1 /*
2  * Copyright (c) 1998, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "asm/macroAssembler.inline.hpp"
27 #include "memory/allocation.inline.hpp"
28 #include "oops/compressedOops.hpp"
29 #include "opto/ad.hpp"
30 #include "opto/block.hpp"
31 #include "opto/c2compiler.hpp"
32 #include "opto/callnode.hpp"
33 #include "opto/cfgnode.hpp"
34 #include "opto/machnode.hpp"
35 #include "opto/runtime.hpp"
36 #include "opto/chaitin.hpp"
37 #include "runtime/sharedRuntime.hpp"
38 
39 // Optimization - Graph Style
40 
41 // Check whether val is not-null-decoded compressed oop,
42 // i.e. will grab into the base of the heap if it represents NULL.
accesses_heap_base_zone(Node * val)43 static bool accesses_heap_base_zone(Node *val) {
44   if (CompressedOops::base() != NULL) { // Implies UseCompressedOops.
45     if (val && val->is_Mach()) {
46       if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
47         // This assumes all Decodes with TypePtr::NotNull are matched to nodes that
48         // decode NULL to point to the heap base (Decode_NN).
49         if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
50           return true;
51         }
52       }
53       // Must recognize load operation with Decode matched in memory operand.
54       // We should not reach here exept for PPC/AIX, as os::zero_page_read_protected()
55       // returns true everywhere else. On PPC, no such memory operands
56       // exist, therefore we did not yet implement a check for such operands.
57       NOT_AIX(Unimplemented());
58     }
59   }
60   return false;
61 }
62 
needs_explicit_null_check_for_read(Node * val)63 static bool needs_explicit_null_check_for_read(Node *val) {
64   // On some OSes (AIX) the page at address 0 is only write protected.
65   // If so, only Store operations will trap.
66   if (os::zero_page_read_protected()) {
67     return false;  // Implicit null check will work.
68   }
69   // Also a read accessing the base of a heap-based compressed heap will trap.
70   if (accesses_heap_base_zone(val) &&         // Hits the base zone page.
71       CompressedOops::use_implicit_null_checks()) { // Base zone page is protected.
72     return false;
73   }
74 
75   return true;
76 }
77 
78 //------------------------------implicit_null_check----------------------------
79 // Detect implicit-null-check opportunities.  Basically, find NULL checks
80 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
81 // I can generate a memory op if there is not one nearby.
82 // The proj is the control projection for the not-null case.
83 // The val is the pointer being checked for nullness or
84 // decodeHeapOop_not_null node if it did not fold into address.
implicit_null_check(Block * block,Node * proj,Node * val,int allowed_reasons)85 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
86   // Assume if null check need for 0 offset then always needed
87   // Intel solaris doesn't support any null checks yet and no
88   // mechanism exists (yet) to set the switches at an os_cpu level
89   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
90 
91   // Make sure the ptr-is-null path appears to be uncommon!
92   float f = block->end()->as_MachIf()->_prob;
93   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
94   if( f > PROB_UNLIKELY_MAG(4) ) return;
95 
96   uint bidx = 0;                // Capture index of value into memop
97   bool was_store;               // Memory op is a store op
98 
99   // Get the successor block for if the test ptr is non-null
100   Block* not_null_block;  // this one goes with the proj
101   Block* null_block;
102   if (block->get_node(block->number_of_nodes()-1) == proj) {
103     null_block     = block->_succs[0];
104     not_null_block = block->_succs[1];
105   } else {
106     assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
107     not_null_block = block->_succs[0];
108     null_block     = block->_succs[1];
109   }
110   while (null_block->is_Empty() == Block::empty_with_goto) {
111     null_block     = null_block->_succs[0];
112   }
113 
114   // Search the exception block for an uncommon trap.
115   // (See Parse::do_if and Parse::do_ifnull for the reason
116   // we need an uncommon trap.  Briefly, we need a way to
117   // detect failure of this optimization, as in 6366351.)
118   {
119     bool found_trap = false;
120     for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
121       Node* nn = null_block->get_node(i1);
122       if (nn->is_MachCall() &&
123           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
124         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
125         if (trtype->isa_int() && trtype->is_int()->is_con()) {
126           jint tr_con = trtype->is_int()->get_con();
127           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
128           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
129           assert((int)reason < (int)BitsPerInt, "recode bit map");
130           if (is_set_nth_bit(allowed_reasons, (int) reason)
131               && action != Deoptimization::Action_none) {
132             // This uncommon trap is sure to recompile, eventually.
133             // When that happens, C->too_many_traps will prevent
134             // this transformation from happening again.
135             found_trap = true;
136           }
137         }
138         break;
139       }
140     }
141     if (!found_trap) {
142       // We did not find an uncommon trap.
143       return;
144     }
145   }
146 
147   // Check for decodeHeapOop_not_null node which did not fold into address
148   bool is_decoden = ((intptr_t)val) & 1;
149   val = (Node*)(((intptr_t)val) & ~1);
150 
151   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
152          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
153 
154   // Search the successor block for a load or store who's base value is also
155   // the tested value.  There may be several.
156   MachNode *best = NULL;        // Best found so far
157   for (DUIterator i = val->outs(); val->has_out(i); i++) {
158     Node *m = val->out(i);
159     if( !m->is_Mach() ) continue;
160     MachNode *mach = m->as_Mach();
161     was_store = false;
162     int iop = mach->ideal_Opcode();
163     switch( iop ) {
164     case Op_LoadB:
165     case Op_LoadUB:
166     case Op_LoadUS:
167     case Op_LoadD:
168     case Op_LoadF:
169     case Op_LoadI:
170     case Op_LoadL:
171     case Op_LoadP:
172     case Op_LoadN:
173     case Op_LoadS:
174     case Op_LoadKlass:
175     case Op_LoadNKlass:
176     case Op_LoadRange:
177     case Op_LoadD_unaligned:
178     case Op_LoadL_unaligned:
179       assert(mach->in(2) == val, "should be address");
180       break;
181     case Op_StoreB:
182     case Op_StoreC:
183     case Op_StoreCM:
184     case Op_StoreD:
185     case Op_StoreF:
186     case Op_StoreI:
187     case Op_StoreL:
188     case Op_StoreP:
189     case Op_StoreN:
190     case Op_StoreNKlass:
191       was_store = true;         // Memory op is a store op
192       // Stores will have their address in slot 2 (memory in slot 1).
193       // If the value being nul-checked is in another slot, it means we
194       // are storing the checked value, which does NOT check the value!
195       if( mach->in(2) != val ) continue;
196       break;                    // Found a memory op?
