1 /*
2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "memory/allocation.inline.hpp"
27 #include "opto/addnode.hpp"
28 #include "opto/connode.hpp"
29 #include "opto/convertnode.hpp"
30 #include "opto/divnode.hpp"
31 #include "opto/machnode.hpp"
32 #include "opto/movenode.hpp"
33 #include "opto/matcher.hpp"
34 #include "opto/mulnode.hpp"
35 #include "opto/phaseX.hpp"
36 #include "opto/subnode.hpp"
37 #include "utilities/powerOfTwo.hpp"
38 
39 // Portions of code courtesy of Clifford Click
40 
41 // Optimization - Graph Style
42 
43 #include <math.h>
44 
45 //----------------------magic_int_divide_constants-----------------------------
46 // Compute magic multiplier and shift constant for converting a 32 bit divide
47 // by constant into a multiply/shift/add series. Return false if calculations
48 // fail.
49 //
50 // Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
51 // minor type name and parameter changes.
magic_int_divide_constants(jint d,jint & M,jint & s)52 static bool magic_int_divide_constants(jint d, jint &M, jint &s) {
53   int32_t p;
54   uint32_t ad, anc, delta, q1, r1, q2, r2, t;
55   const uint32_t two31 = 0x80000000L;     // 2**31.
56 
57   ad = ABS(d);
58   if (d == 0 || d == 1) return false;
59   t = two31 + ((uint32_t)d >> 31);
60   anc = t - 1 - t%ad;     // Absolute value of nc.
61   p = 31;                 // Init. p.
62   q1 = two31/anc;         // Init. q1 = 2**p/|nc|.
63   r1 = two31 - q1*anc;    // Init. r1 = rem(2**p, |nc|).
64   q2 = two31/ad;          // Init. q2 = 2**p/|d|.
65   r2 = two31 - q2*ad;     // Init. r2 = rem(2**p, |d|).
66   do {
67     p = p + 1;
68     q1 = 2*q1;            // Update q1 = 2**p/|nc|.
69     r1 = 2*r1;            // Update r1 = rem(2**p, |nc|).
70     if (r1 >= anc) {      // (Must be an unsigned
71       q1 = q1 + 1;        // comparison here).
72       r1 = r1 - anc;
73     }
74     q2 = 2*q2;            // Update q2 = 2**p/|d|.
75     r2 = 2*r2;            // Update r2 = rem(2**p, |d|).
76     if (r2 >= ad) {       // (Must be an unsigned
77       q2 = q2 + 1;        // comparison here).
78       r2 = r2 - ad;
79     }
80     delta = ad - r2;
81   } while (q1 < delta || (q1 == delta && r1 == 0));
82 
83   M = q2 + 1;
84   if (d < 0) M = -M;      // Magic number and
85   s = p - 32;             // shift amount to return.
86 
87   return true;
88 }
89 
90 //--------------------------transform_int_divide-------------------------------
91 // Convert a division by constant divisor into an alternate Ideal graph.
92 // Return NULL if no transformation occurs.
transform_int_divide(PhaseGVN * phase,Node * dividend,jint divisor)93 static Node *transform_int_divide( PhaseGVN *phase, Node *dividend, jint divisor ) {
94 
95   // Check for invalid divisors
96   assert( divisor != 0 && divisor != min_jint,
97           "bad divisor for transforming to long multiply" );
98 
99   bool d_pos = divisor >= 0;
100   jint d = d_pos ? divisor : -divisor;
101   const int N = 32;
102 
103   // Result
104   Node *q = NULL;
105 
106   if (d == 1) {
107     // division by +/- 1
108     if (!d_pos) {
109       // Just negate the value
110       q = new SubINode(phase->intcon(0), dividend);
111     }
112   } else if ( is_power_of_2(d) ) {
113     // division by +/- a power of 2
114 
115     // See if we can simply do a shift without rounding
116     bool needs_rounding = true;
117     const Type *dt = phase->type(dividend);
118     const TypeInt *dti = dt->isa_int();
119     if (dti && dti->_lo >= 0) {
120       // we don't need to round a positive dividend
121       needs_rounding = false;
122     } else if( dividend->Opcode() == Op_AndI ) {
123       // An AND mask of sufficient size clears the low bits and
124       // I can avoid rounding.
125       const TypeInt *andconi_t = phase->type( dividend->in(2) )->isa_int();
126       if( andconi_t && andconi_t->is_con() ) {
127         jint andconi = andconi_t->get_con();
128         if( andconi < 0 && is_power_of_2(-andconi) && (-andconi) >= d ) {
129           if( (-andconi) == d ) // Remove AND if it clears bits which will be shifted
130             dividend = dividend->in(1);
131           needs_rounding = false;
132         }
133       }
134     }
135 
136     // Add rounding to the shift to handle the sign bit
137     int l = log2_jint(d-1)+1;
138     if (needs_rounding) {
139       // Divide-by-power-of-2 can be made into a shift, but you have to do
140       // more math for the rounding.  You need to add 0 for positive
141       // numbers, and "i-1" for negative numbers.  Example: i=4, so the
142       // shift is by 2.  You need to add 3 to negative dividends and 0 to
143       // positive ones.  So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
144       // (-2+3)>>2 becomes 0, etc.
145 
146       // Compute 0 or -1, based on sign bit
147       Node *sign = phase->transform(new RShiftINode(dividend, phase->intcon(N - 1)));
148       // Mask sign bit to the low sign bits
149       Node *round = phase->transform(new URShiftINode(sign, phase->intcon(N - l)));
150       // Round up before shifting
151       dividend = phase->transform(new AddINode(dividend, round));
152     }
153 
154     // Shift for division
155     q = new RShiftINode(dividend, phase->intcon(l));
156 
157     if (!d_pos) {
158       q = new SubINode(phase->intcon(0), phase->transform(q));
159     }
160   } else {
161     // Attempt the jint constant divide -> multiply transform found in
162     //   "Division by Invariant Integers using Multiplication"
163     //     by Granlund and Montgomery
164     // See also "Hacker's Delight", chapter 10 by Warren.
165 
166     jint magic_const;
167     jint shift_const;
168     if (magic_int_divide_constants(d, magic_const, shift_const)) {
169       Node *magic = phase->longcon(magic_const);
170       Node *dividend_long = phase->transform(new ConvI2LNode(dividend));
171 
172       // Compute the high half of the dividend x magic multiplication
173       Node *mul_hi = phase->transform(new MulLNode(dividend_long, magic));
174 
175       if (magic_const < 0) {
176         mul_hi = phase->transform(new RShiftLNode(mul_hi, phase->intcon(N)));
177         mul_hi = phase->transform(new ConvL2INode(mul_hi));
178 
179         // The magic multiplier is too large for a 32 bit constant. We've adjusted
180         // it down by 2^32, but have to add 1 dividend back in after the multiplication.
181         // This handles the "overflow" case described by Granlund and Montgomery.
