1 /*
2  * Copyright (c) 1998, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_OPTO_LOOPNODE_HPP
26 #define SHARE_OPTO_LOOPNODE_HPP
27 
28 #include "opto/cfgnode.hpp"
29 #include "opto/multnode.hpp"
30 #include "opto/phaseX.hpp"
31 #include "opto/subnode.hpp"
32 #include "opto/type.hpp"
33 
34 class CmpNode;
35 class BaseCountedLoopEndNode;
36 class CountedLoopNode;
37 class IdealLoopTree;
38 class LoopNode;
39 class Node;
40 class OuterStripMinedLoopEndNode;
41 class PathFrequency;
42 class PhaseIdealLoop;
43 class CountedLoopReserveKit;
44 class VectorSet;
45 class Invariance;
46 struct small_cache;
47 
48 //
49 //                  I D E A L I Z E D   L O O P S
50 //
51 // Idealized loops are the set of loops I perform more interesting
52 // transformations on, beyond simple hoisting.
53 
54 //------------------------------LoopNode---------------------------------------
55 // Simple loop header.  Fall in path on left, loop-back path on right.
56 class LoopNode : public RegionNode {
57   // Size is bigger to hold the flags.  However, the flags do not change
58   // the semantics so it does not appear in the hash & cmp functions.
size_of() const59   virtual uint size_of() const { return sizeof(*this); }
60 protected:
61   uint _loop_flags;
62   // Names for flag bitfields
63   enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3,
64          MainHasNoPreLoop=4,
65          HasExactTripCount=8,
66          InnerLoop=16,
67          PartialPeelLoop=32,
68          PartialPeelFailed=64,
69          HasReductions=128,
70          WasSlpAnalyzed=256,
71          PassedSlpAnalysis=512,
72          DoUnrollOnly=1024,
73          VectorizedLoop=2048,
74          HasAtomicPostLoop=4096,
75          HasRangeChecks=8192,
76          IsMultiversioned=16384,
77          StripMined=32768,
78          SubwordLoop=65536,
79          ProfileTripFailed=131072,
80          TransformedLongLoop=262144};
81   char _unswitch_count;
82   enum { _unswitch_max=3 };
83   char _postloop_flags;
84   enum { LoopNotRCEChecked = 0, LoopRCEChecked = 1, RCEPostLoop = 2 };
85 
86   // Expected trip count from profile data
87   float _profile_trip_cnt;
88 
89 public:
90   // Names for edge indices
91   enum { Self=0, EntryControl, LoopBackControl };
92 
is_inner_loop() const93   bool is_inner_loop() const { return _loop_flags & InnerLoop; }
set_inner_loop()94   void set_inner_loop() { _loop_flags |= InnerLoop; }
95 
range_checks_present() const96   bool range_checks_present() const { return _loop_flags & HasRangeChecks; }
is_multiversioned() const97   bool is_multiversioned() const { return _loop_flags & IsMultiversioned; }
is_vectorized_loop() const98   bool is_vectorized_loop() const { return _loop_flags & VectorizedLoop; }
is_partial_peel_loop() const99   bool is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; }
set_partial_peel_loop()100   void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
partial_peel_has_failed() const101   bool partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
is_strip_mined() const102   bool is_strip_mined() const { return _loop_flags & StripMined; }
is_profile_trip_failed() const103   bool is_profile_trip_failed() const { return _loop_flags & ProfileTripFailed; }
is_subword_loop() const104   bool is_subword_loop() const { return _loop_flags & SubwordLoop; }
is_transformed_long_loop() const105   bool is_transformed_long_loop() const { return _loop_flags & TransformedLongLoop; }
106 
mark_partial_peel_failed()107   void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
mark_has_reductions()108   void mark_has_reductions() { _loop_flags |= HasReductions; }
mark_was_slp()109   void mark_was_slp() { _loop_flags |= WasSlpAnalyzed; }
mark_passed_slp()110   void mark_passed_slp() { _loop_flags |= PassedSlpAnalysis; }
mark_do_unroll_only()111   void mark_do_unroll_only() { _loop_flags |= DoUnrollOnly; }
mark_loop_vectorized()112   void mark_loop_vectorized() { _loop_flags |= VectorizedLoop; }
mark_has_atomic_post_loop()113   void mark_has_atomic_post_loop() { _loop_flags |= HasAtomicPostLoop; }
mark_has_range_checks()114   void mark_has_range_checks() { _loop_flags |=  HasRangeChecks; }
mark_is_multiversioned()115   void mark_is_multiversioned() { _loop_flags |= IsMultiversioned; }
mark_strip_mined()116   void mark_strip_mined() { _loop_flags |= StripMined; }
clear_strip_mined()117   void clear_strip_mined() { _loop_flags &= ~StripMined; }
mark_profile_trip_failed()118   void mark_profile_trip_failed() { _loop_flags |= ProfileTripFailed; }
mark_subword_loop()119   void mark_subword_loop() { _loop_flags |= SubwordLoop; }
mark_transformed_long_loop()120   void mark_transformed_long_loop() { _loop_flags |= TransformedLongLoop; }
121 
unswitch_max()122   int unswitch_max() { return _unswitch_max; }
unswitch_count()123   int unswitch_count() { return _unswitch_count; }
124 
has_been_range_checked() const125   int has_been_range_checked() const { return _postloop_flags & LoopRCEChecked; }
set_has_been_range_checked()126   void set_has_been_range_checked() { _postloop_flags |= LoopRCEChecked; }
is_rce_post_loop() const127   int is_rce_post_loop() const { return _postloop_flags & RCEPostLoop; }
set_is_rce_post_loop()128   void set_is_rce_post_loop() { _postloop_flags |= RCEPostLoop; }
129 
set_unswitch_count(int val)130   void set_unswitch_count(int val) {
131     assert (val <= unswitch_max(), "too many unswitches");
132     _unswitch_count = val;
133   }
134 
set_profile_trip_cnt(float ptc)135   void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
profile_trip_cnt()136   float profile_trip_cnt()             { return _profile_trip_cnt; }
137 
LoopNode(Node * entry,Node * backedge)138   LoopNode(Node *entry, Node *backedge)
139     : RegionNode(3), _loop_flags(0), _unswitch_count(0),
140       _postloop_flags(0), _profile_trip_cnt(COUNT_UNKNOWN)  {
141     init_class_id(Class_Loop);
142     init_req(EntryControl, entry);
143     init_req(LoopBackControl, backedge);
144   }
145 
146   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
147   virtual int Opcode() const;
can_be_counted_loop(PhaseTransform * phase) const148   bool can_be_counted_loop(PhaseTransform* phase) const {
149     return req() == 3 && in(0) != NULL &&
150       in(1) != NULL && phase->type(in(1)) != Type::TOP &&
151       in(2) != NULL && phase->type(in(2)) != Type::TOP;
152   }
153   bool is_valid_counted_loop(BasicType bt) const;
154 #ifndef PRODUCT
155   virtual void dump_spec(outputStream *st) const;
156 #endif
157 
158   void verify_strip_mined(int expect_skeleton) const NOT_DEBUG_RETURN;
skip_strip_mined(int expect_skeleton=1)159   virtual LoopNode* skip_strip_mined(int expect_skeleton = 1) { return this; }
outer_loop_tail() const160   virtual IfTrueNode* outer_loop_tail() const { ShouldNotReachHere(); return NULL; }
outer_loop_end() const161   virtual OuterStripMinedLoopEndNode* outer_loop_end() const { ShouldNotReachHere(); return NULL; }
outer_loop_exit() const162   virtual IfFalseNode* outer_loop_exit() const { ShouldNotReachHere(); return NULL; }
outer_safepoint() const163   virtual SafePointNode* outer_safepoint() const { ShouldNotReachHere(); return NULL; }
164 };
165 
166 //------------------------------Counted Loops----------------------------------
167 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
168 // path (and maybe some other exit paths).  The trip-counter exit is always
169 // last in the loop.  The trip-counter have to stride by a constant;
170 // the exit value is also loop invariant.
171 
172 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
173 // CountedLoopNode has the incoming loop control and the loop-back-control
174 // which is always the IfTrue before the matching CountedLoopEndNode.  The
175 // CountedLoopEndNode has an incoming control (possibly not the
176 // CountedLoopNode if there is control flow in the loop), the post-increment
177 // trip-counter value, and the limit.  The trip-counter value is always of
178 // the form (Op old-trip-counter stride).  The old-trip-counter is produced
179 // by a Phi connected to the CountedLoopNode.  The stride is constant.
180 // The Op is any commutable opcode, including Add, Mul, Xor.  The
181 // CountedLoopEndNode also takes in the loop-invariant limit value.
