1 /*
2  * Copyright (c) 1998, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "ci/ciMethodData.hpp"
27 #include "compiler/compileLog.hpp"
28 #include "gc/shared/barrierSet.hpp"
29 #include "gc/shared/c2/barrierSetC2.hpp"
30 #include "libadt/vectset.hpp"
31 #include "memory/allocation.inline.hpp"
32 #include "memory/resourceArea.hpp"
33 #include "opto/addnode.hpp"
34 #include "opto/arraycopynode.hpp"
35 #include "opto/callnode.hpp"
36 #include "opto/castnode.hpp"
37 #include "opto/connode.hpp"
38 #include "opto/convertnode.hpp"
39 #include "opto/divnode.hpp"
40 #include "opto/idealGraphPrinter.hpp"
41 #include "opto/loopnode.hpp"
42 #include "opto/movenode.hpp"
43 #include "opto/mulnode.hpp"
44 #include "opto/opaquenode.hpp"
45 #include "opto/rootnode.hpp"
46 #include "opto/runtime.hpp"
47 #include "opto/superword.hpp"
48 #include "runtime/sharedRuntime.hpp"
49 #include "utilities/powerOfTwo.hpp"
50 
51 //=============================================================================
52 //--------------------------is_cloop_ind_var-----------------------------------
53 // Determine if a node is a counted loop induction variable.
54 // NOTE: The method is declared in "node.hpp".
is_cloop_ind_var() const55 bool Node::is_cloop_ind_var() const {
56   return (is_Phi() &&
57           as_Phi()->region()->is_CountedLoop() &&
58           as_Phi()->region()->as_CountedLoop()->phi() == this);
59 }
60 
61 //=============================================================================
62 //------------------------------dump_spec--------------------------------------
63 // Dump special per-node info
64 #ifndef PRODUCT
dump_spec(outputStream * st) const65 void LoopNode::dump_spec(outputStream *st) const {
66   if (is_inner_loop()) st->print( "inner " );
67   if (is_partial_peel_loop()) st->print( "partial_peel " );
68   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
69 }
70 #endif
71 
72 //------------------------------is_valid_counted_loop-------------------------
is_valid_counted_loop(BasicType bt) const73 bool LoopNode::is_valid_counted_loop(BasicType bt) const {
74   if (is_BaseCountedLoop() && operates_on(bt, false)) {
75     BaseCountedLoopNode*    l  = as_BaseCountedLoop();
76     BaseCountedLoopEndNode* le = l->loopexit_or_null();
77     if (le != NULL &&
78         le->proj_out_or_null(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
79       Node* phi  = l->phi();
80       Node* exit = le->proj_out_or_null(0 /* false */);
81       if (exit != NULL && exit->Opcode() == Op_IfFalse &&
82           phi != NULL && phi->is_Phi() &&
83           phi->in(LoopNode::LoopBackControl) == l->incr() &&
84           le->loopnode() == l && le->stride_is_con()) {
85         return true;
86       }
87     }
88   }
89   return false;
90 }
91 
92 //------------------------------get_early_ctrl---------------------------------
93 // Compute earliest legal control
get_early_ctrl(Node * n)94 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
95   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
96   uint i;
97   Node *early;
98   if (n->in(0) && !n->is_expensive()) {
99     early = n->in(0);
100     if (!early->is_CFG()) // Might be a non-CFG multi-def
101       early = get_ctrl(early);        // So treat input as a straight data input
102     i = 1;
103   } else {
104     early = get_ctrl(n->in(1));
105     i = 2;
106   }
107   uint e_d = dom_depth(early);
108   assert( early, "" );
109   for (; i < n->req(); i++) {
110     Node *cin = get_ctrl(n->in(i));
111     assert( cin, "" );
112     // Keep deepest dominator depth
113     uint c_d = dom_depth(cin);
114     if (c_d > e_d) {           // Deeper guy?
115       early = cin;              // Keep deepest found so far
116       e_d = c_d;
117     } else if (c_d == e_d &&    // Same depth?
118                early != cin) { // If not equal, must use slower algorithm
119       // If same depth but not equal, one _must_ dominate the other
120       // and we want the deeper (i.e., dominated) guy.
121       Node *n1 = early;
122       Node *n2 = cin;
123       while (1) {
124         n1 = idom(n1);          // Walk up until break cycle
125         n2 = idom(n2);
126         if (n1 == cin ||        // Walked early up to cin
127             dom_depth(n2) < c_d)
128           break;                // early is deeper; keep him
129         if (n2 == early ||      // Walked cin up to early
130             dom_depth(n1) < c_d) {
131           early = cin;          // cin is deeper; keep him
132           break;
133         }
134       }
135       e_d = dom_depth(early);   // Reset depth register cache
136     }
137   }
138 
139   // Return earliest legal location
140   assert(early == find_non_split_ctrl(early), "unexpected early control");
141 
142   if (n->is_expensive() && !_verify_only && !_verify_me) {
143     assert(n->in(0), "should have control input");
144     early = get_early_ctrl_for_expensive(n, early);
145   }
146 
147   return early;
148 }
149 
150 //------------------------------get_early_ctrl_for_expensive---------------------------------
151 // Move node up the dominator tree as high as legal while still beneficial
get_early_ctrl_for_expensive(Node * n,Node * earliest)152 Node *PhaseIdealLoop::get_early_ctrl_for_expensive(Node *n, Node* earliest) {
153   assert(n->in(0) && n->is_expensive(), "expensive node with control input here");
154   assert(OptimizeExpensiveOps, "optimization off?");
155 
156   Node* ctl = n->in(0);
157   assert(ctl->is_CFG(), "expensive input 0 must be cfg");
158   uint min_dom_depth = dom_depth(earliest);
159 #ifdef ASSERT
160   if (!is_dominator(ctl, earliest) && !is_dominator(earliest, ctl)) {
161     dump_bad_graph("Bad graph detected in get_early_ctrl_for_expensive", n, earliest, ctl);
162     assert(false, "Bad graph detected in get_early_ctrl_for_expensive");
163   }
164 #endif
165   if (dom_depth(ctl) < min_dom_depth) {
166     return earliest;
167   }
168 
169   while (1) {
170     Node *next = ctl;
171     // Moving the node out of a loop on the projection of a If
172     // confuses loop predication. So once we hit a Loop in a If branch
173     // that doesn't branch to an UNC, we stop. The code that process
174     // expensive nodes will notice the loop and skip over it to try to
175     // move the node further up.
176     if (ctl->is_CountedLoop() && ctl->in(1) != NULL && ctl->in(1)->in(0) != NULL && ctl->in(1)->in(0)->is_If()) {
177       if (!ctl->in(1)->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
178         break;
179       }
180       next = idom(ctl->in(1)->in(0));
181     } else if (ctl->is_Proj()) {
182       // We only move it up along a projection if the projection is
183       // the single control projection for its parent: same code path,
184       // if it's a If with UNC or fallthrough of a call.
185       Node* parent_ctl = ctl->in(0);
186       if (parent_ctl == NULL) {
187         break;
188       } else if (parent_ctl->is_CountedLoopEnd() && parent_ctl->as_CountedLoopEnd()->loopnode() != NULL) {
189         next = parent_ctl->as_CountedLoopEnd()->loopnode()->init_control();
190       } else if (parent_ctl->is_If()) {
191         if (!ctl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
192           break;
193         }
194         assert(idom(ctl) == parent_ctl, "strange");
195         next = idom(parent_ctl);
196       } else if (ctl->is_CatchProj()) {
197         if (ctl->as_Proj()->_con != CatchProjNode::fall_through_index) {
198           break;
199         }
200         assert(parent_ctl->in(0)->in(0)->is_Call(), "strange graph");
201         next = parent_ctl->in(0)->in(0)->in(0);
202       } else {
203         // Check if parent control has a single projection (this
204         // control is the only possible successor of the parent
205         // control). If so, we can try to move the node above the
206         // parent control.
207         int nb_ctl_proj = 0;
208         for (DUIterator_Fast imax, i = parent_ctl->fast_outs(imax); i < imax; i++) {
209           Node *p = parent_ctl->fast_out(i);
210           if (p->is_Proj() && p->is_CFG()) {
211             nb_ctl_proj++;
212             if (nb_ctl_proj > 1) {
213               break;
214             }
215           }
216         }
217 
218         if (nb_ctl_proj > 1) {
219           break;
220         }
221         assert(parent_ctl->is_Start() || parent_ctl->is_MemBar() || parent_ctl->is_Call() ||
222                BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(parent_ctl), "unexpected node");
223         assert(idom(ctl) == parent_ctl, "strange");
224         next = idom(parent_ctl);
225       }
226     } else {
227       next = idom(ctl);
228     }
229     if (next->is_Root() || next->is_Start() || dom_depth(next) < min_dom_depth) {
230       break;
231     }
232     ctl = next;
233   }
234 
235   if (ctl != n->in(0)) {
236     _igvn.replace_input_of(n, 0, ctl);
237     _igvn.hash_insert(n);
238   }
239 
240   return ctl;
241 }
242 
243 
244 //------------------------------set_early_ctrl---------------------------------
245 // Set earliest legal control
set_early_ctrl(Node * n,bool update_body)246 void PhaseIdealLoop::set_early_ctrl(Node* n, bool update_body) {
247   Node *early = get_early_ctrl(n);
248 
249   // Record earliest legal location
250   set_ctrl(n, early);
251   IdealLoopTree *loop = get_loop(early);
252   if (update_body && loop->_child == NULL) {
253     loop->_body.push(n);
254   }
255 }
256 
257 //------------------------------set_subtree_ctrl-------------------------------
258 // set missing _ctrl entries on new nodes
set_subtree_ctrl(Node * n,bool update_body)259 void PhaseIdealLoop::set_subtree_ctrl(Node* n, bool update_body) {
260   // Already set?  Get out.
261   if (_nodes[n->_idx]) return;
262   // Recursively set _nodes array to indicate where the Node goes
263   uint i;
264   for (i = 0; i < n->req(); ++i) {
265     Node *m = n->in(i);
266     if (m && m != C->root()) {
267       set_subtree_ctrl(m, update_body);
268     }
269   }
270 
271   // Fixup self
272   set_early_ctrl(n, update_body);
273 }
274 
insert_outer_loop(IdealLoopTree * loop,LoopNode * outer_l,Node * outer_ift)275 IdealLoopTree* PhaseIdealLoop::insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift) {
276   IdealLoopTree* outer_ilt = new IdealLoopTree(this, outer_l, outer_ift);
277   IdealLoopTree* parent = loop->_parent;
278   IdealLoopTree* sibling = parent->_child;
279   if (sibling == loop) {
280     parent->_child = outer_ilt;
281   } else {
282     while (sibling->_next != loop) {
283       sibling = sibling->_next;
284     }
285     sibling->_next = outer_ilt;
286   }
287   outer_ilt->_next = loop->_next;
288   outer_ilt->_parent = parent;
289   outer_ilt->_child = loop;
290   outer_ilt->_nest = loop->_nest;
291   loop->_parent = outer_ilt;
292   loop->_next = NULL;
293   loop->_nest++;
294   assert(loop->_nest <= SHRT_MAX, "sanity");
295   return outer_ilt;
296 }
297 
298 // Create a skeleton strip mined outer loop: a Loop head before the
299 // inner strip mined loop, a safepoint and an exit condition guarded
300 // by an opaque node after the inner strip mined loop with a backedge
301 // to the loop head. The inner strip mined loop is left as it is. Only
302 // once loop optimizations are over, do we adjust the inner loop exit
303 // condition to limit its number of iterations, set the outer loop
304 // exit condition and add Phis to the outer loop head. Some loop
305 // optimizations that operate on the inner strip mined loop need to be
306 // aware of the outer strip mined loop: loop unswitching needs to
307 // clone the outer loop as well as the inner, unrolling needs to only
308 // clone the inner loop etc. No optimizations need to change the outer
309 // strip mined loop as it is only a skeleton.
create_outer_strip_mined_loop(BoolNode * test,Node * cmp,Node * init_control,IdealLoopTree * loop,float cl_prob,float le_fcnt,Node * & entry_control,Node * & iffalse)310 IdealLoopTree* PhaseIdealLoop::create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control,
311                                                              IdealLoopTree* loop, float cl_prob, float le_fcnt,
312                                                              Node*& entry_control, Node*& iffalse) {
313   Node* outer_test = _igvn.intcon(0);
314   set_ctrl(outer_test, C->root());
315   Node *orig = iffalse;
316   iffalse = iffalse->clone();
317   _igvn.register_new_node_with_optimizer(iffalse);
318   set_idom(iffalse, idom(orig), dom_depth(orig));
319 
320   IfNode *outer_le = new OuterStripMinedLoopEndNode(iffalse, outer_test, cl_prob, le_fcnt);
321   Node *outer_ift = new IfTrueNode (outer_le);
322   Node* outer_iff = orig;
323   _igvn.replace_input_of(outer_iff, 0, outer_le);
324 
325   LoopNode *outer_l = new OuterStripMinedLoopNode(C, init_control, outer_ift);
326   entry_control = outer_l;
327 
328   IdealLoopTree* outer_ilt = insert_outer_loop(loop, outer_l, outer_ift);
329 
330   set_loop(iffalse, outer_ilt);
331   // When this code runs, loop bodies have not yet been populated.
332   const bool body_populated = false;
333   register_control(outer_le, outer_ilt, iffalse, body_populated);
334   register_control(outer_ift, outer_ilt, outer_le, body_populated);
335   set_idom(outer_iff, outer_le, dom_depth(outer_le));
336   _igvn.register_new_node_with_optimizer(outer_l);
337   set_loop(outer_l, outer_ilt);
338   set_idom(outer_l, init_control, dom_depth(init_control)+1);
339 
340   return outer_ilt;
341 }
342 
insert_loop_limit_check(ProjNode * limit_check_proj,Node * cmp_limit,Node * bol)343 void PhaseIdealLoop::insert_loop_limit_check(ProjNode* limit_check_proj, Node* cmp_limit, Node* bol) {
344   Node* new_predicate_proj = create_new_if_for_predicate(limit_check_proj, NULL,
345                                                          Deoptimization::Reason_loop_limit_check,
346                                                          Op_If);
347   Node* iff = new_predicate_proj->in(0);
348   assert(iff->Opcode() == Op_If, "bad graph shape");
349   Node* conv = iff->in(1);
350   assert(conv->Opcode() == Op_Conv2B, "bad graph shape");
351   Node* opaq = conv->in(1);
352   assert(opaq->Opcode() == Op_Opaque1, "bad graph shape");
353   cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
354   bol = _igvn.register_new_node_with_optimizer(bol);
355   set_subtree_ctrl(bol, false);
356   _igvn.replace_input_of(iff, 1, bol);
357 
358 #ifndef PRODUCT
359   // report that the loop predication has been actually performed
360   // for this loop
361   if (TraceLoopLimitCheck) {
362     tty->print_cr("Counted Loop Limit Check generated:");
363     debug_only( bol->dump(2); )
364   }
365 #endif
366 }
367 
loop_exit_control(Node * x,IdealLoopTree * loop)368 Node* PhaseIdealLoop::loop_exit_control(Node* x, IdealLoopTree* loop) {
369   // Counted loop head must be a good RegionNode with only 3 not NULL
370   // control input edges: Self, Entry, LoopBack.
371   if (x->in(LoopNode::Self) == NULL || x->req() != 3 || loop->_irreducible) {
372     return NULL;
373   }
374   Node *init_control = x->in(LoopNode::EntryControl);
375   Node *back_control = x->in(LoopNode::LoopBackControl);
376   if (init_control == NULL || back_control == NULL) {   // Partially dead
377     return NULL;
378   }
379   // Must also check for TOP when looking for a dead loop
380   if (init_control->is_top() || back_control->is_top()) {
381     return NULL;
382   }
383 
384   // Allow funny placement of Safepoint
385   if (back_control->Opcode() == Op_SafePoint) {
386     back_control = back_control->in(TypeFunc::Control);
387   }
388 
389   // Controlling test for loop
390   Node *iftrue = back_control;
391   uint iftrue_op = iftrue->Opcode();
392   if (iftrue_op != Op_IfTrue &&
393       iftrue_op != Op_IfFalse) {
394     // I have a weird back-control.  Probably the loop-exit test is in
395     // the middle of the loop and I am looking at some trailing control-flow
396     // merge point.  To fix this I would have to partially peel the loop.
397     return NULL; // Obscure back-control
398   }
399 
400   // Get boolean guarding loop-back test
401   Node *iff = iftrue->in(0);
402   if (get_loop(iff) != loop || !iff->in(1)->is_Bool()) {
403     return NULL;
404   }
405   return iftrue;
406 }
407 
loop_exit_test(Node * back_control,IdealLoopTree * loop,Node * & incr,Node * & limit,BoolTest::mask & bt,float & cl_prob)408 Node* PhaseIdealLoop::loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob) {
409   Node* iftrue = back_control;
410   uint iftrue_op = iftrue->Opcode();
411   Node* iff = iftrue->in(0);
412   BoolNode* test = iff->in(1)->as_Bool();
413   bt = test->_test._test;
414   cl_prob = iff->as_If()->_prob;
415   if (iftrue_op == Op_IfFalse) {
416     bt = BoolTest(bt).negate();
417     cl_prob = 1.0 - cl_prob;
418   }
419   // Get backedge compare
420   Node* cmp = test->in(1);
421   if (!cmp->is_Cmp()) {
422     return NULL;
423   }
424 
425   // Find the trip-counter increment & limit.  Limit must be loop invariant.
426   incr  = cmp->in(1);
427   limit = cmp->in(2);
428 
429   // ---------
430   // need 'loop()' test to tell if limit is loop invariant
431   // ---------
432 
433   if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
434     Node* tmp = incr;            // Then reverse order into the CmpI
435     incr = limit;
436     limit = tmp;
437     bt = BoolTest(bt).commute(); // And commute the exit test
438   }
439   if (is_member(loop, get_ctrl(limit))) { // Limit must be loop-invariant
440     return NULL;
441   }
442   if (!is_member(loop, get_ctrl(incr))) { // Trip counter must be loop-variant
443     return NULL;
444   }
445   return cmp;
446 }
447 
loop_iv_incr(Node * incr,Node * x,IdealLoopTree * loop,Node * & phi_incr)448 Node* PhaseIdealLoop::loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr) {
449   if (incr->is_Phi()) {
450     if (incr->as_Phi()->region() != x || incr->req() != 3) {
451       return NULL; // Not simple trip counter expression
452     }
453     phi_incr = incr;
454     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
455     if (!is_member(loop, get_ctrl(incr))) { // Trip counter must be loop-variant
456       return NULL;
457     }
458   }
459   return incr;
460 }
461 
loop_iv_stride(Node * incr,IdealLoopTree * loop,Node * & xphi)462 Node* PhaseIdealLoop::loop_iv_stride(Node* incr, IdealLoopTree* loop, Node*& xphi) {
463   assert(incr->Opcode() == Op_AddI || incr->Opcode() == Op_AddL, "caller resp.");
464   // Get merge point
465   xphi = incr->in(1);
466   Node *stride = incr->in(2);
467   if (!stride->is_Con()) {     // Oops, swap these
468     if (!xphi->is_Con()) {     // Is the other guy a constant?
469       return NULL;             // Nope, unknown stride, bail out
470     }
471     Node *tmp = xphi;          // 'incr' is commutative, so ok to swap
472     xphi = stride;
473     stride = tmp;
474   }
475   return stride;
476 }
477 
loop_iv_phi(Node * xphi,Node * phi_incr,Node * x,IdealLoopTree * loop)478 PhiNode* PhaseIdealLoop::loop_iv_phi(Node* xphi, Node* phi_incr, Node* x, IdealLoopTree* loop) {
479   if (!xphi->is_Phi()) {
480     return NULL; // Too much math on the trip counter
481   }
482   if (phi_incr != NULL && phi_incr != xphi) {
483     return NULL;
484   }
485   PhiNode *phi = xphi->as_Phi();
486 
487   // Phi must be of loop header; backedge must wrap to increment
488   if (phi->region() != x) {
489     return NULL;
490   }
491   return phi;
492 }
493 
check_stride_overflow(jlong stride_con,const TypeInteger * limit_t,BasicType bt)494 static int check_stride_overflow(jlong stride_con, const TypeInteger* limit_t, BasicType bt) {
495   if (stride_con > 0) {
496     if (limit_t->lo_as_long() > (max_signed_integer(bt) - stride_con)) {
497       return -1;
498     }
499     if (limit_t->hi_as_long() > (max_signed_integer(bt) - stride_con)) {
500       return 1;
501     }
502   } else {
503     if (limit_t->hi_as_long() < (min_signed_integer(bt) - stride_con)) {
504       return -1;
505     }
506     if (limit_t->lo_as_long() < (min_signed_integer(bt) - stride_con)) {
507       return 1;
508     }
509   }
510   return 0;
511 }
512 
condition_stride_ok(BoolTest::mask bt,jlong stride_con)513 static bool condition_stride_ok(BoolTest::mask bt, jlong stride_con) {
514   // If the condition is inverted and we will be rolling
515   // through MININT to MAXINT, then bail out.
516   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
517       // Odd stride
518       (bt == BoolTest::ne && stride_con != 1 && stride_con != -1) ||
519       // Count down loop rolls through MAXINT
520       ((bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0) ||
521       // Count up loop rolls through MININT
522       ((bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0)) {
523     return false; // Bail out
524   }
525   return true;
526 }
527 
long_loop_replace_long_iv(Node * iv_to_replace,Node * inner_iv,Node * outer_phi,Node * inner_head)528 void PhaseIdealLoop::long_loop_replace_long_iv(Node* iv_to_replace, Node* inner_iv, Node* outer_phi, Node* inner_head) {
529   Node* iv_as_long = new ConvI2LNode(inner_iv, TypeLong::INT);
530   register_new_node(iv_as_long, inner_head);
531   Node* iv_replacement = new AddLNode(outer_phi, iv_as_long);
532   register_new_node(iv_replacement, inner_head);
533   for (DUIterator_Last imin, i = iv_to_replace->last_outs(imin); i >= imin;) {
534     Node* u = iv_to_replace->last_out(i);
535 #ifdef ASSERT
536     if (!is_dominator(inner_head, ctrl_or_self(u))) {
537       assert(u->is_Phi(), "should be a Phi");
538       for (uint j = 1; j < u->req(); j++) {
539         if (u->in(j) == iv_to_replace) {
540           assert(is_dominator(inner_head, u->in(0)->in(j)), "iv use above loop?");
541         }
542       }
543     }
544 #endif
545     _igvn.rehash_node_delayed(u);
546     int nb = u->replace_edge(iv_to_replace, iv_replacement);
547     i -= nb;
548   }
549 }
550 
add_empty_predicate(Deoptimization::DeoptReason reason,Node * inner_head,IdealLoopTree * loop,SafePointNode * sfpt)551 void PhaseIdealLoop::add_empty_predicate(Deoptimization::DeoptReason reason, Node* inner_head, IdealLoopTree* loop, SafePointNode* sfpt) {
552   if (!C->too_many_traps(reason)) {
553     Node *cont = _igvn.intcon(1);
554     Node* opq = new Opaque1Node(C, cont);
555     _igvn.register_new_node_with_optimizer(opq);
556     Node *bol = new Conv2BNode(opq);
557     _igvn.register_new_node_with_optimizer(bol);
558     set_subtree_ctrl(bol, false);
559     IfNode* iff = new IfNode(inner_head->in(LoopNode::EntryControl), bol, PROB_MAX, COUNT_UNKNOWN);
560     register_control(iff, loop, inner_head->in(LoopNode::EntryControl));
561     Node* iffalse = new IfFalseNode(iff);
562     register_control(iffalse, _ltree_root, iff);
563     Node* iftrue = new IfTrueNode(iff);
564     register_control(iftrue, loop, iff);
565     C->add_predicate_opaq(opq);
566 
567     int trap_request = Deoptimization::make_trap_request(reason, Deoptimization::Action_maybe_recompile);
568     address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
569     const TypePtr* no_memory_effects = NULL;
570     JVMState* jvms = sfpt->jvms();
571     CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap",
572                                            jvms->bci(), no_memory_effects);
573 
574     Node* mem = NULL;
575     Node* i_o = NULL;
576     if (sfpt->is_Call()) {
577       mem = sfpt->proj_out(TypeFunc::Memory);
578       i_o = sfpt->proj_out(TypeFunc::I_O);
579     } else {
580       mem = sfpt->memory();
581       i_o = sfpt->i_o();
582     }
583 
584     Node *frame = new ParmNode(C->start(), TypeFunc::FramePtr);
585     register_new_node(frame, C->start());
586     Node *ret = new ParmNode(C->start(), TypeFunc::ReturnAdr);
587     register_new_node(ret, C->start());
588 
589     unc->init_req(TypeFunc::Control, iffalse);
590     unc->init_req(TypeFunc::I_O, i_o);
591     unc->init_req(TypeFunc::Memory, mem); // may gc ptrs
592     unc->init_req(TypeFunc::FramePtr, frame);
593     unc->init_req(TypeFunc::ReturnAdr, ret);
594     unc->init_req(TypeFunc::Parms+0, _igvn.intcon(trap_request));
595     unc->set_cnt(PROB_UNLIKELY_MAG(4));
596     unc->copy_call_debug_info(&_igvn, sfpt);
597 
598     for (uint i = TypeFunc::Parms; i < unc->req(); i++) {
599       set_subtree_ctrl(unc->in(i), false);
600     }
601     register_control(unc, _ltree_root, iffalse);
602 
603     Node* ctrl = new ProjNode(unc, TypeFunc::Control);
604     register_control(ctrl, _ltree_root, unc);
605     Node* halt = new HaltNode(ctrl, frame, "uncommon trap returned which should never happen" PRODUCT_ONLY(COMMA /*reachable*/false));
606     register_control(halt, _ltree_root, ctrl);
607     C->root()->add_req(halt);
608 
609     _igvn.replace_input_of(inner_head, LoopNode::EntryControl, iftrue);
610     set_idom(inner_head, iftrue, dom_depth(inner_head));
611   }
612 }
613 
614 // Find a safepoint node that dominates the back edge. We need a
615 // SafePointNode so we can use its jvm state to create empty
616 // predicates.
no_side_effect_since_safepoint(Compile * C,Node * x,Node * mem,MergeMemNode * mm)617 static bool no_side_effect_since_safepoint(Compile* C, Node* x, Node* mem, MergeMemNode* mm) {
618   SafePointNode* safepoint = NULL;
619   for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
620     Node* u = x->fast_out(i);
621     if (u->is_Phi() && u->bottom_type() == Type::MEMORY) {
622       Node* m = u->in(LoopNode::LoopBackControl);
623       if (u->adr_type() == TypePtr::BOTTOM) {
624         if (m->is_MergeMem() && mem->is_MergeMem()) {
625           if (m != mem DEBUG_ONLY(|| true)) {
626             for (MergeMemStream mms(m->as_MergeMem(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
627               if (!mms.is_empty()) {
628                 if (mms.memory() != mms.memory2()) {
629                   return false;
630                 }
631 #ifdef ASSERT
632                 if (mms.alias_idx() != Compile::AliasIdxBot) {
633                   mm->set_memory_at(mms.alias_idx(), mem->as_MergeMem()->base_memory());
634                 }
635 #endif
636               }
637             }
638           }
639         } else if (mem->is_MergeMem()) {
640           if (m != mem->as_MergeMem()->base_memory()) {
641             return false;
642           }
643         } else {
644           return false;
645         }
646       } else {
647         if (mem->is_MergeMem()) {
648           if (m != mem->as_MergeMem()->memory_at(C->get_alias_index(u->adr_type()))) {
649             return false;
650           }
651 #ifdef ASSERT
652           mm->set_memory_at(C->get_alias_index(u->adr_type()), mem->as_MergeMem()->base_memory());
653 #endif
654         } else {
655           if (m != mem) {
656             return false;
657           }
658         }
659       }
660     }
661   }
662   return true;
663 }
664 
find_safepoint(Node * back_control,Node * x,IdealLoopTree * loop)665 SafePointNode* PhaseIdealLoop::find_safepoint(Node* back_control, Node* x, IdealLoopTree* loop) {
666   IfNode* exit_test = back_control->in(0)->as_If();
667   SafePointNode* safepoint = NULL;
668   if (exit_test->in(0)->is_SafePoint() && exit_test->in(0)->outcnt() == 1) {
669     safepoint = exit_test->in(0)->as_SafePoint();
670   } else {
671     Node* c = back_control;
672     while (c != x && c->Opcode() != Op_SafePoint) {
673       c = idom(c);
674     }
675 
676     if (c->Opcode() == Op_SafePoint) {
677       safepoint = c->as_SafePoint();
678     }
679 
680     if (safepoint == NULL) {
681       return NULL;
682     }
683 
684     Node* mem = safepoint->in(TypeFunc::Memory);
685 
686     // We can only use that safepoint if there's not side effect
687     // between the backedge and the safepoint.