197     case Op_StrComp:
198     case Op_StrEquals:
199     case Op_StrIndexOf:
200     case Op_StrIndexOfChar:
201     case Op_AryEq:
202     case Op_StrInflatedCopy:
203     case Op_StrCompressedCopy:
204     case Op_EncodeISOArray:
205     case Op_HasNegatives:
206       // Not a legit memory op for implicit null check regardless of
207       // embedded loads
208       continue;
209     default:                    // Also check for embedded loads
210       if( !mach->needs_anti_dependence_check() )
211         continue;               // Not an memory op; skip it
212       if( must_clone[iop] ) {
213         // Do not move nodes which produce flags because
214         // RA will try to clone it to place near branch and
215         // it will cause recompilation, see clone_node().
216         continue;
217       }
218       {
219         // Check that value is used in memory address in
220         // instructions with embedded load (CmpP val1,(val2+off)).
221         Node* base;
222         Node* index;
223         const MachOper* oper = mach->memory_inputs(base, index);
224         if (oper == NULL || oper == (MachOper*)-1) {
225           continue;             // Not an memory op; skip it
226         }
227         if (val == base ||
228             (val == index && val->bottom_type()->isa_narrowoop())) {
229           break;                // Found it
230         } else {
231           continue;             // Skip it
232         }
233       }
234       break;
235     }
236 
237     // On some OSes (AIX) the page at address 0 is only write protected.
238     // If so, only Store operations will trap.
239     // But a read accessing the base of a heap-based compressed heap will trap.
240     if (!was_store && needs_explicit_null_check_for_read(val)) {
241       continue;
242     }
243 
244     // Check that node's control edge is not-null block's head or dominates it,
245     // otherwise we can't hoist it because there are other control dependencies.
246     Node* ctrl = mach->in(0);
247     if (ctrl != NULL && !(ctrl == not_null_block->head() ||
248         get_block_for_node(ctrl)->dominates(not_null_block))) {
249       continue;
250     }
251 
252     // check if the offset is not too high for implicit exception
253     {
254       intptr_t offset = 0;
255       const TypePtr *adr_type = NULL;  // Do not need this return value here
256       const Node* base = mach->get_base_and_disp(offset, adr_type);
257       if (base == NULL || base == NodeSentinel) {
258         // Narrow oop address doesn't have base, only index.
259         // Give up if offset is beyond page size or if heap base is not protected.
260         if (val->bottom_type()->isa_narrowoop() &&
261             (MacroAssembler::needs_explicit_null_check(offset) ||
262              !CompressedOops::use_implicit_null_checks()))
263           continue;
264         // cannot reason about it; is probably not implicit null exception
265       } else {
266         const TypePtr* tptr;
267         if ((UseCompressedOops || UseCompressedClassPointers) &&
268             (CompressedOops::shift() == 0 || CompressedKlassPointers::shift() == 0)) {
269           // 32-bits narrow oop can be the base of address expressions
270           tptr = base->get_ptr_type();
271         } else {
272           // only regular oops are expected here
273           tptr = base->bottom_type()->is_ptr();
274         }
275         // Give up if offset is not a compile-time constant.
276         if (offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot)
277           continue;
278         offset += tptr->_offset; // correct if base is offseted
279         // Give up if reference is beyond page size.
280         if (MacroAssembler::needs_explicit_null_check(offset))
281           continue;
282         // Give up if base is a decode node and the heap base is not protected.
283         if (base->is_Mach() && base->as_Mach()->ideal_Opcode() == Op_DecodeN &&
284             !CompressedOops::use_implicit_null_checks())
285           continue;
286       }
287     }
288 
289     // Check ctrl input to see if the null-check dominates the memory op
290     Block *cb = get_block_for_node(mach);
291     cb = cb->_idom;             // Always hoist at least 1 block
292     if( !was_store ) {          // Stores can be hoisted only one block
293       while( cb->_dom_depth > (block->_dom_depth + 1))
294         cb = cb->_idom;         // Hoist loads as far as we want
295       // The non-null-block should dominate the memory op, too. Live
296       // range spilling will insert a spill in the non-null-block if it is
297       // needs to spill the memory op for an implicit null check.
298       if (cb->_dom_depth == (block->_dom_depth + 1)) {
299         if (cb != not_null_block) continue;
300         cb = cb->_idom;
301       }
302     }
303     if( cb != block ) continue;
304 
305     // Found a memory user; see if it can be hoisted to check-block
306     uint vidx = 0;              // Capture index of value into memop
307     uint j;
308     for( j = mach->req()-1; j > 0; j-- ) {
309       if( mach->in(j) == val ) {
310         vidx = j;
311         // Ignore DecodeN val which could be hoisted to where needed.
312         if( is_decoden ) continue;
313       }
314       // Block of memory-op input
315       Block *inb = get_block_for_node(mach->in(j));
316       Block *b = block;          // Start from nul check
317       while( b != inb && b->_dom_depth > inb->_dom_depth )
318         b = b->_idom;           // search upwards for input
319       // See if input dominates null check
320       if( b != inb )
321         break;
322     }
323     if( j > 0 )
324       continue;
325     Block *mb = get_block_for_node(mach);
326     // Hoisting stores requires more checks for the anti-dependence case.
327     // Give up hoisting if we have to move the store past any load.
328     if( was_store ) {
329       Block *b = mb;            // Start searching here for a local load
330       // mach use (faulting) trying to hoist
331       // n might be blocker to hoisting
332       while( b != block ) {
333         uint k;
334         for( k = 1; k < b->number_of_nodes(); k++ ) {
335           Node *n = b->get_node(k);
336           if( n->needs_anti_dependence_check() &&
337               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
338             break;              // Found anti-dependent load
339         }
340         if( k < b->number_of_nodes() )
341           break;                // Found anti-dependent load
342         // Make sure control does not do a merge (would have to check allpaths)
343         if( b->num_preds() != 2 ) break;
344         b = get_block_for_node(b->pred(1)); // Move up to predecessor block
345       }
346       if( b != block ) continue;
347     }
348 
349     // Make sure this memory op is not already being used for a NullCheck
350     Node *e = mb->end();
351     if( e->is_MachNullCheck() && e->in(1) == mach )
352       continue;                 // Already being used as a NULL check
353 
354     // Found a candidate!  Pick one with least dom depth - the highest
355     // in the dom tree should be closest to the null check.
356     if (best == NULL || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
357       best = mach;
358       bidx = vidx;
359     }
360   }
361   // No candidate!
362   if (best == NULL) {
363     return;
364   }
365 
366   // ---- Found an implicit null check
367 #ifndef PRODUCT
368   extern int implicit_null_checks;
369   implicit_null_checks++;
370 #endif
371 
372   if( is_decoden ) {
373     // Check if we need to hoist decodeHeapOop_not_null first.