182 
183 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
184 // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
185 // via the old-trip-counter from the Op node.
186 
187 //------------------------------CountedLoopNode--------------------------------
188 // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
189 // inputs the incoming loop-start control and the loop-back control, so they
190 // act like RegionNodes.  They also take in the initial trip counter, the
191 // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
192 // produce a loop-body control and the trip counter value.  Since
193 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
194 
195 class BaseCountedLoopNode : public LoopNode {
196 public:
BaseCountedLoopNode(Node * entry,Node * backedge)197   BaseCountedLoopNode(Node *entry, Node *backedge)
198     : LoopNode(entry, backedge) {
199   }
200 
init_control() const201   Node *init_control() const { return in(EntryControl); }
back_control() const202   Node *back_control() const { return in(LoopBackControl); }
203 
204   Node* init_trip() const;
205   Node* stride() const;
206   bool stride_is_con() const;
207   Node* limit() const;
208   Node* incr() const;
209   Node* phi() const;
210 
211   BaseCountedLoopEndNode* loopexit_or_null() const;
212   BaseCountedLoopEndNode* loopexit() const;
213 
214   virtual BasicType bt() const = 0;
operates_on(BasicType bt,bool signed_int) const215   virtual bool operates_on(BasicType bt, bool signed_int) const {
216     assert(bt == T_INT || bt == T_LONG, "unsupported");
217     return false;
218   }
219 
220   static BaseCountedLoopNode* make(Node* entry, Node* backedge, BasicType bt);
221 };
222 
223 
224 class CountedLoopNode : public BaseCountedLoopNode {
225   // Size is bigger to hold _main_idx.  However, _main_idx does not change
226   // the semantics so it does not appear in the hash & cmp functions.
size_of() const227   virtual uint size_of() const { return sizeof(*this); }
228 
229   // For Pre- and Post-loops during debugging ONLY, this holds the index of
230   // the Main CountedLoop.  Used to assert that we understand the graph shape.
231   node_idx_t _main_idx;
232 
233   // Known trip count calculated by compute_exact_trip_count()
234   uint  _trip_count;
235 
236   // Log2 of original loop bodies in unrolled loop
237   int _unrolled_count_log2;
238 
239   // Node count prior to last unrolling - used to decide if
240   // unroll,optimize,unroll,optimize,... is making progress
241   int _node_count_before_unroll;
242 
243   // If slp analysis is performed we record the maximum
244   // vector mapped unroll factor here
245   int _slp_maximum_unroll_factor;
246 
247 public:
CountedLoopNode(Node * entry,Node * backedge)248   CountedLoopNode(Node *entry, Node *backedge)
249     : BaseCountedLoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint),
250       _unrolled_count_log2(0), _node_count_before_unroll(0),
251       _slp_maximum_unroll_factor(0) {
252     init_class_id(Class_CountedLoop);
253     // Initialize _trip_count to the largest possible value.
254     // Will be reset (lower) if the loop's trip count is known.
255   }
256 
257   virtual int Opcode() const;
258   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
259 
loopexit_or_null() const260   CountedLoopEndNode* loopexit_or_null() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); }
loopexit() const261   CountedLoopEndNode* loopexit() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit(); }
262   int   stride_con() const;
263 
264   // Match increment with optional truncation
265   static Node*
266   match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInteger** trunc_type,
267                                       BasicType bt);
268 
269   // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
270   // can run short a few iterations and may start a few iterations in.
271   // It will be RCE'd and unrolled and aligned.
272 
273   // A following 'post' loop will run any remaining iterations.  Used
274   // during Range Check Elimination, the 'post' loop will do any final
275   // iterations with full checks.  Also used by Loop Unrolling, where
276   // the 'post' loop will do any epilog iterations needed.  Basically,
277   // a 'post' loop can not profitably be further unrolled or RCE'd.
278 
279   // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
280   // it may do under-flow checks for RCE and may do alignment iterations
281   // so the following main loop 'knows' that it is striding down cache
282   // lines.
283 
284   // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
285   // Aligned, may be missing it's pre-loop.
is_normal_loop() const286   bool is_normal_loop   () const { return (_loop_flags&PreMainPostFlagsMask) == Normal; }
is_pre_loop() const287   bool is_pre_loop      () const { return (_loop_flags&PreMainPostFlagsMask) == Pre;    }
is_main_loop() const288   bool is_main_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Main;   }
is_post_loop() const289   bool is_post_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Post;   }
is_reduction_loop() const290   bool is_reduction_loop() const { return (_loop_flags&HasReductions) == HasReductions; }
was_slp_analyzed() const291   bool was_slp_analyzed () const { return (_loop_flags&WasSlpAnalyzed) == WasSlpAnalyzed; }
has_passed_slp() const292   bool has_passed_slp   () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; }
is_unroll_only() const293   bool is_unroll_only   () const { return (_loop_flags&DoUnrollOnly) == DoUnrollOnly; }
is_main_no_pre_loop() const294   bool is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; }
has_atomic_post_loop() const295   bool has_atomic_post_loop  () const { return (_loop_flags & HasAtomicPostLoop) == HasAtomicPostLoop; }
set_main_no_pre_loop()296   void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; }
297 
main_idx() const298   int main_idx() const { return _main_idx; }
299 
300 
set_pre_loop(CountedLoopNode * main)301   void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
set_main_loop()302   void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
set_post_loop(CountedLoopNode * main)303   void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
set_normal_loop()304   void set_normal_loop(                    ) { _loop_flags &= ~PreMainPostFlagsMask; }
305 
set_trip_count(uint tc)306   void set_trip_count(uint tc) { _trip_count = tc; }
trip_count()307   uint trip_count()            { return _trip_count; }
308 
has_exact_trip_count() const309   bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; }
set_exact_trip_count(uint tc)310   void set_exact_trip_count(uint tc) {
311     _trip_count = tc;
312     _loop_flags |= HasExactTripCount;
313   }
set_nonexact_trip_count()314   void set_nonexact_trip_count() {
315     _loop_flags &= ~HasExactTripCount;
316   }
set_notpassed_slp()317   void set_notpassed_slp() {
318     _loop_flags &= ~PassedSlpAnalysis;
319   }
320 
double_unrolled_count()321   void double_unrolled_count() { _unrolled_count_log2++; }
unrolled_count()322   int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
323 
set_node_count_before_unroll(int ct)324   void set_node_count_before_unroll(int ct)  { _node_count_before_unroll = ct; }
node_count_before_unroll()325   int  node_count_before_unroll()            { return _node_count_before_unroll; }
set_slp_max_unroll(int unroll_factor)326   void set_slp_max_unroll(int unroll_factor) { _slp_maximum_unroll_factor = unroll_factor; }
slp_max_unroll() const327   int  slp_max_unroll() const                { return _slp_maximum_unroll_factor; }
328 
329   virtual LoopNode* skip_strip_mined(int expect_skeleton = 1);
330   OuterStripMinedLoopNode* outer_loop() const;
331   virtual IfTrueNode* outer_loop_tail() const;
332   virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
333   virtual IfFalseNode* outer_loop_exit() const;
334   virtual SafePointNode* outer_safepoint() const;
335 
336   // If this is a main loop in a pre/main/post loop nest, walk over
337   // the predicates that were inserted by
338   // duplicate_predicates()/add_range_check_predicate()
339   static Node* skip_predicates_from_entry(Node* ctrl);
340   Node* skip_predicates();
341 
operates_on(BasicType bt,bool signed_int) const342   virtual bool operates_on(BasicType bt, bool signed_int) const {
343     assert(bt == T_INT || bt == T_LONG, "unsupported");
344     return bt == T_INT;
345   }
bt() const346   virtual BasicType bt() const {
347     return T_INT;
348   }
349 
350 #ifndef PRODUCT
351   virtual void dump_spec(outputStream *st) const;
352 #endif
353 };
354 
355 class LongCountedLoopNode : public BaseCountedLoopNode {
356 public:
LongCountedLoopNode(Node * entry,Node * backedge)357   LongCountedLoopNode(Node *entry, Node *backedge)
358     : BaseCountedLoopNode(entry, backedge) {
359     init_class_id(Class_LongCountedLoop);
360   }
361 
362   virtual int Opcode() const;
363 
operates_on(BasicType bt,bool signed_int) const364   virtual bool operates_on(BasicType bt, bool signed_int) const {
365     assert(bt == T_INT || bt == T_LONG, "unsupported");
366     return bt == T_LONG;
367   }
368 
bt() const369   virtual BasicType bt() const {
370     return T_LONG;
371   }
372 
loopexit_or_null() const373   LongCountedLoopEndNode* loopexit_or_null() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); }
loopexit() const374   LongCountedLoopEndNode* loopexit() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit(); }
375   jlong   stride_con() const;
376 };
377 
378 
379 //------------------------------CountedLoopEndNode-----------------------------
380 // CountedLoopEndNodes end simple trip counted loops.  They act much like
381 // IfNodes.