182         mul_hi = phase->transform(new AddINode(dividend, mul_hi));
183 
184         // Shift over the (adjusted) mulhi
185         if (shift_const != 0) {
186           mul_hi = phase->transform(new RShiftINode(mul_hi, phase->intcon(shift_const)));
187         }
188       } else {
189         // No add is required, we can merge the shifts together.
190         mul_hi = phase->transform(new RShiftLNode(mul_hi, phase->intcon(N + shift_const)));
191         mul_hi = phase->transform(new ConvL2INode(mul_hi));
192       }
193 
194       // Get a 0 or -1 from the sign of the dividend.
195       Node *addend0 = mul_hi;
196       Node *addend1 = phase->transform(new RShiftINode(dividend, phase->intcon(N-1)));
197 
198       // If the divisor is negative, swap the order of the input addends;
199       // this has the effect of negating the quotient.
200       if (!d_pos) {
201         Node *temp = addend0; addend0 = addend1; addend1 = temp;
202       }
203 
204       // Adjust the final quotient by subtracting -1 (adding 1)
205       // from the mul_hi.
206       q = new SubINode(addend0, addend1);
207     }
208   }
209 
210   return q;
211 }
212 
213 //---------------------magic_long_divide_constants-----------------------------
214 // Compute magic multiplier and shift constant for converting a 64 bit divide
215 // by constant into a multiply/shift/add series. Return false if calculations
216 // fail.
217 //
218 // Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
219 // minor type name and parameter changes.  Adjusted to 64 bit word width.
magic_long_divide_constants(jlong d,jlong & M,jint & s)220 static bool magic_long_divide_constants(jlong d, jlong &M, jint &s) {
221   int64_t p;
222   uint64_t ad, anc, delta, q1, r1, q2, r2, t;
223   const uint64_t two63 = UCONST64(0x8000000000000000);     // 2**63.
224 
225   ad = ABS(d);
226   if (d == 0 || d == 1) return false;
227   t = two63 + ((uint64_t)d >> 63);
228   anc = t - 1 - t%ad;     // Absolute value of nc.
229   p = 63;                 // Init. p.
230   q1 = two63/anc;         // Init. q1 = 2**p/|nc|.
231   r1 = two63 - q1*anc;    // Init. r1 = rem(2**p, |nc|).
232   q2 = two63/ad;          // Init. q2 = 2**p/|d|.
233   r2 = two63 - q2*ad;     // Init. r2 = rem(2**p, |d|).
234   do {
235     p = p + 1;
236     q1 = 2*q1;            // Update q1 = 2**p/|nc|.
237     r1 = 2*r1;            // Update r1 = rem(2**p, |nc|).
238     if (r1 >= anc) {      // (Must be an unsigned
239       q1 = q1 + 1;        // comparison here).
240       r1 = r1 - anc;
241     }
242     q2 = 2*q2;            // Update q2 = 2**p/|d|.
243     r2 = 2*r2;            // Update r2 = rem(2**p, |d|).
244     if (r2 >= ad) {       // (Must be an unsigned
245       q2 = q2 + 1;        // comparison here).
246       r2 = r2 - ad;
247     }
248     delta = ad - r2;
249   } while (q1 < delta || (q1 == delta && r1 == 0));
250 
251   M = q2 + 1;
252   if (d < 0) M = -M;      // Magic number and
253   s = p - 64;             // shift amount to return.
254 
255   return true;
256 }
257 
258 //---------------------long_by_long_mulhi--------------------------------------
259 // Generate ideal node graph for upper half of a 64 bit x 64 bit multiplication
long_by_long_mulhi(PhaseGVN * phase,Node * dividend,jlong magic_const)260 static Node* long_by_long_mulhi(PhaseGVN* phase, Node* dividend, jlong magic_const) {
261   // If the architecture supports a 64x64 mulhi, there is
262   // no need to synthesize it in ideal nodes.
263   if (Matcher::has_match_rule(Op_MulHiL)) {
264     Node* v = phase->longcon(magic_const);
265     return new MulHiLNode(dividend, v);
266   }
267 
268   // Taken from Hacker's Delight, Fig. 8-2. Multiply high signed.
269   // (http://www.hackersdelight.org/HDcode/mulhs.c)
270   //
271   // int mulhs(int u, int v) {
272   //    unsigned u0, v0, w0;
273   //    int u1, v1, w1, w2, t;
274   //
275   //    u0 = u & 0xFFFF;  u1 = u >> 16;
276   //    v0 = v & 0xFFFF;  v1 = v >> 16;
277   //    w0 = u0*v0;
278   //    t  = u1*v0 + (w0 >> 16);
279   //    w1 = t & 0xFFFF;
280   //    w2 = t >> 16;
281   //    w1 = u0*v1 + w1;
282   //    return u1*v1 + w2 + (w1 >> 16);
283   // }
284   //
285   // Note: The version above is for 32x32 multiplications, while the
286   // following inline comments are adapted to 64x64.
287 
288   const int N = 64;
289 
290   // Dummy node to keep intermediate nodes alive during construction
291   Node* hook = new Node(4);
292 
293   // u0 = u & 0xFFFFFFFF;  u1 = u >> 32;
294   Node* u0 = phase->transform(new AndLNode(dividend, phase->longcon(0xFFFFFFFF)));
295   Node* u1 = phase->transform(new RShiftLNode(dividend, phase->intcon(N / 2)));
296   hook->init_req(0, u0);
297   hook->init_req(1, u1);
298 
299   // v0 = v & 0xFFFFFFFF;  v1 = v >> 32;
300   Node* v0 = phase->longcon(magic_const & 0xFFFFFFFF);
301   Node* v1 = phase->longcon(magic_const >> (N / 2));
302 
303   // w0 = u0*v0;
304   Node* w0 = phase->transform(new MulLNode(u0, v0));
305 
306   // t = u1*v0 + (w0 >> 32);
307   Node* u1v0 = phase->transform(new MulLNode(u1, v0));
308   Node* temp = phase->transform(new URShiftLNode(w0, phase->intcon(N / 2)));
309   Node* t    = phase->transform(new AddLNode(u1v0, temp));
310   hook->init_req(2, t);
311 
312   // w1 = t & 0xFFFFFFFF;
313   Node* w1 = phase->transform(new AndLNode(t, phase->longcon(0xFFFFFFFF)));
314   hook->init_req(3, w1);
315 
316   // w2 = t >> 32;
317   Node* w2 = phase->transform(new RShiftLNode(t, phase->intcon(N / 2)));
318 
319   // w1 = u0*v1 + w1;
320   Node* u0v1 = phase->transform(new MulLNode(u0, v1));
321   w1         = phase->transform(new AddLNode(u0v1, w1));
322 
323   // return u1*v1 + w2 + (w1 >> 32);
324   Node* u1v1  = phase->transform(new MulLNode(u1, v1));
325   Node* temp1 = phase->transform(new AddLNode(u1v1, w2));
326   Node* temp2 = phase->transform(new RShiftLNode(w1, phase->intcon(N / 2)));
327 
328   // Remove the bogus extra edges used to keep things alive
329   hook->destruct(phase);
330 
331   return new AddLNode(temp1, temp2);
332 }
333 
334 
335 //--------------------------transform_long_divide------------------------------
336 // Convert a division by constant divisor into an alternate Ideal graph.
