there
1763 //              is no reference back to the phi - need a graph walk
1764 //              to determine if it is in a loop;
1765 // UnsafeLoop - unsafe case when the phi references itself directly or through
1766 //              unsafe data node.
1767 //  Note: a safe data node is a node which could/never reference itself during
1768 //  GVN transformations. For now it is Con, Proj, Phi, CastPP, CheckCastPP.
1769 //  I mark Phi nodes as safe node not only because they can reference itself
1770 //  but also to prevent mistaking the fallthrough case inside an outer loop
1771 //  as dead loop when the phi references itselfs through an other phi.
simple_data_loop_check(Node * in) const1772 PhiNode::LoopSafety PhiNode::simple_data_loop_check(Node *in) const {
1773   // It is unsafe loop if the phi node references itself directly.
1774   if (in == (Node*)this)
1775     return UnsafeLoop; // Unsafe loop
1776   // Unsafe loop if the phi node references itself through an unsafe data node.
1777   // Exclude cases with null inputs or data nodes which could reference
1778   // itself (safe for dead loops).
1779   if (in != NULL && !in->is_dead_loop_safe()) {
1780     // Check inputs of phi's inputs also.
1781     // It is much less expensive then full graph walk.
1782     uint cnt = in->req();
1783     uint i = (in->is_Proj() && !in->is_CFG())  ? 0 : 1;
1784     for (; i < cnt; ++i) {
1785       Node* m = in->in(i);
1786       if (m == (Node*)this)
1787         return UnsafeLoop; // Unsafe loop
1788       if (m != NULL && !m->is_dead_loop_safe()) {
1789         // Check the most common case (about 30% of all cases):
1790         // phi->Load/Store->AddP->(ConP ConP Con)/(Parm Parm Con).
1791         Node *m1 = (m->is_AddP() && m->req() > 3) ? m->in(1) : NULL;
1792         if (m1 == (Node*)this)
1793           return UnsafeLoop; // Unsafe loop
1794         if (m1 != NULL && m1 == m->in(2) &&
1795             m1->is_dead_loop_safe() && m->in(3)->is_Con()) {
1796           continue; // Safe case
1797         }
1798         // The phi references an unsafe node - need full analysis.
1799         return Unsafe;
1800       }
1801     }
1802   }
1803   return Safe; // Safe case - we can optimize the phi node.
1804 }
1805 
1806 //------------------------------is_unsafe_data_reference-----------------------
1807 // If phi can be reached through the data input - it is data loop.
is_unsafe_data_reference(Node * in) const1808 bool PhiNode::is_unsafe_data_reference(Node *in) const {
1809   assert(req() > 1, "");
1810   // First, check simple cases when phi references itself directly or
1811   // through an other node.
1812   LoopSafety safety = simple_data_loop_check(in);
1813   if (safety == UnsafeLoop)
1814     return true;  // phi references itself - unsafe loop
1815   else if (safety == Safe)
1816     return false; // Safe case - phi could be replaced with the unique input.
1817 
1818   // Unsafe case when we should go through data graph to determine
1819   // if the phi references itself.
1820 
1821   ResourceMark rm;
1822 
1823   Node_List nstack;
1824   VectorSet visited;
1825 
1826   nstack.push(in); // Start with unique input.
1827   visited.set(in->_idx);
1828   while (nstack.size() != 0) {
1829     Node* n = nstack.pop();
1830     uint cnt = n->req();
1831     uint i = (n->is_Proj() && !n->is_CFG()) ? 0 : 1;
1832     for (; i < cnt; i++) {
1833       Node* m = n->in(i);
1834       if (m == (Node*)this) {
1835         return true;    // Data loop
1836       }
1837       if (m != NULL && !m->is_dead_loop_safe()) { // Only look for unsafe cases.
1838         if (!visited.test_set(m->_idx))
1839           nstack.push(m);
1840       }
1841     }
1842   }
1843   return false; // The phi is not reachable from its inputs
1844 }
1845 
1846 // Is this Phi's region or some inputs to the region enqueued for IGVN
1847 // and so could cause the region to be optimized out?
wait_for_region_igvn(PhaseGVN * phase)1848 bool PhiNode::wait_for_region_igvn(PhaseGVN* phase) {
1849   PhaseIterGVN* igvn = phase->is_IterGVN();
1850   Unique_Node_List& worklist = igvn->_worklist;
1851   bool delay = false;
1852   Node* r = in(0);
1853   for (uint j = 1; j < req(); j++) {
1854     Node* rc = r->in(j);
1855     Node* n = in(j);
1856     if (rc != NULL &&
1857         rc->is_Proj()) {
1858       if (worklist.member(rc)) {
1859         delay = true;
1860       } else if (rc->in(0) != NULL &&
1861                  rc->in(0)->is_If()) {
1862         if (worklist.member(rc->in(0))) {
1863           delay = true;
1864         } else if (rc->in(0)->in(1) != NULL &&
1865                    rc->in(0)->in(1)->is_Bool()) {
1866           if (worklist.member(rc->in(0)->in(1))) {
1867             delay = true;
1868           } else if (rc->in(0)->in(1)->in(1) != NULL &&
1869                      rc->in(0)->in(1)->in(1)->is_Cmp()) {
1870             if (worklist.member(rc->in(0)->in(1)->in(1))) {
1871               delay = true;
1872             }
1873           }
1874         }
1875       }
1876     }
1877   }
1878   if (delay) {
1879     worklist.push(this);
1880   }
1881   return delay;
1882 }
1883 
1884 //------------------------------Ideal------------------------------------------
1885 // Return a node which is more "ideal" than the current node.  Must preserve
1886 // the CFG, but we can still strip out dead paths.