688 
689     // mm is used for book keeping
690     MergeMemNode* mm = NULL;
691 #ifdef ASSERT
692     if (mem->is_MergeMem()) {
693       mm = mem->clone()->as_MergeMem();
694       _igvn._worklist.push(mm);
695       for (MergeMemStream mms(mem->as_MergeMem()); mms.next_non_empty(); ) {
696         if (mms.alias_idx() != Compile::AliasIdxBot && loop != get_loop(ctrl_or_self(mms.memory()))) {
697           mm->set_memory_at(mms.alias_idx(), mem->as_MergeMem()->base_memory());
698         }
699       }
700     }
701 #endif
702     if (!no_side_effect_since_safepoint(C, x, mem, mm)) {
703       safepoint = NULL;
704     } else {
705       assert(mm == NULL|| _igvn.transform(mm) == mem->as_MergeMem()->base_memory(), "all memory state should have been processed");
706     }
707 #ifdef ASSERT
708     if (mm != NULL) {
709       _igvn.remove_dead_node(mm);
710     }
711 #endif
712   }
713   return safepoint;
714 }
715 
716 // If the loop has the shape of a counted loop but with a long
717 // induction variable, transform the loop in a loop nest: an inner
718 // loop that iterates for at most max int iterations with an integer
719 // induction variable and an outer loop that iterates over the full
720 // range of long values from the initial loop in (at most) max int
721 // steps. That is:
722 //
723 // x: for (long phi = init; phi < limit; phi += stride) {
724 //   // phi := Phi(L, init, incr)
725 //   // incr := AddL(phi, longcon(stride))
726 //   long incr = phi + stride;
727 //   ... use phi and incr ...
728 // }
729 //
730 // OR:
731 //
732 // x: for (long phi = init; (phi += stride) < limit; ) {
733 //   // phi := Phi(L, AddL(init, stride), incr)
734 //   // incr := AddL(phi, longcon(stride))
735 //   long incr = phi + stride;
736 //   ... use phi and (phi + stride) ...
737 // }
738 //
739 // ==transform=>
740 //
741 // const ulong inner_iters_limit = INT_MAX - stride - 1;  //near 0x7FFFFFF0
742 // assert(stride <= inner_iters_limit);  // else abort transform
743 // assert((extralong)limit + stride <= LONG_MAX);  // else deopt
744 // outer_head: for (long outer_phi = init;;) {
745 //   // outer_phi := Phi(outer_head, init, AddL(outer_phi, I2L(inner_phi)))
746 //   ulong inner_iters_max = (ulong) MAX(0, ((extralong)limit + stride - outer_phi));
747 //   long inner_iters_actual = MIN(inner_iters_limit, inner_iters_max);
748 //   assert(inner_iters_actual == (int)inner_iters_actual);
749 //   int inner_phi, inner_incr;
750 //   x: for (inner_phi = 0;; inner_phi = inner_incr) {
751 //     // inner_phi := Phi(x, intcon(0), inner_incr)
752 //     // inner_incr := AddI(inner_phi, intcon(stride))
753 //     inner_incr = inner_phi + stride;
754 //     if (inner_incr < inner_iters_actual) {
755 //       ... use phi=>(outer_phi+inner_phi) and incr=>(outer_phi+inner_incr) ...
756 //       continue;
757 //     }
758 //     else break;
759 //   }
760 //   if ((outer_phi+inner_phi) < limit)  //OR (outer_phi+inner_incr) < limit
761 //     continue;
762 //   else break;
763 // }
transform_long_counted_loop(IdealLoopTree * loop,Node_List & old_new)764 bool PhaseIdealLoop::transform_long_counted_loop(IdealLoopTree* loop, Node_List &old_new) {
765   Node* x = loop->_head;
766   // Only for inner loops
767   if (loop->_child != NULL || !x->is_LongCountedLoop()) {
768     return false;
769   }
770 
771   check_long_counted_loop(loop, x);
772 
773   LongCountedLoopNode* head = x->as_LongCountedLoop();
774 
775 #ifndef PRODUCT
776   Atomic::inc(&_long_loop_candidates);
777 #endif
778 
779   jlong stride_con = head->stride_con();
780   assert(stride_con != 0, "missed some peephole opt");
781   // We can't iterate for more than max int at a time.
782   if (stride_con != (jint)stride_con) {
783     return false;
784   }
785   // The number of iterations for the integer count loop: guarantee no
786   // overflow: max_jint - stride_con max. -1 so there's no need for a
787   // loop limit check if the exit test is <= or >=.
788   int iters_limit = max_jint - ABS(stride_con) - 1;
789 #ifdef ASSERT
790   if (StressLongCountedLoop > 0) {
791     iters_limit = iters_limit / StressLongCountedLoop;
792   }
793 #endif
794   // At least 2 iterations so counted loop construction doesn't fail
795   if (iters_limit/ABS(stride_con) < 2) {
796     return false;
797   }
798 
799   PhiNode* phi = head->phi()->as_Phi();
800   Node* incr = head->incr();
801 
802   Node* back_control = head->in(LoopNode::LoopBackControl);
803 
804   // data nodes on back branch not supported
805   if (back_control->outcnt() > 1) {
806     return false;
807   }
808 
809   Node* limit = head->limit();
810   // We'll need to use the loop limit before the inner loop is entered
811   if (!is_dominator(get_ctrl(limit), x)) {
812     return false;
813   }
814 
815   const TypeLong* phi_t = _igvn.type(phi)->is_long();
816   assert(phi_t->_hi >= phi_t->_lo, "dead phi?");
817   iters_limit = (int)MIN2((julong)iters_limit, (julong)(phi_t->_hi - phi_t->_lo));
818 
819   LongCountedLoopEndNode* exit_test = head->loopexit();
820   BoolTest::mask bt = exit_test->test_trip();
821 
822   // We need a safepoint to insert empty predicates for the inner loop.
823   SafePointNode* safepoint = find_safepoint(back_control, x, loop);
824 
825   assert(back_control->Opcode() == Op_IfTrue, "wrong projection for back edge");
826   Node* exit_branch = exit_test->proj_out(false);
827   Node* entry_control = x->in(LoopNode::EntryControl);
828   Node* cmp = exit_test->cmp_node();
829 
830   // Clone the control flow of the loop to build an outer loop
831   Node* outer_back_branch = back_control->clone();
832   Node* outer_exit_test = new IfNode(exit_test->in(0), exit_test->in(1), exit_test->_prob, exit_test->_fcnt);
833   Node* inner_exit_branch = exit_branch->clone();
834 
835   Node* outer_head = new LoopNode(entry_control, outer_back_branch);
836   IdealLoopTree* outer_ilt = insert_outer_loop(loop, outer_head->as_Loop(), outer_back_branch);
837 
838   const bool body_populated = true;
839   register_control(outer_head, outer_ilt, entry_control, body_populated);
840 
841   _igvn.register_new_node_with_optimizer(inner_exit_branch);
842   set_loop(inner_exit_branch, outer_ilt);
843   set_idom(inner_exit_branch, exit_test, dom_depth(exit_branch));
844 
845   outer_exit_test->set_req(0, inner_exit_branch);
846   register_control(outer_exit_test, outer_ilt, inner_exit_branch, body_populated);
847 
848   _igvn.replace_input_of(exit_branch, 0, outer_exit_test);
849   set_idom(exit_branch, outer_exit_test, dom_depth(exit_branch));
850 
851   outer_back_branch->set_req(0, outer_exit_test);
852   register_control(outer_back_branch, outer_ilt, outer_exit_test, body_populated);
853 
854   _igvn.replace_input_of(x, LoopNode::EntryControl, outer_head);
855   set_idom(x, outer_head, dom_depth(x));
856 
857   // add an iv phi to the outer loop and use it to compute the inner
858   // loop iteration limit
859   Node* outer_phi = phi->clone();
860   outer_phi->set_req(0, outer_head);
861   register_new_node(outer_phi, outer_head);
862 
863   Node* inner_iters_max = NULL;
864   if (stride_con > 0) {
865     inner_iters_max = MaxNode::max_diff_with_zero(limit, outer_phi, TypeLong::LONG, _igvn);
866   } else {
867     inner_iters_max = MaxNode::max_diff_with_zero(outer_phi, limit, TypeLong::LONG, _igvn);
868   }
869 
870   Node* inner_iters_limit = _igvn.longcon(iters_limit);
871   // inner_iters_max may not fit in a signed integer (iterating from
872   // Long.MIN_VALUE to Long.MAX_VALUE for instance). Use an unsigned
873   // min.
874   Node* inner_iters_actual = MaxNode::unsigned_min(inner_iters_max, inner_iters_limit, TypeLong::make(0, iters_limit, Type::WidenMin), _igvn);
875 
876   Node* inner_iters_actual_int = new ConvL2INode(inner_iters_actual);
877   _igvn.register_new_node_with_optimizer(inner_iters_actual_int);
878 
879   Node* zero = _igvn.intcon(0);
880   set_ctrl(zero, C->root());
881   if (stride_con < 0) {
882     inner_iters_actual_int = new SubINode(zero, inner_iters_actual_int);
883     _igvn.register_new_node_with_optimizer(inner_iters_actual_int);
884   }
885 
886   // Clone the iv data nodes as an integer iv
887   Node* int_stride = _igvn.intcon((int)stride_con);
888   set_ctrl(int_stride, C->root());
889   Node* inner_phi = new PhiNode(x->in(0), TypeInt::INT);
890   Node* inner_incr = new AddINode(inner_phi, int_stride);
891   Node* inner_cmp = NULL;
892   inner_cmp = new CmpINode(inner_incr, inner_iters_actual_int);
893   Node* inner_bol = new BoolNode(inner_cmp, exit_test->in(1)->as_Bool()->_test._test);
894   inner_phi->set_req(LoopNode::EntryControl, zero);
895   inner_phi->set_req(LoopNode::LoopBackControl, inner_incr);
896   register_new_node(inner_phi, x);
897   register_new_node(inner_incr, x);
898   register_new_node(inner_cmp, x);
899   register_new_node(inner_bol, x);
900 
901   _igvn.replace_input_of(exit_test, 1, inner_bol);
902 
903   // Clone inner loop phis to outer loop
904   for (uint i = 0; i < head->outcnt(); i++) {
905     Node* u = head->raw_out(i);
906     if (u->is_Phi() && u != inner_phi && u != phi) {
907       assert(u->in(0) == head, "inconsistent");
908       Node* clone = u->clone();
909       clone->set_req(0, outer_head);
910       register_new_node(clone, outer_head);
911       _igvn.replace_input_of(u, LoopNode::EntryControl, clone);
912     }
913   }
914 
915   // Replace inner loop long iv phi as inner loop int iv phi + outer
916   // loop iv phi
917   long_loop_replace_long_iv(phi, inner_phi, outer_phi, head);
918 
919   // Replace inner loop long iv incr with inner loop int incr + outer
920   // loop iv phi
921   long_loop_replace_long_iv(incr, inner_incr, outer_phi, head);
922 
923   set_subtree_ctrl(inner_iters_actual_int, body_populated);
924 
925   LoopNode* inner_head = create_inner_head(loop, head, exit_test);
926 
927   // Summary of steps from inital loop to loop nest:
928   //
929   // == old IR nodes =>
930   //
931   // entry_control: {...}
932   // x:
933   // for (long phi = init;;) {
934   //   // phi := Phi(x, init, incr)
935   //   // incr := AddL(phi, longcon(stride))
936   //   exit_test:
937   //   if (phi < limit)
938   //     back_control: fallthrough;
939   //   else
940   //     exit_branch: break;
941   //   long incr = phi + stride;
942   //   ... use phi and incr ...
943   //   phi = incr;
944   // }
945   //
946   // == new IR nodes (just before final peel) =>
947   //
948   // entry_control: {...}
949   // long adjusted_limit = limit + stride;  //because phi_incr != NULL
950   // assert(!limit_check_required || (extralong)limit + stride == adjusted_limit);  // else deopt
951   // ulong inner_iters_limit = max_jint - ABS(stride) - 1;  //near 0x7FFFFFF0
952   // outer_head:
953   // for (long outer_phi = init;;) {
954   //   // outer_phi := phi->clone(), in(0):=outer_head, => Phi(outer_head, init, incr)
955   //   // REPLACE phi  => AddL(outer_phi, I2L(inner_phi))
956   //   // REPLACE incr => AddL(outer_phi, I2L(inner_incr))
957   //   // SO THAT outer_phi := Phi(outer_head, init, AddL(outer_phi, I2L(inner_incr)))
958   //   ulong inner_iters_max = (ulong) MAX(0, ((extralong)adjusted_limit - outer_phi) * SGN(stride));
959   //   int inner_iters_actual_int = (int) MIN(inner_iters_limit, inner_iters_max) * SGN(stride);
960   //   inner_head: x: //in(1) := outer_head
961   //   int inner_phi;
962   //   for (inner_phi = 0;;) {
963   //     // inner_phi := Phi(x, intcon(0), inner_phi + stride)
964   //     int inner_incr = inner_phi + stride;
965   //     bool inner_bol = (inner_incr < inner_iters_actual_int);
966   //     exit_test: //exit_test->in(1) := inner_bol;
967   //     if (inner_bol) // WAS (phi < limit)
968   //       back_control: fallthrough;
969   //     else
970   //       inner_exit_branch: break;  //exit_branch->clone()
971   //     ... use phi=>(outer_phi+inner_phi) and incr=>(outer_phi+inner_incr) ...
972   //     inner_phi = inner_phi + stride;  // inner_incr
973   //   }
974   //   outer_exit_test:  //exit_test->clone(), in(0):=inner_exit_branch
975   //   if ((outer_phi+inner_phi) < limit)  // WAS (phi < limit)
976   //     outer_back_branch: fallthrough;  //back_control->clone(), in(0):=outer_exit_test
977   //   else
978   //     exit_branch: break;  //in(0) := outer_exit_test
979   // }
980 
981   // Peel one iteration of the loop and use the safepoint at the end
982   // of the peeled iteration to insert empty predicates. If no well
983   // positioned safepoint peel to guarantee a safepoint in the outer
984   // loop.
985   if (safepoint != NULL || !loop->_has_call) {
986     old_new.clear();
987     do_peeling(loop, old_new);
988   } else {
989     C->set_major_progress();
990   }
991 
992   if (safepoint != NULL) {
993     SafePointNode* cloned_sfpt = old_new[safepoint->_idx]->as_SafePoint();
994 
995     if (UseLoopPredicate) {
996       add_empty_predicate(Deoptimization::Reason_predicate, inner_head, outer_ilt, cloned_sfpt);
997     }
998     if (UseProfiledLoopPredicate) {
999       add_empty_predicate(Deoptimization::Reason_profile_predicate, inner_head, outer_ilt, cloned_sfpt);
1000     }
1001     add_empty_predicate(Deoptimization::Reason_loop_limit_check, inner_head, outer_ilt, cloned_sfpt);
1002   }
1003 
1004 #ifndef PRODUCT
1005   Atomic::inc(&_long_loop_nests);
1006 #endif
1007 
1008   inner_head->mark_transformed_long_loop();
1009 
1010   return true;
1011 }
1012 
create_inner_head(IdealLoopTree * loop,LongCountedLoopNode * head,LongCountedLoopEndNode * exit_test)1013 LoopNode* PhaseIdealLoop::create_inner_head(IdealLoopTree* loop, LongCountedLoopNode* head,
1014                                             LongCountedLoopEndNode* exit_test) {
1015   LoopNode* new_inner_head = new LoopNode(head->in(1), head->in(2));
1016   IfNode* new_inner_exit = new IfNode(exit_test->in(0), exit_test->in(1), exit_test->_prob, exit_test->_fcnt);
1017   _igvn.register_new_node_with_optimizer(new_inner_head);
1018   _igvn.register_new_node_with_optimizer(new_inner_exit);
1019   loop->_body.push(new_inner_head);
1020   loop->_body.push(new_inner_exit);
1021   loop->_body.yank(head);
1022   loop->_body.yank(exit_test);
1023   set_loop(new_inner_head, loop);
1024   set_loop(new_inner_exit, loop);
1025   set_idom(new_inner_head, idom(head), dom_depth(head));
1026   set_idom(new_inner_exit, idom(exit_test), dom_depth(exit_test));
1027   lazy_replace(head, new_inner_head);
1028   lazy_replace(exit_test, new_inner_exit);
1029   loop->_head = new_inner_head;
1030   return new_inner_head;
1031 }
1032 
1033 #ifdef ASSERT
check_long_counted_loop(IdealLoopTree * loop,Node * x)1034 void PhaseIdealLoop::check_long_counted_loop(IdealLoopTree* loop, Node* x) {
1035   Node* back_control = loop_exit_control(x, loop);
1036   assert(back_control != NULL, "no back control");
1037 
1038   BoolTest::mask bt = BoolTest::illegal;
1039   float cl_prob = 0;
1040   Node* incr = NULL;
1041   Node* limit = NULL;
1042 
1043   Node* cmp = loop_exit_test(back_control, loop, incr, limit, bt, cl_prob);
1044   assert(cmp != NULL && cmp->Opcode() == Op_CmpL, "no exit test");
1045 
1046   Node* phi_incr = NULL;
1047   incr = loop_iv_incr(incr, x, loop, phi_incr);
1048   assert(incr != NULL && incr->Opcode() == Op_AddL, "no incr");
1049 
1050   Node* xphi = NULL;
1051   Node* stride = loop_iv_stride(incr, loop, xphi);
1052 
1053   assert(stride != NULL, "no stride");
1054 
1055   PhiNode* phi = loop_iv_phi(xphi, phi_incr, x, loop);
1056 
1057   assert(phi != NULL && phi->in(LoopNode::LoopBackControl) == incr, "No phi");
1058 
1059   jlong stride_con = stride->get_long();
1060 
1061   assert(condition_stride_ok(bt, stride_con), "illegal condition");
1062 
1063   assert(bt != BoolTest::ne, "unexpected condition");
1064   assert(phi_incr == NULL, "bad loop shape");
1065   assert(cmp->in(1) == incr, "bad exit test shape");
1066 
1067   // Safepoint on backedge not supported
1068   assert(x->in(LoopNode::LoopBackControl)->Opcode() != Op_SafePoint, "no safepoint on backedge");
1069 }
1070 #endif
1071 
1072 #ifdef ASSERT
1073 // convert an int counted loop to a long counted to stress handling of
1074 // long counted loops
convert_to_long_loop(Node * cmp,Node * phi,IdealLoopTree * loop)1075 bool PhaseIdealLoop::convert_to_long_loop(Node* cmp, Node* phi, IdealLoopTree* loop) {
1076   Unique_Node_List iv_nodes;
1077   Node_List old_new;
1078   iv_nodes.push(cmp);
1079   bool failed = false;
1080 
1081   for (uint i = 0; i < iv_nodes.size() && !failed; i++) {
1082     Node* n = iv_nodes.at(i);
1083     switch(n->Opcode()) {
1084       case Op_Phi: {
1085         Node* clone = new PhiNode(n->in(0), TypeLong::LONG);
1086         old_new.map(n->_idx, clone);
1087         break;
1088       }
1089       case Op_CmpI: {
1090         Node* clone = new CmpLNode(NULL, NULL);
1091         old_new.map(n->_idx, clone);
1092         break;
1093       }
1094       case Op_AddI: {
1095         Node* clone = new AddLNode(NULL, NULL);
1096         old_new.map(n->_idx, clone);
1097         break;
1098       }
1099       case Op_CastII: {
1100         failed = true;
1101         break;
1102       }
1103       default:
1104         DEBUG_ONLY(n->dump());
1105         fatal("unexpected");
1106     }
1107 
1108     for (uint i = 1; i < n->req(); i++) {
1109       Node* in = n->in(i);
1110       if (in == NULL) {
1111         continue;
1112       }
1113       if (loop->is_member(get_loop(get_ctrl(in)))) {
1114         iv_nodes.push(in);
1115       }
1116     }
1117   }
1118 
1119   if (failed) {
1120     for (uint i = 0; i < iv_nodes.size(); i++) {
1121       Node* n = iv_nodes.at(i);
1122       Node* clone = old_new[n->_idx];
1123       if (clone != NULL) {
1124         _igvn.remove_dead_node(clone);
1125       }
1126     }
1127     return false;
1128   }
1129 
1130   for (uint i = 0; i < iv_nodes.size(); i++) {
1131     Node* n = iv_nodes.at(i);
1132     Node* clone = old_new[n->_idx];
1133     for (uint i = 1; i < n->req(); i++) {
1134       Node* in = n->in(i);
1135       if (in == NULL) {
1136         continue;
1137       }
1138       Node* in_clone = old_new[in->_idx];
1139       if (in_clone == NULL) {
1140         assert(_igvn.type(in)->isa_int(), "");
1141         in_clone = new ConvI2LNode(in);
1142         _igvn.register_new_node_with_optimizer(in_clone);
1143         set_subtree_ctrl(in_clone, false);
1144       }
1145       if (in_clone->in(0) == NULL) {
1146         in_clone->set_req(0, C->top());
1147         clone->set_req(i, in_clone);
1148         in_clone->set_req(0, NULL);
1149       } else {
1150         clone->set_req(i, in_clone);
1151       }
1152     }
1153     _igvn.register_new_node_with_optimizer(clone);
1154   }
1155   set_ctrl(old_new[phi->_idx], phi->in(0));
1156 
1157   for (uint i = 0; i < iv_nodes.size(); i++) {
1158     Node* n = iv_nodes.at(i);
1159     Node* clone = old_new[n->_idx];
1160     set_subtree_ctrl(clone, false);
1161     Node* m = n->Opcode() == Op_CmpI ? clone : NULL;
1162     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1163       Node* u = n->fast_out(i);
1164       if (iv_nodes.member(u)) {
1165         continue;
1166       }
1167       if (m == NULL) {
1168         m = new ConvL2INode(clone);
1169         _igvn.register_new_node_with_optimizer(m);
1170         set_subtree_ctrl(m, false);
1171       }
1172       _igvn.rehash_node_delayed(u);
1173       int nb = u->replace_edge(n, m);
1174       --i, imax -= nb;
1175     }
1176   }
1177   return true;
1178 }
1179 #endif
1180 
1181 //------------------------------is_counted_loop--------------------------------
is_counted_loop(Node * x,IdealLoopTree * & loop,BasicType iv_bt)1182 bool PhaseIdealLoop::is_counted_loop(Node* x, IdealLoopTree*&loop, BasicType iv_bt) {
1183   PhaseGVN *gvn = &_igvn;
1184 
1185   Node* back_control = loop_exit_control(x, loop);
1186   if (back_control == NULL) {
1187     return false;
1188   }
1189 
1190   BoolTest::mask bt = BoolTest::illegal;
1191   float cl_prob = 0;
1192   Node* incr = NULL;
1193   Node* limit = NULL;
1194   Node* cmp = loop_exit_test(back_control, loop, incr, limit, bt, cl_prob);
1195   if (cmp == NULL || !(cmp->is_Cmp() && cmp->operates_on(iv_bt, true))) {
1196     return false; // Avoid pointer & float & 64-bit compares
1197   }
1198 
1199   // Trip-counter increment must be commutative & associative.
1200   if (incr->is_ConstraintCast() && incr->operates_on(iv_bt, false)) {
1201     incr = incr->in(1);
1202   }
1203 
1204   Node* phi_incr = NULL;
1205   incr = loop_iv_incr(incr, x, loop, phi_incr);
1206   if (incr == NULL) {
1207     return false;
1208   }
1209 
1210   Node* trunc1 = NULL;
1211   Node* trunc2 = NULL;
1212   const TypeInteger* iv_trunc_t = NULL;
1213   Node* orig_incr = incr;
1214   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t, iv_bt))) {
1215     return false; // Funny increment opcode
1216   }
1217   assert(incr->is_Add() && incr->operates_on(iv_bt, false), "wrong increment code");
1218 
1219   Node* xphi = NULL;
1220   Node* stride = loop_iv_stride(incr, loop, xphi);
1221 
1222   if (stride == NULL) {
1223     return false;
1224   }
1225 
1226   if (xphi->is_ConstraintCast() && xphi->operates_on(iv_bt, false)) {
1227     xphi = xphi->in(1);
1228   }
1229 
1230   // Stride must be constant
1231   jlong stride_con = stride->get_integer_as_long(iv_bt);
1232   assert(stride_con != 0, "missed some peephole opt");
1233 
1234   PhiNode* phi = loop_iv_phi(xphi, phi_incr, x, loop);
1235 
1236   if (phi == NULL ||
1237       (trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr) ||
1238       (trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1)) {
1239     return false;
1240   }
1241 
1242   if (x->in(LoopNode::LoopBackControl)->Opcode() == Op_SafePoint &&
1243           ((iv_bt == T_INT && LoopStripMiningIter != 0) ||
1244            iv_bt == T_LONG)) {
1245     // Leaving the safepoint on the backedge and creating a
1246     // CountedLoop will confuse optimizations. We can't move the
1247     // safepoint around because its jvm state wouldn't match a new
1248     // location. Give up on that loop.
1249     return false;
1250   }
1251 
1252   Node* iftrue = back_control;
1253   uint iftrue_op = iftrue->Opcode();
1254   Node* iff = iftrue->in(0);
1255   BoolNode* test = iff->in(1)->as_Bool();
1256 
1257   const TypeInteger* limit_t = gvn->type(limit)->is_integer(iv_bt);
1258   if (trunc1 != NULL) {
1259     // When there is a truncation, we must be sure that after the truncation
1260     // the trip counter will end up higher than the limit, otherwise we are looking
1261     // at an endless loop. Can happen with range checks.
1262 
1263     // Example:
1264     // int i = 0;
1265     // while (true)
1266     //    sum + = array[i];
1267     //    i++;
1268     //    i = i && 0x7fff;
1269     //  }
1270     //
1271     // If the array is shorter than 0x8000 this exits through a AIOOB
1272     //  - Counted loop transformation is ok
1273     // If the array is longer then this is an endless loop
1274     //  - No transformation can be done.
1275 
1276     const TypeInteger* incr_t = gvn->type(orig_incr)->is_integer(iv_bt);
1277     if (limit_t->hi_as_long() > incr_t->hi_as_long()) {
1278       // if the limit can have a higher value than the increment (before the phi)
1279       return false;
1280     }
1281   }
1282 
1283   Node *init_trip = phi->in(LoopNode::EntryControl);
1284 
1285   // If iv trunc type is smaller than int, check for possible wrap.
1286   if (!TypeInteger::bottom(iv_bt)->higher_equal(iv_trunc_t)) {
1287     assert(trunc1 != NULL, "must have found some truncation");
1288 
1289     // Get a better type for the phi (filtered thru if's)
1290     const TypeInteger* phi_ft = filtered_type(phi);
1291 
1292     // Can iv take on a value that will wrap?
1293     //
1294     // Ensure iv's limit is not within "stride" of the wrap value.
1295     //
1296     // Example for "short" type
1297     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
1298     //    If the stride is +10, then the last value of the induction
1299     //    variable before the increment (phi_ft->_hi) must be
1300     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
1301     //    ensure no truncation occurs after the increment.
1302 
1303     if (stride_con > 0) {
1304       if (iv_trunc_t->hi_as_long() - phi_ft->hi_as_long() < stride_con ||
1305           iv_trunc_t->lo_as_long() > phi_ft->lo_as_long()) {
1306         return false;  // truncation may occur
1307       }
1308     } else if (stride_con < 0) {
1309       if (iv_trunc_t->lo_as_long() - phi_ft->lo_as_long() > stride_con ||
1310           iv_trunc_t->hi_as_long() < phi_ft->hi_as_long()) {
1311         return false;  // truncation may occur
1312       }
1313     }
1314     // No possibility of wrap so truncation can be discarded
1315     // Promote iv type to Int
1316   } else {
1317     assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
1318   }
1319 
1320   if (!condition_stride_ok(bt, stride_con)) {
1321     return false;
1322   }
1323 
1324   const TypeInteger* init_t = gvn->type(init_trip)->is_integer(iv_bt);
1325 
1326   if (stride_con > 0) {
1327     if (init_t->lo_as_long() > max_signed_integer(iv_bt) - stride_con) {
1328       return false; // cyclic loop
1329     }
1330   } else {
1331     if (init_t->hi_as_long() < min_signed_integer(iv_bt) - stride_con) {
1332       return false; // cyclic loop
1333     }
1334   }
1335 
1336   if (phi_incr != NULL && bt != BoolTest::ne) {
1337     // check if there is a possiblity of IV overflowing after the first increment
1338     if (stride_con > 0) {
1339       if (init_t->hi_as_long() > max_signed_integer(iv_bt) - stride_con) {
1340         return false;
1341       }
1342     } else {
1343       if (init_t->lo_as_long() < min_signed_integer(iv_bt) - stride_con) {
1344         return false;
1345       }
1346     }
1347   }
1348 
1349   // =================================================
1350   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
1351   //
1352   assert(x->Opcode() == Op_Loop || x->Opcode() == Op_LongCountedLoop, "regular loops only");
1353   C->print_method(PHASE_BEFORE_CLOOPS, 3);
1354 
1355   // ===================================================
1356   // Generate loop limit check to avoid integer overflow
1357   // in cases like next (cyclic loops):
1358   //
1359   // for (i=0; i <= max_jint; i++) {}
1360   // for (i=0; i <  max_jint; i+=2) {}
1361   //
1362   //
1363   // Limit check predicate depends on the loop test:
1364   //
1365   // for(;i != limit; i++)       --> limit <= (max_jint)
1366   // for(;i <  limit; i+=stride) --> limit <= (max_jint - stride + 1)
1367   // for(;i <= limit; i+=stride) --> limit <= (max_jint - stride    )
1368   //
1369 
1370   // Check if limit is excluded to do more precise int overflow check.
1371   bool incl_limit = (bt == BoolTest::le || bt == BoolTest::ge);
1372   jlong stride_m  = stride_con - (incl_limit ? 0 : (stride_con > 0 ? 1 : -1));
1373 
1374   // If compare points directly to the phi we need to adjust
1375   // the compare so that it points to the incr. Limit have
1376   // to be adjusted to keep trip count the same and the
1377   // adjusted limit should be checked for int overflow.