337 // Return NULL if no transformation occurs.
transform_long_divide(PhaseGVN * phase,Node * dividend,jlong divisor)338 static Node *transform_long_divide( PhaseGVN *phase, Node *dividend, jlong divisor ) {
339   // Check for invalid divisors
340   assert( divisor != 0L && divisor != min_jlong,
341           "bad divisor for transforming to long multiply" );
342 
343   bool d_pos = divisor >= 0;
344   jlong d = d_pos ? divisor : -divisor;
345   const int N = 64;
346 
347   // Result
348   Node *q = NULL;
349 
350   if (d == 1) {
351     // division by +/- 1
352     if (!d_pos) {
353       // Just negate the value
354       q = new SubLNode(phase->longcon(0), dividend);
355     }
356   } else if ( is_power_of_2(d) ) {
357 
358     // division by +/- a power of 2
359 
360     // See if we can simply do a shift without rounding
361     bool needs_rounding = true;
362     const Type *dt = phase->type(dividend);
363     const TypeLong *dtl = dt->isa_long();
364 
365     if (dtl && dtl->_lo > 0) {
366       // we don't need to round a positive dividend
367       needs_rounding = false;
368     } else if( dividend->Opcode() == Op_AndL ) {
369       // An AND mask of sufficient size clears the low bits and
370       // I can avoid rounding.
371       const TypeLong *andconl_t = phase->type( dividend->in(2) )->isa_long();
372       if( andconl_t && andconl_t->is_con() ) {
373         jlong andconl = andconl_t->get_con();
374         if( andconl < 0 && is_power_of_2(-andconl) && (-andconl) >= d ) {
375           if( (-andconl) == d ) // Remove AND if it clears bits which will be shifted
376             dividend = dividend->in(1);
377           needs_rounding = false;
378         }
379       }
380     }
381 
382     // Add rounding to the shift to handle the sign bit
383     int l = log2_long(d-1)+1;
384     if (needs_rounding) {
385       // Divide-by-power-of-2 can be made into a shift, but you have to do
386       // more math for the rounding.  You need to add 0 for positive
387       // numbers, and "i-1" for negative numbers.  Example: i=4, so the
388       // shift is by 2.  You need to add 3 to negative dividends and 0 to
389       // positive ones.  So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
390       // (-2+3)>>2 becomes 0, etc.
391 
392       // Compute 0 or -1, based on sign bit
393       Node *sign = phase->transform(new RShiftLNode(dividend, phase->intcon(N - 1)));
394       // Mask sign bit to the low sign bits
395       Node *round = phase->transform(new URShiftLNode(sign, phase->intcon(N - l)));
396       // Round up before shifting
397       dividend = phase->transform(new AddLNode(dividend, round));
398     }
399 
400     // Shift for division
401     q = new RShiftLNode(dividend, phase->intcon(l));
402 
403     if (!d_pos) {
404       q = new SubLNode(phase->longcon(0), phase->transform(q));
405     }
406   } else if ( !Matcher::use_asm_for_ldiv_by_con(d) ) { // Use hardware DIV instruction when
407                                                        // it is faster than code generated below.
408     // Attempt the jlong constant divide -> multiply transform found in
409     //   "Division by Invariant Integers using Multiplication"
410     //     by Granlund and Montgomery
411     // See also "Hacker's Delight", chapter 10 by Warren.
412 
413     jlong magic_const;
414     jint shift_const;
415     if (magic_long_divide_constants(d, magic_const, shift_const)) {
416       // Compute the high half of the dividend x magic multiplication
417       Node *mul_hi = phase->transform(long_by_long_mulhi(phase, dividend, magic_const));
418 
419       // The high half of the 128-bit multiply is computed.
420       if (magic_const < 0) {
421         // The magic multiplier is too large for a 64 bit constant. We've adjusted
422         // it down by 2^64, but have to add 1 dividend back in after the multiplication.
423         // This handles the "overflow" case described by Granlund and Montgomery.
424         mul_hi = phase->transform(new AddLNode(dividend, mul_hi));
425       }
426 
427       // Shift over the (adjusted) mulhi
428       if (shift_const != 0) {
429         mul_hi = phase->transform(new RShiftLNode(mul_hi, phase->intcon(shift_const)));
430       }
431 
432       // Get a 0 or -1 from the sign of the dividend.
433       Node *addend0 = mul_hi;
434       Node *addend1 = phase->transform(new RShiftLNode(dividend, phase->intcon(N-1)));
435 
436       // If the divisor is negative, swap the order of the input addends;
437       // this has the effect of negating the quotient.
438       if (!d_pos) {
439         Node *temp = addend0; addend0 = addend1; addend1 = temp;
440       }
441 
442       // Adjust the final quotient by subtracting -1 (adding 1)
443       // from the mul_hi.
444       q = new SubLNode(addend0, addend1);
445     }
446   }
447 
448   return q;
449 }
450 
451 //=============================================================================
452 //------------------------------Identity---------------------------------------
453 // If the divisor is 1, we are an identity on the dividend.
Identity(PhaseGVN * phase)454 Node* DivINode::Identity(PhaseGVN* phase) {
455   return (phase->type( in(2) )->higher_equal(TypeInt::ONE)) ? in(1) : this;
456 }
457 
458 //------------------------------Idealize---------------------------------------
459 // Divides can be changed to multiplies and/or shifts
Ideal(PhaseGVN * phase,bool can_reshape)460 Node *DivINode::Ideal(PhaseGVN *phase, bool can_reshape) {
461   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
462   // Don't bother trying to transform a dead node
463   if( in(0) && in(0)->is_top() )  return NULL;
464 
465   const Type *t = phase->type( in(2) );
466   if( t == TypeInt::ONE )       // Identity?
467     return NULL;                // Skip it
468 
469   const TypeInt *ti = t->isa_int();
470   if( !ti ) return NULL;
471 
472   // Check for useless control input
473   // Check for excluding div-zero case
474   if (in(0) && (ti->_hi < 0 || ti->_lo > 0)) {
475     set_req(0, NULL);           // Yank control input
476     return this;
477   }
478 
479   if( !ti->is_con() ) return NULL;
480   jint i = ti->get_con();       // Get divisor
481 
482   if (i == 0) return NULL;      // Dividing by zero constant does not idealize
483 
484   // Dividing by MININT does not optimize as a power-of-2 shift.
485   if( i == min_jint ) return NULL;
486 
487   return transform_int_divide( phase, in(1), i );
488 }
489 
490 //------------------------------Value------------------------------------------
491 // A DivINode divides its inputs.  The third input is a Control input, used to
492 // prevent hoisting the divide above an unsafe test.