Ideal(PhaseGVN * phase,bool can_reshape)1887 Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1888   Node *r = in(0);              // RegionNode
1889   assert(r != NULL && r->is_Region(), "this phi must have a region");
1890   assert(r->in(0) == NULL || !r->in(0)->is_Root(), "not a specially hidden merge");
1891 
1892   // Note: During parsing, phis are often transformed before their regions.
1893   // This means we have to use type_or_null to defend against untyped regions.
1894   if( phase->type_or_null(r) == Type::TOP ) // Dead code?
1895     return NULL;                // No change
1896 
1897   Node *top = phase->C->top();
1898   bool new_phi = (outcnt() == 0); // transforming new Phi
1899   // No change for igvn if new phi is not hooked
1900   if (new_phi && can_reshape)
1901     return NULL;
1902 
1903   // The are 2 situations when only one valid phi's input is left
1904   // (in addition to Region input).
1905   // One: region is not loop - replace phi with this input.
1906   // Two: region is loop - replace phi with top since this data path is dead
1907   //                       and we need to break the dead data loop.
1908   Node* progress = NULL;        // Record if any progress made
1909   for( uint j = 1; j < req(); ++j ){ // For all paths in
1910     // Check unreachable control paths
1911     Node* rc = r->in(j);
1912     Node* n = in(j);            // Get the input
1913     if (rc == NULL || phase->type(rc) == Type::TOP) {
1914       if (n != top) {           // Not already top?
1915         PhaseIterGVN *igvn = phase->is_IterGVN();
1916         if (can_reshape && igvn != NULL) {
1917           igvn->_worklist.push(r);
1918         }
1919         // Nuke it down
1920         if (can_reshape) {
1921           set_req_X(j, top, igvn);
1922         } else {
1923           set_req(j, top);
1924         }
1925         progress = this;        // Record progress
1926       }
1927     }
1928   }
1929 
1930   if (can_reshape && outcnt() == 0) {
1931     // set_req() above may kill outputs if Phi is referenced
1932     // only by itself on the dead (top) control path.
1933     return top;
1934   }
1935 
1936   bool uncasted = false;
1937   Node* uin = unique_input(phase, false);
1938   if (uin == NULL && can_reshape &&
1939       // If there is a chance that the region can be optimized out do
1940       // not add a cast node that we can't remove yet.
1941       !wait_for_region_igvn(phase)) {
1942     uncasted = true;
1943     uin = unique_input(phase, true);
1944   }
1945   if (uin == top) {             // Simplest case: no alive inputs.
1946     if (can_reshape)            // IGVN transformation
1947       return top;
1948     else
1949       return NULL;              // Identity will return TOP
1950   } else if (uin != NULL) {
1951     // Only one not-NULL unique input path is left.
1952     // Determine if this input is backedge of a loop.
1953     // (Skip new phis which have no uses and dead regions).
1954     if (outcnt() > 0 && r->in(0) != NULL) {
1955       if (is_data_loop(r->as_Region(), uin, phase)) {
1956         // Break this data loop to avoid creation of a dead loop.
1957         if (can_reshape) {
1958           return top;
1959         } else {
1960           // We can't return top if we are in Parse phase - cut inputs only
1961           // let Identity to handle the case.
1962           replace_edge(uin, top);
1963           return NULL;
1964         }
1965       }
1966     }
1967 
1968     if (uncasted) {
1969       // Add cast nodes between the phi to be removed and its unique input.
1970       // Wait until after parsing for the type information to propagate from the casts.
1971       assert(can_reshape, "Invalid during parsing");
1972       const Type* phi_type = bottom_type();
1973       assert(phi_type->isa_int() || phi_type->isa_ptr() || phi_type->isa_long(), "bad phi type");
1974       // Add casts to carry the control dependency of the Phi that is
1975       // going away
1976       Node* cast = NULL;
1977       if (phi_type->isa_int()) {
1978         cast = ConstraintCastNode::make_cast(Op_CastII, r, uin, phi_type, true);
1979       } else if (phi_type->isa_long()) {
1980         cast = ConstraintCastNode::make_cast(Op_CastLL, r, uin, phi_type, true);
1981       } else {
1982         const Type* uin_type = phase->type(uin);
1983         if (!phi_type->isa_oopptr() && !uin_type->isa_oopptr()) {
1984           cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, phi_type, true);
1985         } else {
1986           // Use a CastPP for a cast to not null and a CheckCastPP for
1987           // a cast to a new klass (and both if both null-ness and
1988           // klass change).
1989 
1990           // If the type of phi is not null but the type of uin may be
1991           // null, uin's type must be casted to not null
1992           if (phi_type->join(TypePtr::NOTNULL) == phi_type->remove_speculative() &&
1993               uin_type->join(TypePtr::NOTNULL) != uin_type->remove_speculative()) {
1994             cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, TypePtr::NOTNULL, true);
1995           }
1996 
1997           // If the type of phi and uin, both casted to not null,
1998           // differ the klass of uin must be (check)cast'ed to match
1999           // that of phi
2000           if (phi_type->join_speculative(TypePtr::NOTNULL) != uin_type->join_speculative(TypePtr::NOTNULL)) {
2001             Node* n = uin;
2002             if (cast != NULL) {
2003               cast = phase->transform(cast);
2004               n = cast;
2005             }
2006             cast = ConstraintCastNode::make_cast(Op_CheckCastPP, r, n, phi_type, true);
2007           }
2008           if (cast == NULL) {
2009             cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, phi_type, true);
2010           }
2011         }
2012       }
2013       assert(cast != NULL, "cast should be set");
2014       cast = phase->transform(cast);
2015       // set all inputs to the new cast(s) so the Phi is removed by Identity
2016       PhaseIterGVN* igvn = phase->is_IterGVN();
2017       for (uint i = 1; i < req(); i++) {
2018         set_req_X(i, cast, igvn);
2019       }
2020       uin = cast;
2021     }
2022 
2023     // One unique input.