1378   Node* adjusted_limit = limit;
1379   if (phi_incr != NULL) {
1380     stride_m  += stride_con;
1381   }
1382 
1383   Node *init_control = x->in(LoopNode::EntryControl);
1384 
1385   int sov = check_stride_overflow(stride_m, limit_t, iv_bt);
1386   // If sov==0, limit's type always satisfies the condition, for
1387   // example, when it is an array length.
1388   if (sov != 0) {
1389     if (sov < 0) {
1390       return false;  // Bailout: integer overflow is certain.
1391     }
1392     assert(!x->as_Loop()->is_transformed_long_loop(), "long loop was transformed");
1393     // Generate loop's limit check.
1394     // Loop limit check predicate should be near the loop.
1395     ProjNode *limit_check_proj = find_predicate_insertion_point(init_control, Deoptimization::Reason_loop_limit_check);
1396     if (!limit_check_proj) {
1397       // The limit check predicate is not generated if this method trapped here before.
1398 #ifdef ASSERT
1399       if (TraceLoopLimitCheck) {
1400         tty->print("missing loop limit check:");
1401         loop->dump_head();
1402         x->dump(1);
1403       }
1404 #endif
1405       return false;
1406     }
1407 
1408     IfNode* check_iff = limit_check_proj->in(0)->as_If();
1409 
1410     if (!is_dominator(get_ctrl(limit), check_iff->in(0))) {
1411       return false;
1412     }
1413 
1414     Node* cmp_limit;
1415     Node* bol;
1416 
1417     if (stride_con > 0) {
1418       cmp_limit = CmpNode::make(limit, _igvn.integercon(max_jint - stride_m, iv_bt), iv_bt);
1419       bol = new BoolNode(cmp_limit, BoolTest::le);
1420     } else {
1421       cmp_limit = CmpNode::make(limit, _igvn.integercon(min_jint - stride_m, iv_bt), iv_bt);
1422       bol = new BoolNode(cmp_limit, BoolTest::ge);
1423     }
1424 
1425     insert_loop_limit_check(limit_check_proj, cmp_limit, bol);
1426   }
1427 
1428   // Now we need to canonicalize loop condition.
1429   if (bt == BoolTest::ne) {
1430     assert(stride_con == 1 || stride_con == -1, "simple increment only");
1431     if (stride_con > 0 && init_t->hi_as_long() < limit_t->lo_as_long()) {
1432       // 'ne' can be replaced with 'lt' only when init < limit.
1433       bt = BoolTest::lt;
1434     } else if (stride_con < 0 && init_t->lo_as_long() > limit_t->hi_as_long()) {
1435       // 'ne' can be replaced with 'gt' only when init > limit.
1436       bt = BoolTest::gt;
1437     } else {
1438       ProjNode *limit_check_proj = find_predicate_insertion_point(init_control, Deoptimization::Reason_loop_limit_check);
1439       if (!limit_check_proj) {
1440         // The limit check predicate is not generated if this method trapped here before.
1441 #ifdef ASSERT
1442         if (TraceLoopLimitCheck) {
1443           tty->print("missing loop limit check:");
1444           loop->dump_head();
1445           x->dump(1);
1446         }
1447 #endif
1448         return false;
1449       }
1450       IfNode* check_iff = limit_check_proj->in(0)->as_If();
1451 
1452       if (!is_dominator(get_ctrl(limit), check_iff->in(0)) ||
1453           !is_dominator(get_ctrl(init_trip), check_iff->in(0))) {
1454         return false;
1455       }
1456 
1457       Node* cmp_limit;
1458       Node* bol;
1459 
1460       if (stride_con > 0) {
1461         cmp_limit = CmpNode::make(init_trip, limit, iv_bt);
1462         bol = new BoolNode(cmp_limit, BoolTest::lt);
1463       } else {
1464         cmp_limit = CmpNode::make(init_trip, limit, iv_bt);
1465         bol = new BoolNode(cmp_limit, BoolTest::gt);
1466       }
1467 
1468       insert_loop_limit_check(limit_check_proj, cmp_limit, bol);
1469 
1470       if (stride_con > 0) {
1471         // 'ne' can be replaced with 'lt' only when init < limit.
1472         bt = BoolTest::lt;
1473       } else if (stride_con < 0) {
1474         // 'ne' can be replaced with 'gt' only when init > limit.
1475         bt = BoolTest::gt;
1476       }
1477     }
1478   }
1479 
1480 #ifdef ASSERT
1481   if (iv_bt == T_INT &&
1482       !x->as_Loop()->is_transformed_long_loop() &&
1483       StressLongCountedLoop > 0 &&
1484       trunc1 == NULL &&
1485       convert_to_long_loop(cmp, phi, loop)) {
1486     return false;
1487   }
1488 #endif
1489 
1490   if (phi_incr != NULL) {
1491     // If compare points directly to the phi we need to adjust
1492     // the compare so that it points to the incr. Limit have
1493     // to be adjusted to keep trip count the same and we
1494     // should avoid int overflow.
1495     //
1496     //   i = init; do {} while(i++ < limit);
1497     // is converted to
1498     //   i = init; do {} while(++i < limit+1);
1499     //
1500     adjusted_limit = gvn->transform(AddNode::make(limit, stride, iv_bt));
1501   }
1502 
1503   if (incl_limit) {
1504     // The limit check guaranties that 'limit <= (max_jint - stride)' so
1505     // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
1506     //
1507     Node* one = (stride_con > 0) ? gvn->integercon( 1, iv_bt) : gvn->integercon(-1, iv_bt);
1508     adjusted_limit = gvn->transform(AddNode::make(adjusted_limit, one, iv_bt));
1509     if (bt == BoolTest::le)
1510       bt = BoolTest::lt;
1511     else if (bt == BoolTest::ge)
1512       bt = BoolTest::gt;
1513     else
1514       ShouldNotReachHere();
1515   }
1516   set_subtree_ctrl(adjusted_limit, false);
1517 
1518   if (iv_bt == T_INT && LoopStripMiningIter == 0) {
1519     // Check for SafePoint on backedge and remove
1520     Node *sfpt = x->in(LoopNode::LoopBackControl);
1521     if (sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
1522       lazy_replace( sfpt, iftrue );
1523       if (loop->_safepts != NULL) {
1524         loop->_safepts->yank(sfpt);
1525       }
1526       loop->_tail = iftrue;
1527     }
1528   }
1529 
1530   // Build a canonical trip test.
1531   // Clone code, as old values may be in use.
1532   incr = incr->clone();
1533   incr->set_req(1,phi);
1534   incr->set_req(2,stride);
1535   incr = _igvn.register_new_node_with_optimizer(incr);
1536   set_early_ctrl(incr, false);
1537   _igvn.rehash_node_delayed(phi);
1538   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
1539 
1540   // If phi type is more restrictive than Int, raise to
1541   // Int to prevent (almost) infinite recursion in igvn
1542   // which can only handle integer types for constants or minint..maxint.
1543   if (!TypeInteger::bottom(iv_bt)->higher_equal(phi->bottom_type())) {
1544     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInteger::bottom(iv_bt));
1545     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
1546     nphi = _igvn.register_new_node_with_optimizer(nphi);
1547     set_ctrl(nphi, get_ctrl(phi));
1548     _igvn.replace_node(phi, nphi);
1549     phi = nphi->as_Phi();
1550   }
1551   cmp = cmp->clone();
1552   cmp->set_req(1,incr);
1553   cmp->set_req(2, adjusted_limit);
1554   cmp = _igvn.register_new_node_with_optimizer(cmp);
1555   set_ctrl(cmp, iff->in(0));
1556 
1557   test = test->clone()->as_Bool();
1558   (*(BoolTest*)&test->_test)._test = bt;
1559   test->set_req(1,cmp);
1560   _igvn.register_new_node_with_optimizer(test);
1561   set_ctrl(test, iff->in(0));
1562 
1563   // Replace the old IfNode with a new LoopEndNode
1564   Node *lex = _igvn.register_new_node_with_optimizer(BaseCountedLoopEndNode::make(iff->in(0), test, cl_prob, iff->as_If()->_fcnt, iv_bt));
1565   IfNode *le = lex->as_If();
1566   uint dd = dom_depth(iff);
1567   set_idom(le, le->in(0), dd); // Update dominance for loop exit
1568   set_loop(le, loop);
1569 
1570   // Get the loop-exit control
1571   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
1572 
1573   // Need to swap loop-exit and loop-back control?
1574   if (iftrue_op == Op_IfFalse) {
1575     Node *ift2=_igvn.register_new_node_with_optimizer(new IfTrueNode (le));
1576     Node *iff2=_igvn.register_new_node_with_optimizer(new IfFalseNode(le));
1577 
1578     loop->_tail = back_control = ift2;
1579     set_loop(ift2, loop);
1580     set_loop(iff2, get_loop(iffalse));
1581 
1582     // Lazy update of 'get_ctrl' mechanism.
1583     lazy_replace(iffalse, iff2);
1584     lazy_replace(iftrue,  ift2);
1585 
1586     // Swap names
1587     iffalse = iff2;
1588     iftrue  = ift2;
1589   } else {
1590     _igvn.rehash_node_delayed(iffalse);
1591     _igvn.rehash_node_delayed(iftrue);
1592     iffalse->set_req_X( 0, le, &_igvn );
1593     iftrue ->set_req_X( 0, le, &_igvn );
1594   }
1595 
1596   set_idom(iftrue,  le, dd+1);
1597   set_idom(iffalse, le, dd+1);
1598   assert(iff->outcnt() == 0, "should be dead now");
1599   lazy_replace( iff, le ); // fix 'get_ctrl'
1600 
1601   Node *sfpt2 = le->in(0);
1602 
1603   Node* entry_control = init_control;
1604   bool strip_mine_loop = iv_bt == T_INT &&
1605                          LoopStripMiningIter > 1 &&
1606                          loop->_child == NULL &&
1607                          sfpt2->Opcode() == Op_SafePoint &&
1608                          !loop->_has_call;
1609   IdealLoopTree* outer_ilt = NULL;
1610   if (strip_mine_loop) {
1611     outer_ilt = create_outer_strip_mined_loop(test, cmp, init_control, loop,
1612                                               cl_prob, le->_fcnt, entry_control,
1613                                               iffalse);
1614   }
1615 
1616   // Now setup a new CountedLoopNode to replace the existing LoopNode
1617   BaseCountedLoopNode *l = BaseCountedLoopNode::make(entry_control, back_control, iv_bt);
1618   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
1619   // The following assert is approximately true, and defines the intention
1620   // of can_be_counted_loop.  It fails, however, because phase->type
1621   // is not yet initialized for this loop and its parts.
1622   //assert(l->can_be_counted_loop(this), "sanity");
1623   _igvn.register_new_node_with_optimizer(l);
1624   set_loop(l, loop);
1625   loop->_head = l;
1626   // Fix all data nodes placed at the old loop head.
1627   // Uses the lazy-update mechanism of 'get_ctrl'.
1628   lazy_replace( x, l );
1629   set_idom(l, entry_control, dom_depth(entry_control) + 1);
1630 
1631   if (iv_bt == T_INT && (LoopStripMiningIter == 0 || strip_mine_loop)) {
1632     // Check for immediately preceding SafePoint and remove
1633     if (sfpt2->Opcode() == Op_SafePoint && (LoopStripMiningIter != 0 || is_deleteable_safept(sfpt2))) {
1634       if (strip_mine_loop) {
1635         Node* outer_le = outer_ilt->_tail->in(0);
1636         Node* sfpt = sfpt2->clone();
1637         sfpt->set_req(0, iffalse);
1638         outer_le->set_req(0, sfpt);
1639         // When this code runs, loop bodies have not yet been populated.
1640         const bool body_populated = false;
1641         register_control(sfpt, outer_ilt, iffalse, body_populated);
1642         set_idom(outer_le, sfpt, dom_depth(sfpt));
1643       }
1644       lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
1645       if (loop->_safepts != NULL) {
1646         loop->_safepts->yank(sfpt2);
1647       }
1648     }
1649   }
1650 
1651 #ifdef ASSERT
1652   assert(l->is_valid_counted_loop(iv_bt), "counted loop shape is messed up");
1653   assert(l == loop->_head && l->phi() == phi && l->loopexit_or_null() == lex, "" );
1654 #endif
1655 #ifndef PRODUCT
1656   if (TraceLoopOpts) {
1657     tty->print("Counted      ");
1658     loop->dump_head();
1659   }
1660 #endif
1661 
1662   C->print_method(PHASE_AFTER_CLOOPS, 3);
1663 
1664   // Capture bounds of the loop in the induction variable Phi before
1665   // subsequent transformation (iteration splitting) obscures the
1666   // bounds
1667   l->phi()->as_Phi()->set_type(l->phi()->Value(&_igvn));
1668 
1669   if (strip_mine_loop) {
1670     l->mark_strip_mined();
1671     l->verify_strip_mined(1);
1672     outer_ilt->_head->as_Loop()->verify_strip_mined(1);
1673     loop = outer_ilt;
1674   }
1675 
1676 #ifndef PRODUCT
1677   if (x->as_Loop()->is_transformed_long_loop()) {
1678     Atomic::inc(&_long_loop_counted_loops);
1679   }
1680 #endif
1681 
1682   return true;
1683 }
1684 
1685 //----------------------exact_limit-------------------------------------------
exact_limit(IdealLoopTree * loop)1686 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
1687   assert(loop->_head->is_CountedLoop(), "");
1688   CountedLoopNode *cl = loop->_head->as_CountedLoop();
1689   assert(cl->is_valid_counted_loop(T_INT), "");
1690 
1691   if (ABS(cl->stride_con()) == 1 ||
1692       cl->limit()->Opcode() == Op_LoopLimit) {
1693     // Old code has exact limit (it could be incorrect in case of int overflow).
1694     // Loop limit is exact with stride == 1. And loop may already have exact limit.
1695     return cl->limit();
1696   }
1697   Node *limit = NULL;
1698 #ifdef ASSERT
1699   BoolTest::mask bt = cl->loopexit()->test_trip();
1700   assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
1701 #endif
1702   if (cl->has_exact_trip_count()) {
1703     // Simple case: loop has constant boundaries.
1704     // Use jlongs to avoid integer overflow.
1705     int stride_con = cl->stride_con();
1706     jlong  init_con = cl->init_trip()->get_int();
1707     jlong limit_con = cl->limit()->get_int();
1708     julong trip_cnt = cl->trip_count();
1709     jlong final_con = init_con + trip_cnt*stride_con;
1710     int final_int = (int)final_con;
1711     // The final value should be in integer range since the loop
1712     // is counted and the limit was checked for overflow.
1713     assert(final_con == (jlong)final_int, "final value should be integer");
1714     limit = _igvn.intcon(final_int);
1715   } else {
1716     // Create new LoopLimit node to get exact limit (final iv value).
1717     limit = new LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
1718     register_new_node(limit, cl->in(LoopNode::EntryControl));
1719   }
1720   assert(limit != NULL, "sanity");
1721   return limit;
1722 }
1723 
1724 //------------------------------Ideal------------------------------------------
1725 // Return a node which is more "ideal" than the current node.
1726 // Attempt to convert into a counted-loop.
Ideal(PhaseGVN * phase,bool can_reshape)1727 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1728   if (!can_be_counted_loop(phase) && !is_OuterStripMinedLoop()) {
1729     phase->C->set_major_progress();
1730   }
1731   return RegionNode::Ideal(phase, can_reshape);
1732 }
1733 
1734 #ifdef ASSERT
verify_strip_mined(int expect_skeleton) const1735 void LoopNode::verify_strip_mined(int expect_skeleton) const {
1736   const OuterStripMinedLoopNode* outer = NULL;
1737   const CountedLoopNode* inner = NULL;
1738   if (is_strip_mined()) {
1739     if (!is_valid_counted_loop(T_INT)) {
1740       return; // Skip malformed counted loop
1741     }
1742     assert(is_CountedLoop(), "no Loop should be marked strip mined");
1743     inner = as_CountedLoop();
1744     outer = inner->in(LoopNode::EntryControl)->as_OuterStripMinedLoop();
1745   } else if (is_OuterStripMinedLoop()) {
1746     outer = this->as_OuterStripMinedLoop();
1747     inner = outer->unique_ctrl_out()->as_CountedLoop();
1748     assert(inner->is_valid_counted_loop(T_INT) && inner->is_strip_mined(), "OuterStripMinedLoop should have been removed");
1749     assert(!is_strip_mined(), "outer loop shouldn't be marked strip mined");
1750   }
1751   if (inner != NULL || outer != NULL) {
1752     assert(inner != NULL && outer != NULL, "missing loop in strip mined nest");
1753     Node* outer_tail = outer->in(LoopNode::LoopBackControl);
1754     Node* outer_le = outer_tail->in(0);
1755     assert(outer_le->Opcode() == Op_OuterStripMinedLoopEnd, "tail of outer loop should be an If");
1756     Node* sfpt = outer_le->in(0);
1757     assert(sfpt->Opcode() == Op_SafePoint, "where's the safepoint?");
1758     Node* inner_out = sfpt->in(0);
1759     if (inner_out->outcnt() != 1) {
1760       ResourceMark rm;
1761       Unique_Node_List wq;
1762 
1763       for (DUIterator_Fast imax, i = inner_out->fast_outs(imax); i < imax; i++) {
1764         Node* u = inner_out->fast_out(i);
1765         if (u == sfpt) {
1766           continue;
1767         }
1768         wq.clear();
1769         wq.push(u);
1770         bool found_sfpt = false;
1771         for (uint next = 0; next < wq.size() && !found_sfpt; next++) {
1772           Node* n = wq.at(next);
1773           for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && !found_sfpt; i++) {
1774             Node* u = n->fast_out(i);
1775             if (u == sfpt) {
1776               found_sfpt = true;
1777             }
1778             if (!u->is_CFG()) {
1779               wq.push(u);
1780             }
1781           }
1782         }
1783         assert(found_sfpt, "no node in loop that's not input to safepoint");
1784       }
1785     }
1786 
1787     CountedLoopEndNode* cle = inner_out->in(0)->as_CountedLoopEnd();
1788     assert(cle == inner->loopexit_or_null(), "mismatch");
1789     bool has_skeleton = outer_le->in(1)->bottom_type()->singleton() && outer_le->in(1)->bottom_type()->is_int()->get_con() == 0;
1790     if (has_skeleton) {
1791       assert(expect_skeleton == 1 || expect_skeleton == -1, "unexpected skeleton node");
1792       assert(outer->outcnt() == 2, "only control nodes");
1793     } else {
1794       assert(expect_skeleton == 0 || expect_skeleton == -1, "no skeleton node?");
1795       uint phis = 0;
1796       uint be_loads = 0;
1797       Node* be = inner->in(LoopNode::LoopBackControl);
1798       for (DUIterator_Fast imax, i = inner->fast_outs(imax); i < imax; i++) {
1799         Node* u = inner->fast_out(i);
1800         if (u->is_Phi()) {
1801           phis++;
1802           for (DUIterator_Fast jmax, j = be->fast_outs(jmax); j < jmax; j++) {
1803             Node* n = be->fast_out(j);
1804             if (n->is_Load()) {
1805               assert(n->in(0) == be, "should be on the backedge");
1806               do {
1807                 n = n->raw_out(0);
1808               } while (!n->is_Phi());
1809               if (n == u) {
1810                 be_loads++;
1811                 break;
1812               }
1813             }
1814           }
1815         }
1816       }
1817       assert(be_loads <= phis, "wrong number phis that depends on a pinned load");
1818       for (DUIterator_Fast imax, i = outer->fast_outs(imax); i < imax; i++) {
1819         Node* u = outer->fast_out(i);
1820         assert(u == outer || u == inner || u->is_Phi(), "nothing between inner and outer loop");
1821       }
1822       uint stores = 0;
1823       for (DUIterator_Fast imax, i = inner_out->fast_outs(imax); i < imax; i++) {
1824         Node* u = inner_out->fast_out(i);
1825         if (u->is_Store()) {
1826           stores++;
1827         }
1828       }
1829       // Late optimization of loads on backedge can cause Phi of outer loop to be eliminated but Phi of inner loop is
1830       // not guaranteed to be optimized out.
1831       assert(outer->outcnt() >= phis + 2 - be_loads && outer->outcnt() <= phis + 2 + stores + 1, "only phis");
1832     }
1833     assert(sfpt->outcnt() == 1, "no data node");
1834     assert(outer_tail->outcnt() == 1 || !has_skeleton, "no data node");
1835   }
1836 }
1837 #endif
1838 
1839 //=============================================================================
1840 //------------------------------Ideal------------------------------------------
1841 // Return a node which is more "ideal" than the current node.
1842 // Attempt to convert into a counted-loop.
Ideal(PhaseGVN * phase,bool can_reshape)1843 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1844   return RegionNode::Ideal(phase, can_reshape);
1845 }
1846 
1847 //------------------------------dump_spec--------------------------------------
1848 // Dump special per-node info
1849 #ifndef PRODUCT
dump_spec(outputStream * st) const1850 void CountedLoopNode::dump_spec(outputStream *st) const {
1851   LoopNode::dump_spec(st);
1852   if (stride_is_con()) {
1853     st->print("stride: %d ",stride_con());
1854   }
1855   if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
1856   if (is_main_loop()) st->print("main of N%d", _idx);
1857   if (is_post_loop()) st->print("post of N%d", _main_idx);
1858   if (is_strip_mined()) st->print(" strip mined");
1859 }
1860 #endif
1861 
1862 //=============================================================================
stride_con() const1863 jlong BaseCountedLoopEndNode::stride_con() const {
1864   return stride()->bottom_type()->is_integer(bt())->get_con_as_long(bt());
1865 }
1866 
1867 
make(Node * control,Node * test,float prob,float cnt,BasicType bt)1868 BaseCountedLoopEndNode* BaseCountedLoopEndNode::make(Node* control, Node* test, float prob, float cnt, BasicType bt) {
1869   if (bt == T_INT) {
1870     return new CountedLoopEndNode(control, test, prob, cnt);
1871   }
1872   assert(bt == T_LONG, "unsupported");
1873   return new LongCountedLoopEndNode(control, test, prob, cnt);
1874 }
1875 
1876 //=============================================================================
1877 //------------------------------Value-----------------------------------------
Value(PhaseGVN * phase) const1878 const Type* LoopLimitNode::Value(PhaseGVN* phase) const {
1879   const Type* init_t   = phase->type(in(Init));
1880   const Type* limit_t  = phase->type(in(Limit));
1881   const Type* stride_t = phase->type(in(Stride));
1882   // Either input is TOP ==> the result is TOP
1883   if (init_t   == Type::TOP) return Type::TOP;
1884   if (limit_t  == Type::TOP) return Type::TOP;
1885   if (stride_t == Type::TOP) return Type::TOP;
1886 
1887   int stride_con = stride_t->is_int()->get_con();
1888   if (stride_con == 1)
1889     return NULL;  // Identity
1890 
1891   if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
1892     // Use jlongs to avoid integer overflow.
1893     jlong init_con   =  init_t->is_int()->get_con();
1894     jlong limit_con  = limit_t->is_int()->get_con();
1895     int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
1896     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
1897     jlong final_con  = init_con + stride_con*trip_count;
1898     int final_int = (int)final_con;
1899     // The final value should be in integer range since the loop
1900     // is counted and the limit was checked for overflow.
1901     assert(final_con == (jlong)final_int, "final value should be integer");
1902     return TypeInt::make(final_int);
1903   }
1904 
1905   return bottom_type(); // TypeInt::INT
1906 }
1907 
1908 //------------------------------Ideal------------------------------------------
1909 // Return a node which is more "ideal" than the current node.
Ideal(PhaseGVN * phase,bool can_reshape)1910 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1911   if (phase->type(in(Init))   == Type::TOP ||
1912       phase->type(in(Limit))  == Type::TOP ||
1913       phase->type(in(Stride)) == Type::TOP)
1914     return NULL;  // Dead
1915 
1916   int stride_con = phase->type(in(Stride))->is_int()->get_con();
1917   if (stride_con == 1)
1918     return NULL;  // Identity
1919 
1920   if (in(Init)->is_Con() && in(Limit)->is_Con())
1921     return NULL;  // Value
1922 
1923   // Delay following optimizations until all loop optimizations
1924   // done to keep Ideal graph simple.
1925   if (!can_reshape || !phase->C->post_loop_opts_phase()) {
1926     return NULL;
1927   }
1928 
1929   const TypeInt* init_t  = phase->type(in(Init) )->is_int();
1930   const TypeInt* limit_t = phase->type(in(Limit))->is_int();
1931   int stride_p;
1932   jlong lim, ini;
1933   julong max;
1934   if (stride_con > 0) {
1935     stride_p = stride_con;
1936     lim = limit_t->_hi;
1937     ini = init_t->_lo;
1938     max = (julong)max_jint;
1939   } else {
1940     stride_p = -stride_con;
1941     lim = init_t->_hi;
1942     ini = limit_t->_lo;
1943     max = (julong)min_jint;
1944   }
1945   julong range = lim - ini + stride_p;
1946   if (range <= max) {
1947     // Convert to integer expression if it is not overflow.
1948     Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
1949     Node *range = phase->transform(new SubINode(in(Limit), in(Init)));
1950     Node *bias  = phase->transform(new AddINode(range, stride_m));
1951     Node *trip  = phase->transform(new DivINode(0, bias, in(Stride)));
1952     Node *span  = phase->transform(new MulINode(trip, in(Stride)));
1953     return new AddINode(span, in(Init)); // exact limit
1954   }
1955 
1956   if (is_power_of_2(stride_p) ||                // divisor is 2^n
1957       !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
1958     // Convert to long expression to avoid integer overflow
1959     // and let igvn optimizer convert this division.
1960     //
1961     Node*   init   = phase->transform( new ConvI2LNode(in(Init)));
1962     Node*  limit   = phase->transform( new ConvI2LNode(in(Limit)));
1963     Node* stride   = phase->longcon(stride_con);
1964     Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
1965 
1966     Node *range = phase->transform(new SubLNode(limit, init));
1967     Node *bias  = phase->transform(new AddLNode(range, stride_m));
1968     Node *span;
1969     if (stride_con > 0 && is_power_of_2(stride_p)) {
1970       // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
1971       // and avoid generating rounding for division. Zero trip guard should
1972       // guarantee that init < limit but sometimes the guard is missing and
1973       // we can get situation when init > limit. Note, for the empty loop
1974       // optimization zero trip guard is generated explicitly which leaves
1975       // only RCE predicate where exact limit is used and the predicate
1976       // will simply fail forcing recompilation.
1977       Node* neg_stride   = phase->longcon(-stride_con);
1978       span = phase->transform(new AndLNode(bias, neg_stride));
1979     } else {
1980       Node *trip  = phase->transform(new DivLNode(0, bias, stride));
1981       span = phase->transform(new MulLNode(trip, stride));
1982     }
1983     // Convert back to int
1984     Node *span_int = phase->transform(new ConvL2INode(span));
1985     return new AddINode(span_int, in(Init)); // exact limit
1986   }
1987 
1988   return NULL;    // No progress
1989 }
1990 
1991 //------------------------------Identity---------------------------------------
1992 // If stride == 1 return limit node.
Identity(PhaseGVN * phase)1993 Node* LoopLimitNode::Identity(PhaseGVN* phase) {
1994   int stride_con = phase->type(in(Stride))->is_int()->get_con();
1995   if (stride_con == 1 || stride_con == -1)
1996     return in(Limit);
1997   return this;
1998 }
1999 
2000 //=============================================================================
2001 //----------------------match_incr_with_optional_truncation--------------------
2002 // Match increment with optional truncation:
2003 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
2004 // Return NULL for failure. Success returns the increment node.
match_incr_with_optional_truncation(Node * expr,Node ** trunc1,Node ** trunc2,const TypeInteger ** trunc_type,BasicType bt)2005 Node* CountedLoopNode::match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2,
2006                                                            const TypeInteger** trunc_type,
2007                                                            BasicType bt) {
2008   // Quick cutouts:
2009   if (expr == NULL || expr->req() != 3)  return NULL;
2010 
2011   Node *t1 = NULL;
2012   Node *t2 = NULL;
2013   Node* n1 = expr;
2014   int   n1op = n1->Opcode();
2015   const TypeInteger* trunc_t = TypeInteger::bottom(bt);
2016 
2017   if (bt == T_INT) {
2018     // Try to strip (n1 & M) or (n1 << N >> N) from n1.
2019     if (n1op == Op_AndI &&
2020         n1->in(2)->is_Con() &&
2021         n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
2022       // %%% This check should match any mask of 2**K-1.
2023       t1 = n1;
2024       n1 = t1->in(1);
2025       n1op = n1->Opcode();
2026       trunc_t = TypeInt::CHAR;
2027     } else if (n1op == Op_RShiftI &&
2028                n1->in(1) != NULL &&
2029                n1->in(1)->Opcode() == Op_LShiftI &&
2030                n1->in(2) == n1->in(1)->in(2) &&
2031                n1->in(2)->is_Con()) {
2032       jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
2033       // %%% This check should match any shift in [1..31].