374     Block *valb = get_block_for_node(val);
375     if( block != valb && block->_dom_depth < valb->_dom_depth ) {
376       // Hoist it up to the end of the test block.
377       valb->find_remove(val);
378       block->add_inst(val);
379       map_node_to_block(val, block);
380       // DecodeN on x86 may kill flags. Check for flag-killing projections
381       // that also need to be hoisted.
382       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
383         Node* n = val->fast_out(j);
384         if( n->is_MachProj() ) {
385           get_block_for_node(n)->find_remove(n);
386           block->add_inst(n);
387           map_node_to_block(n, block);
388         }
389       }
390     }
391   }
392   // Hoist the memory candidate up to the end of the test block.
393   Block *old_block = get_block_for_node(best);
394   old_block->find_remove(best);
395   block->add_inst(best);
396   map_node_to_block(best, block);
397 
398   // Move the control dependence if it is pinned to not-null block.
399   // Don't change it in other cases: NULL or dominating control.
400   if (best->in(0) == not_null_block->head()) {
401     // Set it to control edge of null check.
402     best->set_req(0, proj->in(0)->in(0));
403   }
404 
405   // Check for flag-killing projections that also need to be hoisted
406   // Should be DU safe because no edge updates.
407   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
408     Node* n = best->fast_out(j);
409     if( n->is_MachProj() ) {
410       get_block_for_node(n)->find_remove(n);
411       block->add_inst(n);
412       map_node_to_block(n, block);
413     }
414   }
415 
416   // proj==Op_True --> ne test; proj==Op_False --> eq test.
417   // One of two graph shapes got matched:
418   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
419   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
420   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
421   // then we are replacing a 'ne' test with a 'eq' NULL check test.
422   // We need to flip the projections to keep the same semantics.
423   if( proj->Opcode() == Op_IfTrue ) {
424     // Swap order of projections in basic block to swap branch targets
425     Node *tmp1 = block->get_node(block->end_idx()+1);
426     Node *tmp2 = block->get_node(block->end_idx()+2);
427     block->map_node(tmp2, block->end_idx()+1);
428     block->map_node(tmp1, block->end_idx()+2);
429     Node *tmp = new Node(C->top()); // Use not NULL input
430     tmp1->replace_by(tmp);
431     tmp2->replace_by(tmp1);
432     tmp->replace_by(tmp2);
433     tmp->destruct(NULL);
434   }
435 
436   // Remove the existing null check; use a new implicit null check instead.
437   // Since schedule-local needs precise def-use info, we need to correct
438   // it as well.
439   Node *old_tst = proj->in(0);
440   MachNode *nul_chk = new MachNullCheckNode(old_tst->in(0),best,bidx);
441   block->map_node(nul_chk, block->end_idx());
442   map_node_to_block(nul_chk, block);
443   // Redirect users of old_test to nul_chk
444   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
445     old_tst->last_out(i2)->set_req(0, nul_chk);
446   // Clean-up any dead code
447   for (uint i3 = 0; i3 < old_tst->req(); i3++) {
448     Node* in = old_tst->in(i3);
449     old_tst->set_req(i3, NULL);
450     if (in->outcnt() == 0) {
451       // Remove dead input node
452       in->disconnect_inputs(C);
453       block->find_remove(in);
454     }
455   }
456 
457   latency_from_uses(nul_chk);
458   latency_from_uses(best);
459 
460   // insert anti-dependences to defs in this block
461   if (! best->needs_anti_dependence_check()) {
462     for (uint k = 1; k < block->number_of_nodes(); k++) {
463       Node *n = block->get_node(k);
464       if (n->needs_anti_dependence_check() &&
465           n->in(LoadNode::Memory) == best->in(StoreNode::Memory)) {
466         // Found anti-dependent load
467         insert_anti_dependences(block, n);
468       }
469     }
470   }
471 }
472 
473 
474 //------------------------------select-----------------------------------------
475 // Select a nice fellow from the worklist to schedule next. If there is only
476 // one choice, then use it. Projections take top priority for correctness
477 // reasons - if I see a projection, then it is next.  There are a number of
478 // other special cases, for instructions that consume condition codes, et al.
479 // These are chosen immediately. Some instructions are required to immediately
480 // precede the last instruction in the block, and these are taken last. Of the
481 // remaining cases (most), choose the instruction with the greatest latency
482 // (that is, the most number of pseudo-cycles required to the end of the
483 // routine). If there is a tie, choose the instruction with the most inputs.
select(Block * block,Node_List & worklist,GrowableArray<int> & ready_cnt,VectorSet & next_call,uint sched_slot,intptr_t * recalc_pressure_nodes)484 Node* PhaseCFG::select(
485   Block* block,
486   Node_List &worklist,
487   GrowableArray<int> &ready_cnt,
488   VectorSet &next_call,
489   uint sched_slot,
490   intptr_t* recalc_pressure_nodes) {
491 
492   // If only a single entry on the stack, use it
493   uint cnt = worklist.size();
494   if (cnt == 1) {
495     Node *n = worklist[0];
496     worklist.map(0,worklist.pop());
497     return n;
498   }
499 
500   uint choice  = 0; // Bigger is most important
501   uint latency = 0; // Bigger is scheduled first
502   uint score   = 0; // Bigger is better
503   int idx = -1;     // Index in worklist
504   int cand_cnt = 0; // Candidate count
505   bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false;
506 
507   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
508     // Order in worklist is used to break ties.
509     // See caller for how this is used to delay scheduling
510     // of induction variable increments to after the other
511     // uses of the phi are scheduled.
512     Node *n = worklist[i];      // Get Node on worklist
513 
514     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
515     if( n->is_Proj() ||         // Projections always win
516         n->Opcode()== Op_Con || // So does constant 'Top'
517         iop == Op_CreateEx ||   // Create-exception must start block
518         iop == Op_CheckCastPP
519         ) {
520       worklist.map(i,worklist.pop());
521       return n;
522     }
523 
524     // Final call in a block must be adjacent to 'catch'
525     Node *e = block->end();
526     if( e->is_Catch() && e->in(0)->in(0) == n )
527       continue;
528 
529     // Memory op for an implicit null check has to be at the end of the block
530     if( e->is_MachNullCheck() && e->in(1) == n )
531       continue;
532 
533     // Schedule IV increment last.
534     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd) {
535       // Cmp might be matched into CountedLoopEnd node.