2024     debug_only(Node* ident = Identity(phase));
2025     // The unique input must eventually be detected by the Identity call.
2026 #ifdef ASSERT
2027     if (ident != uin && !ident->is_top()) {
2028       // print this output before failing assert
2029       r->dump(3);
2030       this->dump(3);
2031       ident->dump();
2032       uin->dump();
2033     }
2034 #endif
2035     assert(ident == uin || ident->is_top(), "Identity must clean this up");
2036     return NULL;
2037   }
2038 
2039   Node* opt = NULL;
2040   int true_path = is_diamond_phi();
2041   if( true_path != 0 ) {
2042     // Check for CMove'ing identity. If it would be unsafe,
2043     // handle it here. In the safe case, let Identity handle it.
2044     Node* unsafe_id = is_cmove_id(phase, true_path);
2045     if( unsafe_id != NULL && is_unsafe_data_reference(unsafe_id) )
2046       opt = unsafe_id;
2047 
2048     // Check for simple convert-to-boolean pattern
2049     if( opt == NULL )
2050       opt = is_x2logic(phase, this, true_path);
2051 
2052     // Check for absolute value
2053     if( opt == NULL )
2054       opt = is_absolute(phase, this, true_path);
2055 
2056     // Check for conditional add
2057     if( opt == NULL && can_reshape )
2058       opt = is_cond_add(phase, this, true_path);
2059 
2060     // These 4 optimizations could subsume the phi:
2061     // have to check for a dead data loop creation.
2062     if( opt != NULL ) {
2063       if( opt == unsafe_id || is_unsafe_data_reference(opt) ) {
2064         // Found dead loop.
2065         if( can_reshape )
2066           return top;
2067         // We can't return top if we are in Parse phase - cut inputs only
2068         // to stop further optimizations for this phi. Identity will return TOP.
2069         assert(req() == 3, "only diamond merge phi here");
2070         set_req(1, top);
2071         set_req(2, top);
2072         return NULL;
2073       } else {
2074         return opt;
2075       }
2076     }
2077   }
2078 
2079   // Check for merging identical values and split flow paths
2080   if (can_reshape) {
2081     opt = split_flow_path(phase, this);
2082     // This optimization only modifies phi - don't need to check for dead loop.
2083     assert(opt == NULL || opt == this, "do not elide phi");
2084     if (opt != NULL)  return opt;
2085   }
2086 
2087   if (in(1) != NULL && in(1)->Opcode() == Op_AddP && can_reshape) {
2088     // Try to undo Phi of AddP:
2089     // (Phi (AddP base address offset) (AddP base2 address2 offset2))
2090     // becomes:
2091     // newbase := (Phi base base2)
2092     // newaddress := (Phi address address2)
2093     // newoffset := (Phi offset offset2)
2094     // (AddP newbase newaddress newoffset)
2095     //
2096     // This occurs as a result of unsuccessful split_thru_phi and
2097     // interferes with taking advantage of addressing modes. See the
2098     // clone_shift_expressions code in matcher.cpp
2099     Node* addp = in(1);
2100     Node* base = addp->in(AddPNode::Base);
2101     Node* address = addp->in(AddPNode::Address);
2102     Node* offset = addp->in(AddPNode::Offset);
2103     if (base != NULL && address != NULL && offset != NULL &&
2104         !base->is_top() && !address->is_top() && !offset->is_top()) {
2105       const Type* base_type = base->bottom_type();
2106       const Type* address_type = address->bottom_type();
2107       // make sure that all the inputs are similar to the first one,
2108       // i.e. AddP with base == address and same offset as first AddP
2109       bool doit = true;
2110       for (uint i = 2; i < req(); i++) {
2111         if (in(i) == NULL ||
2112             in(i)->Opcode() != Op_AddP ||
2113             in(i)->in(AddPNode::Base) == NULL ||
2114             in(i)->in(AddPNode::Address) == NULL ||
2115             in(i)->in(AddPNode::Offset) == NULL ||
2116             in(i)->in(AddPNode::Base)->is_top() ||
2117             in(i)->in(AddPNode::Address)->is_top() ||
2118             in(i)->in(AddPNode::Offset)->is_top()) {
2119           doit = false;
2120           break;
2121         }
2122         if (in(i)->in(AddPNode::Offset) != base) {
2123           base = NULL;
2124         }
2125         if (in(i)->in(AddPNode::Offset) != offset) {
2126           offset = NULL;
2127         }
2128         if (in(i)->in(AddPNode::Address) != address) {
2129           address = NULL;
2130         }
2131         // Accumulate type for resulting Phi
2132         base_type = base_type->meet_speculative(in(i)->in(AddPNode::Base)->bottom_type());
2133         address_type = address_type->meet_speculative(in(i)->in(AddPNode::Address)->bottom_type());
2134       }
2135       if (doit && base == NULL) {
2136         // Check for neighboring AddP nodes in a tree.