2034       if (shift == 16 || shift == 8) {
2035         t1 = n1;
2036         t2 = t1->in(1);
2037         n1 = t2->in(1);
2038         n1op = n1->Opcode();
2039         if (shift == 16) {
2040           trunc_t = TypeInt::SHORT;
2041         } else if (shift == 8) {
2042           trunc_t = TypeInt::BYTE;
2043         }
2044       }
2045     }
2046   }
2047 
2048   // If (maybe after stripping) it is an AddI, we won:
2049   if (n1->is_Add() && n1->operates_on(bt, true)) {
2050     *trunc1 = t1;
2051     *trunc2 = t2;
2052     *trunc_type = trunc_t;
2053     return n1;
2054   }
2055 
2056   // failed
2057   return NULL;
2058 }
2059 
skip_strip_mined(int expect_skeleton)2060 LoopNode* CountedLoopNode::skip_strip_mined(int expect_skeleton) {
2061   if (is_strip_mined() && is_valid_counted_loop(T_INT)) {
2062     verify_strip_mined(expect_skeleton);
2063     return in(EntryControl)->as_Loop();
2064   }
2065   return this;
2066 }
2067 
outer_loop() const2068 OuterStripMinedLoopNode* CountedLoopNode::outer_loop() const {
2069   assert(is_strip_mined(), "not a strip mined loop");
2070   Node* c = in(EntryControl);
2071   if (c == NULL || c->is_top() || !c->is_OuterStripMinedLoop()) {
2072     return NULL;
2073   }
2074   return c->as_OuterStripMinedLoop();
2075 }
2076 
outer_loop_tail() const2077 IfTrueNode* OuterStripMinedLoopNode::outer_loop_tail() const {
2078   Node* c = in(LoopBackControl);
2079   if (c == NULL || c->is_top()) {
2080     return NULL;
2081   }
2082   return c->as_IfTrue();
2083 }
2084 
outer_loop_tail() const2085 IfTrueNode* CountedLoopNode::outer_loop_tail() const {
2086   LoopNode* l = outer_loop();
2087   if (l == NULL) {
2088     return NULL;
2089   }
2090   return l->outer_loop_tail();
2091 }
2092 
outer_loop_end() const2093 OuterStripMinedLoopEndNode* OuterStripMinedLoopNode::outer_loop_end() const {
2094   IfTrueNode* proj = outer_loop_tail();
2095   if (proj == NULL) {
2096     return NULL;
2097   }
2098   Node* c = proj->in(0);
2099   if (c == NULL || c->is_top() || c->outcnt() != 2) {
2100     return NULL;
2101   }
2102   return c->as_OuterStripMinedLoopEnd();
2103 }
2104 
outer_loop_end() const2105 OuterStripMinedLoopEndNode* CountedLoopNode::outer_loop_end() const {
2106   LoopNode* l = outer_loop();
2107   if (l == NULL) {
2108     return NULL;
2109   }
2110   return l->outer_loop_end();
2111 }
2112 
outer_loop_exit() const2113 IfFalseNode* OuterStripMinedLoopNode::outer_loop_exit() const {
2114   IfNode* le = outer_loop_end();
2115   if (le == NULL) {
2116     return NULL;
2117   }
2118   Node* c = le->proj_out_or_null(false);
2119   if (c == NULL) {
2120     return NULL;
2121   }
2122   return c->as_IfFalse();
2123 }
2124 
outer_loop_exit() const2125 IfFalseNode* CountedLoopNode::outer_loop_exit() const {
2126   LoopNode* l = outer_loop();
2127   if (l == NULL) {
2128     return NULL;
2129   }
2130   return l->outer_loop_exit();
2131 }
2132 
outer_safepoint() const2133 SafePointNode* OuterStripMinedLoopNode::outer_safepoint() const {
2134   IfNode* le = outer_loop_end();
2135   if (le == NULL) {
2136     return NULL;
2137   }
2138   Node* c = le->in(0);
2139   if (c == NULL || c->is_top()) {
2140     return NULL;
2141   }
2142   assert(c->Opcode() == Op_SafePoint, "broken outer loop");
2143   return c->as_SafePoint();
2144 }
2145 
outer_safepoint() const2146 SafePointNode* CountedLoopNode::outer_safepoint() const {
2147   LoopNode* l = outer_loop();
2148   if (l == NULL) {
2149     return NULL;
2150   }
2151   return l->outer_safepoint();
2152 }
2153 
skip_predicates_from_entry(Node * ctrl)2154 Node* CountedLoopNode::skip_predicates_from_entry(Node* ctrl) {
2155     while (ctrl != NULL && ctrl->is_Proj() && ctrl->in(0)->is_If() &&
2156            ctrl->in(0)->as_If()->proj_out(1-ctrl->as_Proj()->_con)->outcnt() == 1 &&
2157            ctrl->in(0)->as_If()->proj_out(1-ctrl->as_Proj()->_con)->unique_out()->Opcode() == Op_Halt) {
2158       ctrl = ctrl->in(0)->in(0);
2159     }
2160 
2161     return ctrl;
2162   }
2163 
skip_predicates()2164 Node* CountedLoopNode::skip_predicates() {
2165   if (is_main_loop()) {
2166     Node* ctrl = skip_strip_mined()->in(LoopNode::EntryControl);
2167 
2168     return skip_predicates_from_entry(ctrl);
2169   }
2170   return in(LoopNode::EntryControl);
2171 }
2172 
2173 
stride_con() const2174 int CountedLoopNode::stride_con() const {
2175   CountedLoopEndNode* cle = loopexit_or_null();
2176   return cle != NULL ? cle->stride_con() : 0;
2177 }
2178 
stride_con() const2179 jlong LongCountedLoopNode::stride_con() const {
2180   LongCountedLoopEndNode* cle = loopexit_or_null();
2181   return cle != NULL ? cle->stride_con() : 0;
2182 }
2183 
make(Node * entry,Node * backedge,BasicType bt)2184 BaseCountedLoopNode* BaseCountedLoopNode::make(Node* entry, Node* backedge, BasicType bt) {
2185   if (bt == T_INT) {
2186     return new CountedLoopNode(entry, backedge);
2187   }
2188   assert(bt == T_LONG, "unsupported");
2189   return new LongCountedLoopNode(entry, backedge);
2190 }
2191 
2192 
adjust_strip_mined_loop(PhaseIterGVN * igvn)2193 void OuterStripMinedLoopNode::adjust_strip_mined_loop(PhaseIterGVN* igvn) {
2194   // Look for the outer & inner strip mined loop, reduce number of
2195   // iterations of the inner loop, set exit condition of outer loop,
2196   // construct required phi nodes for outer loop.
2197   CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop();
2198   assert(inner_cl->is_strip_mined(), "inner loop should be strip mined");
2199   Node* inner_iv_phi = inner_cl->phi();
2200   if (inner_iv_phi == NULL) {
2201     IfNode* outer_le = outer_loop_end();
2202     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
2203     igvn->replace_node(outer_le, iff);
2204     inner_cl->clear_strip_mined();
2205     return;
2206   }
2207   CountedLoopEndNode* inner_cle = inner_cl->loopexit();
2208 
2209   int stride = inner_cl->stride_con();
2210   jlong scaled_iters_long = ((jlong)LoopStripMiningIter) * ABS(stride);
2211   int scaled_iters = (int)scaled_iters_long;
2212   int short_scaled_iters = LoopStripMiningIterShortLoop* ABS(stride);
2213   const TypeInt* inner_iv_t = igvn->type(inner_iv_phi)->is_int();
2214   jlong iter_estimate = (jlong)inner_iv_t->_hi - (jlong)inner_iv_t->_lo;
2215   assert(iter_estimate > 0, "broken");
2216   if ((jlong)scaled_iters != scaled_iters_long || iter_estimate <= short_scaled_iters) {
2217     // Remove outer loop and safepoint (too few iterations)
2218     Node* outer_sfpt = outer_safepoint();
2219     Node* outer_out = outer_loop_exit();
2220     igvn->replace_node(outer_out, outer_sfpt->in(0));
2221     igvn->replace_input_of(outer_sfpt, 0, igvn->C->top());
2222     inner_cl->clear_strip_mined();
2223     return;
2224   }
2225   if (iter_estimate <= scaled_iters_long) {
2226     // We would only go through one iteration of
2227     // the outer loop: drop the outer loop but
2228     // keep the safepoint so we don't run for
2229     // too long without a safepoint
2230     IfNode* outer_le = outer_loop_end();
2231     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
2232     igvn->replace_node(outer_le, iff);
2233     inner_cl->clear_strip_mined();
2234     return;
2235   }
2236 
2237   Node* cle_tail = inner_cle->proj_out(true);
2238   ResourceMark rm;
2239   Node_List old_new;
2240   if (cle_tail->outcnt() > 1) {
2241     // Look for nodes on backedge of inner loop and clone them
2242     Unique_Node_List backedge_nodes;
2243     for (DUIterator_Fast imax, i = cle_tail->fast_outs(imax); i < imax; i++) {
2244       Node* u = cle_tail->fast_out(i);
2245       if (u != inner_cl) {
2246         assert(!u->is_CFG(), "control flow on the backedge?");
2247         backedge_nodes.push(u);
2248       }
2249     }
2250     uint last = igvn->C->unique();
2251     for (uint next = 0; next < backedge_nodes.size(); next++) {
2252       Node* n = backedge_nodes.at(next);
2253       old_new.map(n->_idx, n->clone());
2254       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2255         Node* u = n->fast_out(i);
2256         assert(!u->is_CFG(), "broken");
2257         if (u->_idx >= last) {
2258           continue;
2259         }
2260         if (!u->is_Phi()) {
2261           backedge_nodes.push(u);
2262         } else {
2263           assert(u->in(0) == inner_cl, "strange phi on the backedge");
2264         }
2265       }
2266     }
2267     // Put the clones on the outer loop backedge
2268     Node* le_tail = outer_loop_tail();
2269     for (uint next = 0; next < backedge_nodes.size(); next++) {
2270       Node *n = old_new[backedge_nodes.at(next)->_idx];
2271       for (uint i = 1; i < n->req(); i++) {
2272         if (n->in(i) != NULL && old_new[n->in(i)->_idx] != NULL) {
2273           n->set_req(i, old_new[n->in(i)->_idx]);
2274         }
2275       }
2276       if (n->in(0) != NULL && n->in(0) == cle_tail) {
2277         n->set_req(0, le_tail);
2278       }
2279       igvn->register_new_node_with_optimizer(n);
2280     }
2281   }
2282 
2283   Node* iv_phi = NULL;
2284   // Make a clone of each phi in the inner loop
2285   // for the outer loop
2286   for (uint i = 0; i < inner_cl->outcnt(); i++) {
2287     Node* u = inner_cl->raw_out(i);
2288     if (u->is_Phi()) {
2289       assert(u->in(0) == inner_cl, "inconsistent");
2290       Node* phi = u->clone();
2291       phi->set_req(0, this);
2292       Node* be = old_new[phi->in(LoopNode::LoopBackControl)->_idx];
2293       if (be != NULL) {
2294         phi->set_req(LoopNode::LoopBackControl, be);
2295       }
2296       phi = igvn->transform(phi);
2297       igvn->replace_input_of(u, LoopNode::EntryControl, phi);
2298       if (u == inner_iv_phi) {
2299         iv_phi = phi;
2300       }
2301     }
2302   }
2303   Node* cle_out = inner_cle->proj_out(false);
2304   if (cle_out->outcnt() > 1) {
2305     // Look for chains of stores that were sunk
2306     // out of the inner loop and are in the outer loop
2307     for (DUIterator_Fast imax, i = cle_out->fast_outs(imax); i < imax; i++) {
2308       Node* u = cle_out->fast_out(i);
2309       if (u->is_Store()) {
2310         Node* first = u;
2311         for(;;) {
2312           Node* next = first->in(MemNode::Memory);
2313           if (!next->is_Store() || next->in(0) != cle_out) {
2314             break;
2315           }
2316           first = next;
2317         }
2318         Node* last = u;
2319         for(;;) {
2320           Node* next = NULL;
2321           for (DUIterator_Fast jmax, j = last->fast_outs(jmax); j < jmax; j++) {
2322             Node* uu = last->fast_out(j);
2323             if (uu->is_Store() && uu->in(0) == cle_out) {
2324               assert(next == NULL, "only one in the outer loop");
2325               next = uu;
2326             }
2327           }
2328           if (next == NULL) {
2329             break;
2330           }
2331           last = next;
2332         }
2333         Node* phi = NULL;
2334         for (DUIterator_Fast jmax, j = fast_outs(jmax); j < jmax; j++) {
2335           Node* uu = fast_out(j);
2336           if (uu->is_Phi()) {
2337             Node* be = uu->in(LoopNode::LoopBackControl);
2338             if (be->is_Store() && old_new[be->_idx] != NULL) {
2339               assert(false, "store on the backedge + sunk stores: unsupported");
2340               // drop outer loop
2341               IfNode* outer_le = outer_loop_end();
2342               Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
2343               igvn->replace_node(outer_le, iff);
2344               inner_cl->clear_strip_mined();
2345               return;
2346             }
2347             if (be == last || be == first->in(MemNode::Memory)) {
2348               assert(phi == NULL, "only one phi");
2349               phi = uu;
2350             }
2351           }
2352         }
2353 #ifdef ASSERT
2354         for (DUIterator_Fast jmax, j = fast_outs(jmax); j < jmax; j++) {
2355           Node* uu = fast_out(j);
2356           if (uu->is_Phi() && uu->bottom_type() == Type::MEMORY) {
2357             if (uu->adr_type() == igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type()))) {
2358               assert(phi == uu, "what's that phi?");
2359             } else if (uu->adr_type() == TypePtr::BOTTOM) {
2360               Node* n = uu->in(LoopNode::LoopBackControl);
2361               uint limit = igvn->C->live_nodes();
2362               uint i = 0;
2363               while (n != uu) {
2364                 i++;
2365                 assert(i < limit, "infinite loop");
2366                 if (n->is_Proj()) {
2367                   n = n->in(0);
2368                 } else if (n->is_SafePoint() || n->is_MemBar()) {
2369                   n = n->in(TypeFunc::Memory);
2370                 } else if (n->is_Phi()) {
2371                   n = n->in(1);
2372                 } else if (n->is_MergeMem()) {
2373                   n = n->as_MergeMem()->memory_at(igvn->C->get_alias_index(u->adr_type()));
2374                 } else if (n->is_Store() || n->is_LoadStore() || n->is_ClearArray()) {
2375                   n = n->in(MemNode::Memory);
2376                 } else {
2377                   n->dump();
2378                   ShouldNotReachHere();
2379                 }
2380               }
2381             }
2382           }
2383         }
2384 #endif
2385         if (phi == NULL) {
2386           // If the an entire chains was sunk, the
2387           // inner loop has no phi for that memory
2388           // slice, create one for the outer loop
2389           phi = PhiNode::make(this, first->in(MemNode::Memory), Type::MEMORY,
2390                               igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type())));
2391           phi->set_req(LoopNode::LoopBackControl, last);
2392           phi = igvn->transform(phi);
2393           igvn->replace_input_of(first, MemNode::Memory, phi);
2394         } else {
2395           // Or fix the outer loop fix to include
2396           // that chain of stores.
2397           Node* be = phi->in(LoopNode::LoopBackControl);
2398           assert(!(be->is_Store() && old_new[be->_idx] != NULL), "store on the backedge + sunk stores: unsupported");
2399           if (be == first->in(MemNode::Memory)) {
2400             if (be == phi->in(LoopNode::LoopBackControl)) {
2401               igvn->replace_input_of(phi, LoopNode::LoopBackControl, last);
2402             } else {
2403               igvn->replace_input_of(be, MemNode::Memory, last);
2404             }
2405           } else {
2406 #ifdef ASSERT
2407             if (be == phi->in(LoopNode::LoopBackControl)) {
2408               assert(phi->in(LoopNode::LoopBackControl) == last, "");
2409             } else {
2410               assert(be->in(MemNode::Memory) == last, "");
2411             }
2412 #endif
2413           }
2414         }
2415       }
2416     }
2417   }
2418 
2419   if (iv_phi != NULL) {
2420     // Now adjust the inner loop's exit condition
2421     Node* limit = inner_cl->limit();
2422     // If limit < init for stride > 0 (or limit > init for stride < 0),
2423     // the loop body is run only once. Given limit - init (init - limit resp.)
2424     // would be negative, the unsigned comparison below would cause
2425     // the loop body to be run for LoopStripMiningIter.
2426     Node* max = NULL;
2427     if (stride > 0) {
2428       max = MaxNode::max_diff_with_zero(limit, iv_phi, TypeInt::INT, *igvn);
2429     } else {
2430       max = MaxNode::max_diff_with_zero(iv_phi, limit, TypeInt::INT, *igvn);
2431     }
2432     // sub is positive and can be larger than the max signed int
2433     // value. Use an unsigned min.
2434     Node* const_iters = igvn->intcon(scaled_iters);
2435     Node* min = MaxNode::unsigned_min(max, const_iters, TypeInt::make(0, scaled_iters, Type::WidenMin), *igvn);
2436     // min is the number of iterations for the next inner loop execution:
2437     // unsigned_min(max(limit - iv_phi, 0), scaled_iters) if stride > 0
2438     // unsigned_min(max(iv_phi - limit, 0), scaled_iters) if stride < 0
2439 
2440     Node* new_limit = NULL;
2441     if (stride > 0) {
2442       new_limit = igvn->transform(new AddINode(min, iv_phi));
2443     } else {
2444       new_limit = igvn->transform(new SubINode(iv_phi, min));
2445     }
2446     Node* inner_cmp = inner_cle->cmp_node();
2447     Node* inner_bol = inner_cle->in(CountedLoopEndNode::TestValue);
2448     Node* outer_bol = inner_bol;
2449     // cmp node for inner loop may be shared
2450     inner_cmp = inner_cmp->clone();
2451     inner_cmp->set_req(2, new_limit);
2452     inner_bol = inner_bol->clone();
2453     inner_bol->set_req(1, igvn->transform(inner_cmp));
2454     igvn->replace_input_of(inner_cle, CountedLoopEndNode::TestValue, igvn->transform(inner_bol));
2455     // Set the outer loop's exit condition too
2456     igvn->replace_input_of(outer_loop_end(), 1, outer_bol);
2457   } else {
2458     assert(false, "should be able to adjust outer loop");
2459     IfNode* outer_le = outer_loop_end();
2460     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
2461     igvn->replace_node(outer_le, iff);
2462     inner_cl->clear_strip_mined();
2463   }
2464 }
2465 
Value(PhaseGVN * phase) const2466 const Type* OuterStripMinedLoopEndNode::Value(PhaseGVN* phase) const {
2467   if (!in(0)) return Type::TOP;
2468   if (phase->type(in(0)) == Type::TOP)
2469     return Type::TOP;
2470 
2471   // Until expansion, the loop end condition is not set so this should not constant fold.
2472   if (is_expanded(phase)) {
2473     return IfNode::Value(phase);
2474   }
2475 
2476   return TypeTuple::IFBOTH;
2477 }
2478 
is_expanded(PhaseGVN * phase) const2479 bool OuterStripMinedLoopEndNode::is_expanded(PhaseGVN *phase) const {
2480   // The outer strip mined loop head only has Phi uses after expansion
2481   if (phase->is_IterGVN()) {
2482     Node* backedge = proj_out_or_null(true);
2483     if (backedge != NULL) {
2484       Node* head = backedge->unique_ctrl_out();
2485       if (head != NULL && head->is_OuterStripMinedLoop()) {
2486         if (head->find_out_with(Op_Phi) != NULL) {
2487           return true;
2488         }
2489       }
2490     }
2491   }
2492   return false;
2493 }
2494 
Ideal(PhaseGVN * phase,bool can_reshape)2495 Node *OuterStripMinedLoopEndNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2496   if (remove_dead_region(phase, can_reshape))  return this;
2497 
2498   return NULL;
2499 }
2500 
2501 //------------------------------filtered_type--------------------------------
2502 // Return a type based on condition control flow
2503 // A successful return will be a type that is restricted due
2504 // to a series of dominating if-tests, such as:
2505 //    if (i < 10) {
2506 //       if (i > 0) {
2507 //          here: "i" type is [1..10)
2508 //       }
2509 //    }
2510 // or a control flow merge
2511 //    if (i < 10) {
2512 //       do {
2513 //          phi( , ) -- at top of loop type is [min_int..10)
2514 //         i = ?
2515 //       } while ( i < 10)
2516 //
filtered_type(Node * n,Node * n_ctrl)2517 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
2518   assert(n && n->bottom_type()->is_int(), "must be int");
2519   const TypeInt* filtered_t = NULL;
2520   if (!n->is_Phi()) {
2521     assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
2522     filtered_t = filtered_type_from_dominators(n, n_ctrl);
2523 
2524   } else {
2525     Node* phi    = n->as_Phi();
2526     Node* region = phi->in(0);
2527     assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
2528     if (region && region != C->top()) {
2529       for (uint i = 1; i < phi->req(); i++) {
2530         Node* val   = phi->in(i);
2531         Node* use_c = region->in(i);
2532         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
2533         if (val_t != NULL) {
2534           if (filtered_t == NULL) {
2535             filtered_t = val_t;
2536           } else {
2537             filtered_t = filtered_t->meet(val_t)->is_int();
2538           }
2539         }
2540       }
2541     }
2542   }
2543   const TypeInt* n_t = _igvn.type(n)->is_int();
2544   if (filtered_t != NULL) {
2545     n_t = n_t->join(filtered_t)->is_int();
2546   }
2547   return n_t;
2548 }
2549 
2550 
2551 //------------------------------filtered_type_from_dominators--------------------------------
2552 // Return a possibly more restrictive type for val based on condition control flow of dominators
filtered_type_from_dominators(Node * val,Node * use_ctrl)2553 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
2554   if (val->is_Con()) {
2555      return val->bottom_type()->is_int();
2556   }
2557   uint if_limit = 10; // Max number of dominating if's visited
2558   const TypeInt* rtn_t = NULL;
2559 
2560   if (use_ctrl && use_ctrl != C->top()) {
2561     Node* val_ctrl = get_ctrl(val);
2562     uint val_dom_depth = dom_depth(val_ctrl);
2563     Node* pred = use_ctrl;
2564     uint if_cnt = 0;
2565     while (if_cnt < if_limit) {
2566       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
2567         if_cnt++;
2568         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
2569         if (if_t != NULL) {
2570           if (rtn_t == NULL) {
2571             rtn_t = if_t;
2572           } else {
2573             rtn_t = rtn_t->join(if_t)->is_int();
2574           }
2575         }
2576       }
2577       pred = idom(pred);
2578       if (pred == NULL || pred == C->top()) {
2579         break;
2580       }
2581       // Stop if going beyond definition block of val
2582       if (dom_depth(pred) < val_dom_depth) {
2583         break;
2584       }
2585     }
2586   }
2587   return rtn_t;
2588 }
2589 
2590 
2591 //------------------------------dump_spec--------------------------------------
2592 // Dump special per-node info
2593 #ifndef PRODUCT
dump_spec(outputStream * st) const2594 void CountedLoopEndNode::dump_spec(outputStream *st) const {
2595   if( in(TestValue) != NULL && in(TestValue)->is_Bool() ) {
2596     BoolTest bt( test_trip()); // Added this for g++.
2597 
2598     st->print("[");
2599     bt.dump_on(st);
2600     st->print("]");
2601   }
2602   st->print(" ");
2603   IfNode::dump_spec(st);
2604 }
2605 #endif
2606 
2607 //=============================================================================
2608 //------------------------------is_member--------------------------------------
2609 // Is 'l' a member of 'this'?
is_member(const IdealLoopTree * l) const2610 bool IdealLoopTree::is_member(const IdealLoopTree *l) const {
2611   while( l->_nest > _nest ) l = l->_parent;
2612   return l == this;
2613 }
2614 
2615 //------------------------------set_nest---------------------------------------
2616 // Set loop tree nesting depth.  Accumulate _has_call bits.
set_nest(uint depth)2617 int IdealLoopTree::set_nest( uint depth ) {
2618   assert(depth <= SHRT_MAX, "sanity");
2619   _nest = depth;
2620   int bits = _has_call;
2621   if( _child ) bits |= _child->set_nest(depth+1);
2622   if( bits ) _has_call = 1;
2623   if( _next  ) bits |= _next ->set_nest(depth  );
2624   return bits;
2625 }
2626 
2627 //------------------------------split_fall_in----------------------------------
2628 // Split out multiple fall-in edges from the loop header.  Move them to a
2629 // private RegionNode before the loop.  This becomes the loop landing pad.
split_fall_in(PhaseIdealLoop * phase,int fall_in_cnt)2630 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
2631   PhaseIterGVN &igvn = phase->_igvn;
2632   uint i;
2633 
2634   // Make a new RegionNode to be the landing pad.
2635   Node *landing_pad = new RegionNode( fall_in_cnt+1 );
2636   phase->set_loop(landing_pad,_parent);
2637   // Gather all the fall-in control paths into the landing pad
2638   uint icnt = fall_in_cnt;
2639   uint oreq = _head->req();
2640   for( i = oreq-1; i>0; i-- )
2641     if( !phase->is_member( this, _head->in(i) ) )
2642       landing_pad->set_req(icnt--,_head->in(i));
2643 
2644   // Peel off PhiNode edges as well
2645   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
2646     Node *oj = _head->fast_out(j);
2647     if( oj->is_Phi() ) {
2648       PhiNode* old_phi = oj->as_Phi();
2649       assert( old_phi->region() == _head, "" );
2650       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
2651       Node *p = PhiNode::make_blank(landing_pad, old_phi);
2652       uint icnt = fall_in_cnt;
2653       for( i = oreq-1; i>0; i-- ) {
2654         if( !phase->is_member( this, _head->in(i) ) ) {
2655           p->init_req(icnt--, old_phi->in(i));
2656           // Go ahead and clean out old edges from old phi
2657           old_phi->del_req(i);
2658         }
2659       }
2660       // Search for CSE's here, because ZKM.jar does a lot of
2661       // loop hackery and we need to be a little incremental
2662       // with the CSE to avoid O(N^2) node blow-up.
2663       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
2664       if( p2 ) {                // Found CSE
2665         p->destruct(&igvn);     // Recover useless new node
2666         p = p2;                 // Use old node
2667       } else {
2668         igvn.register_new_node_with_optimizer(p, old_phi);
2669       }
2670       // Make old Phi refer to new Phi.
2671       old_phi->add_req(p);
2672       // Check for the special case of making the old phi useless and
2673       // disappear it.  In JavaGrande I have a case where this useless
2674       // Phi is the loop limit and prevents recognizing a CountedLoop
2675       // which in turn prevents removing an empty loop.
2676       Node *id_old_phi = old_phi->Identity(&igvn);
2677       if( id_old_phi != old_phi ) { // Found a simple identity?
2678         // Note that I cannot call 'replace_node' here, because
2679         // that will yank the edge from old_phi to the Region and
2680         // I'm mid-iteration over the Region's uses.
2681         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
2682           Node* use = old_phi->last_out(i);
2683           igvn.rehash_node_delayed(use);
2684           uint uses_found = 0;
2685           for (uint j = 0; j < use->len(); j++) {
2686             if (use->in(j) == old_phi) {
2687               if (j < use->req()) use->set_req (j, id_old_phi);
2688               else                use->set_prec(j, id_old_phi);
2689               uses_found++;
2690             }
2691           }
2692           i -= uses_found;    // we deleted 1 or more copies of this edge
2693         }
2694       }
2695       igvn._worklist.push(old_phi);
2696     }
2697   }
2698   // Finally clean out the fall-in edges from the RegionNode
2699   for( i = oreq-1; i>0; i-- ) {
2700     if( !phase->is_member( this, _head->in(i) ) ) {
2701       _head->del_req(i);
2702     }
2703   }
2704   igvn.rehash_node_delayed(_head);
2705   // Transform landing pad
2706   igvn.register_new_node_with_optimizer(landing_pad, _head);
2707   // Insert landing pad into the header
2708   _head->add_req(landing_pad);
2709 }
2710 
2711 //------------------------------split_outer_loop-------------------------------
2712 // Split out the outermost loop from this shared header.
split_outer_loop(PhaseIdealLoop * phase)2713 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
2714   PhaseIterGVN &igvn = phase->_igvn;
2715 
2716   // Find index of outermost loop; it should also be my tail.
2717   uint outer_idx = 1;
2718   while( _head->in(outer_idx) != _tail ) outer_idx++;
2719 
2720   // Make a LoopNode for the outermost loop.
2721   Node *ctl = _head->in(LoopNode::EntryControl);
2722   Node *outer = new LoopNode( ctl, _head->in(outer_idx) );
2723   outer = igvn.register_new_node_with_optimizer(outer, _head);
2724   phase->set_created_loop_node();
2725 
2726   // Outermost loop falls into '_head' loop
2727   _head->set_req(LoopNode::EntryControl, outer);
2728   _head->del_req(outer_idx);
2729   // Split all the Phis up between '_head' loop and 'outer' loop.
2730   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
2731     Node *out = _head->fast_out(j);
2732     if( out->is_Phi() ) {
2733       PhiNode *old_phi = out->as_Phi();
2734       assert( old_phi->region() == _head, "" );
2735       Node *phi = PhiNode::make_blank(outer, old_phi);
2736       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
2737       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
2738       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
2739       // Make old Phi point to new Phi on the fall-in path
2740       igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi);
2741       old_phi->del_req(outer_idx);
2742     }
2743   }
2744 
2745   // Use the new loop head instead of the old shared one
2746   _head = outer;
2747   phase->set_loop(_head, this);
2748 }
2749 
2750 //------------------------------fix_parent-------------------------------------
fix_parent(IdealLoopTree * loop,IdealLoopTree * parent)2751 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
2752   loop->_parent = parent;
2753   if( loop->_child ) fix_parent( loop->_child, loop   );
2754   if( loop->_next  ) fix_parent( loop->_next , parent );
2755 }
2756 
2757 //------------------------------estimate_path_freq-----------------------------
estimate_path_freq(Node * n)2758 static float estimate_path_freq( Node *n ) {
2759   // Try to extract some path frequency info
2760   IfNode *iff;
2761   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
2762     uint nop = n->Opcode();
2763     if( nop == Op_SafePoint ) {   // Skip any safepoint
2764       n = n->in(0);
2765       continue;
2766     }
2767     if( nop == Op_CatchProj ) {   // Get count from a prior call
2768       // Assume call does not always throw exceptions: means the call-site
2769       // count is also the frequency of the fall-through path.