536       Node *cmp = (e->in(1)->ideal_reg() == Op_RegFlags) ? e->in(1) : e;
537       if (cmp->req() > 1 && cmp->in(1) == n && n->is_iteratively_computed()) {
538         continue;
539       }
540     }
541 
542     uint n_choice  = 2;
543 
544     // See if this instruction is consumed by a branch. If so, then (as the
545     // branch is the last instruction in the basic block) force it to the
546     // end of the basic block
547     if ( must_clone[iop] ) {
548       // See if any use is a branch
549       bool found_machif = false;
550 
551       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
552         Node* use = n->fast_out(j);
553 
554         // The use is a conditional branch, make them adjacent
555         if (use->is_MachIf() && get_block_for_node(use) == block) {
556           found_machif = true;
557           break;
558         }
559 
560         // More than this instruction pending for successor to be ready,
561         // don't choose this if other opportunities are ready
562         if (ready_cnt.at(use->_idx) > 1)
563           n_choice = 1;
564       }
565 
566       // loop terminated, prefer not to use this instruction
567       if (found_machif)
568         continue;
569     }
570 
571     // See if this has a predecessor that is "must_clone", i.e. sets the
572     // condition code. If so, choose this first
573     for (uint j = 0; j < n->req() ; j++) {
574       Node *inn = n->in(j);
575       if (inn) {
576         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
577           n_choice = 3;
578           break;
579         }
580       }
581     }
582 
583     // MachTemps should be scheduled last so they are near their uses
584     if (n->is_MachTemp()) {
585       n_choice = 1;
586     }
587 
588     uint n_latency = get_latency_for_node(n);
589     uint n_score = n->req();   // Many inputs get high score to break ties
590 
591     if (OptoRegScheduling && block_size_threshold_ok) {
592       if (recalc_pressure_nodes[n->_idx] == 0x7fff7fff) {
593         _regalloc->_scratch_int_pressure.init(_regalloc->_sched_int_pressure.high_pressure_limit());
594         _regalloc->_scratch_float_pressure.init(_regalloc->_sched_float_pressure.high_pressure_limit());
595         // simulate the notion that we just picked this node to schedule
596         n->add_flag(Node::Flag_is_scheduled);
597         // now caculate its effect upon the graph if we did
598         adjust_register_pressure(n, block, recalc_pressure_nodes, false);
599         // return its state for finalize in case somebody else wins
600         n->remove_flag(Node::Flag_is_scheduled);
601         // now save the two final pressure components of register pressure, limiting pressure calcs to short size
602         short int_pressure = (short)_regalloc->_scratch_int_pressure.current_pressure();
603         short float_pressure = (short)_regalloc->_scratch_float_pressure.current_pressure();
604         recalc_pressure_nodes[n->_idx] = int_pressure;
605         recalc_pressure_nodes[n->_idx] |= (float_pressure << 16);
606       }
607 
608       if (_scheduling_for_pressure) {
609         latency = n_latency;
610         if (n_choice != 3) {
611           // Now evaluate each register pressure component based on threshold in the score.
612           // In general the defining register type will dominate the score, ergo we will not see register pressure grow on both banks
613           // on a single instruction, but we might see it shrink on both banks.
614           // For each use of register that has a register class that is over the high pressure limit, we build n_score up for
615           // live ranges that terminate on this instruction.
616           if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
617             short int_pressure = (short)recalc_pressure_nodes[n->_idx];
618             n_score = (int_pressure < 0) ? ((score + n_score) - int_pressure) : (int_pressure > 0) ? 1 : n_score;
619           }
620           if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
621             short float_pressure = (short)(recalc_pressure_nodes[n->_idx] >> 16);
622             n_score = (float_pressure < 0) ? ((score + n_score) - float_pressure) : (float_pressure > 0) ? 1 : n_score;
623           }
624         } else {
625           // make sure we choose these candidates
626           score = 0;
627         }
628       }
629     }
630 
631     // Keep best latency found
632     cand_cnt++;
633     if (choice < n_choice ||
634         (choice == n_choice &&
635          ((StressLCM && C->randomized_select(cand_cnt)) ||
636           (!StressLCM &&
637            (latency < n_latency ||
638             (latency == n_latency &&
639              (score < n_score))))))) {
640       choice  = n_choice;
641       latency = n_latency;
642       score   = n_score;
643       idx     = i;               // Also keep index in worklist
644     }
645   } // End of for all ready nodes in worklist
646 
647   guarantee(idx >= 0, "index should be set");
648   Node *n = worklist[(uint)idx];      // Get the winner
649 
650   worklist.map((uint)idx, worklist.pop());     // Compress worklist
651   return n;
652 }
653 
654 //-------------------------adjust_register_pressure----------------------------
adjust_register_pressure(Node * n,Block * block,intptr_t * recalc_pressure_nodes,bool finalize_mode)655 void PhaseCFG::adjust_register_pressure(Node* n, Block* block, intptr_t* recalc_pressure_nodes, bool finalize_mode) {
656   PhaseLive* liveinfo = _regalloc->get_live();
657   IndexSet* liveout = liveinfo->live(block);
658   // first adjust the register pressure for the sources
659   for (uint i = 1; i < n->req(); i++) {
660     bool lrg_ends = false;
661     Node *src_n = n->in(i);
662     if (src_n == NULL) continue;
663     if (!src_n->is_Mach()) continue;
664     uint src = _regalloc->_lrg_map.find(src_n);
665     if (src == 0) continue;
666     LRG& lrg_src = _regalloc->lrgs(src);
667     // detect if the live range ends or not
668     if (liveout->member(src) == false) {
669       lrg_ends = true;
670       for (DUIterator_Fast jmax, j = src_n->fast_outs(jmax); j < jmax; j++) {
671         Node* m = src_n->fast_out(j); // Get user
672         if (m == n) continue;
673         if (!m->is_Mach()) continue;
674         MachNode *mach = m->as_Mach();
675         bool src_matches = false;
676         int iop = mach->ideal_Opcode();
677 
678         switch (iop) {
679         case Op_StoreB:
680         case Op_StoreC:
681         case Op_StoreCM:
682         case Op_StoreD:
683         case Op_StoreF:
684         case Op_StoreI:
685         case Op_StoreL:
686         case Op_StoreP:
687         case Op_StoreN:
688         case Op_StoreVector:
689         case Op_StoreVectorScatter:
690         case Op_StoreVectorMasked:
691         case Op_StoreNKlass:
692           for (uint k = 1; k < m->req(); k++) {
693             Node *in = m->in(k);
694             if (in == src_n) {
695               src_matches = true;
696               break;
697             }
698           }
699           break;
700 
701         default:
702           src_matches = true;
703           break;
704         }
705 
706         // If we have a store as our use, ignore the non source operands
707         if (src_matches == false) continue;
708 
709         // Mark every unscheduled use which is not n with a recalculation
710         if ((get_block_for_node(m) == block) && (!m->is_scheduled())) {
711           if (finalize_mode && !m->is_Phi()) {
712             recalc_pressure_nodes[m->_idx] = 0x7fff7fff;
713           }
714           lrg_ends = false;
715         }
716       }
717     }
718     // if none, this live range ends and we can adjust register pressure
719     if (lrg_ends) {
720       if (finalize_mode) {
721         _regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
722       } else {
723         _regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
724       }
725     }
726   }
727 
728   // now add the register pressure from the dest and evaluate which heuristic we should use:
729   // 1.) The default, latency scheduling
730   // 2.) Register pressure scheduling based on the high pressure limit threshold for int or float register stacks
731   uint dst = _regalloc->_lrg_map.find(n);
732   if (dst != 0) {
733     LRG& lrg_dst = _regalloc->lrgs(dst);
734     if (finalize_mode) {
735       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
736       // check to see if we fall over the register pressure cliff here
737       if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
738         _scheduling_for_pressure = true;
739       } else if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
740         _scheduling_for_pressure = true;
741       } else {
742         // restore latency scheduling mode
743         _scheduling_for_pressure = false;
744       }
745     } else {
746       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
747     }
748   }
749 }
750 
751 //------------------------------set_next_call----------------------------------
set_next_call(Block * block,Node * n,VectorSet & next_call)752 void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
753   if( next_call.test_set(n->_idx) ) return;
754   for( uint i=0; i<n->len(); i++ ) {
755     Node *m = n->in(i);
756     if( !m ) continue;  // must see all nodes in block that precede call
757     if (get_block_for_node(m) == block) {
758       set_next_call(block, m, next_call);
759     }
760   }
761 }
762 
763 //------------------------------needed_for_next_call---------------------------
764 // Set the flag 'next_call' for each Node that is needed for the next call to
765 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
766 // next subroutine call get priority - basically it moves things NOT needed
767 // for the next call till after the call.  This prevents me from trying to
768 // carry lots of stuff live across a call.