2137         // If they have a base, use that it.
2138         for (DUIterator_Fast kmax, k = this->fast_outs(kmax); k < kmax; k++) {
2139           Node* u = this->fast_out(k);
2140           if (u->is_AddP()) {
2141             Node* base2 = u->in(AddPNode::Base);
2142             if (base2 != NULL && !base2->is_top()) {
2143               if (base == NULL)
2144                 base = base2;
2145               else if (base != base2)
2146                 { doit = false; break; }
2147             }
2148           }
2149         }
2150       }
2151       if (doit) {
2152         if (base == NULL) {
2153           base = new PhiNode(in(0), base_type, NULL);
2154           for (uint i = 1; i < req(); i++) {
2155             base->init_req(i, in(i)->in(AddPNode::Base));
2156           }
2157           phase->is_IterGVN()->register_new_node_with_optimizer(base);
2158         }
2159         if (address == NULL) {
2160           address = new PhiNode(in(0), address_type, NULL);
2161           for (uint i = 1; i < req(); i++) {
2162             address->init_req(i, in(i)->in(AddPNode::Address));
2163           }
2164           phase->is_IterGVN()->register_new_node_with_optimizer(address);
2165         }
2166         if (offset == NULL) {
2167           offset = new PhiNode(in(0), TypeX_X, NULL);
2168           for (uint i = 1; i < req(); i++) {
2169             offset->init_req(i, in(i)->in(AddPNode::Offset));
2170           }
2171           phase->is_IterGVN()->register_new_node_with_optimizer(offset);
2172         }
2173         return new AddPNode(base, address, offset);
2174       }
2175     }
2176   }
2177 
2178   // Split phis through memory merges, so that the memory merges will go away.
2179   // Piggy-back this transformation on the search for a unique input....
2180   // It will be as if the merged memory is the unique value of the phi.
2181   // (Do not attempt this optimization unless parsing is complete.
2182   // It would make the parser's memory-merge logic sick.)
2183   // (MergeMemNode is not dead_loop_safe - need to check for dead loop.)
2184   if (progress == NULL && can_reshape && type() == Type::MEMORY) {
2185     // see if this phi should be sliced
2186     uint merge_width = 0;
2187     bool saw_self = false;
2188     for( uint i=1; i<req(); ++i ) {// For all paths in
2189       Node *ii = in(i);
2190       // TOP inputs should not be counted as safe inputs because if the
2191       // Phi references itself through all other inputs then splitting the
2192       // Phi through memory merges would create dead loop at later stage.
2193       if (ii == top) {
2194         return NULL; // Delay optimization until graph is cleaned.
2195       }
2196       if (ii->is_MergeMem()) {
2197         MergeMemNode* n = ii->as_MergeMem();
2198         merge_width = MAX2(merge_width, n->req());
2199         saw_self = saw_self || (n->base_memory() == this);
2200       }
2201     }
2202 
2203     // This restriction is temporarily necessary to ensure termination:
2204     if (!saw_self && adr_type() == TypePtr::BOTTOM)  merge_width = 0;
2205 
2206     if (merge_width > Compile::AliasIdxRaw) {
2207       // found at least one non-empty MergeMem
2208       const TypePtr* at = adr_type();
2209       if (at != TypePtr::BOTTOM) {
2210         // Patch the existing phi to select an input from the merge:
2211         // Phi:AT1(...MergeMem(m0, m1, m2)...) into
2212         //     Phi:AT1(...m1...)
2213         int alias_idx = phase->C->get_alias_index(at);
2214         for (uint i=1; i<req(); ++i) {
2215           Node *ii = in(i);
2216           if (ii->is_MergeMem()) {
2217             MergeMemNode* n = ii->as_MergeMem();
2218             // compress paths and change unreachable cycles to TOP
2219             // If not, we can update the input infinitely along a MergeMem cycle
2220             // Equivalent code is in MemNode::Ideal_common
2221             Node *m  = phase->transform(n);
2222             if (outcnt() == 0) {  // Above transform() may kill us!
2223               return top;
2224             }
2225             // If transformed to a MergeMem, get the desired slice
2226             // Otherwise the returned node represents memory for every slice
2227             Node *new_mem = (m->is_MergeMem()) ?
2228                              m->as_MergeMem()->memory_at(alias_idx) : m;
2229             // Update input if it is progress over what we have now
2230             if (new_mem != ii) {
2231               set_req(i, new_mem);
2232               progress = this;
2233             }
2234           }
2235         }
2236       } else {
2237         // We know that at least one MergeMem->base_memory() == this
2238         // (saw_self == true). If all other inputs also references this phi
2239         // (directly or through data nodes) - it is a dead loop.
2240         bool saw_safe_input = false;
2241         for (uint j = 1; j < req(); ++j) {
2242           Node* n = in(j);
2243           if (n->is_MergeMem()) {
2244             MergeMemNode* mm = n->as_MergeMem();
2245             if (mm->base_memory() == this || mm->base_memory() == mm->empty_memory()) {
2246               // Skip this input if it references back to this phi or if the memory path is dead
2247               continue;
2248             }
2249           }
2250           if (!is_unsafe_data_reference(n)) {
2251             saw_safe_input = true; // found safe input
2252             break;
2253           }
2254         }
2255         if (!saw_safe_input) {
2256           // There is a dead loop: All inputs are either dead or reference back to this phi
2257           return top;
2258         }
2259 
2260         // Phi(...MergeMem(m0, m1:AT1, m2:AT2)...) into
2261         //     MergeMem(Phi(...m0...), Phi:AT1(...m1...), Phi:AT2(...m2...))