382 
383 class BaseCountedLoopEndNode : public IfNode {
384 public:
385   enum { TestControl, TestValue };
BaseCountedLoopEndNode(Node * control,Node * test,float prob,float cnt)386   BaseCountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
387     : IfNode(control, test, prob, cnt) {
388     init_class_id(Class_BaseCountedLoopEnd);
389   }
390 
cmp_node() const391   Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; }
incr() const392   Node* incr() const                { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(1) : NULL; }
limit() const393   Node* limit() const               { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(2) : NULL; }
stride() const394   Node* stride() const              { Node* tmp = incr(); return (tmp && tmp->req() == 3) ? tmp->in(2) : NULL; }
init_trip() const395   Node* init_trip() const           { Node* tmp = phi(); return (tmp && tmp->req() == 3) ? tmp->in(1) : NULL; }
stride_is_con() const396   bool stride_is_con() const        { Node *tmp = stride(); return (tmp != NULL && tmp->is_Con()); }
397 
phi() const398   PhiNode* phi() const {
399     Node* tmp = incr();
400     if (tmp && tmp->req() == 3) {
401       Node* phi = tmp->in(1);
402       if (phi->is_Phi()) {
403         return phi->as_Phi();
404       }
405     }
406     return NULL;
407   }
408 
loopnode() const409   BaseCountedLoopNode* loopnode() const {
410     // The CountedLoopNode that goes with this CountedLoopEndNode may
411     // have been optimized out by the IGVN so be cautious with the
412     // pattern matching on the graph
413     PhiNode* iv_phi = phi();
414     if (iv_phi == NULL) {
415       return NULL;
416     }
417     Node* ln = iv_phi->in(0);
418     if (!ln->is_BaseCountedLoop() || ln->as_BaseCountedLoop()->loopexit_or_null() != this) {
419       return NULL;
420     }
421     if (!ln->operates_on(bt(), true)) {
422       return NULL;
423     }
424     return ln->as_BaseCountedLoop();
425   }
426 
test_trip() const427   BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
operates_on(BasicType bt,bool signed_int) const428   virtual bool operates_on(BasicType bt, bool signed_int) const {
429     assert(bt == T_INT || bt == T_LONG, "unsupported");
430     return false;
431   }
432 
433   jlong stride_con() const;
434   virtual BasicType bt() const = 0;
435 
436   static BaseCountedLoopEndNode* make(Node* control, Node* test, float prob, float cnt, BasicType bt);
437 };
438 
439 class CountedLoopEndNode : public BaseCountedLoopEndNode {
440 public:
441 
CountedLoopEndNode(Node * control,Node * test,float prob,float cnt)442   CountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
443     : BaseCountedLoopEndNode(control, test, prob, cnt) {
444     init_class_id(Class_CountedLoopEnd);
445   }
446   virtual int Opcode() const;
447 
loopnode() const448   CountedLoopNode* loopnode() const {
449     return (CountedLoopNode*) BaseCountedLoopEndNode::loopnode();
450   }
operates_on(BasicType bt,bool signed_int) const451   virtual bool operates_on(BasicType bt, bool signed_int) const {
452     assert(bt == T_INT || bt == T_LONG, "unsupported");
453     return bt == T_INT;
454   }
455 
bt() const456   virtual BasicType bt() const {
457     return T_INT;
458   }
459 
460 #ifndef PRODUCT
461   virtual void dump_spec(outputStream *st) const;
462 #endif
463 };
464 
465 class LongCountedLoopEndNode : public BaseCountedLoopEndNode {
466 public:
LongCountedLoopEndNode(Node * control,Node * test,float prob,float cnt)467   LongCountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
468     : BaseCountedLoopEndNode(control, test, prob, cnt) {
469     init_class_id(Class_LongCountedLoopEnd);
470   }
471 
loopnode() const472   LongCountedLoopNode* loopnode() const {
473     return (LongCountedLoopNode*) BaseCountedLoopEndNode::loopnode();
474   }
operates_on(BasicType bt,bool signed_int) const475   virtual bool operates_on(BasicType bt, bool signed_int) const {
476     assert(bt == T_INT || bt == T_LONG, "unsupported");
477     return bt == T_LONG;
478   }
479   virtual int Opcode() const;
480 
bt() const481   virtual BasicType bt() const {
482     return T_LONG;
483   }
484 };
485 
486 
loopexit_or_null() const487 inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit_or_null() const {
488   Node* bctrl = back_control();
489   if (bctrl == NULL) return NULL;
490 
491   Node* lexit = bctrl->in(0);
492   if (!lexit->is_BaseCountedLoopEnd()) {
493     return NULL;
494   }
495   BaseCountedLoopEndNode* result = lexit->as_BaseCountedLoopEnd();
496   if (!result->operates_on(bt(), true)) {
497     return NULL;
498   }
499   return result;
500 }
501 
loopexit() const502 inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit() const {
503   BaseCountedLoopEndNode* cle = loopexit_or_null();
504   assert(cle != NULL, "loopexit is NULL");
505   return cle;
506 }
507 
init_trip() const508 inline Node* BaseCountedLoopNode::init_trip() const {
509   BaseCountedLoopEndNode* cle = loopexit_or_null();
510   return cle != NULL ? cle->init_trip() : NULL;
511 }
stride() const512 inline Node* BaseCountedLoopNode::stride() const {
513   BaseCountedLoopEndNode* cle = loopexit_or_null();
514   return cle != NULL ? cle->stride() : NULL;
515 }
516 
stride_is_con() const517 inline bool BaseCountedLoopNode::stride_is_con() const {
518   BaseCountedLoopEndNode* cle = loopexit_or_null();
519   return cle != NULL && cle->stride_is_con();
520 }
limit() const521 inline Node* BaseCountedLoopNode::limit() const {
522   BaseCountedLoopEndNode* cle = loopexit_or_null();
523   return cle != NULL ? cle->limit() : NULL;
524 }
incr() const525 inline Node* BaseCountedLoopNode::incr() const {
526   BaseCountedLoopEndNode* cle = loopexit_or_null();
527   return cle != NULL ? cle->incr() : NULL;
528 }
phi() const529 inline Node* BaseCountedLoopNode::phi() const {
530   BaseCountedLoopEndNode* cle = loopexit_or_null();
531   return cle != NULL ? cle->phi() : NULL;
532 }
533 
534 //------------------------------LoopLimitNode-----------------------------
535 // Counted Loop limit node which represents exact final iterator value:
536 // trip_count = (limit - init_trip + stride - 1)/stride
537 // final_value= trip_count * stride + init_trip.
538 // Use HW instructions to calculate it when it can overflow in integer.
539 // Note, final_value should fit into integer since counted loop has
540 // limit check: limit <= max_int-stride.
541 class LoopLimitNode : public Node {
542   enum { Init=1, Limit=2, Stride=3 };
543  public:
LoopLimitNode(Compile * C,Node * init,Node * limit,Node * stride)544   LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(0,init,limit,stride) {
545     // Put it on the Macro nodes list to optimize during macro nodes expansion.
546     init_flags(Flag_is_macro);
547     C->add_macro_node(this);
548   }
549   virtual int Opcode() const;
bottom_type() const550   virtual const Type *bottom_type() const { return TypeInt::INT; }
ideal_reg() const551   virtual uint ideal_reg() const { return Op_RegI; }
552   virtual const Type* Value(PhaseGVN* phase) const;
553   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
554   virtual Node* Identity(PhaseGVN* phase);
555 };
556 
557 // Support for strip mining
558 class OuterStripMinedLoopNode : public LoopNode {
559 private:
560   CountedLoopNode* inner_loop() const;
561 public:
OuterStripMinedLoopNode(Compile * C,Node * entry,Node * backedge)562   OuterStripMinedLoopNode(Compile* C, Node *entry, Node *backedge)
563     : LoopNode(entry, backedge) {
564     init_class_id(Class_OuterStripMinedLoop);
565     init_flags(Flag_is_macro);
566     C->add_macro_node(this);
567   }
568 
569   virtual int Opcode() const;
570 
571   virtual IfTrueNode* outer_loop_tail() const;
572   virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
573   virtual IfFalseNode* outer_loop_exit() const;
574   virtual SafePointNode* outer_safepoint() const;
575   void adjust_strip_mined_loop(PhaseIterGVN* igvn);
576 };
577 
578 class OuterStripMinedLoopEndNode : public IfNode {
579 public:
OuterStripMinedLoopEndNode(Node * control,Node * test,float prob,float cnt)580   OuterStripMinedLoopEndNode(Node *control, Node *test, float prob, float cnt)
581     : IfNode(control, test, prob, cnt) {
582     init_class_id(Class_OuterStripMinedLoopEnd);
583   }
584 
585   virtual int Opcode() const;
586 
587   virtual const Type* Value(PhaseGVN* phase) const;
588   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
589 
590   bool is_expanded(PhaseGVN *phase) const;
591 };
592 
593 // -----------------------------IdealLoopTree----------------------------------
594 class IdealLoopTree : public ResourceObj {
595 public:
596   IdealLoopTree *_parent;       // Parent in loop tree
597   IdealLoopTree *_next;         // Next sibling in loop tree
598   IdealLoopTree *_child;        // First child in loop tree
599 
600   // The head-tail backedge defines the loop.