2770       assert( n->is_CatchProj(), "" );
2771       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
2772         return 0.0f;            // Assume call exception path is rare
2773       Node *call = n->in(0)->in(0)->in(0);
2774       assert( call->is_Call(), "expect a call here" );
2775       const JVMState *jvms = ((CallNode*)call)->jvms();
2776       ciMethodData* methodData = jvms->method()->method_data();
2777       if (!methodData->is_mature())  return 0.0f; // No call-site data
2778       ciProfileData* data = methodData->bci_to_data(jvms->bci());
2779       if ((data == NULL) || !data->is_CounterData()) {
2780         // no call profile available, try call's control input
2781         n = n->in(0);
2782         continue;
2783       }
2784       return data->as_CounterData()->count()/FreqCountInvocations;
2785     }
2786     // See if there's a gating IF test
2787     Node *n_c = n->in(0);
2788     if( !n_c->is_If() ) break;       // No estimate available
2789     iff = n_c->as_If();
2790     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
2791       // Compute how much count comes on this path
2792       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
2793     // Have no count info.  Skip dull uncommon-trap like branches.
2794     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
2795         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
2796       break;
2797     // Skip through never-taken branch; look for a real loop exit.
2798     n = iff->in(0);
2799   }
2800   return 0.0f;                  // No estimate available
2801 }
2802 
2803 //------------------------------merge_many_backedges---------------------------
2804 // Merge all the backedges from the shared header into a private Region.
2805 // Feed that region as the one backedge to this loop.
merge_many_backedges(PhaseIdealLoop * phase)2806 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
2807   uint i;
2808 
2809   // Scan for the top 2 hottest backedges
2810   float hotcnt = 0.0f;
2811   float warmcnt = 0.0f;
2812   uint hot_idx = 0;
2813   // Loop starts at 2 because slot 1 is the fall-in path
2814   for( i = 2; i < _head->req(); i++ ) {
2815     float cnt = estimate_path_freq(_head->in(i));
2816     if( cnt > hotcnt ) {       // Grab hottest path
2817       warmcnt = hotcnt;
2818       hotcnt = cnt;
2819       hot_idx = i;
2820     } else if( cnt > warmcnt ) { // And 2nd hottest path
2821       warmcnt = cnt;
2822     }
2823   }
2824 
2825   // See if the hottest backedge is worthy of being an inner loop
2826   // by being much hotter than the next hottest backedge.
2827   if( hotcnt <= 0.0001 ||
2828       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
2829 
2830   // Peel out the backedges into a private merge point; peel
2831   // them all except optionally hot_idx.
2832   PhaseIterGVN &igvn = phase->_igvn;
2833 
2834   Node *hot_tail = NULL;
2835   // Make a Region for the merge point
2836   Node *r = new RegionNode(1);
2837   for( i = 2; i < _head->req(); i++ ) {
2838     if( i != hot_idx )
2839       r->add_req( _head->in(i) );
2840     else hot_tail = _head->in(i);
2841   }
2842   igvn.register_new_node_with_optimizer(r, _head);
2843   // Plug region into end of loop _head, followed by hot_tail
2844   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
2845   igvn.replace_input_of(_head, 2, r);
2846   if( hot_idx ) _head->add_req(hot_tail);
2847 
2848   // Split all the Phis up between '_head' loop and the Region 'r'
2849   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
2850     Node *out = _head->fast_out(j);
2851     if( out->is_Phi() ) {
2852       PhiNode* n = out->as_Phi();
2853       igvn.hash_delete(n);      // Delete from hash before hacking edges
2854       Node *hot_phi = NULL;
2855       Node *phi = new PhiNode(r, n->type(), n->adr_type());
2856       // Check all inputs for the ones to peel out
2857       uint j = 1;
2858       for( uint i = 2; i < n->req(); i++ ) {
2859         if( i != hot_idx )
2860           phi->set_req( j++, n->in(i) );
2861         else hot_phi = n->in(i);
2862       }
2863       // Register the phi but do not transform until whole place transforms
2864       igvn.register_new_node_with_optimizer(phi, n);
2865       // Add the merge phi to the old Phi
2866       while( n->req() > 3 ) n->del_req( n->req()-1 );
2867       igvn.replace_input_of(n, 2, phi);
2868       if( hot_idx ) n->add_req(hot_phi);
2869     }
2870   }
2871 
2872 
2873   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
2874   // of self loop tree.  Turn self into a loop headed by _head and with
2875   // tail being the new merge point.
2876   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
2877   phase->set_loop(_tail,ilt);   // Adjust tail
2878   _tail = r;                    // Self's tail is new merge point
2879   phase->set_loop(r,this);
2880   ilt->_child = _child;         // New guy has my children
2881   _child = ilt;                 // Self has new guy as only child
2882   ilt->_parent = this;          // new guy has self for parent
2883   ilt->_nest = _nest;           // Same nesting depth (for now)
2884 
2885   // Starting with 'ilt', look for child loop trees using the same shared
2886   // header.  Flatten these out; they will no longer be loops in the end.
2887   IdealLoopTree **pilt = &_child;
2888   while( ilt ) {
2889     if( ilt->_head == _head ) {
2890       uint i;
2891       for( i = 2; i < _head->req(); i++ )
2892         if( _head->in(i) == ilt->_tail )
2893           break;                // Still a loop
2894       if( i == _head->req() ) { // No longer a loop
2895         // Flatten ilt.  Hang ilt's "_next" list from the end of
2896         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
2897         IdealLoopTree **cp = &ilt->_child;
2898         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
2899         *cp = ilt->_next;       // Hang next list at end of child list
2900         *pilt = ilt->_child;    // Move child up to replace ilt
2901         ilt->_head = NULL;      // Flag as a loop UNIONED into parent
2902         ilt = ilt->_child;      // Repeat using new ilt
2903         continue;               // do not advance over ilt->_child
2904       }
2905       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
2906       phase->set_loop(_head,ilt);
2907     }
2908     pilt = &ilt->_child;        // Advance to next
2909     ilt = *pilt;
2910   }
2911 
2912   if( _child ) fix_parent( _child, this );
2913 }
2914 
2915 //------------------------------beautify_loops---------------------------------
2916 // Split shared headers and insert loop landing pads.
2917 // Insert a LoopNode to replace the RegionNode.
2918 // Return TRUE if loop tree is structurally changed.
beautify_loops(PhaseIdealLoop * phase)2919 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
2920   bool result = false;
2921   // Cache parts in locals for easy
2922   PhaseIterGVN &igvn = phase->_igvn;
2923 
2924   igvn.hash_delete(_head);      // Yank from hash before hacking edges
2925 
2926   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
2927   int fall_in_cnt = 0;
2928   for( uint i = 1; i < _head->req(); i++ )
2929     if( !phase->is_member( this, _head->in(i) ) )
2930       fall_in_cnt++;
2931   assert( fall_in_cnt, "at least 1 fall-in path" );
2932   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
2933     split_fall_in( phase, fall_in_cnt );
2934 
2935   // Swap inputs to the _head and all Phis to move the fall-in edge to
2936   // the left.
2937   fall_in_cnt = 1;
2938   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
2939     fall_in_cnt++;
2940   if( fall_in_cnt > 1 ) {
2941     // Since I am just swapping inputs I do not need to update def-use info
2942     Node *tmp = _head->in(1);
2943     igvn.rehash_node_delayed(_head);
2944     _head->set_req( 1, _head->in(fall_in_cnt) );
2945     _head->set_req( fall_in_cnt, tmp );
2946     // Swap also all Phis
2947     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
2948       Node* phi = _head->fast_out(i);
2949       if( phi->is_Phi() ) {
2950         igvn.rehash_node_delayed(phi); // Yank from hash before hacking edges
2951         tmp = phi->in(1);
2952         phi->set_req( 1, phi->in(fall_in_cnt) );
2953         phi->set_req( fall_in_cnt, tmp );
2954       }
2955     }
2956   }
2957   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
2958   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
2959 
2960   // If I am a shared header (multiple backedges), peel off the many
2961   // backedges into a private merge point and use the merge point as
2962   // the one true backedge.
2963   if (_head->req() > 3) {
2964     // Merge the many backedges into a single backedge but leave
2965     // the hottest backedge as separate edge for the following peel.
2966     if (!_irreducible) {
2967       merge_many_backedges( phase );
2968     }
2969 
2970     // When recursively beautify my children, split_fall_in can change
2971     // loop tree structure when I am an irreducible loop. Then the head
2972     // of my children has a req() not bigger than 3. Here we need to set
2973     // result to true to catch that case in order to tell the caller to
2974     // rebuild loop tree. See issue JDK-8244407 for details.
2975     result = true;
2976   }
2977 
2978   // If I have one hot backedge, peel off myself loop.
2979   // I better be the outermost loop.
2980   if (_head->req() > 3 && !_irreducible) {
2981     split_outer_loop( phase );
2982     result = true;
2983 
2984   } else if (!_head->is_Loop() && !_irreducible) {
2985     // Make a new LoopNode to replace the old loop head
2986     Node *l = new LoopNode( _head->in(1), _head->in(2) );
2987     l = igvn.register_new_node_with_optimizer(l, _head);
2988     phase->set_created_loop_node();
2989     // Go ahead and replace _head
2990     phase->_igvn.replace_node( _head, l );
2991     _head = l;
2992     phase->set_loop(_head, this);
2993   }
2994 
2995   // Now recursively beautify nested loops
2996   if( _child ) result |= _child->beautify_loops( phase );
2997   if( _next  ) result |= _next ->beautify_loops( phase );
2998   return result;
2999 }
3000 
3001 //------------------------------allpaths_check_safepts----------------------------
3002 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
3003 // encountered.  Helper for check_safepts.
allpaths_check_safepts(VectorSet & visited,Node_List & stack)3004 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
3005   assert(stack.size() == 0, "empty stack");
3006   stack.push(_tail);
3007   visited.clear();
3008   visited.set(_tail->_idx);
3009   while (stack.size() > 0) {
3010     Node* n = stack.pop();
3011     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
3012       // Terminate this path
3013     } else if (n->Opcode() == Op_SafePoint) {
3014       if (_phase->get_loop(n) != this) {
3015         if (_required_safept == NULL) _required_safept = new Node_List();
3016         _required_safept->push(n);  // save the one closest to the tail
3017       }
3018       // Terminate this path
3019     } else {
3020       uint start = n->is_Region() ? 1 : 0;
3021       uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
3022       for (uint i = start; i < end; i++) {
3023         Node* in = n->in(i);
3024         assert(in->is_CFG(), "must be");
3025         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
3026           stack.push(in);
3027         }
3028       }
3029     }
3030   }
3031 }
3032 
3033 //------------------------------check_safepts----------------------------
3034 // Given dominators, try to find loops with calls that must always be
3035 // executed (call dominates loop tail).  These loops do not need non-call
3036 // safepoints (ncsfpt).
3037 //
3038 // A complication is that a safepoint in a inner loop may be needed
3039 // by an outer loop. In the following, the inner loop sees it has a
3040 // call (block 3) on every path from the head (block 2) to the
3041 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
3042 // in block 2, _but_ this leaves the outer loop without a safepoint.
3043 //
3044 //          entry  0
3045 //                 |
3046 //                 v
3047 // outer 1,2    +->1
3048 //              |  |
3049 //              |  v
3050 //              |  2<---+  ncsfpt in 2
3051 //              |_/|\   |
3052 //                 | v  |
3053 // inner 2,3      /  3  |  call in 3
3054 //               /   |  |
3055 //              v    +--+
3056 //        exit  4
3057 //
3058 //
3059 // This method creates a list (_required_safept) of ncsfpt nodes that must
3060 // be protected is created for each loop. When a ncsfpt maybe deleted, it
3061 // is first looked for in the lists for the outer loops of the current loop.
3062 //
3063 // The insights into the problem:
3064 //  A) counted loops are okay
3065 //  B) innermost loops are okay (only an inner loop can delete
3066 //     a ncsfpt needed by an outer loop)
3067 //  C) a loop is immune from an inner loop deleting a safepoint
3068 //     if the loop has a call on the idom-path
3069 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
3070 //     idom-path that is not in a nested loop
3071 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
3072 //     loop needs to be prevented from deletion by an inner loop
3073 //
3074 // There are two analyses:
3075 //  1) The first, and cheaper one, scans the loop body from
3076 //     tail to head following the idom (immediate dominator)
3077 //     chain, looking for the cases (C,D,E) above.
3078 //     Since inner loops are scanned before outer loops, there is summary
3079 //     information about inner loops.  Inner loops can be skipped over
3080 //     when the tail of an inner loop is encountered.
3081 //
3082 //  2) The second, invoked if the first fails to find a call or ncsfpt on
3083 //     the idom path (which is rare), scans all predecessor control paths
3084 //     from the tail to the head, terminating a path when a call or sfpt
3085 //     is encountered, to find the ncsfpt's that are closest to the tail.
3086 //
check_safepts(VectorSet & visited,Node_List & stack)3087 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
3088   // Bottom up traversal
3089   IdealLoopTree* ch = _child;
3090   if (_child) _child->check_safepts(visited, stack);
3091   if (_next)  _next ->check_safepts(visited, stack);
3092 
3093   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
3094     bool  has_call         = false; // call on dom-path
3095     bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
3096     Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
3097     // Scan the dom-path nodes from tail to head
3098     for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
3099       if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
3100         has_call = true;
3101         _has_sfpt = 1;          // Then no need for a safept!
3102         break;
3103       } else if (n->Opcode() == Op_SafePoint) {
3104         if (_phase->get_loop(n) == this) {
3105           has_local_ncsfpt = true;
3106           break;
3107         }
3108         if (nonlocal_ncsfpt == NULL) {
3109           nonlocal_ncsfpt = n; // save the one closest to the tail
3110         }
3111       } else {
3112         IdealLoopTree* nlpt = _phase->get_loop(n);
3113         if (this != nlpt) {
3114           // If at an inner loop tail, see if the inner loop has already
3115           // recorded seeing a call on the dom-path (and stop.)  If not,
3116           // jump to the head of the inner loop.
3117           assert(is_member(nlpt), "nested loop");
3118           Node* tail = nlpt->_tail;
3119           if (tail->in(0)->is_If()) tail = tail->in(0);
3120           if (n == tail) {
3121             // If inner loop has call on dom-path, so does outer loop
3122             if (nlpt->_has_sfpt) {
3123               has_call = true;
3124               _has_sfpt = 1;
3125               break;
3126             }
3127             // Skip to head of inner loop
3128             assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
3129             n = nlpt->_head;
3130           }
3131         }
3132       }
3133     }
3134     // Record safept's that this loop needs preserved when an
3135     // inner loop attempts to delete it's safepoints.
3136     if (_child != NULL && !has_call && !has_local_ncsfpt) {
3137       if (nonlocal_ncsfpt != NULL) {
3138         if (_required_safept == NULL) _required_safept = new Node_List();
3139         _required_safept->push(nonlocal_ncsfpt);
3140       } else {
3141         // Failed to find a suitable safept on the dom-path.  Now use
3142         // an all paths walk from tail to head, looking for safepoints to preserve.
3143         allpaths_check_safepts(visited, stack);
3144       }
3145     }
3146   }
3147 }
3148 
3149 //---------------------------is_deleteable_safept----------------------------
3150 // Is safept not required by an outer loop?
is_deleteable_safept(Node * sfpt)3151 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
3152   assert(sfpt->Opcode() == Op_SafePoint, "");
3153   IdealLoopTree* lp = get_loop(sfpt)->_parent;
3154   while (lp != NULL) {
3155     Node_List* sfpts = lp->_required_safept;
3156     if (sfpts != NULL) {
3157       for (uint i = 0; i < sfpts->size(); i++) {
3158         if (sfpt == sfpts->at(i))
3159           return false;
3160       }
3161     }
3162     lp = lp->_parent;
3163   }
3164   return true;
3165 }
3166 
3167 //---------------------------replace_parallel_iv-------------------------------
3168 // Replace parallel induction variable (parallel to trip counter)
replace_parallel_iv(IdealLoopTree * loop)3169 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
3170   assert(loop->_head->is_CountedLoop(), "");
3171   CountedLoopNode *cl = loop->_head->as_CountedLoop();
3172   if (!cl->is_valid_counted_loop(T_INT))
3173     return;         // skip malformed counted loop
3174   Node *incr = cl->incr();
3175   if (incr == NULL)
3176     return;         // Dead loop?
3177   Node *init = cl->init_trip();
3178   Node *phi  = cl->phi();
3179   int stride_con = cl->stride_con();
3180 
3181   // Visit all children, looking for Phis
3182   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
3183     Node *out = cl->out(i);
3184     // Look for other phis (secondary IVs). Skip dead ones
3185     if (!out->is_Phi() || out == phi || !has_node(out))
3186       continue;
3187     PhiNode* phi2 = out->as_Phi();
3188     Node *incr2 = phi2->in( LoopNode::LoopBackControl );
3189     // Look for induction variables of the form:  X += constant
3190     if (phi2->region() != loop->_head ||
3191         incr2->req() != 3 ||
3192         incr2->in(1) != phi2 ||
3193         incr2 == incr ||
3194         incr2->Opcode() != Op_AddI ||
3195         !incr2->in(2)->is_Con())
3196       continue;
3197 
3198     // Check for parallel induction variable (parallel to trip counter)
3199     // via an affine function.  In particular, count-down loops with
3200     // count-up array indices are common. We only RCE references off
3201     // the trip-counter, so we need to convert all these to trip-counter
3202     // expressions.
3203     Node *init2 = phi2->in( LoopNode::EntryControl );
3204     int stride_con2 = incr2->in(2)->get_int();
3205 
3206     // The ratio of the two strides cannot be represented as an int
3207     // if stride_con2 is min_int and stride_con is -1.
3208     if (stride_con2 == min_jint && stride_con == -1) {
3209       continue;
3210     }
3211 
3212     // The general case here gets a little tricky.  We want to find the
3213     // GCD of all possible parallel IV's and make a new IV using this
3214     // GCD for the loop.  Then all possible IVs are simple multiples of
3215     // the GCD.  In practice, this will cover very few extra loops.
3216     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
3217     // where +/-1 is the common case, but other integer multiples are
3218     // also easy to handle.
3219     int ratio_con = stride_con2/stride_con;
3220 
3221     if ((ratio_con * stride_con) == stride_con2) { // Check for exact
3222 #ifndef PRODUCT
3223       if (TraceLoopOpts) {
3224         tty->print("Parallel IV: %d ", phi2->_idx);
3225         loop->dump_head();
3226       }
3227 #endif
3228       // Convert to using the trip counter.  The parallel induction
3229       // variable differs from the trip counter by a loop-invariant
3230       // amount, the difference between their respective initial values.
3231       // It is scaled by the 'ratio_con'.
3232       Node* ratio = _igvn.intcon(ratio_con);
3233       set_ctrl(ratio, C->root());
3234       Node* ratio_init = new MulINode(init, ratio);
3235       _igvn.register_new_node_with_optimizer(ratio_init, init);
3236       set_early_ctrl(ratio_init, false);
3237       Node* diff = new SubINode(init2, ratio_init);
3238       _igvn.register_new_node_with_optimizer(diff, init2);
3239       set_early_ctrl(diff, false);
3240       Node* ratio_idx = new MulINode(phi, ratio);
3241       _igvn.register_new_node_with_optimizer(ratio_idx, phi);
3242       set_ctrl(ratio_idx, cl);
3243       Node* add = new AddINode(ratio_idx, diff);
3244       _igvn.register_new_node_with_optimizer(add);
3245       set_ctrl(add, cl);
3246       _igvn.replace_node( phi2, add );
3247       // Sometimes an induction variable is unused
3248       if (add->outcnt() == 0) {
3249         _igvn.remove_dead_node(add);
3250       }
3251       --i; // deleted this phi; rescan starting with next position
3252       continue;
3253     }
3254   }
3255 }
3256 
remove_safepoints(PhaseIdealLoop * phase,bool keep_one)3257 void IdealLoopTree::remove_safepoints(PhaseIdealLoop* phase, bool keep_one) {
3258   Node* keep = NULL;
3259   if (keep_one) {
3260     // Look for a safepoint on the idom-path.
3261     for (Node* i = tail(); i != _head; i = phase->idom(i)) {
3262       if (i->Opcode() == Op_SafePoint && phase->get_loop(i) == this) {
3263         keep = i;
3264         break; // Found one
3265       }
3266     }
3267   }
3268 
3269   // Don't remove any safepoints if it is requested to keep a single safepoint and
3270   // no safepoint was found on idom-path. It is not safe to remove any safepoint
3271   // in this case since there's no safepoint dominating all paths in the loop body.
3272   bool prune = !keep_one || keep != NULL;
3273 
3274   // Delete other safepoints in this loop.
3275   Node_List* sfpts = _safepts;
3276   if (prune && sfpts != NULL) {
3277     assert(keep == NULL || keep->Opcode() == Op_SafePoint, "not safepoint");
3278     for (uint i = 0; i < sfpts->size(); i++) {
3279       Node* n = sfpts->at(i);
3280       assert(phase->get_loop(n) == this, "");
3281       if (n != keep && phase->is_deleteable_safept(n)) {
3282         phase->lazy_replace(n, n->in(TypeFunc::Control));
3283       }
3284     }
3285   }
3286 }
3287 
3288 //------------------------------counted_loop-----------------------------------
3289 // Convert to counted loops where possible
counted_loop(PhaseIdealLoop * phase)3290 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
3291 
3292   // For grins, set the inner-loop flag here
3293   if (!_child) {
3294     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
3295   }
3296 
3297   IdealLoopTree* loop = this;
3298   if (_head->is_CountedLoop() ||
3299       phase->is_counted_loop(_head, loop, T_INT)) {
3300 
3301     if (LoopStripMiningIter == 0 || (LoopStripMiningIter > 1 && _child == NULL)) {
3302       // Indicate we do not need a safepoint here
3303       _has_sfpt = 1;
3304     }
3305 
3306     // Remove safepoints
3307     bool keep_one_sfpt = !(_has_call || _has_sfpt);
3308     remove_safepoints(phase, keep_one_sfpt);
3309 
3310     // Look for induction variables
3311     phase->replace_parallel_iv(this);
3312   } else if (_head->is_LongCountedLoop() ||
3313              phase->is_counted_loop(_head, loop, T_LONG)) {
3314     remove_safepoints(phase, true);
3315   } else {
3316     assert(!_head->is_Loop() || !_head->as_Loop()->is_transformed_long_loop(), "transformation to counted loop should not fail");
3317     if (_parent != NULL && !_irreducible) {
3318       // Not a counted loop. Keep one safepoint.
3319       bool keep_one_sfpt = true;
3320       remove_safepoints(phase, keep_one_sfpt);
3321     }
3322   }
3323 
3324   // Recursively
3325   assert(loop->_child != this || (loop->_head->as_Loop()->is_OuterStripMinedLoop() && _head->as_CountedLoop()->is_strip_mined()), "what kind of loop was added?");
3326   assert(loop->_child != this || (loop->_child->_child == NULL && loop->_child->_next == NULL), "would miss some loops");
3327   if (loop->_child && loop->_child != this) loop->_child->counted_loop(phase);
3328   if (loop->_next)  loop->_next ->counted_loop(phase);
3329 }
3330 
3331 
3332 // The Estimated Loop Clone Size:
3333 //   CloneFactor * (~112% * BodySize + BC) + CC + FanOutTerm,
3334 // where  BC and  CC are  totally ad-hoc/magic  "body" and "clone" constants,
3335 // respectively, used to ensure that the node usage estimates made are on the
3336 // safe side, for the most part. The FanOutTerm is an attempt to estimate the
3337 // possible additional/excessive nodes generated due to data and control flow
3338 // merging, for edges reaching outside the loop.
est_loop_clone_sz(uint factor) const3339 uint IdealLoopTree::est_loop_clone_sz(uint factor) const {
3340 
3341   precond(0 < factor && factor < 16);
3342 
3343   uint const bc = 13;
3344   uint const cc = 17;
3345   uint const sz = _body.size() + (_body.size() + 7) / 2;
3346   uint estimate = factor * (sz + bc) + cc;
3347 
3348   assert((estimate - cc) / factor == sz + bc, "overflow");
3349 
3350   return estimate + est_loop_flow_merge_sz();
3351 }
3352 
3353 // The Estimated Loop (full-) Unroll Size:
3354 //   UnrollFactor * (~106% * BodySize) + CC + FanOutTerm,
3355 // where CC is a (totally) ad-hoc/magic "clone" constant, used to ensure that
3356 // node usage estimates made are on the safe side, for the most part. This is
3357 // a "light" version of the loop clone size calculation (above), based on the
3358 // assumption that most of the loop-construct overhead will be unraveled when
3359 // (fully) unrolled. Defined for unroll factors larger or equal to one (>=1),
3360 // including an overflow check and returning UINT_MAX in case of an overflow.
est_loop_unroll_sz(uint factor) const3361 uint IdealLoopTree::est_loop_unroll_sz(uint factor) const {
3362 
3363   precond(factor > 0);
3364 
3365   // Take into account that after unroll conjoined heads and tails will fold.
3366   uint const b0 = _body.size() - EMPTY_LOOP_SIZE;
3367   uint const cc = 7;
3368   uint const sz = b0 + (b0 + 15) / 16;
3369   uint estimate = factor * sz + cc;
3370 
3371   if ((estimate - cc) / factor != sz) {
3372     return UINT_MAX;
3373   }
3374 
3375   return estimate + est_loop_flow_merge_sz();
3376 }
3377 
3378 // Estimate the growth effect (in nodes) of merging control and data flow when
3379 // cloning a loop body, based on the amount of  control and data flow reaching
3380 // outside of the (current) loop body.
est_loop_flow_merge_sz() const3381 uint IdealLoopTree::est_loop_flow_merge_sz() const {
3382 
3383   uint ctrl_edge_out_cnt = 0;
3384   uint data_edge_out_cnt = 0;
3385 
3386   for (uint i = 0; i < _body.size(); i++) {
3387     Node* node = _body.at(i);
3388     uint outcnt = node->outcnt();
3389 
3390     for (uint k = 0; k < outcnt; k++) {
3391       Node* out = node->raw_out(k);
3392       if (out == NULL) continue;
3393       if (out->is_CFG()) {
3394         if (!is_member(_phase->get_loop(out))) {
3395           ctrl_edge_out_cnt++;
3396         }
3397       } else if (_phase->has_ctrl(out)) {
3398         Node* ctrl = _phase->get_ctrl(out);
3399         assert(ctrl != NULL, "must be");
3400         assert(ctrl->is_CFG(), "must be");
3401         if (!is_member(_phase->get_loop(ctrl))) {
3402           data_edge_out_cnt++;
3403         }
3404       }
3405     }
3406   }
3407   // Use data and control count (x2.0) in estimate iff both are > 0. This is
3408   // a rather pessimistic estimate for the most part, in particular for some
3409   // complex loops, but still not enough to capture all loops.