2262         PhaseIterGVN* igvn = phase->is_IterGVN();
2263         Node* hook = new Node(1);
2264         PhiNode* new_base = (PhiNode*) clone();
2265         // Must eagerly register phis, since they participate in loops.
2266         if (igvn) {
2267           igvn->register_new_node_with_optimizer(new_base);
2268           hook->add_req(new_base);
2269         }
2270         MergeMemNode* result = MergeMemNode::make(new_base);
2271         for (uint i = 1; i < req(); ++i) {
2272           Node *ii = in(i);
2273           if (ii->is_MergeMem()) {
2274             MergeMemNode* n = ii->as_MergeMem();
2275             for (MergeMemStream mms(result, n); mms.next_non_empty2(); ) {
2276               // If we have not seen this slice yet, make a phi for it.
2277               bool made_new_phi = false;
2278               if (mms.is_empty()) {
2279                 Node* new_phi = new_base->slice_memory(mms.adr_type(phase->C));
2280                 made_new_phi = true;
2281                 if (igvn) {
2282                   igvn->register_new_node_with_optimizer(new_phi);
2283                   hook->add_req(new_phi);
2284                 }
2285                 mms.set_memory(new_phi);
2286               }
2287               Node* phi = mms.memory();
2288               assert(made_new_phi || phi->in(i) == n, "replace the i-th merge by a slice");
2289               phi->set_req(i, mms.memory2());
2290             }
2291           }
2292         }
2293         // Distribute all self-loops.
2294         { // (Extra braces to hide mms.)
2295           for (MergeMemStream mms(result); mms.next_non_empty(); ) {
2296             Node* phi = mms.memory();
2297             for (uint i = 1; i < req(); ++i) {
2298               if (phi->in(i) == this)  phi->set_req(i, phi);
2299             }
2300           }
2301         }
2302         // now transform the new nodes, and return the mergemem
2303         for (MergeMemStream mms(result); mms.next_non_empty(); ) {
2304           Node* phi = mms.memory();
2305           mms.set_memory(phase->transform(phi));
2306         }
2307         hook->destruct(igvn);
2308         // Replace self with the result.
2309         return result;
2310       }
2311     }
2312     //
2313     // Other optimizations on the memory chain
2314     //
2315     const TypePtr* at = adr_type();
2316     for( uint i=1; i<req(); ++i ) {// For all paths in
2317       Node *ii = in(i);
2318       Node *new_in = MemNode::optimize_memory_chain(ii, at, NULL, phase);
2319       if (ii != new_in ) {
2320         set_req(i, new_in);
2321         progress = this;
2322       }
2323     }
2324   }
2325 
2326 #ifdef _LP64
2327   // Push DecodeN/DecodeNKlass down through phi.
2328   // The rest of phi graph will transform by split EncodeP node though phis up.
2329   if ((UseCompressedOops || UseCompressedClassPointers) && can_reshape && progress == NULL) {
2330     bool may_push = true;
2331     bool has_decodeN = false;
2332     bool is_decodeN = false;
2333     for (uint i=1; i<req(); ++i) {// For all paths in
2334       Node *ii = in(i);
2335       if (ii->is_DecodeNarrowPtr() && ii->bottom_type() == bottom_type()) {
2336         // Do optimization if a non dead path exist.
2337         if (ii->in(1)->bottom_type() != Type::TOP) {
2338           has_decodeN = true;
2339           is_decodeN = ii->is_DecodeN();
2340         }
2341       } else if (!ii->is_Phi()) {
2342         may_push = false;
2343       }
2344     }
2345 
2346     if (has_decodeN && may_push) {
2347       PhaseIterGVN *igvn = phase->is_IterGVN();
2348       // Make narrow type for new phi.
2349       const Type* narrow_t;
2350       if (is_decodeN) {
2351         narrow_t = TypeNarrowOop::make(this->bottom_type()->is_ptr());
2352       } else {
2353         narrow_t = TypeNarrowKlass::make(this->bottom_type()->is_ptr());
2354       }
2355       PhiNode* new_phi = new PhiNode(r, narrow_t);
2356       uint orig_cnt = req();
2357       for (uint i=1; i<req(); ++i) {// For all paths in
2358         Node *ii = in(i);
2359         Node* new_ii = NULL;
2360         if (ii->is_DecodeNarrowPtr()) {
2361           assert(ii->bottom_type() == bottom_type(), "sanity");
2362           new_ii = ii->in(1);
2363         } else {
2364           assert(ii->is_Phi(), "sanity");
2365           if (ii->as_Phi() == this) {
2366             new_ii = new_phi;
2367           } else {
2368             if (is_decodeN) {
2369               new_ii = new EncodePNode(ii, narrow_t);
2370             } else {
2371               new_ii = new EncodePKlassNode(ii, narrow_t);
2372             }
2373             igvn->register_new_node_with_optimizer(new_ii);
2374           }
2375         }
2376         new_phi->set_req(i, new_ii);
2377       }
2378       igvn->register_new_node_with_optimizer(new_phi, this);
2379       if (is_decodeN) {
2380         progress = new DecodeNNode(new_phi, bottom_type());
2381       } else {
2382         progress = new DecodeNKlassNode(new_phi, bottom_type());
2383       }
2384     }
2385   }
2386 #endif
2387 
2388   // Phi (VB ... VB) => VB (Phi ...) (Phi ...)