601   // If a loop has multiple backedges, this is addressed during cleanup where
602   // we peel off the multiple backedges,  merging all edges at the bottom and
603   // ensuring that one proper backedge flow into the loop.
604   Node *_head;                  // Head of loop
605   Node *_tail;                  // Tail of loop
606   inline Node *tail();          // Handle lazy update of _tail field
607   inline Node *head();          // Handle lazy update of _head field
608   PhaseIdealLoop* _phase;
609   int _local_loop_unroll_limit;
610   int _local_loop_unroll_factor;
611 
612   Node_List _body;              // Loop body for inner loops
613 
614   uint16_t _nest;               // Nesting depth
615   uint8_t _irreducible:1,       // True if irreducible
616           _has_call:1,          // True if has call safepoint
617           _has_sfpt:1,          // True if has non-call safepoint
618           _rce_candidate:1;     // True if candidate for range check elimination
619 
620   Node_List* _safepts;          // List of safepoints in this loop
621   Node_List* _required_safept;  // A inner loop cannot delete these safepts;
622   bool  _allow_optimizations;   // Allow loop optimizations
623 
IdealLoopTree(PhaseIdealLoop * phase,Node * head,Node * tail)624   IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
625     : _parent(0), _next(0), _child(0),
626       _head(head), _tail(tail),
627       _phase(phase),
628       _local_loop_unroll_limit(0), _local_loop_unroll_factor(0),
629       _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0),
630       _safepts(NULL),
631       _required_safept(NULL),
632       _allow_optimizations(true)
633   {
634     precond(_head != NULL);
635     precond(_tail != NULL);
636   }
637 
638   // Is 'l' a member of 'this'?
639   bool is_member(const IdealLoopTree *l) const; // Test for nested membership
640 
641   // Set loop nesting depth.  Accumulate has_call bits.
642   int set_nest( uint depth );
643 
644   // Split out multiple fall-in edges from the loop header.  Move them to a
645   // private RegionNode before the loop.  This becomes the loop landing pad.
646   void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
647 
648   // Split out the outermost loop from this shared header.
649   void split_outer_loop( PhaseIdealLoop *phase );
650 
651   // Merge all the backedges from the shared header into a private Region.
652   // Feed that region as the one backedge to this loop.
653   void merge_many_backedges( PhaseIdealLoop *phase );
654 
655   // Split shared headers and insert loop landing pads.
656   // Insert a LoopNode to replace the RegionNode.
657   // Returns TRUE if loop tree is structurally changed.
658   bool beautify_loops( PhaseIdealLoop *phase );
659 
660   // Perform optimization to use the loop predicates for null checks and range checks.
661   // Applies to any loop level (not just the innermost one)
662   bool loop_predication( PhaseIdealLoop *phase);
663 
664   // Perform iteration-splitting on inner loops.  Split iterations to
665   // avoid range checks or one-shot null checks.  Returns false if the
666   // current round of loop opts should stop.
667   bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
668 
669   // Driver for various flavors of iteration splitting.  Returns false
670   // if the current round of loop opts should stop.
671   bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
672 
673   // Given dominators, try to find loops with calls that must always be
674   // executed (call dominates loop tail).  These loops do not need non-call
675   // safepoints (ncsfpt).
676   void check_safepts(VectorSet &visited, Node_List &stack);
677 
678   // Allpaths backwards scan from loop tail, terminating each path at first safepoint
679   // encountered.
680   void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
681 
682   // Remove safepoints from loop. Optionally keeping one.
683   void remove_safepoints(PhaseIdealLoop* phase, bool keep_one);
684 
685   // Convert to counted loops where possible
686   void counted_loop( PhaseIdealLoop *phase );
687 
688   // Check for Node being a loop-breaking test
689   Node *is_loop_exit(Node *iff) const;
690 
691   // Remove simplistic dead code from loop body
692   void DCE_loop_body();
693 
694   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
695   // Replace with a 1-in-10 exit guess.
696   void adjust_loop_exit_prob( PhaseIdealLoop *phase );
697 
698   // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
699   // Useful for unrolling loops with NO array accesses.
700   bool policy_peel_only( PhaseIdealLoop *phase ) const;
701 
702   // Return TRUE or FALSE if the loop should be unswitched -- clone
703   // loop with an invariant test
704   bool policy_unswitching( PhaseIdealLoop *phase ) const;
705 
706   // Micro-benchmark spamming.  Remove empty loops.
707   bool do_remove_empty_loop( PhaseIdealLoop *phase );
708 
709   // Convert one iteration loop into normal code.
710   bool do_one_iteration_loop( PhaseIdealLoop *phase );
711 
712   // Return TRUE or FALSE if the loop should be peeled or not. Peel if we can
713   // move some loop-invariant test (usually a null-check) before the loop.
714   bool policy_peeling(PhaseIdealLoop *phase);
715 
716   uint estimate_peeling(PhaseIdealLoop *phase);
717 
718   // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
719   // known trip count in the counted loop node.
720   bool policy_maximally_unroll(PhaseIdealLoop *phase) const;
721 
722   // Return TRUE or FALSE if the loop should be unrolled or not. Apply unroll
723   // if the loop is a counted loop and the loop body is small enough.
724   bool policy_unroll(PhaseIdealLoop *phase);
725 
726   // Loop analyses to map to a maximal superword unrolling for vectorization.
727   void policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct);
728 
729   // Return TRUE or FALSE if the loop should be range-check-eliminated.
730   // Gather a list of IF tests that are dominated by iteration splitting;
731   // also gather the end of the first split and the start of the 2nd split.
732   bool policy_range_check( PhaseIdealLoop *phase ) const;
733 
734   // Return TRUE if "iff" is a range check.
735   bool is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const;
736 
737   // Estimate the number of nodes required when cloning a loop (body).
738   uint est_loop_clone_sz(uint factor) const;
739   // Estimate the number of nodes required when unrolling a loop (body).
740   uint est_loop_unroll_sz(uint factor) const;
741 
742   // Compute loop trip count if possible
743   void compute_trip_count(PhaseIdealLoop* phase);
744 
745   // Compute loop trip count from profile data
746   float compute_profile_trip_cnt_helper(Node* n);
747   void compute_profile_trip_cnt( PhaseIdealLoop *phase );
748 
749   // Reassociate invariant expressions.
750   void reassociate_invariants(PhaseIdealLoop *phase);
751   // Reassociate invariant binary expressions.
752   Node* reassociate(Node* n1, PhaseIdealLoop *phase);
753   // Reassociate invariant add and subtract expressions.
754   Node* reassociate_add_sub(Node* n1, int inv1_idx, int inv2_idx, PhaseIdealLoop *phase);
755   // Return nonzero index of invariant operand if invariant and variant
756   // are combined with an associative binary. Helper for reassociate_invariants.
757   int find_invariant(Node* n, PhaseIdealLoop *phase);
758   // Return TRUE if "n" is associative.
759   bool is_associative(Node* n, Node* base=NULL);
760 
761   // Return true if n is invariant
762   bool is_invariant(Node* n) const;
763 
764   // Put loop body on igvn work list
765   void record_for_igvn();
766 
is_root()767   bool is_root() { return _parent == NULL; }
768   // A proper/reducible loop w/o any (occasional) dead back-edge.
is_loop()769   bool is_loop() { return !_irreducible && !tail()->is_top(); }
is_counted()770   bool is_counted()   { return is_loop() && _head->is_CountedLoop(); }
is_innermost()771   bool is_innermost() { return is_loop() && _child == NULL; }
772 
773   void remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase);
774 
775 #ifndef PRODUCT
776   void dump_head() const;       // Dump loop head only
777   void dump() const;            // Dump this loop recursively
778   void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const;
779 #endif
780 
781  private:
782   enum { EMPTY_LOOP_SIZE = 7 }; // Number of nodes in an empty loop.