needed_for_next_call(Block * block,Node * this_call,VectorSet & next_call)769 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
770   // Find the next control-defining Node in this block
771   Node* call = NULL;
772   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
773     Node* m = this_call->fast_out(i);
774     if (get_block_for_node(m) == block && // Local-block user
775         m != this_call &&       // Not self-start node
776         m->is_MachCall()) {
777       call = m;
778       break;
779     }
780   }
781   if (call == NULL)  return;    // No next call (e.g., block end is near)
782   // Set next-call for all inputs to this call
783   set_next_call(block, call, next_call);
784 }
785 
786 //------------------------------add_call_kills-------------------------------------
787 // helper function that adds caller save registers to MachProjNode
add_call_kills(MachProjNode * proj,RegMask & regs,const char * save_policy,bool exclude_soe)788 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
789   // Fill in the kill mask for the call
790   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
791     if( !regs.Member(r) ) {     // Not already defined by the call
792       // Save-on-call register?
793       if ((save_policy[r] == 'C') ||
794           (save_policy[r] == 'A') ||
795           ((save_policy[r] == 'E') && exclude_soe)) {
796         proj->_rout.Insert(r);
797       }
798     }
799   }
800 }
801 
802 
803 //------------------------------sched_call-------------------------------------
sched_call(Block * block,uint node_cnt,Node_List & worklist,GrowableArray<int> & ready_cnt,MachCallNode * mcall,VectorSet & next_call)804 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
805   RegMask regs;
806 
807   // Schedule all the users of the call right now.  All the users are
808   // projection Nodes, so they must be scheduled next to the call.
809   // Collect all the defined registers.
810   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
811     Node* n = mcall->fast_out(i);
812     assert( n->is_MachProj(), "" );
813     int n_cnt = ready_cnt.at(n->_idx)-1;
814     ready_cnt.at_put(n->_idx, n_cnt);
815     assert( n_cnt == 0, "" );
816     // Schedule next to call
817     block->map_node(n, node_cnt++);
818     // Collect defined registers
819     regs.OR(n->out_RegMask());
820     // Check for scheduling the next control-definer
821     if( n->bottom_type() == Type::CONTROL )
822       // Warm up next pile of heuristic bits
823       needed_for_next_call(block, n, next_call);
824 
825     // Children of projections are now all ready
826     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
827       Node* m = n->fast_out(j); // Get user
828       if(get_block_for_node(m) != block) {
829         continue;
830       }
831       if( m->is_Phi() ) continue;
832       int m_cnt = ready_cnt.at(m->_idx) - 1;
833       ready_cnt.at_put(m->_idx, m_cnt);
834       if( m_cnt == 0 )
835         worklist.push(m);
836     }
837 
838   }
839 
840   // Act as if the call defines the Frame Pointer.
841   // Certainly the FP is alive and well after the call.
842   regs.Insert(_matcher.c_frame_pointer());
843 
844   // Set all registers killed and not already defined by the call.
845   uint r_cnt = mcall->tf()->range()->cnt();
846   int op = mcall->ideal_Opcode();
847   MachProjNode *proj = new MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
848   map_node_to_block(proj, block);
849   block->insert_node(proj, node_cnt++);
850 
851   // Select the right register save policy.
852   const char *save_policy = NULL;
853   switch (op) {
854     case Op_CallRuntime:
855     case Op_CallLeaf:
856     case Op_CallLeafNoFP:
857       // Calling C code so use C calling convention
858       save_policy = _matcher._c_reg_save_policy;
859       break;
860 
861     case Op_CallStaticJava:
862     case Op_CallDynamicJava:
863       // Calling Java code so use Java calling convention
864       save_policy = _matcher._register_save_policy;
865       break;
866     case Op_CallNative:
867       // We use the c reg save policy here since Panama
868       // only supports the C ABI currently.
869       // TODO compute actual save policy based on nep->abi
870       save_policy = _matcher._c_reg_save_policy;
871       break;
872 
873     default:
874       ShouldNotReachHere();
875   }
876 
877   // When using CallRuntime mark SOE registers as killed by the call
878   // so values that could show up in the RegisterMap aren't live in a
879   // callee saved register since the register wouldn't know where to
880   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
881   // have debug info on them.  Strictly speaking this only needs to be
882   // done for oops since idealreg2debugmask takes care of debug info
883   // references but there no way to handle oops differently than other
884   // pointers as far as the kill mask goes.
885   //
886   // Also, native callees can not save oops, so we kill the SOE registers
887   // here in case a native call has a safepoint. This doesn't work for
888   // RBP though, which seems to be special-cased elsewhere to always be
889   // treated as alive, so we instead manually save the location of RBP
890   // before doing the native call (see NativeInvokerGenerator::generate).