Value(PhaseGVN * phase) const493 const Type* DivINode::Value(PhaseGVN* phase) const {
494   // Either input is TOP ==> the result is TOP
495   const Type *t1 = phase->type( in(1) );
496   const Type *t2 = phase->type( in(2) );
497   if( t1 == Type::TOP ) return Type::TOP;
498   if( t2 == Type::TOP ) return Type::TOP;
499 
500   // x/x == 1 since we always generate the dynamic divisor check for 0.
501   if (in(1) == in(2)) {
502     return TypeInt::ONE;
503   }
504 
505   // Either input is BOTTOM ==> the result is the local BOTTOM
506   const Type *bot = bottom_type();
507   if( (t1 == bot) || (t2 == bot) ||
508       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
509     return bot;
510 
511   // Divide the two numbers.  We approximate.
512   // If divisor is a constant and not zero
513   const TypeInt *i1 = t1->is_int();
514   const TypeInt *i2 = t2->is_int();
515   int widen = MAX2(i1->_widen, i2->_widen);
516 
517   if( i2->is_con() && i2->get_con() != 0 ) {
518     int32_t d = i2->get_con(); // Divisor
519     jint lo, hi;
520     if( d >= 0 ) {
521       lo = i1->_lo/d;
522       hi = i1->_hi/d;
523     } else {
524       if( d == -1 && i1->_lo == min_jint ) {
525         // 'min_jint/-1' throws arithmetic exception during compilation
526         lo = min_jint;
527         // do not support holes, 'hi' must go to either min_jint or max_jint:
528         // [min_jint, -10]/[-1,-1] ==> [min_jint] UNION [10,max_jint]
529         hi = i1->_hi == min_jint ? min_jint : max_jint;
530       } else {
531         lo = i1->_hi/d;
532         hi = i1->_lo/d;
533       }
534     }
535     return TypeInt::make(lo, hi, widen);
536   }
537 
538   // If the dividend is a constant
539   if( i1->is_con() ) {
540     int32_t d = i1->get_con();
541     if( d < 0 ) {
542       if( d == min_jint ) {
543         //  (-min_jint) == min_jint == (min_jint / -1)
544         return TypeInt::make(min_jint, max_jint/2 + 1, widen);
545       } else {
546         return TypeInt::make(d, -d, widen);
547       }
548     }
549     return TypeInt::make(-d, d, widen);
550   }
551 
552   // Otherwise we give up all hope
553   return TypeInt::INT;
554 }
555 
556 
557 //=============================================================================
558 //------------------------------Identity---------------------------------------
559 // If the divisor is 1, we are an identity on the dividend.
Identity(PhaseGVN * phase)560 Node* DivLNode::Identity(PhaseGVN* phase) {
561   return (phase->type( in(2) )->higher_equal(TypeLong::ONE)) ? in(1) : this;
562 }
563 
564 //------------------------------Idealize---------------------------------------
565 // Dividing by a power of 2 is a shift.
Ideal(PhaseGVN * phase,bool can_reshape)566 Node *DivLNode::Ideal( PhaseGVN *phase, bool can_reshape) {
567   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
568   // Don't bother trying to transform a dead node
569   if( in(0) && in(0)->is_top() )  return NULL;
570 
571   const Type *t = phase->type( in(2) );
572   if( t == TypeLong::ONE )      // Identity?
573     return NULL;                // Skip it
574 
575   const TypeLong *tl = t->isa_long();
576   if( !tl ) return NULL;
577 
578   // Check for useless control input
579   // Check for excluding div-zero case
580   if (in(0) && (tl->_hi < 0 || tl->_lo > 0)) {
581     set_req(0, NULL);           // Yank control input
582     return this;
583   }
584 
585   if( !tl->is_con() ) return NULL;
586   jlong l = tl->get_con();      // Get divisor
587 
588   if (l == 0) return NULL;      // Dividing by zero constant does not idealize
589 
590   // Dividing by MINLONG does not optimize as a power-of-2 shift.
591   if( l == min_jlong ) return NULL;
592 
593   return transform_long_divide( phase, in(1), l );
594 }
595 
596 //------------------------------Value------------------------------------------
597 // A DivLNode divides its inputs.  The third input is a Control input, used to
598 // prevent hoisting the divide above an unsafe test.
Value(PhaseGVN * phase) const599 const Type* DivLNode::Value(PhaseGVN* phase) const {
600   // Either input is TOP ==> the result is TOP
601   const Type *t1 = phase->type( in(1) );
602   const Type *t2 = phase->type( in(2) );
603   if( t1 == Type::TOP ) return Type::TOP;
604   if( t2 == Type::TOP ) return Type::TOP;
605 
606   // x/x == 1 since we always generate the dynamic divisor check for 0.
607   if (in(1) == in(2)) {
608     return TypeLong::ONE;
609   }
610 
611   // Either input is BOTTOM ==> the result is the local BOTTOM
612   const Type *bot = bottom_type();
613   if( (t1 == bot) || (t2 == bot) ||
614       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
615     return bot;
616 
617   // Divide the two numbers.  We approximate.
618   // If divisor is a constant and not zero
619   const TypeLong *i1 = t1->is_long();
620   const TypeLong *i2 = t2->is_long();
621   int widen = MAX2(i1->_widen, i2->_widen);
622 
623   if( i2->is_con() && i2->get_con() != 0 ) {
624     jlong d = i2->get_con();    // Divisor
625     jlong lo, hi;
626     if( d >= 0 ) {
627       lo = i1->_lo/d;
628       hi = i1->_hi/d;
629     } else {
630       if( d == CONST64(-1) && i1->_lo == min_jlong ) {
631         // 'min_jlong/-1' throws arithmetic exception during compilation
632         lo = min_jlong;
633         // do not support holes, 'hi' must go to either min_jlong or max_jlong:
634         // [min_jlong, -10]/[-1,-1] ==> [min_jlong] UNION [10,max_jlong]
635         hi = i1->_hi == min_jlong ? min_jlong : max_jlong;
636       } else {
637         lo = i1->_hi/d;
638         hi = i1->_lo/d;
639       }
640     }
641     return TypeLong::make(lo, hi, widen);
642   }
643 
644   // If the dividend is a constant
645   if( i1->is_con() ) {
646     jlong d = i1->get_con();
647     if( d < 0 ) {
648       if( d == min_jlong ) {
649         //  (-min_jlong) == min_jlong == (min_jlong / -1)
650         return TypeLong::make(min_jlong, max_jlong/2 + 1, widen);
651       } else {
652         return TypeLong::make(d, -d, widen);
653       }
654     }
655     return TypeLong::make(-d, d, widen);
656   }
657 
658   // Otherwise we give up all hope
659   return TypeLong::LONG;
660 }
661 
662 
663 //=============================================================================
664 //------------------------------Value------------------------------------------
665 // An DivFNode divides its inputs.  The third input is a Control input, used to
666 // prevent hoisting the divide above an unsafe test.