783 
784   // Estimate the number of nodes resulting from control and data flow merge.
785   uint est_loop_flow_merge_sz() const;
786 };
787 
788 // -----------------------------PhaseIdealLoop---------------------------------
789 // Computes the mapping from Nodes to IdealLoopTrees. Organizes IdealLoopTrees
790 // into a loop tree. Drives the loop-based transformations on the ideal graph.
791 class PhaseIdealLoop : public PhaseTransform {
792   friend class IdealLoopTree;
793   friend class SuperWord;
794   friend class CountedLoopReserveKit;
795   friend class ShenandoahBarrierC2Support;
796   friend class AutoNodeBudget;
797 
798   // Pre-computed def-use info
799   PhaseIterGVN &_igvn;
800 
801   // Head of loop tree
802   IdealLoopTree* _ltree_root;
803 
804   // Array of pre-order numbers, plus post-visited bit.
805   // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
806   // ODD for post-visited.  Other bits are the pre-order number.
807   uint *_preorders;
808   uint _max_preorder;
809 
810   const PhaseIdealLoop* _verify_me;
811   bool _verify_only;
812 
813   // Allocate _preorders[] array
allocate_preorders()814   void allocate_preorders() {
815     _max_preorder = C->unique()+8;
816     _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
817     memset(_preorders, 0, sizeof(uint) * _max_preorder);
818   }
819 
820   // Allocate _preorders[] array
reallocate_preorders()821   void reallocate_preorders() {
822     if ( _max_preorder < C->unique() ) {
823       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
824       _max_preorder = C->unique();
825     }
826     memset(_preorders, 0, sizeof(uint) * _max_preorder);
827   }
828 
829   // Check to grow _preorders[] array for the case when build_loop_tree_impl()
830   // adds new nodes.
check_grow_preorders()831   void check_grow_preorders( ) {
832     if ( _max_preorder < C->unique() ) {
833       uint newsize = _max_preorder<<1;  // double size of array
834       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
835       memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
836       _max_preorder = newsize;
837     }
838   }
839   // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
is_visited(Node * n) const840   int is_visited( Node *n ) const { return _preorders[n->_idx]; }
841   // Pre-order numbers are written to the Nodes array as low-bit-set values.
set_preorder_visited(Node * n,int pre_order)842   void set_preorder_visited( Node *n, int pre_order ) {
843     assert( !is_visited( n ), "already set" );
844     _preorders[n->_idx] = (pre_order<<1);
845   };
846   // Return pre-order number.
get_preorder(Node * n) const847   int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
848 
849   // Check for being post-visited.
850   // Should be previsited already (checked with assert(is_visited(n))).
is_postvisited(Node * n) const851   int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
852 
853   // Mark as post visited
set_postvisited(Node * n)854   void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
855 
856 public:
857   // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
858   // Returns true if "n" is a data node, false if it's a control node.
has_ctrl(Node * n) const859   bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; }
860 
861 private:
862   // clear out dead code after build_loop_late
863   Node_List _deadlist;
864 
865   // Support for faster execution of get_late_ctrl()/dom_lca()
866   // when a node has many uses and dominator depth is deep.
867   Node_Array _dom_lca_tags;
868   void   init_dom_lca_tags();
869   void   clear_dom_lca_tags();
870 
871   // Helper for debugging bad dominance relationships
872   bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
873 
874   Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
875 
876   // Inline wrapper for frequent cases:
877   // 1) only one use
878   // 2) a use is the same as the current LCA passed as 'n1'
dom_lca_for_get_late_ctrl(Node * lca,Node * n,Node * tag)879   Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
880     assert( n->is_CFG(), "" );
881     // Fast-path NULL lca
882     if( lca != NULL && lca != n ) {
883       assert( lca->is_CFG(), "" );
884       // find LCA of all uses
885       n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
886     }
887     return find_non_split_ctrl(n);
888   }
889   Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
890 
891   // Helper function for directing control inputs away from CFG split points.
find_non_split_ctrl(Node * ctrl) const892   Node *find_non_split_ctrl( Node *ctrl ) const {
893     if (ctrl != NULL) {
894       if (ctrl->is_MultiBranch()) {
895         ctrl = ctrl->in(0);
896       }
897       assert(ctrl->is_CFG(), "CFG");
898     }
899     return ctrl;
900   }
901 
902   Node* cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop);
903 
904 #ifdef ASSERT
905   void ensure_zero_trip_guard_proj(Node* node, bool is_main_loop);
906 #endif
907   void copy_skeleton_predicates_to_main_loop_helper(Node* predicate, Node* init, Node* stride, IdealLoopTree* outer_loop, LoopNode* outer_main_head,
908                                                     uint dd_main_head, const uint idx_before_pre_post, const uint idx_after_post_before_pre,
909                                                     Node* zero_trip_guard_proj_main, Node* zero_trip_guard_proj_post, const Node_List &old_new);
910   void copy_skeleton_predicates_to_main_loop(CountedLoopNode* pre_head, Node* init, Node* stride, IdealLoopTree* outer_loop, LoopNode* outer_main_head,
911                                              uint dd_main_head, const uint idx_before_pre_post, const uint idx_after_post_before_pre,
912                                              Node* zero_trip_guard_proj_main, Node* zero_trip_guard_proj_post, const Node_List &old_new);
913   Node* clone_skeleton_predicate_for_main_loop(Node* iff, Node* new_init, Node* new_stride, Node* predicate, Node* uncommon_proj, Node* control,
914                                                IdealLoopTree* outer_loop, Node* input_proj);
915   Node* clone_skeleton_predicate_bool(Node* iff, Node* new_init, Node* new_stride, Node* predicate, Node* uncommon_proj, Node* control,
916                                       IdealLoopTree* outer_loop);
917   bool skeleton_predicate_has_opaque(IfNode* iff);
918   void update_main_loop_skeleton_predicates(Node* ctrl, CountedLoopNode* loop_head, Node* init, int stride_con);
919   void insert_loop_limit_check(ProjNode* limit_check_proj, Node* cmp_limit, Node* bol);
920 #ifdef ASSERT
921   bool only_has_infinite_loops();
922 #endif
923 
924   void log_loop_tree();
925 
926 public:
927 
igvn() const928   PhaseIterGVN &igvn() const { return _igvn; }
929 
930   static bool is_canonical_loop_entry(CountedLoopNode* cl);
931 
has_node(Node * n) const932   bool has_node( Node* n ) const {
933     guarantee(n != NULL, "No Node.");
934     return _nodes[n->_idx] != NULL;
935   }
936   // check if transform created new nodes that need _ctrl recorded
937   Node *get_late_ctrl( Node *n, Node *early );
938   Node *get_early_ctrl( Node *n );
939   Node *get_early_ctrl_for_expensive(Node *n, Node* earliest);
940   void set_early_ctrl(Node* n, bool update_body);
941   void set_subtree_ctrl(Node* n, bool update_body);
set_ctrl(Node * n,Node * ctrl)942   void set_ctrl( Node *n, Node *ctrl ) {
943     assert( !has_node(n) || has_ctrl(n), "" );
944     assert( ctrl->in(0), "cannot set dead control node" );
945     assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
946     _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) );
947   }
948   // Set control and update loop membership
set_ctrl_and_loop(Node * n,Node * ctrl)949   void set_ctrl_and_loop(Node* n, Node* ctrl) {
950     IdealLoopTree* old_loop = get_loop(get_ctrl(n));
951     IdealLoopTree* new_loop = get_loop(ctrl);
952     if (old_loop != new_loop) {
953       if (old_loop->_child == NULL) old_loop->_body.yank(n);
954       if (new_loop->_child == NULL) new_loop->_body.push(n);
955     }
956     set_ctrl(n, ctrl);
957   }
958   // Control nodes can be replaced or subsumed.  During this pass they
959   // get their replacement Node in slot 1.  Instead of updating the block
960   // location of all Nodes in the subsumed block, we lazily do it.  As we
961   // pull such a subsumed block out of the array, we write back the final
962   // correct block.