891   bool exclude_soe = op == Op_CallRuntime
892     || (op == Op_CallNative && mcall->guaranteed_safepoint());
893 
894   // If the call is a MethodHandle invoke, we need to exclude the
895   // register which is used to save the SP value over MH invokes from
896   // the mask.  Otherwise this register could be used for
897   // deoptimization information.
898   if (op == Op_CallStaticJava) {
899     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
900     if (mcallstaticjava->_method_handle_invoke)
901       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
902   }
903 
904   add_call_kills(proj, regs, save_policy, exclude_soe);
905 
906   return node_cnt;
907 }
908 
909 
910 //------------------------------schedule_local---------------------------------
911 // Topological sort within a block.  Someday become a real scheduler.
schedule_local(Block * block,GrowableArray<int> & ready_cnt,VectorSet & next_call,intptr_t * recalc_pressure_nodes)912 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t *recalc_pressure_nodes) {
913   // Already "sorted" are the block start Node (as the first entry), and
914   // the block-ending Node and any trailing control projections.  We leave
915   // these alone.  PhiNodes and ParmNodes are made to follow the block start
916   // Node.  Everything else gets topo-sorted.
917 
918 #ifndef PRODUCT
919     if (trace_opto_pipelining()) {
920       tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
921       for (uint i = 0;i < block->number_of_nodes(); i++) {
922         tty->print("# ");
923         block->get_node(i)->fast_dump();
924       }
925       tty->print_cr("#");
926     }
927 #endif
928 
929   // RootNode is already sorted
930   if (block->number_of_nodes() == 1) {
931     return true;
932   }
933 
934   bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false;
935 
936   // We track the uses of local definitions as input dependences so that
937   // we know when a given instruction is avialable to be scheduled.
938   uint i;
939   if (OptoRegScheduling && block_size_threshold_ok) {
940     for (i = 1; i < block->number_of_nodes(); i++) { // setup nodes for pressure calc
941       Node *n = block->get_node(i);
942       n->remove_flag(Node::Flag_is_scheduled);
943       if (!n->is_Phi()) {
944         recalc_pressure_nodes[n->_idx] = 0x7fff7fff;
945       }
946     }
947   }
948 
949   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
950   uint node_cnt = block->end_idx();
951   uint phi_cnt = 1;
952   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
953     Node *n = block->get_node(i);
954     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
955         (n->is_Proj()  && n->in(0) == block->head()) ) {
956       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
957       block->map_node(block->get_node(phi_cnt), i);
958       block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
959       if (OptoRegScheduling && block_size_threshold_ok) {
960         // mark n as scheduled
961         n->add_flag(Node::Flag_is_scheduled);
962       }
963     } else {                    // All others
964       // Count block-local inputs to 'n'
965       uint cnt = n->len();      // Input count
966       uint local = 0;
967       for( uint j=0; j<cnt; j++ ) {
968         Node *m = n->in(j);
969         if( m && get_block_for_node(m) == block && !m->is_top() )
970           local++;              // One more block-local input
971       }
972       ready_cnt.at_put(n->_idx, local); // Count em up
973 
974 #ifdef ASSERT
975       if (UseG1GC) {
976         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
977           // Check the precedence edges
978           for (uint prec = n->req(); prec < n->len(); prec++) {
979             Node* oop_store = n->in(prec);
980             if (oop_store != NULL) {
981               assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
982             }
983           }
984         }
985       }
986 #endif
987 
988       // A few node types require changing a required edge to a precedence edge
989       // before allocation.
990       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
991           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
992            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
993         // MemBarAcquire could be created without Precedent edge.
994         // del_req() replaces the specified edge with the last input edge
995         // and then removes the last edge. If the specified edge > number of
996         // edges the last edge will be moved outside of the input edges array
997         // and the edge will be lost. This is why this code should be
998         // executed only when Precedent (== TypeFunc::Parms) edge is present.
999         Node *x = n->in(TypeFunc::Parms);
1000         if (x != NULL && get_block_for_node(x) == block && n->find_prec_edge(x) != -1) {
1001           // Old edge to node within same block will get removed, but no precedence
1002           // edge will get added because it already exists. Update ready count.
1003           int cnt = ready_cnt.at(n->_idx);
1004           assert(cnt > 1, "MemBar node %d must not get ready here", n->_idx);
1005           ready_cnt.at_put(n->_idx, cnt-1);
1006         }
1007         n->del_req(TypeFunc::Parms);
1008         n->add_prec(x);
1009       }
1010     }
1011   }
1012   for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
1013     ready_cnt.at_put(block->get_node(i2)->_idx, 0);
1014 
1015   // All the prescheduled guys do not hold back internal nodes
1016   uint i3;
1017   for (i3 = 0; i3 < phi_cnt; i3++) {  // For all pre-scheduled
1018     Node *n = block->get_node(i3);       // Get pre-scheduled
1019     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
1020       Node* m = n->fast_out(j);
1021       if (get_block_for_node(m) == block) { // Local-block user
1022         int m_cnt = ready_cnt.at(m->_idx)-1;
1023         if (OptoRegScheduling && block_size_threshold_ok) {
1024           // mark m as scheduled
1025           if (m_cnt < 0) {
1026             m->add_flag(Node::Flag_is_scheduled);
1027           }
1028         }
1029         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
1030       }
1031     }
1032   }
1033 
1034   Node_List delay;
1035   // Make a worklist
1036   Node_List worklist;
1037   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
1038     Node *m = block->get_node(i4);
1039     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
1040       if (m->is_iteratively_computed()) {
1041         // Push induction variable increments last to allow other uses
1042         // of the phi to be scheduled first. The select() method breaks
1043         // ties in scheduling by worklist order.
1044         delay.push(m);
1045       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
1046         // Force the CreateEx to the top of the list so it's processed
1047         // first and ends up at the start of the block.
1048         worklist.insert(0, m);
1049       } else {
1050         worklist.push(m);         // Then on to worklist!
1051       }
1052     }
1053   }
1054   while (delay.size()) {
1055     Node* d = delay.pop();
1056     worklist.push(d);
1057   }
1058 
1059   if (OptoRegScheduling && block_size_threshold_ok) {
1060     // To stage register pressure calculations we need to examine the live set variables
1061     // breaking them up by register class to compartmentalize the calculations.