2389   if (EnableVectorReboxing && can_reshape && progress == NULL) {
2390     PhaseIterGVN* igvn = phase->is_IterGVN();
2391 
2392     bool all_inputs_are_equiv_vboxes = true;
2393     for (uint i = 1; i < req(); ++i) {
2394       Node* n = in(i);
2395       if (in(i)->Opcode() != Op_VectorBox) {
2396         all_inputs_are_equiv_vboxes = false;
2397         break;
2398       }
2399       // Check that vector type of vboxes is equivalent
2400       if (i != 1) {
2401         if (Type::cmp(in(i-0)->in(VectorBoxNode::Value)->bottom_type(),
2402                       in(i-1)->in(VectorBoxNode::Value)->bottom_type()) != 0) {
2403           all_inputs_are_equiv_vboxes = false;
2404           break;
2405         }
2406         if (Type::cmp(in(i-0)->in(VectorBoxNode::Box)->bottom_type(),
2407                       in(i-1)->in(VectorBoxNode::Box)->bottom_type()) != 0) {
2408           all_inputs_are_equiv_vboxes = false;
2409           break;
2410         }
2411       }
2412     }
2413 
2414     if (all_inputs_are_equiv_vboxes) {
2415       VectorBoxNode* vbox = static_cast<VectorBoxNode*>(in(1));
2416       PhiNode* new_vbox_phi = new PhiNode(r, vbox->box_type());
2417       PhiNode* new_vect_phi = new PhiNode(r, vbox->vec_type());
2418       for (uint i = 1; i < req(); ++i) {
2419         VectorBoxNode* old_vbox = static_cast<VectorBoxNode*>(in(i));
2420         new_vbox_phi->set_req(i, old_vbox->in(VectorBoxNode::Box));
2421         new_vect_phi->set_req(i, old_vbox->in(VectorBoxNode::Value));
2422       }
2423       igvn->register_new_node_with_optimizer(new_vbox_phi, this);
2424       igvn->register_new_node_with_optimizer(new_vect_phi, this);
2425       progress = new VectorBoxNode(igvn->C, new_vbox_phi, new_vect_phi, vbox->box_type(), vbox->vec_type());
2426     }
2427   }
2428 
2429   return progress;              // Return any progress
2430 }
2431 
is_data_loop(RegionNode * r,Node * uin,const PhaseGVN * phase)2432 bool PhiNode::is_data_loop(RegionNode* r, Node* uin, const PhaseGVN* phase) {
2433   // First, take the short cut when we know it is a loop and the EntryControl data path is dead.
2434   // The loop node may only have one input because the entry path was removed in PhaseIdealLoop::Dominators().
2435   // Then, check if there is a data loop when the phi references itself directly or through other data nodes.
2436   assert(!r->is_Loop() || r->req() <= 3, "Loop node should have 3 or less inputs");
2437   const bool is_loop = (r->is_Loop() && r->req() == 3);
2438   const Node* top = phase->C->top();
2439   if (is_loop) {
2440     return !uin->eqv_uncast(in(LoopNode::EntryControl));
2441   } else {
2442     // We have a data loop either with an unsafe data reference or if a region is unreachable.
2443     return is_unsafe_data_reference(uin)
2444            || (r->req() == 3 && (r->in(1) != top && r->in(2) == top && r->is_unreachable_region(phase)));
2445   }
2446 }
2447 
2448 //------------------------------is_tripcount-----------------------------------
is_tripcount(BasicType bt) const2449 bool PhiNode::is_tripcount(BasicType bt) const {
2450   return (in(0) != NULL && in(0)->is_BaseCountedLoop() &&
2451           in(0)->as_BaseCountedLoop()->operates_on(bt, true) &&
2452           in(0)->as_BaseCountedLoop()->phi() == this);
2453 }
2454 
2455 //------------------------------out_RegMask------------------------------------
in_RegMask(uint i) const2456 const RegMask &PhiNode::in_RegMask(uint i) const {
2457   return i ? out_RegMask() : RegMask::Empty;
2458 }
2459 
out_RegMask() const2460 const RegMask &PhiNode::out_RegMask() const {
2461   uint ideal_reg = _type->ideal_reg();
2462   assert( ideal_reg != Node::NotAMachineReg, "invalid type at Phi" );
2463   if( ideal_reg == 0 ) return RegMask::Empty;
2464   assert(ideal_reg != Op_RegFlags, "flags register is not spillable");
2465   return *(Compile::current()->matcher()->idealreg2spillmask[ideal_reg]);
2466 }
2467 
2468 #ifndef PRODUCT
related(GrowableArray<Node * > * in_rel,GrowableArray<Node * > * out_rel,bool compact) const2469 void PhiNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2470   // For a PhiNode, the set of related nodes includes all inputs till level 2,
2471   // and all outputs till level 1. In compact mode, inputs till level 1 are
2472   // collected.
2473   this->collect_nodes(in_rel, compact ? 1 : 2, false, false);
2474   this->collect_nodes(out_rel, -1, false, false);
2475 }
2476 
dump_spec(outputStream * st) const2477 void PhiNode::dump_spec(outputStream *st) const {
2478   TypeNode::dump_spec(st);
2479   if (is_tripcount(T_INT) || is_tripcount(T_LONG)) {
2480     st->print(" #tripcount");
2481   }
2482 }
2483 #endif
2484 
2485 
2486 //=============================================================================
Value(PhaseGVN * phase) const2487 const Type* GotoNode::Value(PhaseGVN* phase) const {
2488   // If the input is reachable, then we are executed.