Value(PhaseGVN * phase) const667 const Type* DivFNode::Value(PhaseGVN* phase) const {
668   // Either input is TOP ==> the result is TOP
669   const Type *t1 = phase->type( in(1) );
670   const Type *t2 = phase->type( in(2) );
671   if( t1 == Type::TOP ) return Type::TOP;
672   if( t2 == Type::TOP ) return Type::TOP;
673 
674   // Either input is BOTTOM ==> the result is the local BOTTOM
675   const Type *bot = bottom_type();
676   if( (t1 == bot) || (t2 == bot) ||
677       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
678     return bot;
679 
680   // x/x == 1, we ignore 0/0.
681   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
682   // Does not work for variables because of NaN's
683   if (in(1) == in(2) && t1->base() == Type::FloatCon &&
684       !g_isnan(t1->getf()) && g_isfinite(t1->getf()) && t1->getf() != 0.0) { // could be negative ZERO or NaN
685     return TypeF::ONE;
686   }
687 
688   if( t2 == TypeF::ONE )
689     return t1;
690 
691   // If divisor is a constant and not zero, divide them numbers
692   if( t1->base() == Type::FloatCon &&
693       t2->base() == Type::FloatCon &&
694       t2->getf() != 0.0 ) // could be negative zero
695     return TypeF::make( t1->getf()/t2->getf() );
696 
697   // If the dividend is a constant zero
698   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
699   // Test TypeF::ZERO is not sufficient as it could be negative zero
700 
701   if( t1 == TypeF::ZERO && !g_isnan(t2->getf()) && t2->getf() != 0.0 )
702     return TypeF::ZERO;
703 
704   // Otherwise we give up all hope
705   return Type::FLOAT;
706 }
707 
708 //------------------------------isA_Copy---------------------------------------
709 // Dividing by self is 1.
710 // If the divisor is 1, we are an identity on the dividend.
Identity(PhaseGVN * phase)711 Node* DivFNode::Identity(PhaseGVN* phase) {
712   return (phase->type( in(2) ) == TypeF::ONE) ? in(1) : this;
713 }
714 
715 
716 //------------------------------Idealize---------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)717 Node *DivFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
718   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
719   // Don't bother trying to transform a dead node
720   if( in(0) && in(0)->is_top() )  return NULL;
721 
722   const Type *t2 = phase->type( in(2) );
723   if( t2 == TypeF::ONE )         // Identity?
724     return NULL;                // Skip it
725 
726   const TypeF *tf = t2->isa_float_constant();
727   if( !tf ) return NULL;
728   if( tf->base() != Type::FloatCon ) return NULL;
729 
730   // Check for out of range values
731   if( tf->is_nan() || !tf->is_finite() ) return NULL;
732 
733   // Get the value
734   float f = tf->getf();
735   int exp;
736 
737   // Only for special case of dividing by a power of 2
738   if( frexp((double)f, &exp) != 0.5 ) return NULL;
739 
740   // Limit the range of acceptable exponents
741   if( exp < -126 || exp > 126 ) return NULL;
742 
743   // Compute the reciprocal
744   float reciprocal = ((float)1.0) / f;
745 
746   assert( frexp((double)reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
747 
748   // return multiplication by the reciprocal
749   return (new MulFNode(in(1), phase->makecon(TypeF::make(reciprocal))));
750 }
751 
752 //=============================================================================
753 //------------------------------Value------------------------------------------
754 // An DivDNode divides its inputs.  The third input is a Control input, used to
755 // prevent hoisting the divide above an unsafe test.
Value(PhaseGVN * phase) const756 const Type* DivDNode::Value(PhaseGVN* phase) const {
757   // Either input is TOP ==> the result is TOP
758   const Type *t1 = phase->type( in(1) );
759   const Type *t2 = phase->type( in(2) );
760   if( t1 == Type::TOP ) return Type::TOP;
761   if( t2 == Type::TOP ) return Type::TOP;
762 
763   // Either input is BOTTOM ==> the result is the local BOTTOM
764   const Type *bot = bottom_type();
765   if( (t1 == bot) || (t2 == bot) ||
766       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
767     return bot;
768 
769   // x/x == 1, we ignore 0/0.
770   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
771   // Does not work for variables because of NaN's
772   if (in(1) == in(2) && t1->base() == Type::DoubleCon &&
773       !g_isnan(t1->getd()) && g_isfinite(t1->getd()) && t1->getd() != 0.0) { // could be negative ZERO or NaN
774     return TypeD::ONE;
775   }
776 
777   if( t2 == TypeD::ONE )
778     return t1;
779 
780 #if defined(IA32)
781   if (!phase->C->method()->is_strict())
782     // Can't trust native compilers to properly fold strict double
783     // division with round-to-zero on this platform.
784 #endif
785     {
786       // If divisor is a constant and not zero, divide them numbers
787       if( t1->base() == Type::DoubleCon &&
788           t2->base() == Type::DoubleCon &&
789           t2->getd() != 0.0 ) // could be negative zero
790         return TypeD::make( t1->getd()/t2->getd() );
791     }
792 
793   // If the dividend is a constant zero
794   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
795   // Test TypeF::ZERO is not sufficient as it could be negative zero
796   if( t1 == TypeD::ZERO && !g_isnan(t2->getd()) && t2->getd() != 0.0 )
797     return TypeD::ZERO;
798 
799   // Otherwise we give up all hope
800   return Type::DOUBLE;
801 }
802 
803 
804 //------------------------------isA_Copy---------------------------------------
805 // Dividing by self is 1.
806 // If the divisor is 1, we are an identity on the dividend.
Identity(PhaseGVN * phase)807 Node* DivDNode::Identity(PhaseGVN* phase) {
808   return (phase->type( in(2) ) == TypeD::ONE) ? in(1) : this;
809 }
810 
811 //------------------------------Idealize---------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)812 Node *DivDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
813   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
814   // Don't bother trying to transform a dead node
815   if( in(0) && in(0)->is_top() )  return NULL;
816 
817   const Type *t2 = phase->type( in(2) );
818   if( t2 == TypeD::ONE )         // Identity?
819     return NULL;                // Skip it
820 
821   const TypeD *td = t2->isa_double_constant();
822   if( !td ) return NULL;
823   if( td->base() != Type::DoubleCon ) return NULL;
824 
825   // Check for out of range values
826   if( td->is_nan() || !td->is_finite() ) return NULL;
827 
828   // Get the value
829   double d = td->getd();
830   int exp;
831 
832   // Only for special case of dividing by a power of 2
833   if( frexp(d, &exp) != 0.5 ) return NULL;
834 
835   // Limit the range of acceptable exponents
836   if( exp < -1021 || exp > 1022 ) return NULL;
837 
838   // Compute the reciprocal
839   double reciprocal = 1.0 / d;
840 
841   assert( frexp(reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
842 
843   // return multiplication by the reciprocal
844   return (new MulDNode(in(1), phase->makecon(TypeD::make(reciprocal))));
845 }
846 
847 //=============================================================================
848 //------------------------------Idealize---------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)849 Node *ModINode::Ideal(PhaseGVN *phase, bool can_reshape) {
850   // Check for dead control input
851   if( in(0) && remove_dead_region(phase, can_reshape) )  return this;
852   // Don't bother trying to transform a dead node
853   if( in(0) && in(0)->is_top() )  return NULL;
854 
855   // Get the modulus
856   const Type *t = phase->type( in(2) );
857   if( t == Type::TOP ) return NULL;
858   const TypeInt *ti = t->is_int();
859 
860   // Check for useless control input
861   // Check for excluding mod-zero case
862   if (in(0) && (ti->_hi < 0 || ti->_lo > 0)) {
863     set_req(0, NULL);        // Yank control input
864     return this;
865   }
866 
867   // See if we are MOD'ing by 2^k or 2^k-1.