1062     uint float_pressure = Matcher::float_pressure(FLOATPRESSURE);
1063     _regalloc->_sched_int_pressure.init(INTPRESSURE);
1064     _regalloc->_sched_float_pressure.init(float_pressure);
1065     _regalloc->_scratch_int_pressure.init(INTPRESSURE);
1066     _regalloc->_scratch_float_pressure.init(float_pressure);
1067 
1068     _regalloc->compute_entry_block_pressure(block);
1069   }
1070 
1071   // Warm up the 'next_call' heuristic bits
1072   needed_for_next_call(block, block->head(), next_call);
1073 
1074 #ifndef PRODUCT
1075     if (trace_opto_pipelining()) {
1076       for (uint j=0; j< block->number_of_nodes(); j++) {
1077         Node     *n = block->get_node(j);
1078         int     idx = n->_idx;
1079         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
1080         tty->print("latency:%3d  ", get_latency_for_node(n));
1081         tty->print("%4d: %s\n", idx, n->Name());
1082       }
1083     }
1084 #endif
1085 
1086   uint max_idx = (uint)ready_cnt.length();
1087   // Pull from worklist and schedule
1088   while( worklist.size() ) {    // Worklist is not ready
1089 
1090 #ifndef PRODUCT
1091     if (trace_opto_pipelining()) {
1092       tty->print("#   ready list:");
1093       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1094         Node *n = worklist[i];      // Get Node on worklist
1095         tty->print(" %d", n->_idx);
1096       }
1097       tty->cr();
1098     }
1099 #endif
1100 
1101     // Select and pop a ready guy from worklist
1102     Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt, recalc_pressure_nodes);
1103     block->map_node(n, phi_cnt++);    // Schedule him next
1104 
1105     if (OptoRegScheduling && block_size_threshold_ok) {
1106       n->add_flag(Node::Flag_is_scheduled);
1107 
1108       // Now adjust the resister pressure with the node we selected
1109       if (!n->is_Phi()) {
1110         adjust_register_pressure(n, block, recalc_pressure_nodes, true);
1111       }
1112     }
1113 
1114 #ifndef PRODUCT
1115     if (trace_opto_pipelining()) {
1116       tty->print("#    select %d: %s", n->_idx, n->Name());
1117       tty->print(", latency:%d", get_latency_for_node(n));
1118       n->dump();
1119       if (Verbose) {
1120         tty->print("#   ready list:");
1121         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1122           Node *n = worklist[i];      // Get Node on worklist
1123           tty->print(" %d", n->_idx);
1124         }
1125         tty->cr();
1126       }
1127     }
1128 
1129 #endif
1130     if( n->is_MachCall() ) {
1131       MachCallNode *mcall = n->as_MachCall();
1132       phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
1133       continue;
1134     }
1135 
1136     if (n->is_Mach() && n->as_Mach()->has_call()) {
1137       RegMask regs;
1138       regs.Insert(_matcher.c_frame_pointer());
1139       regs.OR(n->out_RegMask());
1140 
1141       MachProjNode *proj = new MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
1142       map_node_to_block(proj, block);
1143       block->insert_node(proj, phi_cnt++);
1144 
1145       add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
1146     }
1147 
1148     // Children are now all ready
1149     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
1150       Node* m = n->fast_out(i5); // Get user
1151       if (get_block_for_node(m) != block) {
1152         continue;
1153       }
1154       if( m->is_Phi() ) continue;
1155       if (m->_idx >= max_idx) { // new node, skip it
1156         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
1157         continue;
1158       }
1159       int m_cnt = ready_cnt.at(m->_idx) - 1;
1160       ready_cnt.at_put(m->_idx, m_cnt);
1161       if( m_cnt == 0 )
1162         worklist.push(m);
1163     }
1164   }
1165 
1166   if( phi_cnt != block->end_idx() ) {
1167     // did not schedule all.  Retry, Bailout, or Die
1168     if (C->subsume_loads() == true && !C->failing()) {
1169       // Retry with subsume_loads == false
1170       // If this is the first failure, the sentinel string will "stick"
1171       // to the Compile object, and the C2Compiler will see it and retry.
1172       C->record_failure(C2Compiler::retry_no_subsuming_loads());
1173     } else {
1174       assert(false, "graph should be schedulable");
1175     }
1176     // assert( phi_cnt == end_idx(), "did not schedule all" );
1177     return false;
1178   }
1179 
1180   if (OptoRegScheduling && block_size_threshold_ok) {
1181     _regalloc->compute_exit_block_pressure(block);
1182     block->_reg_pressure = _regalloc->_sched_int_pressure.final_pressure();
1183     block->_freg_pressure = _regalloc->_sched_float_pressure.final_pressure();
1184   }
1185 
1186 #ifndef PRODUCT
1187   if (trace_opto_pipelining()) {
1188     tty->print_cr("#");
1189     tty->print_cr("# after schedule_local");
1190     for (uint i = 0;i < block->number_of_nodes();i++) {
1191       tty->print("# ");
1192       block->get_node(i)->fast_dump();
1193     }
1194     tty->print_cr("# ");
1195 
1196     if (OptoRegScheduling && block_size_threshold_ok) {
1197       tty->print_cr("# pressure info : %d", block->_pre_order);
1198       _regalloc->print_pressure_info(_regalloc->_sched_int_pressure, "int register info");
1199       _regalloc->print_pressure_info(_regalloc->_sched_float_pressure, "float register info");
1200     }
1201     tty->cr();
1202   }
1203 #endif
1204 
1205   return true;
1206 }
1207 
1208 //--------------------------catch_cleanup_fix_all_inputs-----------------------
catch_cleanup_fix_all_inputs(Node * use,Node * old_def,Node * new_def)1209 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
1210   for (uint l = 0; l < use->len(); l++) {
1211     if (use->in(l) == old_def) {
1212       if (l < use->req()) {
1213         use->set_req(l, new_def);
1214       } else {
1215         use->rm_prec(l);
1216         use->add_prec(new_def);
1217         l--;
1218       }
1219     }
1220   }
1221 }
1222 
1223 //------------------------------catch_cleanup_find_cloned_def------------------
catch_cleanup_find_cloned_def(Block * use_blk,Node * def,Block * def_blk,int n_clone_idx)1224 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1225   assert( use_blk != def_blk, "Inter-block cleanup only");
1226 
1227   // The use is some block below the Catch.  Find and return the clone of the def
1228   // that dominates the use. If there is no clone in a dominating block, then
1229   // create a phi for the def in a dominating block.
1230 
1231   // Find which successor block dominates this use.  The successor
1232   // blocks must all be single-entry (from the Catch only; I will have
1233   // split blocks to make this so), hence they all dominate.
1234   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
1235     use_blk = use_blk->_idom;
1236 
1237   // Find the successor
1238   Node *fixup = NULL;
1239 
1240   uint j;
1241   for( j = 0; j < def_blk->_num_succs; j++ )
1242     if( use_blk == def_blk->_succs[j] )
1243       break;
1244 
1245   if( j == def_blk->_num_succs ) {
1246     // Block at same level in dom-tree is not a successor.  It needs a
1247     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
1248     Node_Array inputs = new Node_List();
1249     for(uint k = 1; k < use_blk->num_preds(); k++) {
1250       Block* block = get_block_for_node(use_blk->pred(k));
1251       inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
1252     }
1253 
1254     // Check to see if the use_blk already has an identical phi inserted.