2489   // If the input is not reachable, then we are not executed.
2490   return phase->type(in(0));
2491 }
2492 
Identity(PhaseGVN * phase)2493 Node* GotoNode::Identity(PhaseGVN* phase) {
2494   return in(0);                // Simple copy of incoming control
2495 }
2496 
out_RegMask() const2497 const RegMask &GotoNode::out_RegMask() const {
2498   return RegMask::Empty;
2499 }
2500 
2501 #ifndef PRODUCT
2502 //-----------------------------related-----------------------------------------
2503 // The related nodes of a GotoNode are all inputs at level 1, as well as the
2504 // outputs at level 1. This is regardless of compact mode.
related(GrowableArray<Node * > * in_rel,GrowableArray<Node * > * out_rel,bool compact) const2505 void GotoNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2506   this->collect_nodes(in_rel, 1, false, false);
2507   this->collect_nodes(out_rel, -1, false, false);
2508 }
2509 #endif
2510 
2511 
2512 //=============================================================================
out_RegMask() const2513 const RegMask &JumpNode::out_RegMask() const {
2514   return RegMask::Empty;
2515 }
2516 
2517 #ifndef PRODUCT
2518 //-----------------------------related-----------------------------------------
2519 // The related nodes of a JumpNode are all inputs at level 1, as well as the
2520 // outputs at level 2 (to include actual jump targets beyond projection nodes).
2521 // This is regardless of compact mode.
related(GrowableArray<Node * > * in_rel,GrowableArray<Node * > * out_rel,bool compact) const2522 void JumpNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2523   this->collect_nodes(in_rel, 1, false, false);
2524   this->collect_nodes(out_rel, -2, false, false);
2525 }
2526 #endif
2527 
2528 //=============================================================================
out_RegMask() const2529 const RegMask &JProjNode::out_RegMask() const {
2530   return RegMask::Empty;
2531 }
2532 
2533 //=============================================================================
out_RegMask() const2534 const RegMask &CProjNode::out_RegMask() const {
2535   return RegMask::Empty;
2536 }
2537 
2538 
2539 
2540 //=============================================================================
2541 
hash() const2542 uint PCTableNode::hash() const { return Node::hash() + _size; }
cmp(const Node & n) const2543 bool PCTableNode::cmp( const Node &n ) const
2544 { return _size == ((PCTableNode&)n)._size; }
2545 
bottom_type() const2546 const Type *PCTableNode::bottom_type() const {
2547   const Type** f = TypeTuple::fields(_size);
2548   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2549   return TypeTuple::make(_size, f);
2550 }
2551 
2552 //------------------------------Value------------------------------------------
2553 // Compute the type of the PCTableNode.  If reachable it is a tuple of
2554 // Control, otherwise the table targets are not reachable
Value(PhaseGVN * phase) const2555 const Type* PCTableNode::Value(PhaseGVN* phase) const {
2556   if( phase->type(in(0)) == Type::CONTROL )
2557     return bottom_type();
2558   return Type::TOP;             // All paths dead?  Then so are we
2559 }
2560 
2561 //------------------------------Ideal------------------------------------------
2562 // Return a node which is more "ideal" than the current node.  Strip out
2563 // control copies
Ideal(PhaseGVN * phase,bool can_reshape)2564 Node *PCTableNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2565   return remove_dead_region(phase, can_reshape) ? this : NULL;
2566 }
2567 
2568 //=============================================================================
hash() const2569 uint JumpProjNode::hash() const {
2570   return Node::hash() + _dest_bci;
2571 }
2572 
cmp(const Node & n) const2573 bool JumpProjNode::cmp( const Node &n ) const {
2574   return ProjNode::cmp(n) &&
2575     _dest_bci == ((JumpProjNode&)n)._dest_bci;
2576 }
2577 
2578 #ifndef PRODUCT
dump_spec(outputStream * st) const2579 void JumpProjNode::dump_spec(outputStream *st) const {
2580   ProjNode::dump_spec(st);
2581   st->print("@bci %d ",_dest_bci);
2582 }
2583 
dump_compact_spec(outputStream * st) const2584 void JumpProjNode::dump_compact_spec(outputStream *st) const {
2585   ProjNode::dump_compact_spec(st);
2586   st->print("(%d)%d@%d", _switch_val, _proj_no, _dest_bci);
2587 }
2588 
related(GrowableArray<Node * > * in_rel,GrowableArray<Node * > * out_rel,bool compact) const2589 void JumpProjNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2590   // The related nodes of a JumpProjNode are its inputs and outputs at level 1.
2591   this->collect_nodes(in_rel, 1, false, false);
2592   this->collect_nodes(out_rel, -1, false, false);
2593 }
2594 #endif
2595 
2596 //=============================================================================
2597 //------------------------------Value------------------------------------------
2598 // Check for being unreachable, or for coming from a Rethrow.  Rethrow's cannot
2599 // have the default "fall_through_index" path.
Value(PhaseGVN * phase) const2600 const Type* CatchNode::Value(PhaseGVN* phase) const {
2601   // Unreachable?  Then so are all paths from here.