get_ctrl(Node * i)963   Node *get_ctrl( Node *i ) {
964 
965     assert(has_node(i), "");
966     Node *n = get_ctrl_no_update(i);
967     _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) );
968     assert(has_node(i) && has_ctrl(i), "");
969     assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
970     return n;
971   }
972   // true if CFG node d dominates CFG node n
973   bool is_dominator(Node *d, Node *n);
974   // return get_ctrl for a data node and self(n) for a CFG node
ctrl_or_self(Node * n)975   Node* ctrl_or_self(Node* n) {
976     if (has_ctrl(n))
977       return get_ctrl(n);
978     else {
979       assert (n->is_CFG(), "must be a CFG node");
980       return n;
981     }
982   }
983 
get_ctrl_no_update_helper(Node * i) const984   Node *get_ctrl_no_update_helper(Node *i) const {
985     assert(has_ctrl(i), "should be control, not loop");
986     return (Node*)(((intptr_t)_nodes[i->_idx]) & ~1);
987   }
988 
get_ctrl_no_update(Node * i) const989   Node *get_ctrl_no_update(Node *i) const {
990     assert( has_ctrl(i), "" );
991     Node *n = get_ctrl_no_update_helper(i);
992     if (!n->in(0)) {
993       // Skip dead CFG nodes
994       do {
995         n = get_ctrl_no_update_helper(n);
996       } while (!n->in(0));
997       n = find_non_split_ctrl(n);
998     }
999     return n;
1000   }
1001 
1002   // Check for loop being set
1003   // "n" must be a control node. Returns true if "n" is known to be in a loop.
has_loop(Node * n) const1004   bool has_loop( Node *n ) const {
1005     assert(!has_node(n) || !has_ctrl(n), "");
1006     return has_node(n);
1007   }
1008   // Set loop
set_loop(Node * n,IdealLoopTree * loop)1009   void set_loop( Node *n, IdealLoopTree *loop ) {
1010     _nodes.map(n->_idx, (Node*)loop);
1011   }
1012   // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
1013   // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
1014   // from old_node to new_node to support the lazy update.  Reference
1015   // replaces loop reference, since that is not needed for dead node.
lazy_update(Node * old_node,Node * new_node)1016   void lazy_update(Node *old_node, Node *new_node) {
1017     assert(old_node != new_node, "no cycles please");
1018     // Re-use the side array slot for this node to provide the
1019     // forwarding pointer.
1020     _nodes.map(old_node->_idx, (Node*)((intptr_t)new_node + 1));
1021   }
lazy_replace(Node * old_node,Node * new_node)1022   void lazy_replace(Node *old_node, Node *new_node) {
1023     _igvn.replace_node(old_node, new_node);
1024     lazy_update(old_node, new_node);
1025   }
1026 
1027 private:
1028 
1029   // Place 'n' in some loop nest, where 'n' is a CFG node
1030   void build_loop_tree();
1031   int build_loop_tree_impl( Node *n, int pre_order );
1032   // Insert loop into the existing loop tree.  'innermost' is a leaf of the
1033   // loop tree, not the root.
1034   IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
1035 
1036   // Place Data nodes in some loop nest
1037   void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
1038   void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
1039   void build_loop_late_post_work(Node* n, bool pinned);
1040   void build_loop_late_post(Node* n);
1041   void verify_strip_mined_scheduling(Node *n, Node* least);
1042 
1043   // Array of immediate dominance info for each CFG node indexed by node idx
1044 private:
1045   uint _idom_size;
1046   Node **_idom;                  // Array of immediate dominators
1047   uint *_dom_depth;              // Used for fast LCA test
1048   GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
1049 
1050   // build the loop tree and perform any requested optimizations
1051   void build_and_optimize(LoopOptsMode mode);
1052 
1053   // Dominators for the sea of nodes
1054   void Dominators();
1055 
1056   // Compute the Ideal Node to Loop mapping
PhaseIdealLoop(PhaseIterGVN & igvn,LoopOptsMode mode)1057   PhaseIdealLoop(PhaseIterGVN& igvn, LoopOptsMode mode) :
1058     PhaseTransform(Ideal_Loop),
1059     _igvn(igvn),
1060     _verify_me(nullptr),
1061     _verify_only(false),
1062     _dom_lca_tags(arena()),  // Thread::resource_area
1063     _nodes_required(UINT_MAX) {
1064     assert(mode != LoopOptsVerify, "wrong constructor to verify IdealLoop");
1065     build_and_optimize(mode);
1066   }
1067 
1068 #ifndef PRODUCT
1069   // Verify that verify_me made the same decisions as a fresh run
1070   // or only verify that the graph is valid if verify_me is null.
PhaseIdealLoop(PhaseIterGVN & igvn,const PhaseIdealLoop * verify_me=nullptr)1071   PhaseIdealLoop(PhaseIterGVN& igvn, const PhaseIdealLoop* verify_me = nullptr) :
1072     PhaseTransform(Ideal_Loop),
1073     _igvn(igvn),
1074     _verify_me(verify_me),
1075     _verify_only(verify_me == nullptr),
1076     _dom_lca_tags(arena()),  // Thread::resource_area
1077     _nodes_required(UINT_MAX) {
1078     build_and_optimize(LoopOptsVerify);
1079   }
1080 #endif
1081 
1082 public:
idom_no_update(Node * d) const1083   Node* idom_no_update(Node* d) const {
1084     return idom_no_update(d->_idx);
1085   }
1086 
idom_no_update(uint didx) const1087   Node* idom_no_update(uint didx) const {
1088     assert(didx < _idom_size, "oob");
1089     Node* n = _idom[didx];
1090     assert(n != NULL,"Bad immediate dominator info.");
1091     while (n->in(0) == NULL) { // Skip dead CFG nodes
1092       n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
1093       assert(n != NULL,"Bad immediate dominator info.");
1094     }
1095     return n;
1096   }
1097 
idom(Node * d) const1098   Node *idom(Node* d) const {
1099     return idom(d->_idx);
1100   }
1101 
idom(uint didx) const1102   Node *idom(uint didx) const {
1103     Node *n = idom_no_update(didx);
1104     _idom[didx] = n; // Lazily remove dead CFG nodes from table.
1105     return n;
1106   }
1107 
dom_depth(Node * d) const1108   uint dom_depth(Node* d) const {
1109     guarantee(d != NULL, "Null dominator info.");
1110     guarantee(d->_idx < _idom_size, "");
1111     return _dom_depth[d->_idx];
1112   }
1113   void set_idom(Node* d, Node* n, uint dom_depth);
1114   // Locally compute IDOM using dom_lca call
1115   Node *compute_idom( Node *region ) const;
1116   // Recompute dom_depth
1117   void recompute_dom_depth();
1118 
1119   // Is safept not required by an outer loop?
1120   bool is_deleteable_safept(Node* sfpt);
1121 
1122   // Replace parallel induction variable (parallel to trip counter)
1123   void replace_parallel_iv(IdealLoopTree *loop);
1124 
dom_lca(Node * n1,Node * n2) const1125   Node *dom_lca( Node *n1, Node *n2 ) const {
1126     return find_non_split_ctrl(dom_lca_internal(n1, n2));
1127   }
1128   Node *dom_lca_internal( Node *n1, Node *n2 ) const;
1129 
1130   // Build and verify the loop tree without modifying the graph.  This
1131   // is useful to verify that all inputs properly dominate their uses.
verify(PhaseIterGVN & igvn)1132   static void verify(PhaseIterGVN& igvn) {
1133 #ifdef ASSERT
1134     ResourceMark rm;
1135     Compile::TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
1136     PhaseIdealLoop v(igvn);
1137 #endif
1138   }
1139 
1140   // Recommended way to use PhaseIdealLoop.
1141   // Run PhaseIdealLoop in some mode and allocates a local scope for memory allocations.