1255     // If it exists, it will be at the first position since all uses of a
1256     // def are processed together.
1257     Node *phi = use_blk->get_node(1);
1258     if( phi->is_Phi() ) {
1259       fixup = phi;
1260       for (uint k = 1; k < use_blk->num_preds(); k++) {
1261         if (phi->in(k) != inputs[k]) {
1262           // Not a match
1263           fixup = NULL;
1264           break;
1265         }
1266       }
1267     }
1268 
1269     // If an existing PhiNode was not found, make a new one.
1270     if (fixup == NULL) {
1271       Node *new_phi = PhiNode::make(use_blk->head(), def);
1272       use_blk->insert_node(new_phi, 1);
1273       map_node_to_block(new_phi, use_blk);
1274       for (uint k = 1; k < use_blk->num_preds(); k++) {
1275         new_phi->set_req(k, inputs[k]);
1276       }
1277       fixup = new_phi;
1278     }
1279 
1280   } else {
1281     // Found the use just below the Catch.  Make it use the clone.
1282     fixup = use_blk->get_node(n_clone_idx);
1283   }
1284 
1285   return fixup;
1286 }
1287 
1288 //--------------------------catch_cleanup_intra_block--------------------------
1289 // Fix all input edges in use that reference "def".  The use is in the same
1290 // block as the def and both have been cloned in each successor block.
catch_cleanup_intra_block(Node * use,Node * def,Block * blk,int beg,int n_clone_idx)1291 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
1292 
1293   // Both the use and def have been cloned. For each successor block,
1294   // get the clone of the use, and make its input the clone of the def
1295   // found in that block.
1296 
1297   uint use_idx = blk->find_node(use);
1298   uint offset_idx = use_idx - beg;
1299   for( uint k = 0; k < blk->_num_succs; k++ ) {
1300     // Get clone in each successor block
1301     Block *sb = blk->_succs[k];
1302     Node *clone = sb->get_node(offset_idx+1);
1303     assert( clone->Opcode() == use->Opcode(), "" );
1304 
1305     // Make use-clone reference the def-clone
1306     catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
1307   }
1308 }
1309 
1310 //------------------------------catch_cleanup_inter_block---------------------
1311 // Fix all input edges in use that reference "def".  The use is in a different
1312 // block than the def.
catch_cleanup_inter_block(Node * use,Block * use_blk,Node * def,Block * def_blk,int n_clone_idx)1313 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1314   if( !use_blk ) return;        // Can happen if the use is a precedence edge
1315 
1316   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
1317   catch_cleanup_fix_all_inputs(use, def, new_def);
1318 }
1319 
1320 //------------------------------call_catch_cleanup-----------------------------
1321 // If we inserted any instructions between a Call and his CatchNode,
1322 // clone the instructions on all paths below the Catch.
call_catch_cleanup(Block * block)1323 void PhaseCFG::call_catch_cleanup(Block* block) {
1324 
1325   // End of region to clone
1326   uint end = block->end_idx();
1327   if( !block->get_node(end)->is_Catch() ) return;
1328   // Start of region to clone
1329   uint beg = end;
1330   while(!block->get_node(beg-1)->is_MachProj() ||
1331         !block->get_node(beg-1)->in(0)->is_MachCall() ) {
1332     beg--;
1333     assert(beg > 0,"Catch cleanup walking beyond block boundary");
1334   }
1335   // Range of inserted instructions is [beg, end)
1336   if( beg == end ) return;
1337 
1338   // Clone along all Catch output paths.  Clone area between the 'beg' and
1339   // 'end' indices.
1340   for( uint i = 0; i < block->_num_succs; i++ ) {
1341     Block *sb = block->_succs[i];
1342     // Clone the entire area; ignoring the edge fixup for now.
1343     for( uint j = end; j > beg; j-- ) {
1344       Node *clone = block->get_node(j-1)->clone();
1345       sb->insert_node(clone, 1);
1346       map_node_to_block(clone, sb);
1347       if (clone->needs_anti_dependence_check()) {
1348         insert_anti_dependences(sb, clone);
1349       }
1350     }
1351   }
1352 
1353 
1354   // Fixup edges.  Check the def-use info per cloned Node
1355   for(uint i2 = beg; i2 < end; i2++ ) {
1356     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1357     Node *n = block->get_node(i2);        // Node that got cloned
1358     // Need DU safe iterator because of edge manipulation in calls.
1359     Unique_Node_List* out = new Unique_Node_List();
1360     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1361       out->push(n->fast_out(j1));
1362     }
1363     uint max = out->size();
1364     for (uint j = 0; j < max; j++) {// For all users
1365       Node *use = out->pop();
1366       Block *buse = get_block_for_node(use);
1367       if( use->is_Phi() ) {
1368         for( uint k = 1; k < use->req(); k++ )
1369           if( use->in(k) == n ) {
1370             Block* b = get_block_for_node(buse->pred(k));
1371             Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
1372             use->set_req(k, fixup);
1373           }
1374       } else {
1375         if (block == buse) {
1376           catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
1377         } else {
1378           catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
1379         }
1380       }
1381     } // End for all users
1382 
1383   } // End of for all Nodes in cloned area
1384 
1385   // Remove the now-dead cloned ops
1386   for(uint i3 = beg; i3 < end; i3++ ) {
1387     block->get_node(beg)->disconnect_inputs(C);
1388     block->remove_node(beg);
1389   }
1390 
1391   // If the successor blocks have a CreateEx node, move it back to the top
1392   for(uint i4 = 0; i4 < block->_num_succs; i4++ ) {
1393     Block *sb = block->_succs[i4];
1394     uint new_cnt = end - beg;
1395     // Remove any newly created, but dead, nodes.
1396     for( uint j = new_cnt; j > 0; j-- ) {
1397       Node *n = sb->get_node(j);
1398       if (n->outcnt() == 0 &&
1399           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1400         n->disconnect_inputs(C);
1401         sb->remove_node(j);
1402         new_cnt--;
1403       }
1404     }
1405     // If any newly created nodes remain, move the CreateEx node to the top
1406     if (new_cnt > 0) {
1407       Node *cex = sb->get_node(1+new_cnt);
1408       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1409         sb->remove_node(1+new_cnt);
1410         sb->insert_node(cex, 1);
1411       }
1412     }
1413   }
1414 }
1415