3410   if (ctrl_edge_out_cnt > 0 && data_edge_out_cnt > 0) {
3411     return 2 * (ctrl_edge_out_cnt + data_edge_out_cnt);
3412   }
3413   return 0;
3414 }
3415 
3416 #ifndef PRODUCT
3417 //------------------------------dump_head--------------------------------------
3418 // Dump 1 liner for loop header info
dump_head() const3419 void IdealLoopTree::dump_head() const {
3420   tty->sp(2 * _nest);
3421   tty->print("Loop: N%d/N%d ", _head->_idx, _tail->_idx);
3422   if (_irreducible) tty->print(" IRREDUCIBLE");
3423   Node* entry = _head->is_Loop() ? _head->as_Loop()->skip_strip_mined(-1)->in(LoopNode::EntryControl) : _head->in(LoopNode::EntryControl);
3424   Node* predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
3425   if (predicate != NULL ) {
3426     tty->print(" limit_check");
3427     entry = PhaseIdealLoop::skip_loop_predicates(entry);
3428   }
3429   if (UseProfiledLoopPredicate) {
3430     predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_profile_predicate);
3431     if (predicate != NULL) {
3432       tty->print(" profile_predicated");
3433       entry = PhaseIdealLoop::skip_loop_predicates(entry);
3434     }
3435   }
3436   if (UseLoopPredicate) {
3437     predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
3438     if (predicate != NULL) {
3439       tty->print(" predicated");
3440     }
3441   }
3442   if (_head->is_CountedLoop()) {
3443     CountedLoopNode *cl = _head->as_CountedLoop();
3444     tty->print(" counted");
3445 
3446     Node* init_n = cl->init_trip();
3447     if (init_n  != NULL &&  init_n->is_Con())
3448       tty->print(" [%d,", cl->init_trip()->get_int());
3449     else
3450       tty->print(" [int,");
3451     Node* limit_n = cl->limit();
3452     if (limit_n  != NULL &&  limit_n->is_Con())
3453       tty->print("%d),", cl->limit()->get_int());
3454     else
3455       tty->print("int),");
3456     int stride_con  = cl->stride_con();
3457     if (stride_con > 0) tty->print("+");
3458     tty->print("%d", stride_con);
3459 
3460     tty->print(" (%0.f iters) ", cl->profile_trip_cnt());
3461 
3462     if (cl->is_pre_loop ()) tty->print(" pre" );
3463     if (cl->is_main_loop()) tty->print(" main");
3464     if (cl->is_post_loop()) tty->print(" post");
3465     if (cl->is_vectorized_loop()) tty->print(" vector");
3466     if (cl->range_checks_present()) tty->print(" rc ");
3467     if (cl->is_multiversioned()) tty->print(" multi ");
3468   }
3469   if (_has_call) tty->print(" has_call");
3470   if (_has_sfpt) tty->print(" has_sfpt");
3471   if (_rce_candidate) tty->print(" rce");
3472   if (_safepts != NULL && _safepts->size() > 0) {
3473     tty->print(" sfpts={"); _safepts->dump_simple(); tty->print(" }");
3474   }
3475   if (_required_safept != NULL && _required_safept->size() > 0) {
3476     tty->print(" req={"); _required_safept->dump_simple(); tty->print(" }");
3477   }
3478   if (Verbose) {
3479     tty->print(" body={"); _body.dump_simple(); tty->print(" }");
3480   }
3481   if (_head->is_Loop() && _head->as_Loop()->is_strip_mined()) {
3482     tty->print(" strip_mined");
3483   }
3484   tty->cr();
3485 }
3486 
3487 //------------------------------dump-------------------------------------------
3488 // Dump loops by loop tree
dump() const3489 void IdealLoopTree::dump() const {
3490   dump_head();
3491   if (_child) _child->dump();
3492   if (_next)  _next ->dump();
3493 }
3494 
3495 #endif
3496 
log_loop_tree_helper(IdealLoopTree * root,IdealLoopTree * loop,CompileLog * log)3497 static void log_loop_tree_helper(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
3498   if (loop == root) {
3499     if (loop->_child != NULL) {
3500       log->begin_head("loop_tree");
3501       log->end_head();
3502       log_loop_tree_helper(root, loop->_child, log);
3503       log->tail("loop_tree");
3504       assert(loop->_next == NULL, "what?");
3505     }
3506   } else if (loop != NULL) {
3507     Node* head = loop->_head;
3508     log->begin_head("loop");
3509     log->print(" idx='%d' ", head->_idx);
3510     if (loop->_irreducible) log->print("irreducible='1' ");
3511     if (head->is_Loop()) {
3512       if (head->as_Loop()->is_inner_loop())        log->print("inner_loop='1' ");
3513       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
3514     } else if (head->is_CountedLoop()) {
3515       CountedLoopNode* cl = head->as_CountedLoop();
3516       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
3517       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
3518       if (cl->is_post_loop()) log->print("post_loop='%d' ", cl->main_idx());
3519     }
3520     log->end_head();
3521     log_loop_tree_helper(root, loop->_child, log);
3522     log->tail("loop");
3523     log_loop_tree_helper(root, loop->_next, log);
3524   }
3525 }
3526 
log_loop_tree()3527 void PhaseIdealLoop::log_loop_tree() {
3528   if (C->log() != NULL) {
3529     log_loop_tree_helper(_ltree_root, _ltree_root, C->log());
3530   }
3531 }
3532 
3533 //---------------------collect_potentially_useful_predicates-----------------------
3534 // Helper function to collect potentially useful predicates to prevent them from
3535 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
collect_potentially_useful_predicates(IdealLoopTree * loop,Unique_Node_List & useful_predicates)3536 void PhaseIdealLoop::collect_potentially_useful_predicates(
3537                          IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
3538   if (loop->_child) { // child
3539     collect_potentially_useful_predicates(loop->_child, useful_predicates);
3540   }
3541 
3542   // self (only loops that we can apply loop predication may use their predicates)
3543   if (loop->_head->is_Loop() &&
3544       !loop->_irreducible    &&
3545       !loop->tail()->is_top()) {
3546     LoopNode* lpn = loop->_head->as_Loop();
3547     Node* entry = lpn->in(LoopNode::EntryControl);
3548     Node* predicate_proj = find_predicate(entry); // loop_limit_check first
3549     if (predicate_proj != NULL) { // right pattern that can be used by loop predication
3550       assert(entry->in(0)->in(1)->in(1)->Opcode() == Op_Opaque1, "must be");
3551       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
3552       entry = skip_loop_predicates(entry);
3553     }
3554     if (UseProfiledLoopPredicate) {
3555       predicate_proj = find_predicate(entry); // Predicate
3556       if (predicate_proj != NULL) {
3557         useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
3558         entry = skip_loop_predicates(entry);
3559       }
3560     }
3561     predicate_proj = find_predicate(entry); // Predicate
3562     if (predicate_proj != NULL) {
3563       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
3564     }
3565   }
3566 
3567   if (loop->_next) { // sibling
3568     collect_potentially_useful_predicates(loop->_next, useful_predicates);
3569   }
3570 }
3571 
3572 //------------------------eliminate_useless_predicates-----------------------------
3573 // Eliminate all inserted predicates if they could not be used by loop predication.
3574 // Note: it will also eliminates loop limits check predicate since it also uses
3575 // Opaque1 node (see Parse::add_predicate()).
eliminate_useless_predicates()3576 void PhaseIdealLoop::eliminate_useless_predicates() {
3577   if (C->predicate_count() == 0)
3578     return; // no predicate left
3579 
3580   Unique_Node_List useful_predicates; // to store useful predicates
3581   if (C->has_loops()) {
3582     collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
3583   }
3584 
3585   for (int i = C->predicate_count(); i > 0; i--) {
3586      Node * n = C->predicate_opaque1_node(i-1);
3587      assert(n->Opcode() == Op_Opaque1, "must be");
3588      if (!useful_predicates.member(n)) { // not in the useful list
3589        _igvn.replace_node(n, n->in(1));
3590      }
3591   }
3592 }
3593 
3594 //------------------------process_expensive_nodes-----------------------------
3595 // Expensive nodes have their control input set to prevent the GVN
3596 // from commoning them and as a result forcing the resulting node to
3597 // be in a more frequent path. Use CFG information here, to change the
3598 // control inputs so that some expensive nodes can be commoned while
3599 // not executed more frequently.
process_expensive_nodes()3600 bool PhaseIdealLoop::process_expensive_nodes() {
3601   assert(OptimizeExpensiveOps, "optimization off?");
3602 
3603   // Sort nodes to bring similar nodes together
3604   C->sort_expensive_nodes();
3605 
3606   bool progress = false;
3607 
3608   for (int i = 0; i < C->expensive_count(); ) {
3609     Node* n = C->expensive_node(i);
3610     int start = i;
3611     // Find nodes similar to n
3612     i++;
3613     for (; i < C->expensive_count() && Compile::cmp_expensive_nodes(n, C->expensive_node(i)) == 0; i++);
3614     int end = i;
3615     // And compare them two by two
3616     for (int j = start; j < end; j++) {
3617       Node* n1 = C->expensive_node(j);
3618       if (is_node_unreachable(n1)) {
3619         continue;
3620       }
3621       for (int k = j+1; k < end; k++) {
3622         Node* n2 = C->expensive_node(k);
3623         if (is_node_unreachable(n2)) {
3624           continue;
3625         }
3626 
3627         assert(n1 != n2, "should be pair of nodes");
3628 
3629         Node* c1 = n1->in(0);
3630         Node* c2 = n2->in(0);
3631 
3632         Node* parent_c1 = c1;
3633         Node* parent_c2 = c2;
3634 
3635         // The call to get_early_ctrl_for_expensive() moves the
3636         // expensive nodes up but stops at loops that are in a if
3637         // branch. See whether we can exit the loop and move above the
3638         // If.
3639         if (c1->is_Loop()) {
3640           parent_c1 = c1->in(1);
3641         }
3642         if (c2->is_Loop()) {
3643           parent_c2 = c2->in(1);
3644         }
3645 
3646         if (parent_c1 == parent_c2) {
3647           _igvn._worklist.push(n1);
3648           _igvn._worklist.push(n2);
3649           continue;
3650         }
3651 
3652         // Look for identical expensive node up the dominator chain.
3653         if (is_dominator(c1, c2)) {
3654           c2 = c1;
3655         } else if (is_dominator(c2, c1)) {
3656           c1 = c2;
3657         } else if (parent_c1->is_Proj() && parent_c1->in(0)->is_If() &&
3658                    parent_c2->is_Proj() && parent_c1->in(0) == parent_c2->in(0)) {
3659           // Both branches have the same expensive node so move it up
3660           // before the if.
3661           c1 = c2 = idom(parent_c1->in(0));
3662         }
3663         // Do the actual moves
3664         if (n1->in(0) != c1) {
3665           _igvn.hash_delete(n1);
3666           n1->set_req(0, c1);
3667           _igvn.hash_insert(n1);
3668           _igvn._worklist.push(n1);
3669           progress = true;
3670         }
3671         if (n2->in(0) != c2) {
3672           _igvn.hash_delete(n2);
3673           n2->set_req(0, c2);
3674           _igvn.hash_insert(n2);
3675           _igvn._worklist.push(n2);
3676           progress = true;
3677         }
3678       }
3679     }
3680   }
3681 
3682   return progress;
3683 }
3684 
3685 #ifdef ASSERT
only_has_infinite_loops()3686 bool PhaseIdealLoop::only_has_infinite_loops() {
3687   for (IdealLoopTree* l = _ltree_root->_child; l != NULL; l = l->_next) {
3688     uint i = 1;
3689     for (; i < C->root()->req(); i++) {
3690       Node* in = C->root()->in(i);
3691       if (in != NULL &&
3692           in->Opcode() == Op_Halt &&
3693           in->in(0)->is_Proj() &&
3694           in->in(0)->in(0)->Opcode() == Op_NeverBranch &&
3695           in->in(0)->in(0)->in(0) == l->_head) {
3696         break;
3697       }
3698     }
3699     if (i == C->root()->req()) {
3700       return false;
3701     }
3702   }
3703 
3704   return true;
3705 }
3706 #endif
3707 
3708 
3709 //=============================================================================
3710 //----------------------------build_and_optimize-------------------------------
3711 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
3712 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
build_and_optimize(LoopOptsMode mode)3713 void PhaseIdealLoop::build_and_optimize(LoopOptsMode mode) {
3714   assert(!C->post_loop_opts_phase(), "no loop opts allowed");
3715 
3716   bool do_split_ifs = (mode == LoopOptsDefault);
3717   bool skip_loop_opts = (mode == LoopOptsNone);
3718 
3719   int old_progress = C->major_progress();
3720   uint orig_worklist_size = _igvn._worklist.size();
3721 
3722   // Reset major-progress flag for the driver's heuristics
3723   C->clear_major_progress();
3724 
3725 #ifndef PRODUCT
3726   // Capture for later assert
3727   uint unique = C->unique();
3728   _loop_invokes++;
3729   _loop_work += unique;
3730 #endif
3731 
3732   // True if the method has at least 1 irreducible loop
3733   _has_irreducible_loops = false;
3734 
3735   _created_loop_node = false;
3736 
3737   VectorSet visited;
3738   // Pre-grow the mapping from Nodes to IdealLoopTrees.
3739   _nodes.map(C->unique(), NULL);
3740   memset(_nodes.adr(), 0, wordSize * C->unique());
3741 
3742   // Pre-build the top-level outermost loop tree entry
3743   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
3744   // Do not need a safepoint at the top level
3745   _ltree_root->_has_sfpt = 1;
3746 
3747   // Initialize Dominators.
3748   // Checked in clone_loop_predicate() during beautify_loops().
3749   _idom_size = 0;
3750   _idom      = NULL;
3751   _dom_depth = NULL;
3752   _dom_stk   = NULL;
3753 
3754   // Empty pre-order array
3755   allocate_preorders();
3756 
3757   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
3758   // IdealLoopTree entries.  Data nodes are NOT walked.
3759   build_loop_tree();
3760   // Check for bailout, and return
3761   if (C->failing()) {
3762     return;
3763   }
3764 
3765   // Verify that the has_loops() flag set at parse time is consistent
3766   // with the just built loop tree. With infinite loops, it could be
3767   // that one pass of loop opts only finds infinite loops, clears the
3768   // has_loops() flag but adds NeverBranch nodes so the next loop opts
3769   // verification pass finds a non empty loop tree. When the back edge
3770   // is an exception edge, parsing doesn't set has_loops().
3771   assert(_ltree_root->_child == NULL || C->has_loops() || only_has_infinite_loops() || C->has_exception_backedge(), "parsing found no loops but there are some");
3772   // No loops after all
3773   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
3774 
3775   // There should always be an outer loop containing the Root and Return nodes.
3776   // If not, we have a degenerate empty program.  Bail out in this case.
3777   if (!has_node(C->root())) {
3778     if (!_verify_only) {
3779       C->clear_major_progress();
3780       C->record_method_not_compilable("empty program detected during loop optimization");
3781     }
3782     return;
3783   }
3784 
3785   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
3786   // Nothing to do, so get out
3787   bool stop_early = !C->has_loops() && !skip_loop_opts && !do_split_ifs && !_verify_me && !_verify_only &&
3788     !bs->is_gc_specific_loop_opts_pass(mode);
3789   bool do_expensive_nodes = C->should_optimize_expensive_nodes(_igvn);
3790   bool strip_mined_loops_expanded = bs->strip_mined_loops_expanded(mode);
3791   if (stop_early && !do_expensive_nodes) {
3792     return;
3793   }
3794 
3795   // Set loop nesting depth
3796   _ltree_root->set_nest( 0 );
3797 
3798   // Split shared headers and insert loop landing pads.
3799   // Do not bother doing this on the Root loop of course.
3800   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
3801     C->print_method(PHASE_BEFORE_BEAUTIFY_LOOPS, 3);
3802     if( _ltree_root->_child->beautify_loops( this ) ) {
3803       // Re-build loop tree!
3804       _ltree_root->_child = NULL;
3805       _nodes.clear();
3806       reallocate_preorders();
3807       build_loop_tree();
3808       // Check for bailout, and return
3809       if (C->failing()) {
3810         return;
3811       }
3812       // Reset loop nesting depth
3813       _ltree_root->set_nest( 0 );
3814 
3815       C->print_method(PHASE_AFTER_BEAUTIFY_LOOPS, 3);
3816     }
3817   }
3818 
3819   // Build Dominators for elision of NULL checks & loop finding.
3820   // Since nodes do not have a slot for immediate dominator, make
3821   // a persistent side array for that info indexed on node->_idx.
3822   _idom_size = C->unique();
3823   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
3824   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
3825   _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
3826   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
3827 
3828   Dominators();
3829 
3830   if (!_verify_only) {
3831     // As a side effect, Dominators removed any unreachable CFG paths
3832     // into RegionNodes.  It doesn't do this test against Root, so
3833     // we do it here.
3834     for( uint i = 1; i < C->root()->req(); i++ ) {
3835       if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
3836         _igvn.delete_input_of(C->root(), i);
3837         i--;                      // Rerun same iteration on compressed edges
3838       }
3839     }
3840 
3841     // Given dominators, try to find inner loops with calls that must
3842     // always be executed (call dominates loop tail).  These loops do
3843     // not need a separate safepoint.
3844     Node_List cisstack;
3845     _ltree_root->check_safepts(visited, cisstack);
3846   }
3847 
3848   // Walk the DATA nodes and place into loops.  Find earliest control
3849   // node.  For CFG nodes, the _nodes array starts out and remains
3850   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
3851   // _nodes array holds the earliest legal controlling CFG node.
3852 
3853   // Allocate stack with enough space to avoid frequent realloc
3854   int stack_size = (C->live_nodes() >> 1) + 16; // (live_nodes>>1)+16 from Java2D stats
3855   Node_Stack nstack(stack_size);
3856 
3857   visited.clear();
3858   Node_List worklist;
3859   // Don't need C->root() on worklist since
3860   // it will be processed among C->top() inputs
3861   worklist.push(C->top());
3862   visited.set(C->top()->_idx); // Set C->top() as visited now
3863   build_loop_early( visited, worklist, nstack );
3864 
3865   // Given early legal placement, try finding counted loops.  This placement
3866   // is good enough to discover most loop invariants.
3867   if (!_verify_me && !_verify_only && !strip_mined_loops_expanded) {
3868     _ltree_root->counted_loop( this );
3869   }
3870 
3871   // Find latest loop placement.  Find ideal loop placement.
3872   visited.clear();
3873   init_dom_lca_tags();
3874   // Need C->root() on worklist when processing outs
3875   worklist.push(C->root());
3876   NOT_PRODUCT( C->verify_graph_edges(); )
3877   worklist.push(C->top());
3878   build_loop_late( visited, worklist, nstack );
3879 
3880   if (_verify_only) {
3881     C->restore_major_progress(old_progress);
3882     assert(C->unique() == unique, "verification mode made Nodes? ? ?");
3883     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
3884     return;
3885   }
3886 
3887   // clear out the dead code after build_loop_late
3888   while (_deadlist.size()) {
3889     _igvn.remove_globally_dead_node(_deadlist.pop());
3890   }
3891 
3892   if (stop_early) {
3893     assert(do_expensive_nodes, "why are we here?");
3894     if (process_expensive_nodes()) {
3895       // If we made some progress when processing expensive nodes then
3896       // the IGVN may modify the graph in a way that will allow us to
3897       // make some more progress: we need to try processing expensive
3898       // nodes again.
3899       C->set_major_progress();
3900     }
3901     return;
3902   }
3903 
3904   // Some parser-inserted loop predicates could never be used by loop
3905   // predication or they were moved away from loop during some optimizations.
3906   // For example, peeling. Eliminate them before next loop optimizations.
3907   eliminate_useless_predicates();
3908 
3909 #ifndef PRODUCT
3910   C->verify_graph_edges();
3911   if (_verify_me) {             // Nested verify pass?
3912     // Check to see if the verify mode is broken
3913     assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
3914     return;
3915   }
3916   if (VerifyLoopOptimizations) verify();
3917   if (TraceLoopOpts && C->has_loops()) {
3918     _ltree_root->dump();
3919   }
3920 #endif
3921 
3922   if (skip_loop_opts) {
3923     C->restore_major_progress(old_progress);
3924     return;
3925   }
3926 
3927   if (mode == LoopOptsMaxUnroll) {
3928     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
3929       IdealLoopTree* lpt = iter.current();
3930       if (lpt->is_innermost() && lpt->_allow_optimizations && !lpt->_has_call && lpt->is_counted()) {
3931         lpt->compute_trip_count(this);
3932         if (!lpt->do_one_iteration_loop(this) &&
3933             !lpt->do_remove_empty_loop(this)) {
3934           AutoNodeBudget node_budget(this);
3935           if (lpt->_head->as_CountedLoop()->is_normal_loop() &&
3936               lpt->policy_maximally_unroll(this)) {
3937             memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
3938             do_maximally_unroll(lpt, worklist);
3939           }
3940         }
3941       }
3942     }
3943 
3944     C->restore_major_progress(old_progress);
3945     return;
3946   }
3947 
3948   if (bs->optimize_loops(this, mode, visited, nstack, worklist)) {
3949     return;
3950   }
3951 
3952   if (ReassociateInvariants && !C->major_progress()) {
3953     // Reassociate invariants and prep for split_thru_phi
3954     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
3955       IdealLoopTree* lpt = iter.current();
3956       bool is_counted = lpt->is_counted();
3957       if (!is_counted || !lpt->is_innermost()) continue;
3958 
3959       // check for vectorized loops, any reassociation of invariants was already done
3960       if (is_counted && lpt->_head->as_CountedLoop()->is_unroll_only()) {
3961         continue;
3962       } else {
3963         AutoNodeBudget node_budget(this);
3964         lpt->reassociate_invariants(this);
3965       }
3966       // Because RCE opportunities can be masked by split_thru_phi,
3967       // look for RCE candidates and inhibit split_thru_phi
3968       // on just their loop-phi's for this pass of loop opts
3969       if (SplitIfBlocks && do_split_ifs) {
3970         AutoNodeBudget node_budget(this, AutoNodeBudget::NO_BUDGET_CHECK);
3971         if (lpt->policy_range_check(this)) {
3972           lpt->_rce_candidate = 1; // = true
3973         }
3974       }
3975     }
3976   }
3977 
3978   // Check for aggressive application of split-if and other transforms
3979   // that require basic-block info (like cloning through Phi's)
3980   if (!C->major_progress() && SplitIfBlocks && do_split_ifs) {
3981     visited.clear();
3982     split_if_with_blocks( visited, nstack);
3983     NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
3984   }
3985 
3986   if (!C->major_progress() && do_expensive_nodes && process_expensive_nodes()) {
3987     C->set_major_progress();
3988   }
3989 
3990   // Perform loop predication before iteration splitting
3991   if (C->has_loops() && !C->major_progress() && (C->predicate_count() > 0)) {
3992     _ltree_root->_child->loop_predication(this);
3993   }
3994 
3995   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
3996     if (do_intrinsify_fill()) {
3997       C->set_major_progress();
3998     }
3999   }
4000 
4001   // Perform iteration-splitting on inner loops.  Split iterations to avoid
4002   // range checks or one-shot null checks.
4003 
4004   // If split-if's didn't hack the graph too bad (no CFG changes)
4005   // then do loop opts.
4006   if (C->has_loops() && !C->major_progress()) {
4007     memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
4008     _ltree_root->_child->iteration_split( this, worklist );
4009     // No verify after peeling!  GCM has hoisted code out of the loop.
4010     // After peeling, the hoisted code could sink inside the peeled area.
4011     // The peeling code does not try to recompute the best location for
4012     // all the code before the peeled area, so the verify pass will always
4013     // complain about it.
4014   }
4015   // Do verify graph edges in any case
4016   NOT_PRODUCT( C->verify_graph_edges(); );
4017 
4018   if (C->has_loops() && !C->major_progress()) {
4019     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
4020       IdealLoopTree *lpt = iter.current();
4021       transform_long_counted_loop(lpt, worklist);
4022     }
4023   }
4024 
4025   if (!do_split_ifs) {
4026     // We saw major progress in Split-If to get here.  We forced a
4027     // pass with unrolling and not split-if, however more split-if's
4028     // might make progress.  If the unrolling didn't make progress
4029     // then the major-progress flag got cleared and we won't try
4030     // another round of Split-If.  In particular the ever-common
4031     // instance-of/check-cast pattern requires at least 2 rounds of
4032     // Split-If to clear out.
4033     C->set_major_progress();
4034   }
4035 
4036   // Repeat loop optimizations if new loops were seen
4037   if (created_loop_node()) {
4038     C->set_major_progress();
4039   }
4040 
4041   // Keep loop predicates and perform optimizations with them
4042   // until no more loop optimizations could be done.
4043   // After that switch predicates off and do more loop optimizations.
4044   if (!C->major_progress() && (C->predicate_count() > 0)) {
4045      C->cleanup_loop_predicates(_igvn);
4046      if (TraceLoopOpts) {
4047        tty->print_cr("PredicatesOff");
4048      }
4049      C->set_major_progress();
4050   }
4051 
4052   // Convert scalar to superword operations at the end of all loop opts.
4053   if (UseSuperWord && C->has_loops() && !C->major_progress()) {
4054     // SuperWord transform
4055     SuperWord sw(this);
4056     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
4057       IdealLoopTree* lpt = iter.current();
4058       if (lpt->is_counted()) {
4059         CountedLoopNode *cl = lpt->_head->as_CountedLoop();
4060 
4061         if (PostLoopMultiversioning && cl->is_rce_post_loop() && !cl->is_vectorized_loop()) {
4062           // Check that the rce'd post loop is encountered first, multiversion after all
4063           // major main loop optimization are concluded
4064           if (!C->major_progress()) {
4065             IdealLoopTree *lpt_next = lpt->_next;
4066             if (lpt_next && lpt_next->is_counted()) {
4067               CountedLoopNode *cl = lpt_next->_head->as_CountedLoop();
4068               has_range_checks(lpt_next);
4069               if (cl->is_post_loop() && cl->range_checks_present()) {
4070                 if (!cl->is_multiversioned()) {
4071                   if (multi_version_post_loops(lpt, lpt_next) == false) {
4072                     // Cause the rce loop to be optimized away if we fail
4073                     cl->mark_is_multiversioned();
4074                     cl->set_slp_max_unroll(0);
4075                     poison_rce_post_loop(lpt);
4076                   }
4077                 }
4078               }
4079             }
4080             sw.transform_loop(lpt, true);
4081           }
4082         } else if (cl->is_main_loop()) {
4083           sw.transform_loop(lpt, true);
4084         }
4085       }
4086     }
4087   }
4088 
4089   // disable assert until issue with split_flow_path is resolved (6742111)
4090   // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
4091   //        "shouldn't introduce irreducible loops");
4092 }
4093 
4094 #ifndef PRODUCT
4095 //------------------------------print_statistics-------------------------------
4096 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
4097 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
4098 volatile int PhaseIdealLoop::_long_loop_candidates=0; // Number of long loops seen
4099 volatile int PhaseIdealLoop::_long_loop_nests=0; // Number of long loops successfully transformed to a nest
4100 volatile int PhaseIdealLoop::_long_loop_counted_loops=0; // Number of long loops successfully transformed to a counted loop
print_statistics()4101 void PhaseIdealLoop::print_statistics() {
4102   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d, long loops=%d/%d/%d", _loop_invokes, _loop_work, _long_loop_counted_loops, _long_loop_nests, _long_loop_candidates);
4103 }
4104 
4105 //------------------------------verify-----------------------------------------
4106 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
4107 static int fail;                // debug only, so its multi-thread dont care
verify() const4108 void PhaseIdealLoop::verify() const {
4109   int old_progress = C->major_progress();
4110   ResourceMark rm;
4111   PhaseIdealLoop loop_verify(_igvn, this);
4112   VectorSet visited;
4113 
4114   fail = 0;
4115   verify_compare(C->root(), &loop_verify, visited);
4116   assert(fail == 0, "verify loops failed");
4117   // Verify loop structure is the same
4118   _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
4119   // Reset major-progress.  It was cleared by creating a verify version of
4120   // PhaseIdealLoop.
4121   C->restore_major_progress(old_progress);
4122 }
4123 
4124 //------------------------------verify_compare---------------------------------
4125 // Make sure me and the given PhaseIdealLoop agree on key data structures
verify_compare(Node * n,const PhaseIdealLoop * loop_verify,VectorSet & visited) const4126 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
4127   if( !n ) return;
4128   if( visited.test_set( n->_idx ) ) return;
4129   if( !_nodes[n->_idx] ) {      // Unreachable
4130     assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
4131     return;
4132   }
4133 
4134   uint i;
4135   for( i = 0; i < n->req(); i++ )
4136     verify_compare( n->in(i), loop_verify, visited );
4137 
4138   // Check the '_nodes' block/loop structure
4139   i = n->_idx;
4140   if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
4141     if( _nodes[i] != loop_verify->_nodes[i] &&
4142         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
4143       tty->print("Mismatched control setting for: ");
4144       n->dump();
4145       if( fail++ > 10 ) return;
4146       Node *c = get_ctrl_no_update(n);
4147       tty->print("We have it as: ");
4148       if( c->in(0) ) c->dump();
4149         else tty->print_cr("N%d",c->_idx);
4150       tty->print("Verify thinks: ");
4151       if( loop_verify->has_ctrl(n) )
4152         loop_verify->get_ctrl_no_update(n)->dump();
4153       else
4154         loop_verify->get_loop_idx(n)->dump();
4155       tty->cr();
4156     }
4157   } else {                    // We have a loop
4158     IdealLoopTree *us = get_loop_idx(n);
4159     if( loop_verify->has_ctrl(n) ) {
4160       tty->print("Mismatched loop setting for: ");
4161       n->dump();
4162       if( fail++ > 10 ) return;
4163       tty->print("We have it as: ");
4164       us->dump();
4165       tty->print("Verify thinks: ");
4166       loop_verify->get_ctrl_no_update(n)->dump();
4167       tty->cr();
4168     } else if (!C->major_progress()) {
4169       // Loop selection can be messed up if we did a major progress
4170       // operation, like split-if.  Do not verify in that case.
4171       IdealLoopTree *them = loop_verify->get_loop_idx(n);
4172       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
4173         tty->print("Unequals loops for: ");
4174         n->dump();
4175         if( fail++ > 10 ) return;
4176         tty->print("We have it as: ");
4177         us->dump();
4178         tty->print("Verify thinks: ");
4179         them->dump();
4180         tty->cr();
4181       }
4182     }
4183   }
4184 
4185   // Check for immediate dominators being equal
4186   if( i >= _idom_size ) {
4187     if( !n->is_CFG() ) return;
4188     tty->print("CFG Node with no idom: ");
4189     n->dump();
4190     return;
4191   }
4192   if( !n->is_CFG() ) return;
4193   if( n == C->root() ) return; // No IDOM here
4194 
4195   assert(n->_idx == i, "sanity");
4196   Node *id = idom_no_update(n);
4197   if( id != loop_verify->idom_no_update(n) ) {
4198     tty->print("Unequals idoms for: ");
4199     n->dump();
4200     if( fail++ > 10 ) return;
4201     tty->print("We have it as: ");
4202     id->dump();
4203     tty->print("Verify thinks: ");
4204     loop_verify->idom_no_update(n)->dump();
4205     tty->cr();
4206   }
4207 
4208 }
4209 
4210 //------------------------------verify_tree------------------------------------
4211 // Verify that tree structures match.  Because the CFG can change, siblings
4212 // within the loop tree can be reordered.  We attempt to deal with that by
4213 // reordering the verify's loop tree if possible.
verify_tree(IdealLoopTree * loop,const IdealLoopTree * parent) const4214 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
4215   assert( _parent == parent, "Badly formed loop tree" );
4216 
4217   // Siblings not in same order?  Attempt to re-order.