868   if( !ti->is_con() ) return NULL;
869   jint con = ti->get_con();
870 
871   Node *hook = new Node(1);
872 
873   // First, special check for modulo 2^k-1
874   if( con >= 0 && con < max_jint && is_power_of_2(con+1) ) {
875     uint k = exact_log2(con+1);  // Extract k
876 
877     // Basic algorithm by David Detlefs.  See fastmod_int.java for gory details.
878     static int unroll_factor[] = { 999, 999, 29, 14, 9, 7, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
879     int trip_count = 1;
880     if( k < ARRAY_SIZE(unroll_factor))  trip_count = unroll_factor[k];
881 
882     // If the unroll factor is not too large, and if conditional moves are
883     // ok, then use this case
884     if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
885       Node *x = in(1);            // Value being mod'd
886       Node *divisor = in(2);      // Also is mask
887 
888       hook->init_req(0, x);       // Add a use to x to prevent him from dying
889       // Generate code to reduce X rapidly to nearly 2^k-1.
890       for( int i = 0; i < trip_count; i++ ) {
891         Node *xl = phase->transform( new AndINode(x,divisor) );
892         Node *xh = phase->transform( new RShiftINode(x,phase->intcon(k)) ); // Must be signed
893         x = phase->transform( new AddINode(xh,xl) );
894         hook->set_req(0, x);
895       }
896 
897       // Generate sign-fixup code.  Was original value positive?
898       // int hack_res = (i >= 0) ? divisor : 1;
899       Node *cmp1 = phase->transform( new CmpINode( in(1), phase->intcon(0) ) );
900       Node *bol1 = phase->transform( new BoolNode( cmp1, BoolTest::ge ) );
901       Node *cmov1= phase->transform( new CMoveINode(bol1, phase->intcon(1), divisor, TypeInt::POS) );
902       // if( x >= hack_res ) x -= divisor;
903       Node *sub  = phase->transform( new SubINode( x, divisor ) );
904       Node *cmp2 = phase->transform( new CmpINode( x, cmov1 ) );
905       Node *bol2 = phase->transform( new BoolNode( cmp2, BoolTest::ge ) );
906       // Convention is to not transform the return value of an Ideal
907       // since Ideal is expected to return a modified 'this' or a new node.
908       Node *cmov2= new CMoveINode(bol2, x, sub, TypeInt::INT);
909       // cmov2 is now the mod
910 
911       // Now remove the bogus extra edges used to keep things alive
912       hook->destruct(phase);
913       return cmov2;
914     }
915   }
916 
917   // Fell thru, the unroll case is not appropriate. Transform the modulo
918   // into a long multiply/int multiply/subtract case
919 
920   // Cannot handle mod 0, and min_jint isn't handled by the transform
921   if( con == 0 || con == min_jint ) return NULL;
922 
923   // Get the absolute value of the constant; at this point, we can use this
924   jint pos_con = (con >= 0) ? con : -con;
925 
926   // integer Mod 1 is always 0
927   if( pos_con == 1 ) return new ConINode(TypeInt::ZERO);
928 
929   int log2_con = -1;
930 
931   // If this is a power of two, they maybe we can mask it
932   if( is_power_of_2(pos_con) ) {
933     log2_con = log2_intptr((intptr_t)pos_con);
934 
935     const Type *dt = phase->type(in(1));
936     const TypeInt *dti = dt->isa_int();
937 
938     // See if this can be masked, if the dividend is non-negative
939     if( dti && dti->_lo >= 0 )
940       return ( new AndINode( in(1), phase->intcon( pos_con-1 ) ) );
941   }
942 
943   // Save in(1) so that it cannot be changed or deleted
944   hook->init_req(0, in(1));
945 
946   // Divide using the transform from DivI to MulL
947   Node *result = transform_int_divide( phase, in(1), pos_con );
948   if (result != NULL) {
949     Node *divide = phase->transform(result);
950 
951     // Re-multiply, using a shift if this is a power of two
952     Node *mult = NULL;
953 
954     if( log2_con >= 0 )
955       mult = phase->transform( new LShiftINode( divide, phase->intcon( log2_con ) ) );
956     else
957       mult = phase->transform( new MulINode( divide, phase->intcon( pos_con ) ) );
958 
959     // Finally, subtract the multiplied divided value from the original
960     result = new SubINode( in(1), mult );
961   }
962 
963   // Now remove the bogus extra edges used to keep things alive
964   hook->destruct(phase);
965 
966   // return the value
967   return result;
968 }
969 
970 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const971 const Type* ModINode::Value(PhaseGVN* phase) const {
972   // Either input is TOP ==> the result is TOP
973   const Type *t1 = phase->type( in(1) );
974   const Type *t2 = phase->type( in(2) );
975   if( t1 == Type::TOP ) return Type::TOP;
976   if( t2 == Type::TOP ) return Type::TOP;
977 
978   // We always generate the dynamic check for 0.
979   // 0 MOD X is 0
980   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
981   // X MOD X is 0
982   if (in(1) == in(2)) {
983     return TypeInt::ZERO;
984   }
985 
986   // Either input is BOTTOM ==> the result is the local BOTTOM
987   const Type *bot = bottom_type();
988   if( (t1 == bot) || (t2 == bot) ||
989       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
990     return bot;
991 
992   const TypeInt *i1 = t1->is_int();
993   const TypeInt *i2 = t2->is_int();
994   if( !i1->is_con() || !i2->is_con() ) {
995     if( i1->_lo >= 0 && i2->_lo >= 0 )
996       return TypeInt::POS;
997     // If both numbers are not constants, we know little.
998     return TypeInt::INT;
999   }
1000   // Mod by zero?  Throw exception at runtime!
1001   if( !i2->get_con() ) return TypeInt::POS;
1002 
1003   // We must be modulo'ing 2 float constants.
1004   // Check for min_jint % '-1', result is defined to be '0'.