optimize(PhaseIterGVN & igvn,LoopOptsMode mode)1142   static void optimize(PhaseIterGVN &igvn, LoopOptsMode mode) {
1143     ResourceMark rm;
1144     PhaseIdealLoop v(igvn, mode);
1145 
1146     Compile* C = Compile::current();
1147     if (!C->failing()) {
1148       // Cleanup any modified bits
1149       igvn.optimize();
1150 
1151       v.log_loop_tree();
1152     }
1153   }
1154 
1155   // True if the method has at least 1 irreducible loop
1156   bool _has_irreducible_loops;
1157 
1158   // Per-Node transform
transform(Node * n)1159   virtual Node* transform(Node* n) { return NULL; }
1160 
1161   Node* loop_exit_control(Node* x, IdealLoopTree* loop);
1162   Node* loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob);
1163   Node* loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr);
1164   Node* loop_iv_stride(Node* incr, IdealLoopTree* loop, Node*& xphi);
1165   PhiNode* loop_iv_phi(Node* xphi, Node* phi_incr, Node* x, IdealLoopTree* loop);
1166 
1167   bool is_counted_loop(Node* x, IdealLoopTree*&loop, BasicType iv_bt);
1168 
1169   void long_loop_replace_long_iv(Node* iv_to_replace, Node* inner_iv, Node* outer_phi, Node* inner_head);
1170   bool transform_long_counted_loop(IdealLoopTree* loop, Node_List &old_new);
1171 #ifdef ASSERT
1172   bool convert_to_long_loop(Node* cmp, Node* phi, IdealLoopTree* loop);
1173 #endif
1174   void add_empty_predicate(Deoptimization::DeoptReason reason, Node* inner_head, IdealLoopTree* loop, SafePointNode* sfpt);
1175   SafePointNode* find_safepoint(Node* back_control, Node* x, IdealLoopTree* loop);
1176   IdealLoopTree* insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift);
1177   IdealLoopTree* create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control,
1178                                                IdealLoopTree* loop, float cl_prob, float le_fcnt,
1179                                                Node*& entry_control, Node*& iffalse);
1180 
1181   Node* exact_limit( IdealLoopTree *loop );
1182 
1183   // Return a post-walked LoopNode
get_loop(Node * n) const1184   IdealLoopTree *get_loop( Node *n ) const {
1185     // Dead nodes have no loop, so return the top level loop instead
1186     if (!has_node(n))  return _ltree_root;
1187     assert(!has_ctrl(n), "");
1188     return (IdealLoopTree*)_nodes[n->_idx];
1189   }
1190 
ltree_root() const1191   IdealLoopTree* ltree_root() const { return _ltree_root; }
1192 
1193   // Is 'n' a (nested) member of 'loop'?
is_member(const IdealLoopTree * loop,Node * n) const1194   int is_member( const IdealLoopTree *loop, Node *n ) const {
1195     return loop->is_member(get_loop(n)); }
1196 
1197   // This is the basic building block of the loop optimizations.  It clones an
1198   // entire loop body.  It makes an old_new loop body mapping; with this
1199   // mapping you can find the new-loop equivalent to an old-loop node.  All
1200   // new-loop nodes are exactly equal to their old-loop counterparts, all
1201   // edges are the same.  All exits from the old-loop now have a RegionNode
1202   // that merges the equivalent new-loop path.  This is true even for the
1203   // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
1204   // now come from (one or more) Phis that merge their new-loop equivalents.
1205   // Parameter side_by_side_idom:
1206   //   When side_by_size_idom is NULL, the dominator tree is constructed for
1207   //      the clone loop to dominate the original.  Used in construction of
1208   //      pre-main-post loop sequence.
1209   //   When nonnull, the clone and original are side-by-side, both are
1210   //      dominated by the passed in side_by_side_idom node.  Used in
1211   //      construction of unswitched loops.
1212   enum CloneLoopMode {
1213     IgnoreStripMined = 0,        // Only clone inner strip mined loop
1214     CloneIncludesStripMined = 1, // clone both inner and outer strip mined loops
1215     ControlAroundStripMined = 2  // Only clone inner strip mined loop,
1216                                  // result control flow branches
1217                                  // either to inner clone or outer
1218                                  // strip mined loop.
1219   };
1220   void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
1221                   CloneLoopMode mode, Node* side_by_side_idom = NULL);
1222   void clone_loop_handle_data_uses(Node* old, Node_List &old_new,
1223                                    IdealLoopTree* loop, IdealLoopTree* companion_loop,
1224                                    Node_List*& split_if_set, Node_List*& split_bool_set,
1225                                    Node_List*& split_cex_set, Node_List& worklist,
1226                                    uint new_counter, CloneLoopMode mode);
1227   void clone_outer_loop(LoopNode* head, CloneLoopMode mode, IdealLoopTree *loop,
1228                         IdealLoopTree* outer_loop, int dd, Node_List &old_new,
1229                         Node_List& extra_data_nodes);
1230 
1231   // If we got the effect of peeling, either by actually peeling or by
1232   // making a pre-loop which must execute at least once, we can remove
1233   // all loop-invariant dominated tests in the main body.
1234   void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
1235 
1236   // Generate code to do a loop peel for the given loop (and body).
1237   // old_new is a temp array.
1238   void do_peeling( IdealLoopTree *loop, Node_List &old_new );
1239 
1240   // Add pre and post loops around the given loop.  These loops are used
1241   // during RCE, unrolling and aligning loops.
1242   void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
1243 
1244   // Add post loop after the given loop.
1245   Node *insert_post_loop(IdealLoopTree *loop, Node_List &old_new,
1246                          CountedLoopNode *main_head, CountedLoopEndNode *main_end,
1247                          Node *incr, Node *limit, CountedLoopNode *&post_head);
1248 
1249   // Add an RCE'd post loop which we will multi-version adapt for run time test path usage
1250   void insert_scalar_rced_post_loop( IdealLoopTree *loop, Node_List &old_new );
1251 
1252   // Add a vector post loop between a vector main loop and the current post loop
1253   void insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new);
1254   // If Node n lives in the back_ctrl block, we clone a private version of n
1255   // in preheader_ctrl block and return that, otherwise return n.
1256   Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones );
1257 
1258   // Take steps to maximally unroll the loop.  Peel any odd iterations, then
1259   // unroll to do double iterations.  The next round of major loop transforms
1260   // will repeat till the doubled loop body does all remaining iterations in 1
1261   // pass.
1262   void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
1263 
1264   // Unroll the loop body one step - make each trip do 2 iterations.
1265   void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
1266 
1267   // Mark vector reduction candidates before loop unrolling
1268   void mark_reductions( IdealLoopTree *loop );
1269 
1270   // Return true if exp is a constant times an induction var
1271   bool is_scaled_iv(Node* exp, Node* iv, int* p_scale);
1272 
1273   // Return true if exp is a scaled induction var plus (or minus) constant
1274   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0);
1275 
1276   // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
1277   ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry, Deoptimization::DeoptReason reason,
1278                                         int opcode, bool if_cont_is_true_proj = true);
1279 
1280   void register_control(Node* n, IdealLoopTree *loop, Node* pred, bool update_body = true);
1281 
1282   static Node* skip_all_loop_predicates(Node* entry);
1283   static Node* skip_loop_predicates(Node* entry);
1284 
1285   // Find a good location to insert a predicate
1286   static ProjNode* find_predicate_insertion_point(Node* start_c, Deoptimization::DeoptReason reason);
1287   // Find a predicate
1288   static Node* find_predicate(Node* entry);
1289   // Construct a range check for a predicate if
1290   BoolNode* rc_predicate(IdealLoopTree *loop, Node* ctrl,
1291                          int scale, Node* offset,
1292                          Node* init, Node* limit, jint stride,
1293                          Node* range, bool upper, bool &overflow);
1294 
1295   // Implementation of the loop predication to promote checks outside the loop
1296   bool loop_predication_impl(IdealLoopTree *loop);
1297   bool loop_predication_impl_helper(IdealLoopTree *loop, ProjNode* proj, ProjNode *predicate_proj,
1298                                     CountedLoopNode *cl, ConNode* zero, Invariance& invar,
1299                                     Deoptimization::DeoptReason reason);
1300   bool loop_predication_should_follow_branches(IdealLoopTree *loop, ProjNode *predicate_proj, float& loop_trip_cnt);
1301   void loop_predication_follow_branches(Node *c, IdealLoopTree *loop, float loop_trip_cnt,
1302                                         PathFrequency& pf, Node_Stack& stack, VectorSet& seen,
1303                                         Node_List& if_proj_list);
1304   ProjNode* insert_initial_skeleton_predicate(IfNode* iff, IdealLoopTree *loop,
1305                                               ProjNode* proj, ProjNode *predicate_proj,
1306                                               ProjNode* upper_bound_proj,
1307                                               int scale, Node* offset,
1308                                               Node* init, Node* limit, jint stride,
1309                                               Node* rng, bool& overflow,
1310                                               Deoptimization::DeoptReason reason);
1311   Node* add_range_check_predicate(IdealLoopTree* loop, CountedLoopNode* cl,
1312                                   Node* predicate_proj, int scale_con, Node* offset,
1313                                   Node* limit, jint stride_con, Node* value);
1314 
1315   // Helper function to collect predicate for eliminating the useless ones
1316   void collect_potentially_useful_predicates(IdealLoopTree *loop, Unique_Node_List &predicate_opaque1);
1317   void eliminate_useless_predicates();
1318 
1319   // Change the control input of expensive nodes to allow commoning by
1320   // IGVN when it is guaranteed to not result in a more frequent
1321   // execution of the expensive node. Return true if progress.