4218   if( _head != loop->_head ) {
4219     // Find _next pointer to update
4220     IdealLoopTree **pp = &loop->_parent->_child;
4221     while( *pp != loop )
4222       pp = &((*pp)->_next);
4223     // Find proper sibling to be next
4224     IdealLoopTree **nn = &loop->_next;
4225     while( (*nn) && (*nn)->_head != _head )
4226       nn = &((*nn)->_next);
4227 
4228     // Check for no match.
4229     if( !(*nn) ) {
4230       // Annoyingly, irreducible loops can pick different headers
4231       // after a major_progress operation, so the rest of the loop
4232       // tree cannot be matched.
4233       if (_irreducible && Compile::current()->major_progress())  return;
4234       assert( 0, "failed to match loop tree" );
4235     }
4236 
4237     // Move (*nn) to (*pp)
4238     IdealLoopTree *hit = *nn;
4239     *nn = hit->_next;
4240     hit->_next = loop;
4241     *pp = loop;
4242     loop = hit;
4243     // Now try again to verify
4244   }
4245 
4246   assert( _head  == loop->_head , "mismatched loop head" );
4247   Node *tail = _tail;           // Inline a non-updating version of
4248   while( !tail->in(0) )         // the 'tail()' call.
4249     tail = tail->in(1);
4250   assert( tail == loop->_tail, "mismatched loop tail" );
4251 
4252   // Counted loops that are guarded should be able to find their guards
4253   if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
4254     CountedLoopNode *cl = _head->as_CountedLoop();
4255     Node *init = cl->init_trip();
4256     Node *ctrl = cl->in(LoopNode::EntryControl);
4257     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
4258     Node *iff  = ctrl->in(0);
4259     assert( iff->Opcode() == Op_If, "" );
4260     Node *bol  = iff->in(1);
4261     assert( bol->Opcode() == Op_Bool, "" );
4262     Node *cmp  = bol->in(1);
4263     assert( cmp->Opcode() == Op_CmpI, "" );
4264     Node *add  = cmp->in(1);
4265     Node *opaq;
4266     if( add->Opcode() == Op_Opaque1 ) {
4267       opaq = add;
4268     } else {
4269       assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
4270       assert( add == init, "" );
4271       opaq = cmp->in(2);
4272     }
4273     assert( opaq->Opcode() == Op_Opaque1, "" );
4274 
4275   }
4276 
4277   if (_child != NULL)  _child->verify_tree(loop->_child, this);
4278   if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
4279   // Innermost loops need to verify loop bodies,
4280   // but only if no 'major_progress'
4281   int fail = 0;
4282   if (!Compile::current()->major_progress() && _child == NULL) {
4283     for( uint i = 0; i < _body.size(); i++ ) {
4284       Node *n = _body.at(i);
4285       if (n->outcnt() == 0)  continue; // Ignore dead
4286       uint j;
4287       for( j = 0; j < loop->_body.size(); j++ )
4288         if( loop->_body.at(j) == n )
4289           break;
4290       if( j == loop->_body.size() ) { // Not found in loop body
4291         // Last ditch effort to avoid assertion: Its possible that we
4292         // have some users (so outcnt not zero) but are still dead.
4293         // Try to find from root.
4294         if (Compile::current()->root()->find(n->_idx)) {
4295           fail++;
4296           tty->print("We have that verify does not: ");
4297           n->dump();
4298         }
4299       }
4300     }
4301     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
4302       Node *n = loop->_body.at(i2);
4303       if (n->outcnt() == 0)  continue; // Ignore dead
4304       uint j;
4305       for( j = 0; j < _body.size(); j++ )
4306         if( _body.at(j) == n )
4307           break;
4308       if( j == _body.size() ) { // Not found in loop body
4309         // Last ditch effort to avoid assertion: Its possible that we
4310         // have some users (so outcnt not zero) but are still dead.
4311         // Try to find from root.
4312         if (Compile::current()->root()->find(n->_idx)) {
4313           fail++;
4314           tty->print("Verify has that we do not: ");
4315           n->dump();
4316         }
4317       }
4318     }
4319     assert( !fail, "loop body mismatch" );
4320   }
4321 }
4322 
4323 #endif
4324 
4325 //------------------------------set_idom---------------------------------------
set_idom(Node * d,Node * n,uint dom_depth)4326 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
4327   uint idx = d->_idx;
4328   if (idx >= _idom_size) {
4329     uint newsize = next_power_of_2(idx);
4330     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
4331     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
4332     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
4333     _idom_size = newsize;
4334   }
4335   _idom[idx] = n;
4336   _dom_depth[idx] = dom_depth;
4337 }
4338 
4339 //------------------------------recompute_dom_depth---------------------------------------
4340 // The dominator tree is constructed with only parent pointers.
4341 // This recomputes the depth in the tree by first tagging all
4342 // nodes as "no depth yet" marker.  The next pass then runs up
4343 // the dom tree from each node marked "no depth yet", and computes
4344 // the depth on the way back down.
recompute_dom_depth()4345 void PhaseIdealLoop::recompute_dom_depth() {
4346   uint no_depth_marker = C->unique();
4347   uint i;
4348   // Initialize depth to "no depth yet" and realize all lazy updates
4349   for (i = 0; i < _idom_size; i++) {
4350     // Only indices with a _dom_depth has a Node* or NULL (otherwise uninitalized).
4351     if (_dom_depth[i] > 0 && _idom[i] != NULL) {
4352       _dom_depth[i] = no_depth_marker;
4353 
4354       // heal _idom if it has a fwd mapping in _nodes
4355       if (_idom[i]->in(0) == NULL) {
4356         idom(i);
4357       }
4358     }
4359   }
4360   if (_dom_stk == NULL) {
4361     uint init_size = C->live_nodes() / 100; // Guess that 1/100 is a reasonable initial size.
4362     if (init_size < 10) init_size = 10;
4363     _dom_stk = new GrowableArray<uint>(init_size);
4364   }
4365   // Compute new depth for each node.
4366   for (i = 0; i < _idom_size; i++) {
4367     uint j = i;
4368     // Run up the dom tree to find a node with a depth
4369     while (_dom_depth[j] == no_depth_marker) {
4370       _dom_stk->push(j);
4371       j = _idom[j]->_idx;
4372     }
4373     // Compute the depth on the way back down this tree branch
4374     uint dd = _dom_depth[j] + 1;
4375     while (_dom_stk->length() > 0) {
4376       uint j = _dom_stk->pop();
4377       _dom_depth[j] = dd;
4378       dd++;
4379     }
4380   }
4381 }
4382 
4383 //------------------------------sort-------------------------------------------
4384 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
4385 // loop tree, not the root.
sort(IdealLoopTree * loop,IdealLoopTree * innermost)4386 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
4387   if( !innermost ) return loop; // New innermost loop
4388 
4389   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
4390   assert( loop_preorder, "not yet post-walked loop" );
4391   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
4392   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
4393 
4394   // Insert at start of list
4395   while( l ) {                  // Insertion sort based on pre-order
4396     if( l == loop ) return innermost; // Already on list!
4397     int l_preorder = get_preorder(l->_head); // Cache pre-order number
4398     assert( l_preorder, "not yet post-walked l" );
4399     // Check header pre-order number to figure proper nesting
4400     if( loop_preorder > l_preorder )
4401       break;                    // End of insertion
4402     // If headers tie (e.g., shared headers) check tail pre-order numbers.
4403     // Since I split shared headers, you'd think this could not happen.
4404     // BUT: I must first do the preorder numbering before I can discover I
4405     // have shared headers, so the split headers all get the same preorder
4406     // number as the RegionNode they split from.
4407     if( loop_preorder == l_preorder &&
4408         get_preorder(loop->_tail) < get_preorder(l->_tail) )
4409       break;                    // Also check for shared headers (same pre#)
4410     pp = &l->_parent;           // Chain up list
4411     l = *pp;
4412   }
4413   // Link into list
4414   // Point predecessor to me
4415   *pp = loop;
4416   // Point me to successor
4417   IdealLoopTree *p = loop->_parent;
4418   loop->_parent = l;            // Point me to successor
4419   if( p ) sort( p, innermost ); // Insert my parents into list as well
4420   return innermost;
4421 }
4422 
4423 //------------------------------build_loop_tree--------------------------------
4424 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
4425 // bits.  The _nodes[] array is mapped by Node index and holds a NULL for
4426 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
4427 // tightest enclosing IdealLoopTree for post-walked.
4428 //
4429 // During my forward walk I do a short 1-layer lookahead to see if I can find
4430 // a loop backedge with that doesn't have any work on the backedge.  This
4431 // helps me construct nested loops with shared headers better.
4432 //
4433 // Once I've done the forward recursion, I do the post-work.  For each child
4434 // I check to see if there is a backedge.  Backedges define a loop!  I
4435 // insert an IdealLoopTree at the target of the backedge.
4436 //
4437 // During the post-work I also check to see if I have several children
4438 // belonging to different loops.  If so, then this Node is a decision point
4439 // where control flow can choose to change loop nests.  It is at this
4440 // decision point where I can figure out how loops are nested.  At this
4441 // time I can properly order the different loop nests from my children.
4442 // Note that there may not be any backedges at the decision point!
4443 //
4444 // Since the decision point can be far removed from the backedges, I can't
4445 // order my loops at the time I discover them.  Thus at the decision point
4446 // I need to inspect loop header pre-order numbers to properly nest my
4447 // loops.  This means I need to sort my childrens' loops by pre-order.
4448 // The sort is of size number-of-control-children, which generally limits
4449 // it to size 2 (i.e., I just choose between my 2 target loops).
build_loop_tree()4450 void PhaseIdealLoop::build_loop_tree() {
4451   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
4452   GrowableArray <Node *> bltstack(C->live_nodes() >> 1);
4453   Node *n = C->root();
4454   bltstack.push(n);
4455   int pre_order = 1;
4456   int stack_size;
4457 
4458   while ( ( stack_size = bltstack.length() ) != 0 ) {
4459     n = bltstack.top(); // Leave node on stack
4460     if ( !is_visited(n) ) {
4461       // ---- Pre-pass Work ----
4462       // Pre-walked but not post-walked nodes need a pre_order number.
4463 
4464       set_preorder_visited( n, pre_order ); // set as visited
4465 
4466       // ---- Scan over children ----
4467       // Scan first over control projections that lead to loop headers.
4468       // This helps us find inner-to-outer loops with shared headers better.
4469 
4470       // Scan children's children for loop headers.
4471       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
4472         Node* m = n->raw_out(i);       // Child
4473         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
4474           // Scan over children's children to find loop
4475           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
4476             Node* l = m->fast_out(j);
4477             if( is_visited(l) &&       // Been visited?
4478                 !is_postvisited(l) &&  // But not post-visited
4479                 get_preorder(l) < pre_order ) { // And smaller pre-order
4480               // Found!  Scan the DFS down this path before doing other paths
4481               bltstack.push(m);
4482               break;
4483             }
4484           }
4485         }
4486       }
4487       pre_order++;
4488     }
4489     else if ( !is_postvisited(n) ) {
4490       // Note: build_loop_tree_impl() adds out edges on rare occasions,
4491       // such as com.sun.rsasign.am::a.
4492       // For non-recursive version, first, process current children.
4493       // On next iteration, check if additional children were added.
4494       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
4495         Node* u = n->raw_out(k);
4496         if ( u->is_CFG() && !is_visited(u) ) {
4497           bltstack.push(u);
4498         }
4499       }
4500       if ( bltstack.length() == stack_size ) {
4501         // There were no additional children, post visit node now
4502         (void)bltstack.pop(); // Remove node from stack
4503         pre_order = build_loop_tree_impl( n, pre_order );
4504         // Check for bailout
4505         if (C->failing()) {
4506           return;
4507         }
4508         // Check to grow _preorders[] array for the case when
4509         // build_loop_tree_impl() adds new nodes.
4510         check_grow_preorders();
4511       }
4512     }
4513     else {
4514       (void)bltstack.pop(); // Remove post-visited node from stack
4515     }
4516   }
4517 }
4518 
4519 //------------------------------build_loop_tree_impl---------------------------
build_loop_tree_impl(Node * n,int pre_order)4520 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
4521   // ---- Post-pass Work ----
4522   // Pre-walked but not post-walked nodes need a pre_order number.
4523 
4524   // Tightest enclosing loop for this Node
4525   IdealLoopTree *innermost = NULL;
4526 
4527   // For all children, see if any edge is a backedge.  If so, make a loop
4528   // for it.  Then find the tightest enclosing loop for the self Node.
4529   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4530     Node* m = n->fast_out(i);   // Child
4531     if( n == m ) continue;      // Ignore control self-cycles
4532     if( !m->is_CFG() ) continue;// Ignore non-CFG edges
4533 
4534     IdealLoopTree *l;           // Child's loop
4535     if( !is_postvisited(m) ) {  // Child visited but not post-visited?
4536       // Found a backedge
4537       assert( get_preorder(m) < pre_order, "should be backedge" );
4538       // Check for the RootNode, which is already a LoopNode and is allowed
4539       // to have multiple "backedges".
4540       if( m == C->root()) {     // Found the root?
4541         l = _ltree_root;        // Root is the outermost LoopNode
4542       } else {                  // Else found a nested loop
4543         // Insert a LoopNode to mark this loop.
4544         l = new IdealLoopTree(this, m, n);
4545       } // End of Else found a nested loop
4546       if( !has_loop(m) )        // If 'm' does not already have a loop set
4547         set_loop(m, l);         // Set loop header to loop now
4548 
4549     } else {                    // Else not a nested loop
4550       if( !_nodes[m->_idx] ) continue; // Dead code has no loop
4551       l = get_loop(m);          // Get previously determined loop
4552       // If successor is header of a loop (nest), move up-loop till it
4553       // is a member of some outer enclosing loop.  Since there are no
4554       // shared headers (I've split them already) I only need to go up
4555       // at most 1 level.
4556       while( l && l->_head == m ) // Successor heads loop?
4557         l = l->_parent;         // Move up 1 for me
4558       // If this loop is not properly parented, then this loop
4559       // has no exit path out, i.e. its an infinite loop.
4560       if( !l ) {
4561         // Make loop "reachable" from root so the CFG is reachable.  Basically
4562         // insert a bogus loop exit that is never taken.  'm', the loop head,
4563         // points to 'n', one (of possibly many) fall-in paths.  There may be
4564         // many backedges as well.
4565 
4566         // Here I set the loop to be the root loop.  I could have, after
4567         // inserting a bogus loop exit, restarted the recursion and found my
4568         // new loop exit.  This would make the infinite loop a first-class
4569         // loop and it would then get properly optimized.  What's the use of
4570         // optimizing an infinite loop?
4571         l = _ltree_root;        // Oops, found infinite loop
4572 
4573         if (!_verify_only) {
4574           // Insert the NeverBranch between 'm' and it's control user.
4575           NeverBranchNode *iff = new NeverBranchNode( m );
4576           _igvn.register_new_node_with_optimizer(iff);
4577           set_loop(iff, l);
4578           Node *if_t = new CProjNode( iff, 0 );
4579           _igvn.register_new_node_with_optimizer(if_t);
4580           set_loop(if_t, l);
4581 
4582           Node* cfg = NULL;       // Find the One True Control User of m
4583           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
4584             Node* x = m->fast_out(j);
4585             if (x->is_CFG() && x != m && x != iff)
4586               { cfg = x; break; }
4587           }
4588           assert(cfg != NULL, "must find the control user of m");
4589           uint k = 0;             // Probably cfg->in(0)
4590           while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
4591           cfg->set_req( k, if_t ); // Now point to NeverBranch
4592           _igvn._worklist.push(cfg);
4593 
4594           // Now create the never-taken loop exit
4595           Node *if_f = new CProjNode( iff, 1 );
4596           _igvn.register_new_node_with_optimizer(if_f);
4597           set_loop(if_f, l);
4598           // Find frame ptr for Halt.  Relies on the optimizer
4599           // V-N'ing.  Easier and quicker than searching through
4600           // the program structure.
4601           Node *frame = new ParmNode( C->start(), TypeFunc::FramePtr );
4602           _igvn.register_new_node_with_optimizer(frame);
4603           // Halt & Catch Fire
4604           Node* halt = new HaltNode(if_f, frame, "never-taken loop exit reached");
4605           _igvn.register_new_node_with_optimizer(halt);
4606           set_loop(halt, l);
4607           C->root()->add_req(halt);
4608         }
4609         set_loop(C->root(), _ltree_root);
4610       }
4611     }
4612     // Weeny check for irreducible.  This child was already visited (this
4613     // IS the post-work phase).  Is this child's loop header post-visited
4614     // as well?  If so, then I found another entry into the loop.
4615     if (!_verify_only) {
4616       while( is_postvisited(l->_head) ) {
4617         // found irreducible
4618         l->_irreducible = 1; // = true
4619         l = l->_parent;
4620         _has_irreducible_loops = true;
4621         // Check for bad CFG here to prevent crash, and bailout of compile
4622         if (l == NULL) {
4623           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
4624           return pre_order;
4625         }
4626       }
4627       C->set_has_irreducible_loop(_has_irreducible_loops);
4628     }
4629 
4630     // This Node might be a decision point for loops.  It is only if
4631     // it's children belong to several different loops.  The sort call
4632     // does a trivial amount of work if there is only 1 child or all
4633     // children belong to the same loop.  If however, the children
4634     // belong to different loops, the sort call will properly set the
4635     // _parent pointers to show how the loops nest.
4636     //
4637     // In any case, it returns the tightest enclosing loop.
4638     innermost = sort( l, innermost );
4639   }
4640 
4641   // Def-use info will have some dead stuff; dead stuff will have no
4642   // loop decided on.
4643 
4644   // Am I a loop header?  If so fix up my parent's child and next ptrs.
4645   if( innermost && innermost->_head == n ) {
4646     assert( get_loop(n) == innermost, "" );
4647     IdealLoopTree *p = innermost->_parent;
4648     IdealLoopTree *l = innermost;
4649     while( p && l->_head == n ) {
4650       l->_next = p->_child;     // Put self on parents 'next child'
4651       p->_child = l;            // Make self as first child of parent
4652       l = p;                    // Now walk up the parent chain
4653       p = l->_parent;
4654     }
4655   } else {
4656     // Note that it is possible for a LoopNode to reach here, if the
4657     // backedge has been made unreachable (hence the LoopNode no longer
4658     // denotes a Loop, and will eventually be removed).
4659 
4660     // Record tightest enclosing loop for self.  Mark as post-visited.
4661     set_loop(n, innermost);
4662     // Also record has_call flag early on
4663     if( innermost ) {
4664       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
4665         // Do not count uncommon calls
4666         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
4667           Node *iff = n->in(0)->in(0);
4668           // No any calls for vectorized loops.
4669           if( UseSuperWord || !iff->is_If() ||
4670               (n->in(0)->Opcode() == Op_IfFalse &&
4671                (1.0 - iff->as_If()->_prob) >= 0.01) ||
4672               (iff->as_If()->_prob >= 0.01) )
4673             innermost->_has_call = 1;
4674         }
4675       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
4676         // Disable loop optimizations if the loop has a scalar replaceable
4677         // allocation. This disabling may cause a potential performance lost
4678         // if the allocation is not eliminated for some reason.
4679         innermost->_allow_optimizations = false;
4680         innermost->_has_call = 1; // = true
4681       } else if (n->Opcode() == Op_SafePoint) {
4682         // Record all safepoints in this loop.
4683         if (innermost->_safepts == NULL) innermost->_safepts = new Node_List();
4684         innermost->_safepts->push(n);
4685       }
4686     }
4687   }
4688 
4689   // Flag as post-visited now
4690   set_postvisited(n);
4691   return pre_order;
4692 }
4693 
4694 
4695 //------------------------------build_loop_early-------------------------------
4696 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
4697 // First pass computes the earliest controlling node possible.  This is the
4698 // controlling input with the deepest dominating depth.
build_loop_early(VectorSet & visited,Node_List & worklist,Node_Stack & nstack)4699 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
4700   while (worklist.size() != 0) {
4701     // Use local variables nstack_top_n & nstack_top_i to cache values
4702     // on nstack's top.
4703     Node *nstack_top_n = worklist.pop();
4704     uint  nstack_top_i = 0;
4705 //while_nstack_nonempty:
4706     while (true) {
4707       // Get parent node and next input's index from stack's top.
4708       Node  *n = nstack_top_n;
4709       uint   i = nstack_top_i;
4710       uint cnt = n->req(); // Count of inputs
4711       if (i == 0) {        // Pre-process the node.
4712         if( has_node(n) &&            // Have either loop or control already?
4713             !has_ctrl(n) ) {          // Have loop picked out already?
4714           // During "merge_many_backedges" we fold up several nested loops
4715           // into a single loop.  This makes the members of the original
4716           // loop bodies pointing to dead loops; they need to move up
4717           // to the new UNION'd larger loop.  I set the _head field of these
4718           // dead loops to NULL and the _parent field points to the owning
4719           // loop.  Shades of UNION-FIND algorithm.
4720           IdealLoopTree *ilt;
4721           while( !(ilt = get_loop(n))->_head ) {
4722             // Normally I would use a set_loop here.  But in this one special
4723             // case, it is legal (and expected) to change what loop a Node
4724             // belongs to.
4725             _nodes.map(n->_idx, (Node*)(ilt->_parent) );
4726           }
4727           // Remove safepoints ONLY if I've already seen I don't need one.
4728           // (the old code here would yank a 2nd safepoint after seeing a
4729           // first one, even though the 1st did not dominate in the loop body
4730           // and thus could be avoided indefinitely)
4731           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
4732               is_deleteable_safept(n)) {
4733             Node *in = n->in(TypeFunc::Control);
4734             lazy_replace(n,in);       // Pull safepoint now
4735             if (ilt->_safepts != NULL) {
4736               ilt->_safepts->yank(n);
4737             }
4738             // Carry on with the recursion "as if" we are walking
4739             // only the control input
4740             if( !visited.test_set( in->_idx ) ) {
4741               worklist.push(in);      // Visit this guy later, using worklist
4742             }
4743             // Get next node from nstack:
4744             // - skip n's inputs processing by setting i > cnt;
4745             // - we also will not call set_early_ctrl(n) since
4746             //   has_node(n) == true (see the condition above).
4747             i = cnt + 1;
4748           }
4749         }
4750       } // if (i == 0)
4751 
4752       // Visit all inputs
4753       bool done = true;       // Assume all n's inputs will be processed
4754       while (i < cnt) {
4755         Node *in = n->in(i);
4756         ++i;
4757         if (in == NULL) continue;
4758         if (in->pinned() && !in->is_CFG())
4759           set_ctrl(in, in->in(0));
4760         int is_visited = visited.test_set( in->_idx );
4761         if (!has_node(in)) {  // No controlling input yet?
4762           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
4763           assert( !is_visited, "visit only once" );
4764           nstack.push(n, i);  // Save parent node and next input's index.
4765           nstack_top_n = in;  // Process current input now.
4766           nstack_top_i = 0;
4767           done = false;       // Not all n's inputs processed.
4768           break; // continue while_nstack_nonempty;
4769         } else if (!is_visited) {
4770           // This guy has a location picked out for him, but has not yet
4771           // been visited.  Happens to all CFG nodes, for instance.
4772           // Visit him using the worklist instead of recursion, to break
4773           // cycles.  Since he has a location already we do not need to
4774           // find his location before proceeding with the current Node.
4775           worklist.push(in);  // Visit this guy later, using worklist
4776         }
4777       }
4778       if (done) {
4779         // All of n's inputs have been processed, complete post-processing.
4780 
4781         // Compute earliest point this Node can go.
4782         // CFG, Phi, pinned nodes already know their controlling input.
4783         if (!has_node(n)) {
4784           // Record earliest legal location
4785           set_early_ctrl(n, false);
4786         }
4787         if (nstack.is_empty()) {
4788           // Finished all nodes on stack.
4789           // Process next node on the worklist.
4790           break;
4791         }
4792         // Get saved parent node and next input's index.
4793         nstack_top_n = nstack.node();
4794         nstack_top_i = nstack.index();
4795         nstack.pop();
4796       }
4797     } // while (true)
4798   }
4799 }
4800 
4801 //------------------------------dom_lca_internal--------------------------------
4802 // Pair-wise LCA
dom_lca_internal(Node * n1,Node * n2) const4803 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
4804   if( !n1 ) return n2;          // Handle NULL original LCA
4805   assert( n1->is_CFG(), "" );
4806   assert( n2->is_CFG(), "" );
4807   // find LCA of all uses
4808   uint d1 = dom_depth(n1);
4809   uint d2 = dom_depth(n2);
4810   while (n1 != n2) {
4811     if (d1 > d2) {
4812       n1 =      idom(n1);
4813       d1 = dom_depth(n1);
4814     } else if (d1 < d2) {
4815       n2 =      idom(n2);
4816       d2 = dom_depth(n2);
4817     } else {
4818       // Here d1 == d2.  Due to edits of the dominator-tree, sections
4819       // of the tree might have the same depth.  These sections have
4820       // to be searched more carefully.
4821 
4822       // Scan up all the n1's with equal depth, looking for n2.
4823       Node *t1 = idom(n1);
4824       while (dom_depth(t1) == d1) {
4825         if (t1 == n2)  return n2;
4826         t1 = idom(t1);
4827       }
4828       // Scan up all the n2's with equal depth, looking for n1.
4829       Node *t2 = idom(n2);
4830       while (dom_depth(t2) == d2) {
4831         if (t2 == n1)  return n1;
4832         t2 = idom(t2);
4833       }
4834       // Move up to a new dominator-depth value as well as up the dom-tree.
4835       n1 = t1;
4836       n2 = t2;
4837       d1 = dom_depth(n1);
4838       d2 = dom_depth(n2);
4839     }
4840   }
4841   return n1;
4842 }
4843 
4844 //------------------------------compute_idom-----------------------------------
4845 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
4846 // IDOMs are correct.
compute_idom(Node * region) const4847 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
4848   assert( region->is_Region(), "" );
4849   Node *LCA = NULL;
4850   for( uint i = 1; i < region->req(); i++ ) {
4851     if( region->in(i) != C->top() )
4852       LCA = dom_lca( LCA, region->in(i) );
4853   }
4854   return LCA;
4855 }
4856 
verify_dominance(Node * n,Node * use,Node * LCA,Node * early)4857 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
4858   bool had_error = false;
4859 #ifdef ASSERT
4860   if (early != C->root()) {
4861     // Make sure that there's a dominance path from LCA to early
4862     Node* d = LCA;
4863     while (d != early) {
4864       if (d == C->root()) {
4865         dump_bad_graph("Bad graph detected in compute_lca_of_uses", n, early, LCA);
4866         tty->print_cr("*** Use %d isn't dominated by def %d ***", use->_idx, n->_idx);
4867         had_error = true;
4868         break;
4869       }
4870       d = idom(d);
4871     }
4872   }
4873 #endif
4874   return had_error;
4875 }
4876 
4877 
compute_lca_of_uses(Node * n,Node * early,bool verify)4878 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
4879   // Compute LCA over list of uses
4880   bool had_error = false;
4881   Node *LCA = NULL;
4882   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
4883     Node* c = n->fast_out(i);
4884     if (_nodes[c->_idx] == NULL)
4885       continue;                 // Skip the occasional dead node
4886     if( c->is_Phi() ) {         // For Phis, we must land above on the path
4887       for( uint j=1; j<c->req(); j++ ) {// For all inputs
4888         if( c->in(j) == n ) {   // Found matching input?
4889           Node *use = c->in(0)->in(j);
4890           if (_verify_only && use->is_top()) continue;
4891           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
4892           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
4893         }
4894       }
4895     } else {
4896       // For CFG data-users, use is in the block just prior
4897       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
4898       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
4899       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
4900     }
4901   }
4902   assert(!had_error, "bad dominance");
4903   return LCA;
4904 }
4905 
4906 // Check the shape of the graph at the loop entry. In some cases,
4907 // the shape of the graph does not match the shape outlined below.
4908 // That is caused by the Opaque1 node "protecting" the shape of
4909 // the graph being removed by, for example, the IGVN performed
4910 // in PhaseIdealLoop::build_and_optimize().