1005   if( i1->get_con() == min_jint && i2->get_con() == -1 )
1006     return TypeInt::ZERO;
1007 
1008   return TypeInt::make( i1->get_con() % i2->get_con() );
1009 }
1010 
1011 
1012 //=============================================================================
1013 //------------------------------Idealize---------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)1014 Node *ModLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1015   // Check for dead control input
1016   if( in(0) && remove_dead_region(phase, can_reshape) )  return this;
1017   // Don't bother trying to transform a dead node
1018   if( in(0) && in(0)->is_top() )  return NULL;
1019 
1020   // Get the modulus
1021   const Type *t = phase->type( in(2) );
1022   if( t == Type::TOP ) return NULL;
1023   const TypeLong *tl = t->is_long();
1024 
1025   // Check for useless control input
1026   // Check for excluding mod-zero case
1027   if (in(0) && (tl->_hi < 0 || tl->_lo > 0)) {
1028     set_req(0, NULL);        // Yank control input
1029     return this;
1030   }
1031 
1032   // See if we are MOD'ing by 2^k or 2^k-1.
1033   if( !tl->is_con() ) return NULL;
1034   jlong con = tl->get_con();
1035 
1036   Node *hook = new Node(1);
1037 
1038   // Expand mod
1039   if( con >= 0 && con < max_jlong && is_power_of_2(con+1) ) {
1040     uint k = exact_log2_long(con+1);  // Extract k
1041 
1042     // Basic algorithm by David Detlefs.  See fastmod_long.java for gory details.
1043     // Used to help a popular random number generator which does a long-mod
1044     // of 2^31-1 and shows up in SpecJBB and SciMark.
1045     static int unroll_factor[] = { 999, 999, 61, 30, 20, 15, 12, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
1046     int trip_count = 1;
1047     if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k];
1048 
1049     // If the unroll factor is not too large, and if conditional moves are
1050     // ok, then use this case
1051     if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
1052       Node *x = in(1);            // Value being mod'd
1053       Node *divisor = in(2);      // Also is mask
1054 
1055       hook->init_req(0, x);       // Add a use to x to prevent him from dying
1056       // Generate code to reduce X rapidly to nearly 2^k-1.
1057       for( int i = 0; i < trip_count; i++ ) {
1058         Node *xl = phase->transform( new AndLNode(x,divisor) );
1059         Node *xh = phase->transform( new RShiftLNode(x,phase->intcon(k)) ); // Must be signed
1060         x = phase->transform( new AddLNode(xh,xl) );
1061         hook->set_req(0, x);    // Add a use to x to prevent him from dying
1062       }
1063 
1064       // Generate sign-fixup code.  Was original value positive?
1065       // long hack_res = (i >= 0) ? divisor : CONST64(1);
1066       Node *cmp1 = phase->transform( new CmpLNode( in(1), phase->longcon(0) ) );
1067       Node *bol1 = phase->transform( new BoolNode( cmp1, BoolTest::ge ) );
1068       Node *cmov1= phase->transform( new CMoveLNode(bol1, phase->longcon(1), divisor, TypeLong::LONG) );
1069       // if( x >= hack_res ) x -= divisor;
1070       Node *sub  = phase->transform( new SubLNode( x, divisor ) );
1071       Node *cmp2 = phase->transform( new CmpLNode( x, cmov1 ) );
1072       Node *bol2 = phase->transform( new BoolNode( cmp2, BoolTest::ge ) );
1073       // Convention is to not transform the return value of an Ideal
1074       // since Ideal is expected to return a modified 'this' or a new node.
1075       Node *cmov2= new CMoveLNode(bol2, x, sub, TypeLong::LONG);
1076       // cmov2 is now the mod
1077 
1078       // Now remove the bogus extra edges used to keep things alive
1079       hook->destruct(phase);
1080       return cmov2;
1081     }
1082   }
1083 
1084   // Fell thru, the unroll case is not appropriate. Transform the modulo
1085   // into a long multiply/int multiply/subtract case
1086 
1087   // Cannot handle mod 0, and min_jlong isn't handled by the transform
1088   if( con == 0 || con == min_jlong ) return NULL;
1089 
1090   // Get the absolute value of the constant; at this point, we can use this
1091   jlong pos_con = (con >= 0) ? con : -con;
1092 
1093   // integer Mod 1 is always 0
1094   if( pos_con == 1 ) return new ConLNode(TypeLong::ZERO);
1095 
1096   int log2_con = -1;
1097 
1098   // If this is a power of two, then maybe we can mask it
1099   if( is_power_of_2(pos_con) ) {
1100     log2_con = exact_log2_long(pos_con);
1101 
1102     const Type *dt = phase->type(in(1));
1103     const TypeLong *dtl = dt->isa_long();
1104 
1105     // See if this can be masked, if the dividend is non-negative
1106     if( dtl && dtl->_lo >= 0 )
1107       return ( new AndLNode( in(1), phase->longcon( pos_con-1 ) ) );
1108   }
1109 
1110   // Save in(1) so that it cannot be changed or deleted
1111   hook->init_req(0, in(1));
1112 
1113   // Divide using the transform from DivL to MulL
1114   Node *result = transform_long_divide( phase, in(1), pos_con );
1115   if (result != NULL) {
1116     Node *divide = phase->transform(result);
1117 
1118     // Re-multiply, using a shift if this is a power of two
1119     Node *mult = NULL;
1120 
1121     if( log2_con >= 0 )
1122       mult = phase->transform( new LShiftLNode( divide, phase->intcon( log2_con ) ) );
1123     else
1124       mult = phase->transform( new MulLNode( divide, phase->longcon( pos_con ) ) );
1125 
1126     // Finally, subtract the multiplied divided value from the original
1127     result = new SubLNode( in(1), mult );
1128   }
1129 
1130   // Now remove the bogus extra edges used to keep things alive
1131   hook->destruct(phase);
1132 
1133   // return the value
1134   return result;
1135 }
1136 
1137 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const1138 const Type* ModLNode::Value(PhaseGVN* phase) const {
1139   // Either input is TOP ==> the result is TOP
1140   const Type *t1 = phase->type( in(1) );
1141   const Type *t2 = phase->type( in(2) );
1142   if( t1 == Type::TOP ) return Type::TOP;
1143   if( t2 == Type::TOP ) return Type::TOP;
1144 
1145   // We always generate the dynamic check for 0.
1146   // 0 MOD X is 0
1147   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1148   // X MOD X is 0
1149   if (in(1) == in(2)) {
1150     return TypeLong::ZERO;
1151   }
1152 
1153   // Either input is BOTTOM ==> the result is the local BOTTOM
1154   const Type *bot = bottom_type();
1155   if( (t1 == bot) || (t2 == bot) ||
1156       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1157     return bot;
1158 
1159   const TypeLong *i1 = t1->is_long();
1160   const TypeLong *i2 = t2->is_long();
1161   if( !i1->is_con() || !i2->is_con() ) {
1162     if( i1->_lo >= CONST64(0) && i2->_lo >= CONST64(0) )
1163       return TypeLong::POS;
1164     // If both numbers are not constants, we know little.
1165     return TypeLong::LONG;
1166   }
1167   // Mod by zero?  Throw exception at runtime!
1168   if( !i2->get_con() ) return TypeLong::POS;
1169 
1170   // We must be modulo'ing 2 float constants.