2602   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
2603   // First assume all paths are reachable
2604   const Type** f = TypeTuple::fields(_size);
2605   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2606   // Identify cases that will always throw an exception
2607   // () rethrow call
2608   // () virtual or interface call with NULL receiver
2609   // () call is a check cast with incompatible arguments
2610   if( in(1)->is_Proj() ) {
2611     Node *i10 = in(1)->in(0);
2612     if( i10->is_Call() ) {
2613       CallNode *call = i10->as_Call();
2614       // Rethrows always throw exceptions, never return
2615       if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2616         f[CatchProjNode::fall_through_index] = Type::TOP;
2617       } else if( call->req() > TypeFunc::Parms ) {
2618         const Type *arg0 = phase->type( call->in(TypeFunc::Parms) );
2619         // Check for null receiver to virtual or interface calls
2620         if( call->is_CallDynamicJava() &&
2621             arg0->higher_equal(TypePtr::NULL_PTR) ) {
2622           f[CatchProjNode::fall_through_index] = Type::TOP;
2623         }
2624       } // End of if not a runtime stub
2625     } // End of if have call above me
2626   } // End of slot 1 is not a projection
2627   return TypeTuple::make(_size, f);
2628 }
2629 
2630 //=============================================================================
hash() const2631 uint CatchProjNode::hash() const {
2632   return Node::hash() + _handler_bci;
2633 }
2634 
2635 
cmp(const Node & n) const2636 bool CatchProjNode::cmp( const Node &n ) const {
2637   return ProjNode::cmp(n) &&
2638     _handler_bci == ((CatchProjNode&)n)._handler_bci;
2639 }
2640 
2641 
2642 //------------------------------Identity---------------------------------------
2643 // If only 1 target is possible, choose it if it is the main control
Identity(PhaseGVN * phase)2644 Node* CatchProjNode::Identity(PhaseGVN* phase) {
2645   // If my value is control and no other value is, then treat as ID
2646   const TypeTuple *t = phase->type(in(0))->is_tuple();
2647   if (t->field_at(_con) != Type::CONTROL)  return this;
2648   // If we remove the last CatchProj and elide the Catch/CatchProj, then we
2649   // also remove any exception table entry.  Thus we must know the call
2650   // feeding the Catch will not really throw an exception.  This is ok for
2651   // the main fall-thru control (happens when we know a call can never throw
2652   // an exception) or for "rethrow", because a further optimization will
2653   // yank the rethrow (happens when we inline a function that can throw an
2654   // exception and the caller has no handler).  Not legal, e.g., for passing
2655   // a NULL receiver to a v-call, or passing bad types to a slow-check-cast.
2656   // These cases MUST throw an exception via the runtime system, so the VM
2657   // will be looking for a table entry.
2658   Node *proj = in(0)->in(1);    // Expect a proj feeding CatchNode
2659   CallNode *call;
2660   if (_con != TypeFunc::Control && // Bail out if not the main control.
2661       !(proj->is_Proj() &&      // AND NOT a rethrow
2662         proj->in(0)->is_Call() &&
2663         (call = proj->in(0)->as_Call()) &&
2664         call->entry_point() == OptoRuntime::rethrow_stub()))
2665     return this;
2666 
2667   // Search for any other path being control
2668   for (uint i = 0; i < t->cnt(); i++) {
2669     if (i != _con && t->field_at(i) == Type::CONTROL)
2670       return this;
2671   }
2672   // Only my path is possible; I am identity on control to the jump
2673   return in(0)->in(0);
2674 }
2675 
2676 
2677 #ifndef PRODUCT
dump_spec(outputStream * st) const2678 void CatchProjNode::dump_spec(outputStream *st) const {
2679   ProjNode::dump_spec(st);
2680   st->print("@bci %d ",_handler_bci);
2681 }
2682 #endif
2683 
2684 //=============================================================================
2685 //------------------------------Identity---------------------------------------
2686 // Check for CreateEx being Identity.
Identity(PhaseGVN * phase)2687 Node* CreateExNode::Identity(PhaseGVN* phase) {
2688   if( phase->type(in(1)) == Type::TOP ) return in(1);
2689   if( phase->type(in(0)) == Type::TOP ) return in(0);
2690   // We only come from CatchProj, unless the CatchProj goes away.
2691   // If the CatchProj is optimized away, then we just carry the
2692   // exception oop through.
2693   CallNode *call = in(1)->in(0)->as_Call();
2694 
2695   return ( in(0)->is_CatchProj() && in(0)->in(0)->in(1) == in(1) )
2696     ? this
2697     : call->in(TypeFunc::Parms);
2698 }
2699 
2700 //=============================================================================
2701 //------------------------------Value------------------------------------------
2702 // Check for being unreachable.
Value(PhaseGVN * phase) const2703 const Type* NeverBranchNode::Value(PhaseGVN* phase) const {
2704   if (!in(0) || in(0)->is_top()) return Type::TOP;
2705   return bottom_type();
2706 }
2707 
2708 //------------------------------Ideal------------------------------------------
2709 // Check for no longer being part of a loop
Ideal(PhaseGVN * phase,bool can_reshape)2710 Node *NeverBranchNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2711   if (can_reshape && !in(0)->is_Loop()) {
2712     // Dead code elimination can sometimes delete this projection so
2713     // if it's not there, there's nothing to do.
2714     Node* fallthru = proj_out_or_null(0);
2715     if (fallthru != NULL) {
2716       phase->is_IterGVN()->replace_node(fallthru, in(0));
2717     }
2718     return phase->C->top();
2719   }
2720   return NULL;
2721 }
2722 
2723 #ifndef PRODUCT
format(PhaseRegAlloc * ra_,outputStream * st) const2724 void NeverBranchNode::format( PhaseRegAlloc *ra_, outputStream *st) const {
2725   st->print("%s", Name());
2726 }
2727 #endif
2728