4911 //
4912 // After the Opaque1 node has been removed, optimizations (e.g., split-if,
4913 // loop unswitching, and IGVN, or a combination of them) can freely change
4914 // the graph's shape. As a result, the graph shape outlined below cannot
4915 // be guaranteed anymore.
is_canonical_loop_entry(CountedLoopNode * cl)4916 bool PhaseIdealLoop::is_canonical_loop_entry(CountedLoopNode* cl) {
4917   if (!cl->is_main_loop() && !cl->is_post_loop()) {
4918     return false;
4919   }
4920   Node* ctrl = cl->skip_predicates();
4921 
4922   if (ctrl == NULL || (!ctrl->is_IfTrue() && !ctrl->is_IfFalse())) {
4923     return false;
4924   }
4925   Node* iffm = ctrl->in(0);
4926   if (iffm == NULL || !iffm->is_If()) {
4927     return false;
4928   }
4929   Node* bolzm = iffm->in(1);
4930   if (bolzm == NULL || !bolzm->is_Bool()) {
4931     return false;
4932   }
4933   Node* cmpzm = bolzm->in(1);
4934   if (cmpzm == NULL || !cmpzm->is_Cmp()) {
4935     return false;
4936   }
4937   // compares can get conditionally flipped
4938   bool found_opaque = false;
4939   for (uint i = 1; i < cmpzm->req(); i++) {
4940     Node* opnd = cmpzm->in(i);
4941     if (opnd && opnd->Opcode() == Op_Opaque1) {
4942       found_opaque = true;
4943       break;
4944     }
4945   }
4946   if (!found_opaque) {
4947     return false;
4948   }
4949   return true;
4950 }
4951 
4952 //------------------------------get_late_ctrl----------------------------------
4953 // Compute latest legal control.
get_late_ctrl(Node * n,Node * early)4954 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
4955   assert(early != NULL, "early control should not be NULL");
4956 
4957   Node* LCA = compute_lca_of_uses(n, early);
4958 #ifdef ASSERT
4959   if (LCA == C->root() && LCA != early) {
4960     // def doesn't dominate uses so print some useful debugging output
4961     compute_lca_of_uses(n, early, true);
4962   }
4963 #endif
4964 
4965   // if this is a load, check for anti-dependent stores
4966   // We use a conservative algorithm to identify potential interfering
4967   // instructions and for rescheduling the load.  The users of the memory
4968   // input of this load are examined.  Any use which is not a load and is
4969   // dominated by early is considered a potentially interfering store.
4970   // This can produce false positives.
4971   if (n->is_Load() && LCA != early) {
4972     int load_alias_idx = C->get_alias_index(n->adr_type());
4973     if (C->alias_type(load_alias_idx)->is_rewritable()) {
4974       Unique_Node_List worklist;
4975 
4976       Node* mem = n->in(MemNode::Memory);
4977       for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
4978         Node* s = mem->fast_out(i);
4979         worklist.push(s);
4980       }
4981       for (uint i = 0; i < worklist.size() && LCA != early; i++) {
4982         Node* s = worklist.at(i);
4983         if (s->is_Load() || s->Opcode() == Op_SafePoint ||
4984             (s->is_CallStaticJava() && s->as_CallStaticJava()->uncommon_trap_request() != 0) ||
4985             s->is_Phi()) {
4986           continue;
4987         } else if (s->is_MergeMem()) {
4988           for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
4989             Node* s1 = s->fast_out(i);
4990             worklist.push(s1);
4991           }
4992         } else {
4993           Node* sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
4994           assert(sctrl != NULL || !s->is_reachable_from_root(), "must have control");
4995           if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
4996             const TypePtr* adr_type = s->adr_type();
4997             if (s->is_ArrayCopy()) {
4998               // Copy to known instance needs destination type to test for aliasing
4999               const TypePtr* dest_type = s->as_ArrayCopy()->_dest_type;
5000               if (dest_type != TypeOopPtr::BOTTOM) {
5001                 adr_type = dest_type;
5002               }
5003             }
5004             if (C->can_alias(adr_type, load_alias_idx)) {
5005               LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
5006             } else if (s->is_CFG()) {
5007               for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
5008                 Node* s1 = s->fast_out(i);
5009                 if (_igvn.type(s1) == Type::MEMORY) {
5010                   worklist.push(s1);
5011                 }
5012               }
5013             }
5014           }
5015         }
5016       }
5017       // For Phis only consider Region's inputs that were reached by following the memory edges
5018       if (LCA != early) {
5019         for (uint i = 0; i < worklist.size(); i++) {
5020           Node* s = worklist.at(i);
5021           if (s->is_Phi() && C->can_alias(s->adr_type(), load_alias_idx)) {
5022             Node* r = s->in(0);
5023             for (uint j = 1; j < s->req(); j++) {
5024               Node* in = s->in(j);
5025               Node* r_in = r->in(j);
5026               if ((worklist.member(in) || in == mem) && is_dominator(early, r_in)) {
5027                 LCA = dom_lca_for_get_late_ctrl(LCA, r_in, n);
5028               }
5029             }
5030           }
5031         }
5032       }
5033     }
5034   }
5035 
5036   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
5037   return LCA;
5038 }
5039 
5040 // true if CFG node d dominates CFG node n
is_dominator(Node * d,Node * n)5041 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
5042   if (d == n)
5043     return true;
5044   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
5045   uint dd = dom_depth(d);
5046   while (dom_depth(n) >= dd) {
5047     if (n == d)
5048       return true;
5049     n = idom(n);
5050   }
5051   return false;
5052 }
5053 
5054 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
5055 // Pair-wise LCA with tags.
5056 // Tag each index with the node 'tag' currently being processed
5057 // before advancing up the dominator chain using idom().
5058 // Later calls that find a match to 'tag' know that this path has already
5059 // been considered in the current LCA (which is input 'n1' by convention).
5060 // Since get_late_ctrl() is only called once for each node, the tag array
5061 // does not need to be cleared between calls to get_late_ctrl().
5062 // Algorithm trades a larger constant factor for better asymptotic behavior
5063 //
dom_lca_for_get_late_ctrl_internal(Node * n1,Node * n2,Node * tag)5064 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
5065   uint d1 = dom_depth(n1);
5066   uint d2 = dom_depth(n2);
5067 
5068   do {
5069     if (d1 > d2) {
5070       // current lca is deeper than n2
5071       _dom_lca_tags.map(n1->_idx, tag);
5072       n1 =      idom(n1);
5073       d1 = dom_depth(n1);
5074     } else if (d1 < d2) {
5075       // n2 is deeper than current lca
5076       Node *memo = _dom_lca_tags[n2->_idx];
5077       if( memo == tag ) {
5078         return n1;    // Return the current LCA
5079       }
5080       _dom_lca_tags.map(n2->_idx, tag);
5081       n2 =      idom(n2);
5082       d2 = dom_depth(n2);
5083     } else {
5084       // Here d1 == d2.  Due to edits of the dominator-tree, sections
5085       // of the tree might have the same depth.  These sections have
5086       // to be searched more carefully.
5087 
5088       // Scan up all the n1's with equal depth, looking for n2.
5089       _dom_lca_tags.map(n1->_idx, tag);
5090       Node *t1 = idom(n1);
5091       while (dom_depth(t1) == d1) {
5092         if (t1 == n2)  return n2;
5093         _dom_lca_tags.map(t1->_idx, tag);
5094         t1 = idom(t1);
5095       }
5096       // Scan up all the n2's with equal depth, looking for n1.
5097       _dom_lca_tags.map(n2->_idx, tag);
5098       Node *t2 = idom(n2);
5099       while (dom_depth(t2) == d2) {
5100         if (t2 == n1)  return n1;
5101         _dom_lca_tags.map(t2->_idx, tag);
5102         t2 = idom(t2);
5103       }
5104       // Move up to a new dominator-depth value as well as up the dom-tree.
5105       n1 = t1;
5106       n2 = t2;
5107       d1 = dom_depth(n1);
5108       d2 = dom_depth(n2);
5109     }
5110   } while (n1 != n2);
5111   return n1;
5112 }
5113 
5114 //------------------------------init_dom_lca_tags------------------------------
5115 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
5116 // Intended use does not involve any growth for the array, so it could
5117 // be of fixed size.
init_dom_lca_tags()5118 void PhaseIdealLoop::init_dom_lca_tags() {
5119   uint limit = C->unique() + 1;
5120   _dom_lca_tags.map( limit, NULL );
5121 #ifdef ASSERT
5122   for( uint i = 0; i < limit; ++i ) {
5123     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
5124   }
5125 #endif // ASSERT
5126 }
5127 
5128 //------------------------------clear_dom_lca_tags------------------------------
5129 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
5130 // Intended use does not involve any growth for the array, so it could
5131 // be of fixed size.
clear_dom_lca_tags()5132 void PhaseIdealLoop::clear_dom_lca_tags() {
5133   uint limit = C->unique() + 1;
5134   _dom_lca_tags.map( limit, NULL );
5135   _dom_lca_tags.clear();
5136 #ifdef ASSERT
5137   for( uint i = 0; i < limit; ++i ) {
5138     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
5139   }
5140 #endif // ASSERT
5141 }
5142 
5143 //------------------------------build_loop_late--------------------------------
5144 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
5145 // Second pass finds latest legal placement, and ideal loop placement.
build_loop_late(VectorSet & visited,Node_List & worklist,Node_Stack & nstack)5146 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
5147   while (worklist.size() != 0) {
5148     Node *n = worklist.pop();
5149     // Only visit once
5150     if (visited.test_set(n->_idx)) continue;
5151     uint cnt = n->outcnt();
5152     uint   i = 0;
5153     while (true) {
5154       assert( _nodes[n->_idx], "no dead nodes" );
5155       // Visit all children
5156       if (i < cnt) {
5157         Node* use = n->raw_out(i);
5158         ++i;
5159         // Check for dead uses.  Aggressively prune such junk.  It might be
5160         // dead in the global sense, but still have local uses so I cannot
5161         // easily call 'remove_dead_node'.
5162         if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
5163           // Due to cycles, we might not hit the same fixed point in the verify
5164           // pass as we do in the regular pass.  Instead, visit such phis as
5165           // simple uses of the loop head.
5166           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
5167             if( !visited.test(use->_idx) )
5168               worklist.push(use);
5169           } else if( !visited.test_set(use->_idx) ) {
5170             nstack.push(n, i); // Save parent and next use's index.
5171             n   = use;         // Process all children of current use.
5172             cnt = use->outcnt();
5173             i   = 0;
5174           }
5175         } else {
5176           // Do not visit around the backedge of loops via data edges.
5177           // push dead code onto a worklist
5178           _deadlist.push(use);
5179         }
5180       } else {
5181         // All of n's children have been processed, complete post-processing.
5182         build_loop_late_post(n);
5183         if (nstack.is_empty()) {
5184           // Finished all nodes on stack.
5185           // Process next node on the worklist.
5186           break;
5187         }
5188         // Get saved parent node and next use's index. Visit the rest of uses.
5189         n   = nstack.node();
5190         cnt = n->outcnt();
5191         i   = nstack.index();
5192         nstack.pop();
5193       }
5194     }
5195   }
5196 }
5197 
5198 // Verify that no data node is scheduled in the outer loop of a strip
5199 // mined loop.
verify_strip_mined_scheduling(Node * n,Node * least)5200 void PhaseIdealLoop::verify_strip_mined_scheduling(Node *n, Node* least) {
5201 #ifdef ASSERT
5202   if (get_loop(least)->_nest == 0) {
5203     return;
5204   }
5205   IdealLoopTree* loop = get_loop(least);
5206   Node* head = loop->_head;
5207   if (head->is_OuterStripMinedLoop() &&
5208       // Verification can't be applied to fully built strip mined loops
5209       head->as_Loop()->outer_loop_end()->in(1)->find_int_con(-1) == 0) {
5210     Node* sfpt = head->as_Loop()->outer_safepoint();
5211     ResourceMark rm;
5212     Unique_Node_List wq;
5213     wq.push(sfpt);
5214     for (uint i = 0; i < wq.size(); i++) {
5215       Node *m = wq.at(i);
5216       for (uint i = 1; i < m->req(); i++) {
5217         Node* nn = m->in(i);
5218         if (nn == n) {
5219           return;
5220         }
5221         if (nn != NULL && has_ctrl(nn) && get_loop(get_ctrl(nn)) == loop) {
5222           wq.push(nn);
5223         }
5224       }
5225     }
5226     ShouldNotReachHere();
5227   }
5228 #endif
5229 }
5230 
5231 
5232 //------------------------------build_loop_late_post---------------------------
5233 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
5234 // Second pass finds latest legal placement, and ideal loop placement.
build_loop_late_post(Node * n)5235 void PhaseIdealLoop::build_loop_late_post(Node *n) {
5236   build_loop_late_post_work(n, true);
5237 }
5238 
build_loop_late_post_work(Node * n,bool pinned)5239 void PhaseIdealLoop::build_loop_late_post_work(Node *n, bool pinned) {
5240 
5241   if (n->req() == 2 && (n->Opcode() == Op_ConvI2L || n->Opcode() == Op_CastII) && !C->major_progress() && !_verify_only) {
5242     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
5243   }
5244 
5245 #ifdef ASSERT
5246   if (_verify_only && !n->is_CFG()) {
5247     // Check def-use domination.
5248     compute_lca_of_uses(n, get_ctrl(n), true /* verify */);
5249   }
5250 #endif
5251 
5252   // CFG and pinned nodes already handled
5253   if( n->in(0) ) {
5254     if( n->in(0)->is_top() ) return; // Dead?
5255 
5256     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
5257     // _must_ be pinned (they have to observe their control edge of course).
5258     // Unlike Stores (which modify an unallocable resource, the memory
5259     // state), Mods/Loads can float around.  So free them up.
5260     switch( n->Opcode() ) {
5261     case Op_DivI:
5262     case Op_DivF:
5263     case Op_DivD:
5264     case Op_ModI:
5265     case Op_ModF:
5266     case Op_ModD:
5267     case Op_LoadB:              // Same with Loads; they can sink
5268     case Op_LoadUB:             // during loop optimizations.
5269     case Op_LoadUS:
5270     case Op_LoadD:
5271     case Op_LoadF:
5272     case Op_LoadI:
5273     case Op_LoadKlass:
5274     case Op_LoadNKlass:
5275     case Op_LoadL:
5276     case Op_LoadS:
5277     case Op_LoadP:
5278     case Op_LoadN:
5279     case Op_LoadRange:
5280     case Op_LoadD_unaligned:
5281     case Op_LoadL_unaligned:
5282     case Op_StrComp:            // Does a bunch of load-like effects
5283     case Op_StrEquals:
5284     case Op_StrIndexOf:
5285     case Op_StrIndexOfChar:
5286     case Op_AryEq:
5287     case Op_HasNegatives:
5288       pinned = false;
5289     }
5290     if (n->is_CMove()) {
5291       pinned = false;
5292     }
5293     if( pinned ) {
5294       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
5295       if( !chosen_loop->_child )       // Inner loop?
5296         chosen_loop->_body.push(n); // Collect inner loops
5297       return;
5298     }
5299   } else {                      // No slot zero
5300     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
5301       _nodes.map(n->_idx,0);    // No block setting, it's globally dead
5302       return;
5303     }
5304     assert(!n->is_CFG() || n->outcnt() == 0, "");
5305   }
5306 
5307   // Do I have a "safe range" I can select over?
5308   Node *early = get_ctrl(n);// Early location already computed
5309 
5310   // Compute latest point this Node can go
5311   Node *LCA = get_late_ctrl( n, early );
5312   // LCA is NULL due to uses being dead
5313   if( LCA == NULL ) {
5314 #ifdef ASSERT
5315     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
5316       assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
5317     }
5318 #endif
5319     _nodes.map(n->_idx, 0);     // This node is useless
5320     _deadlist.push(n);
5321     return;
5322   }
5323   assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
5324 
5325   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
5326   Node *least = legal;          // Best legal position so far
5327   while( early != legal ) {     // While not at earliest legal
5328 #ifdef ASSERT
5329     if (legal->is_Start() && !early->is_Root()) {
5330       // Bad graph. Print idom path and fail.
5331       dump_bad_graph("Bad graph detected in build_loop_late", n, early, LCA);
5332       assert(false, "Bad graph detected in build_loop_late");
5333     }
5334 #endif
5335     // Find least loop nesting depth
5336     legal = idom(legal);        // Bump up the IDOM tree
5337     // Check for lower nesting depth
5338     if( get_loop(legal)->_nest < get_loop(least)->_nest )
5339       least = legal;
5340   }
5341   assert(early == legal || legal != C->root(), "bad dominance of inputs");
5342 
5343   // Try not to place code on a loop entry projection
5344   // which can inhibit range check elimination.
5345   if (least != early) {
5346     Node* ctrl_out = least->unique_ctrl_out();
5347     if (ctrl_out && ctrl_out->is_Loop() &&
5348         least == ctrl_out->in(LoopNode::EntryControl)) {
5349       // Move the node above predicates as far up as possible so a
5350       // following pass of loop predication doesn't hoist a predicate
5351       // that depends on it above that node.
5352       Node* new_ctrl = least;
5353       for (;;) {
5354         if (!new_ctrl->is_Proj()) {
5355           break;
5356         }
5357         CallStaticJavaNode* call = new_ctrl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none);
5358         if (call == NULL) {
5359           break;
5360         }
5361         int req = call->uncommon_trap_request();
5362         Deoptimization::DeoptReason trap_reason = Deoptimization::trap_request_reason(req);
5363         if (trap_reason != Deoptimization::Reason_loop_limit_check &&
5364             trap_reason != Deoptimization::Reason_predicate &&
5365             trap_reason != Deoptimization::Reason_profile_predicate) {
5366           break;
5367         }
5368         Node* c = new_ctrl->in(0)->in(0);
5369         if (is_dominator(c, early) && c != early) {
5370           break;
5371         }
5372         new_ctrl = c;
5373       }
5374       least = new_ctrl;
5375     }
5376   }
5377 
5378 #ifdef ASSERT
5379   // If verifying, verify that 'verify_me' has a legal location
5380   // and choose it as our location.
5381   if( _verify_me ) {
5382     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
5383     Node *legal = LCA;
5384     while( early != legal ) {   // While not at earliest legal
5385       if( legal == v_ctrl ) break;  // Check for prior good location
5386       legal = idom(legal)      ;// Bump up the IDOM tree
5387     }
5388     // Check for prior good location
5389     if( legal == v_ctrl ) least = legal; // Keep prior if found
5390   }
5391 #endif
5392 
5393   // Assign discovered "here or above" point
5394   least = find_non_split_ctrl(least);
5395   verify_strip_mined_scheduling(n, least);
5396   set_ctrl(n, least);
5397 
5398   // Collect inner loop bodies
5399   IdealLoopTree *chosen_loop = get_loop(least);
5400   if( !chosen_loop->_child )   // Inner loop?
5401     chosen_loop->_body.push(n);// Collect inner loops
5402 }
5403 
5404 #ifdef ASSERT
dump_bad_graph(const char * msg,Node * n,Node * early,Node * LCA)5405 void PhaseIdealLoop::dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA) {
5406   tty->print_cr("%s", msg);
5407   tty->print("n: "); n->dump();
5408   tty->print("early(n): "); early->dump();
5409   if (n->in(0) != NULL  && !n->in(0)->is_top() &&
5410       n->in(0) != early && !n->in(0)->is_Root()) {
5411     tty->print("n->in(0): "); n->in(0)->dump();
5412   }
5413   for (uint i = 1; i < n->req(); i++) {
5414     Node* in1 = n->in(i);
5415     if (in1 != NULL && in1 != n && !in1->is_top()) {
5416       tty->print("n->in(%d): ", i); in1->dump();
5417       Node* in1_early = get_ctrl(in1);
5418       tty->print("early(n->in(%d)): ", i); in1_early->dump();
5419       if (in1->in(0) != NULL     && !in1->in(0)->is_top() &&
5420           in1->in(0) != in1_early && !in1->in(0)->is_Root()) {
5421         tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump();
5422       }
5423       for (uint j = 1; j < in1->req(); j++) {
5424         Node* in2 = in1->in(j);
5425         if (in2 != NULL && in2 != n && in2 != in1 && !in2->is_top()) {
5426           tty->print("n->in(%d)->in(%d): ", i, j); in2->dump();
5427           Node* in2_early = get_ctrl(in2);
5428           tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump();
5429           if (in2->in(0) != NULL     && !in2->in(0)->is_top() &&
5430               in2->in(0) != in2_early && !in2->in(0)->is_Root()) {
5431             tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump();
5432           }
5433         }
5434       }
5435     }
5436   }
5437   tty->cr();
5438   tty->print("LCA(n): "); LCA->dump();
5439   for (uint i = 0; i < n->outcnt(); i++) {
5440     Node* u1 = n->raw_out(i);
5441     if (u1 == n)
5442       continue;
5443     tty->print("n->out(%d): ", i); u1->dump();
5444     if (u1->is_CFG()) {
5445       for (uint j = 0; j < u1->outcnt(); j++) {
5446         Node* u2 = u1->raw_out(j);
5447         if (u2 != u1 && u2 != n && u2->is_CFG()) {
5448           tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
5449         }
5450       }
5451     } else {
5452       Node* u1_later = get_ctrl(u1);
5453       tty->print("later(n->out(%d)): ", i); u1_later->dump();
5454       if (u1->in(0) != NULL     && !u1->in(0)->is_top() &&
5455           u1->in(0) != u1_later && !u1->in(0)->is_Root()) {
5456         tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump();
5457       }
5458       for (uint j = 0; j < u1->outcnt(); j++) {
5459         Node* u2 = u1->raw_out(j);
5460         if (u2 == n || u2 == u1)
5461           continue;
5462         tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
5463         if (!u2->is_CFG()) {
5464           Node* u2_later = get_ctrl(u2);
5465           tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump();
5466           if (u2->in(0) != NULL     && !u2->in(0)->is_top() &&
5467               u2->in(0) != u2_later && !u2->in(0)->is_Root()) {
5468             tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump();
5469           }
5470         }
5471       }
5472     }
5473   }
5474   tty->cr();
5475   tty->print_cr("idoms of early %d:", early->_idx);
5476   dump_idom(early);
5477   tty->cr();
5478   tty->print_cr("idoms of (wrong) LCA %d:", LCA->_idx);
5479   dump_idom(LCA);
5480   tty->cr();
5481   dump_real_LCA(early, LCA);
5482   tty->cr();
5483 }
5484 
5485 // Find the real LCA of early and the wrongly assumed LCA.
dump_real_LCA(Node * early,Node * wrong_lca)5486 void PhaseIdealLoop::dump_real_LCA(Node* early, Node* wrong_lca) {
5487   assert(!is_dominator(early, wrong_lca) && !is_dominator(early, wrong_lca),
5488          "sanity check that one node does not dominate the other");
5489   assert(!has_ctrl(early) && !has_ctrl(wrong_lca), "sanity check, no data nodes");
5490 
5491   ResourceMark rm;
5492   Node_List nodes_seen;
5493   Node* real_LCA = NULL;
5494   Node* n1 = wrong_lca;
5495   Node* n2 = early;
5496   uint count_1 = 0;
5497   uint count_2 = 0;
5498   // Add early and wrong_lca to simplify calculation of idom indices
5499   nodes_seen.push(n1);
5500   nodes_seen.push(n2);
5501 
5502   // Walk the idom chain up from early and wrong_lca and stop when they intersect.
5503   while (!n1->is_Start() && !n2->is_Start()) {
5504     n1 = idom(n1);
5505     n2 = idom(n2);
5506     if (n1 == n2) {
5507       // Both idom chains intersect at the same index
5508       real_LCA = n1;
5509       count_1 = nodes_seen.size() / 2;
5510       count_2 = count_1;
5511       break;
5512     }
5513     if (check_idom_chains_intersection(n1, count_1, count_2, &nodes_seen)) {
5514       real_LCA = n1;
5515       break;
5516     }
5517     if (check_idom_chains_intersection(n2, count_2, count_1, &nodes_seen)) {
5518       real_LCA = n2;
5519       break;
5520     }
5521     nodes_seen.push(n1);
5522     nodes_seen.push(n2);
5523   }
5524 
5525   assert(real_LCA != NULL, "must always find an LCA");
5526   tty->print_cr("Real LCA of early %d (idom[%d]) and (wrong) LCA %d (idom[%d]):", early->_idx, count_2, wrong_lca->_idx, count_1);
5527   real_LCA->dump();
5528 }
5529 
5530 // Check if n is already on nodes_seen (i.e. idom chains of early and wrong_lca intersect at n). Determine the idom index of n
5531 // on both idom chains and return them in idom_idx_new and idom_idx_other, respectively.
check_idom_chains_intersection(const Node * n,uint & idom_idx_new,uint & idom_idx_other,const Node_List * nodes_seen) const5532 bool PhaseIdealLoop::check_idom_chains_intersection(const Node* n, uint& idom_idx_new, uint& idom_idx_other, const Node_List* nodes_seen) const {
5533   if (nodes_seen->contains(n)) {
5534     // The idom chain has just discovered n.
5535     // Divide by 2 because nodes_seen contains the same amount of nodes from both chains.
5536     idom_idx_new = nodes_seen->size() / 2;
5537 
5538     // The other chain already contained n. Search the index.
5539     for (uint i = 0; i < nodes_seen->size(); i++) {
5540       if (nodes_seen->at(i) == n) {
5541         // Divide by 2 because nodes_seen contains the same amount of nodes from both chains.
5542         idom_idx_other = i / 2;
5543       }
5544     }
5545     return true;
5546   }
5547   return false;
5548 }
5549 #endif // ASSERT
5550 
5551 #ifndef PRODUCT
5552 //------------------------------dump-------------------------------------------
dump() const5553 void PhaseIdealLoop::dump() const {
5554   ResourceMark rm;
5555   Node_Stack stack(C->live_nodes() >> 2);
5556   Node_List rpo_list;
5557   VectorSet visited;
5558   visited.set(C->top()->_idx);
5559   rpo(C->root(), stack, visited, rpo_list);
5560   // Dump root loop indexed by last element in PO order
5561   dump(_ltree_root, rpo_list.size(), rpo_list);
5562 }
5563 
dump(IdealLoopTree * loop,uint idx,Node_List & rpo_list) const5564 void PhaseIdealLoop::dump(IdealLoopTree* loop, uint idx, Node_List &rpo_list) const {
5565   loop->dump_head();
5566 
5567   // Now scan for CFG nodes in the same loop
5568   for (uint j = idx; j > 0; j--) {
5569     Node* n = rpo_list[j-1];
5570     if (!_nodes[n->_idx])      // Skip dead nodes
5571       continue;
5572 
5573     if (get_loop(n) != loop) { // Wrong loop nest
5574       if (get_loop(n)->_head == n &&    // Found nested loop?
5575           get_loop(n)->_parent == loop)
5576         dump(get_loop(n), rpo_list.size(), rpo_list);     // Print it nested-ly
5577       continue;
5578     }
5579 
5580     // Dump controlling node
5581     tty->sp(2 * loop->_nest);
5582     tty->print("C");
5583     if (n == C->root()) {
5584       n->dump();
5585     } else {
5586       Node* cached_idom   = idom_no_update(n);
5587       Node* computed_idom = n->in(0);
5588       if (n->is_Region()) {
5589         computed_idom = compute_idom(n);
5590         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
5591         // any MultiBranch ctrl node), so apply a similar transform to
5592         // the cached idom returned from idom_no_update.
5593         cached_idom = find_non_split_ctrl(cached_idom);
5594       }
5595       tty->print(" ID:%d", computed_idom->_idx);
5596       n->dump();
5597       if (cached_idom != computed_idom) {
5598         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
5599                       computed_idom->_idx, cached_idom->_idx);
5600       }
5601     }
5602     // Dump nodes it controls
5603     for (uint k = 0; k < _nodes.Size(); k++) {
5604       // (k < C->unique() && get_ctrl(find(k)) == n)
5605       if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
5606         Node* m = C->root()->find(k);
5607         if (m && m->outcnt() > 0) {
5608           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
5609             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
5610                           _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
5611           }
5612           tty->sp(2 * loop->_nest + 1);
5613           m->dump();
5614         }
5615       }
5616     }
5617   }
5618 }
5619 
dump_idom(Node * n) const5620 void PhaseIdealLoop::dump_idom(Node* n) const {
5621   if (has_ctrl(n)) {
5622     tty->print_cr("No idom for data nodes");
5623   } else {
5624     for (int i = 0; i < 100 && !n->is_Start(); i++) {
5625       tty->print("idom[%d] ", i);
5626       n->dump();
5627       n = idom(n);
5628     }
5629   }
5630 }
5631 #endif // NOT PRODUCT
5632 
5633 // Collect a R-P-O for the whole CFG.
5634 // Result list is in post-order (scan backwards for RPO)
rpo(Node * start,Node_Stack & stk,VectorSet & visited,Node_List & rpo_list) const5635 void PhaseIdealLoop::rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const {
5636   stk.push(start, 0);
5637   visited.set(start->_idx);
5638 
5639   while (stk.is_nonempty()) {
5640     Node* m   = stk.node();
5641     uint  idx = stk.index();
5642     if (idx < m->outcnt()) {
5643       stk.set_index(idx + 1);
5644       Node* n = m->raw_out(idx);
5645       if (n->is_CFG() && !visited.test_set(n->_idx)) {
5646         stk.push(n, 0);
5647       }
5648     } else {
5649       rpo_list.push(m);
5650       stk.pop();
5651     }
5652   }
5653 }
5654 
5655 
5656 //=============================================================================
5657 //------------------------------LoopTreeIterator-------------------------------
5658 
5659 // Advance to next loop tree using a preorder, left-to-right traversal.
next()5660 void LoopTreeIterator::next() {
5661   assert(!done(), "must not be done.");
5662   if (_curnt->_child != NULL) {
5663     _curnt = _curnt->_child;
5664   } else if (_curnt->_next != NULL) {
5665     _curnt = _curnt->_next;
5666   } else {
5667     while (_curnt != _root && _curnt->_next == NULL) {
5668       _curnt = _curnt->_parent;
5669     }
5670     if (_curnt == _root) {
5671       _curnt = NULL;
5672       assert(done(), "must be done.");
5673     } else {
5674       assert(_curnt->_next != NULL, "must be more to do");
5675       _curnt = _curnt->_next;
5676     }
5677   }
5678 }
5679