1171   // Check for min_jint % '-1', result is defined to be '0'.
1172   if( i1->get_con() == min_jlong && i2->get_con() == -1 )
1173     return TypeLong::ZERO;
1174 
1175   return TypeLong::make( i1->get_con() % i2->get_con() );
1176 }
1177 
1178 
1179 //=============================================================================
1180 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const1181 const Type* ModFNode::Value(PhaseGVN* phase) const {
1182   // Either input is TOP ==> the result is TOP
1183   const Type *t1 = phase->type( in(1) );
1184   const Type *t2 = phase->type( in(2) );
1185   if( t1 == Type::TOP ) return Type::TOP;
1186   if( t2 == Type::TOP ) return Type::TOP;
1187 
1188   // Either input is BOTTOM ==> the result is the local BOTTOM
1189   const Type *bot = bottom_type();
1190   if( (t1 == bot) || (t2 == bot) ||
1191       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1192     return bot;
1193 
1194   // If either number is not a constant, we know nothing.
1195   if ((t1->base() != Type::FloatCon) || (t2->base() != Type::FloatCon)) {
1196     return Type::FLOAT;         // note: x%x can be either NaN or 0
1197   }
1198 
1199   float f1 = t1->getf();
1200   float f2 = t2->getf();
1201   jint  x1 = jint_cast(f1);     // note:  *(int*)&f1, not just (int)f1
1202   jint  x2 = jint_cast(f2);
1203 
1204   // If either is a NaN, return an input NaN
1205   if (g_isnan(f1))    return t1;
1206   if (g_isnan(f2))    return t2;
1207 
1208   // If an operand is infinity or the divisor is +/- zero, punt.
1209   if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jint)
1210     return Type::FLOAT;
1211 
1212   // We must be modulo'ing 2 float constants.
1213   // Make sure that the sign of the fmod is equal to the sign of the dividend
1214   jint xr = jint_cast(fmod(f1, f2));
1215   if ((x1 ^ xr) < 0) {
1216     xr ^= min_jint;
1217   }
1218 
1219   return TypeF::make(jfloat_cast(xr));
1220 }
1221 
1222 
1223 //=============================================================================
1224 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const1225 const Type* ModDNode::Value(PhaseGVN* phase) const {
1226   // Either input is TOP ==> the result is TOP
1227   const Type *t1 = phase->type( in(1) );
1228   const Type *t2 = phase->type( in(2) );
1229   if( t1 == Type::TOP ) return Type::TOP;
1230   if( t2 == Type::TOP ) return Type::TOP;
1231 
1232   // Either input is BOTTOM ==> the result is the local BOTTOM
1233   const Type *bot = bottom_type();
1234   if( (t1 == bot) || (t2 == bot) ||
1235       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1236     return bot;
1237 
1238   // If either number is not a constant, we know nothing.
1239   if ((t1->base() != Type::DoubleCon) || (t2->base() != Type::DoubleCon)) {
1240     return Type::DOUBLE;        // note: x%x can be either NaN or 0
1241   }
1242 
1243   double f1 = t1->getd();
1244   double f2 = t2->getd();
1245   jlong  x1 = jlong_cast(f1);   // note:  *(long*)&f1, not just (long)f1
1246   jlong  x2 = jlong_cast(f2);
1247 
1248   // If either is a NaN, return an input NaN
1249   if (g_isnan(f1))    return t1;
1250   if (g_isnan(f2))    return t2;
1251 
1252   // If an operand is infinity or the divisor is +/- zero, punt.
1253   if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jlong)
1254     return Type::DOUBLE;
1255 
1256   // We must be modulo'ing 2 double constants.
1257   // Make sure that the sign of the fmod is equal to the sign of the dividend
1258   jlong xr = jlong_cast(fmod(f1, f2));
1259   if ((x1 ^ xr) < 0) {
1260     xr ^= min_jlong;
1261   }
1262 
1263   return TypeD::make(jdouble_cast(xr));
1264 }
1265 
1266 //=============================================================================
1267 
DivModNode(Node * c,Node * dividend,Node * divisor)1268 DivModNode::DivModNode( Node *c, Node *dividend, Node *divisor ) : MultiNode(3) {
1269   init_req(0, c);
1270   init_req(1, dividend);
1271   init_req(2, divisor);
1272 }
1273 
1274 //------------------------------make------------------------------------------
make(Node * div_or_mod)1275 DivModINode* DivModINode::make(Node* div_or_mod) {
1276   Node* n = div_or_mod;
1277   assert(n->Opcode() == Op_DivI || n->Opcode() == Op_ModI,
1278          "only div or mod input pattern accepted");
1279 
1280   DivModINode* divmod = new DivModINode(n->in(0), n->in(1), n->in(2));
1281   Node*        dproj  = new ProjNode(divmod, DivModNode::div_proj_num);
1282   Node*        mproj  = new ProjNode(divmod, DivModNode::mod_proj_num);
1283   return divmod;
1284 }
1285 
1286 //------------------------------make------------------------------------------
make(Node * div_or_mod)1287 DivModLNode* DivModLNode::make(Node* div_or_mod) {
1288   Node* n = div_or_mod;
1289   assert(n->Opcode() == Op_DivL || n->Opcode() == Op_ModL,
1290          "only div or mod input pattern accepted");
1291 
1292   DivModLNode* divmod = new DivModLNode(n->in(0), n->in(1), n->in(2));
1293   Node*        dproj  = new ProjNode(divmod, DivModNode::div_proj_num);
1294   Node*        mproj  = new ProjNode(divmod, DivModNode::mod_proj_num);
1295   return divmod;
1296 }
1297 
1298 //------------------------------match------------------------------------------
1299 // return result(s) along with their RegMask info
match(const ProjNode * proj,const Matcher * match)1300 Node *DivModINode::match( const ProjNode *proj, const Matcher *match ) {
1301   uint ideal_reg = proj->ideal_reg();
1302   RegMask rm;
1303   if (proj->_con == div_proj_num) {
1304     rm = match->divI_proj_mask();
1305   } else {
1306     assert(proj->_con == mod_proj_num, "must be div or mod projection");
1307     rm = match->modI_proj_mask();
1308   }
1309   return new MachProjNode(this, proj->_con, rm, ideal_reg);
1310 }
1311 
1312 
1313 //------------------------------match------------------------------------------
1314 // return result(s) along with their RegMask info
match(const ProjNode * proj,const Matcher * match)1315 Node *DivModLNode::match( const ProjNode *proj, const Matcher *match ) {
1316   uint ideal_reg = proj->ideal_reg();
1317   RegMask rm;
1318   if (proj->_con == div_proj_num) {
1319     rm = match->divL_proj_mask();
1320   } else {
1321     assert(proj->_con == mod_proj_num, "must be div or mod projection");
1322     rm = match->modL_proj_mask();
1323   }
1324   return new MachProjNode(this, proj->_con, rm, ideal_reg);
1325 }
1326