1322   bool process_expensive_nodes();
1323 
1324   // Check whether node has become unreachable
is_node_unreachable(Node * n) const1325   bool is_node_unreachable(Node *n) const {
1326     return !has_node(n) || n->is_unreachable(_igvn);
1327   }
1328 
1329   // Eliminate range-checks and other trip-counter vs loop-invariant tests.
1330   int do_range_check( IdealLoopTree *loop, Node_List &old_new );
1331 
1332   // Check to see if do_range_check(...) cleaned the main loop of range-checks
1333   void has_range_checks(IdealLoopTree *loop);
1334 
1335   // Process post loops which have range checks and try to build a multi-version
1336   // guard to safely determine if we can execute the post loop which was RCE'd.
1337   bool multi_version_post_loops(IdealLoopTree *rce_loop, IdealLoopTree *legacy_loop);
1338 
1339   // Cause the rce'd post loop to optimized away, this happens if we cannot complete multiverioning
1340   void poison_rce_post_loop(IdealLoopTree *rce_loop);
1341 
1342   // Create a slow version of the loop by cloning the loop
1343   // and inserting an if to select fast-slow versions.
1344   ProjNode* create_slow_version_of_loop(IdealLoopTree *loop,
1345                                         Node_List &old_new,
1346                                         int opcode,
1347                                         CloneLoopMode mode);
1348 
1349   // Clone a loop and return the clone head (clone_loop_head).
1350   // Added nodes include int(1), int(0) - disconnected, If, IfTrue, IfFalse,
1351   // This routine was created for usage in CountedLoopReserveKit.
1352   //
1353   //    int(1) -> If -> IfTrue -> original_loop_head
1354   //              |
1355   //              V
1356   //           IfFalse -> clone_loop_head (returned by function pointer)
1357   //
1358   LoopNode* create_reserve_version_of_loop(IdealLoopTree *loop, CountedLoopReserveKit* lk);
1359   // Clone loop with an invariant test (that does not exit) and
1360   // insert a clone of the test that selects which version to
1361   // execute.
1362   void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
1363 
1364   // Find candidate "if" for unswitching
1365   IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
1366 
1367   // Range Check Elimination uses this function!
1368   // Constrain the main loop iterations so the affine function:
1369   //    low_limit <= scale_con * I + offset  <  upper_limit
1370   // always holds true.  That is, either increase the number of iterations in
1371   // the pre-loop or the post-loop until the condition holds true in the main
1372   // loop.  Scale_con, offset and limit are all loop invariant.
1373   void add_constraint(jlong stride_con, jlong scale_con, Node* offset, Node* low_limit, Node* upper_limit, Node* pre_ctrl, Node** pre_limit, Node** main_limit);
1374   // Helper function for add_constraint().
1375   Node* adjust_limit(bool reduce, Node* scale, Node* offset, Node* rc_limit, Node* old_limit, Node* pre_ctrl, bool round);
1376 
1377   // Partially peel loop up through last_peel node.
1378   bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
1379 
1380   // Create a scheduled list of nodes control dependent on ctrl set.
1381   void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
1382   // Has a use in the vector set
1383   bool has_use_in_set( Node* n, VectorSet& vset );
1384   // Has use internal to the vector set (ie. not in a phi at the loop head)
1385   bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
1386   // clone "n" for uses that are outside of loop
1387   int  clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
1388   // clone "n" for special uses that are in the not_peeled region
1389   void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
1390                                           VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
1391   // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
1392   void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
1393 #ifdef ASSERT
1394   // Validate the loop partition sets: peel and not_peel
1395   bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
1396   // Ensure that uses outside of loop are of the right form
1397   bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
1398                                  uint orig_exit_idx, uint clone_exit_idx);
1399   bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
1400 #endif
1401 
1402   // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
1403   int stride_of_possible_iv( Node* iff );
is_possible_iv_test(Node * iff)1404   bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
1405   // Return the (unique) control output node that's in the loop (if it exists.)
1406   Node* stay_in_loop( Node* n, IdealLoopTree *loop);
1407   // Insert a signed compare loop exit cloned from an unsigned compare.
1408   IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
1409   void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
1410   // Utility to register node "n" with PhaseIdealLoop
1411   void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth);
1412   // Utility to create an if-projection
1413   ProjNode* proj_clone(ProjNode* p, IfNode* iff);
1414   // Force the iff control output to be the live_proj
1415   Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
1416   // Insert a region before an if projection
1417   RegionNode* insert_region_before_proj(ProjNode* proj);
1418   // Insert a new if before an if projection
1419   ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
1420 
1421   // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
1422   // "Nearly" because all Nodes have been cloned from the original in the loop,
1423   // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
1424   // through the Phi recursively, and return a Bool.
1425   Node *clone_iff( PhiNode *phi, IdealLoopTree *loop );
1426   CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop );
1427 
1428 
1429   // Rework addressing expressions to get the most loop-invariant stuff
1430   // moved out.  We'd like to do all associative operators, but it's especially
1431   // important (common) to do address expressions.
1432   Node *remix_address_expressions( Node *n );
1433 
1434   // Convert add to muladd to generate MuladdS2I under certain criteria
1435   Node * convert_add_to_muladd(Node * n);
1436 
1437   // Attempt to use a conditional move instead of a phi/branch
1438   Node *conditional_move( Node *n );
1439 
1440   // Reorganize offset computations to lower register pressure.
1441   // Mostly prevent loop-fallout uses of the pre-incremented trip counter
1442   // (which are then alive with the post-incremented trip counter
1443   // forcing an extra register move)
1444   void reorg_offsets( IdealLoopTree *loop );
1445 
1446   // Check for aggressive application of 'split-if' optimization,
1447   // using basic block level info.
1448   void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack);
1449   Node *split_if_with_blocks_pre ( Node *n );
1450   void  split_if_with_blocks_post( Node *n );
1451   Node *has_local_phi_input( Node *n );
1452   // Mark an IfNode as being dominated by a prior test,
1453   // without actually altering the CFG (and hence IDOM info).
1454   void dominated_by( Node *prevdom, Node *iff, bool flip = false, bool exclude_loop_predicate = false );
1455 
1456   // Split Node 'n' through merge point
1457   Node *split_thru_region( Node *n, Node *region );
1458   // Split Node 'n' through merge point if there is enough win.
1459   Node *split_thru_phi( Node *n, Node *region, int policy );
1460   // Found an If getting its condition-code input from a Phi in the
1461   // same block.  Split thru the Region.
1462   void do_split_if( Node *iff );
1463 
1464   // Conversion of fill/copy patterns into intrinsic versions
1465   bool do_intrinsify_fill();
1466   bool intrinsify_fill(IdealLoopTree* lpt);
1467   bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
1468                        Node*& shift, Node*& offset);
1469 
1470 private:
1471   // Return a type based on condition control flow
1472   const TypeInt* filtered_type( Node *n, Node* n_ctrl);
filtered_type(Node * n)1473   const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); }
1474  // Helpers for filtered type
1475   const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
1476 
1477   // Helper functions
1478   Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
1479   Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
1480   void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
1481   bool split_up( Node *n, Node *blk1, Node *blk2 );
1482   void sink_use( Node *use, Node *post_loop );
1483   Node *place_near_use( Node *useblock ) const;
1484   Node* try_move_store_before_loop(Node* n, Node *n_ctrl);
1485   void try_move_store_after_loop(Node* n);
1486   bool identical_backtoback_ifs(Node *n);
1487   bool can_split_if(Node *n_ctrl);
1488 
1489   // Determine if a method is too big for a/another round of split-if, based on
1490   // a magic (approximate) ratio derived from the equally magic constant 35000,
1491   // previously used for this purpose (but without relating to the node limit).
must_throttle_split_if()1492   bool must_throttle_split_if() {
1493     uint threshold = C->max_node_limit() * 2 / 5;
1494     return C->live_nodes() > threshold;
1495   }
1496 
1497   // A simplistic node request tracking mechanism, where
1498   //   = UINT_MAX   Request not valid or made final.
1499   //   < UINT_MAX   Nodes currently requested (estimate).
1500   uint _nodes_required;
1501 
1502   enum { REQUIRE_MIN = 70 };
1503 
nodes_required() const1504   uint nodes_required() const { return _nodes_required; }
1505 
1506   // Given the _currently_  available number of nodes, check  whether there is
1507   // "room" for an additional request or not, considering the already required
1508   // number of  nodes.  Return TRUE if  the new request is  exceeding the node
1509   // budget limit, otherwise return FALSE.  Note that this interpretation will
1510   // act pessimistic on  additional requests when new nodes  have already been
1511   // generated since the 'begin'.  This behaviour fits with the intention that
1512   // node estimates/requests should be made upfront.
exceeding_node_budget(uint required=0)1513   bool exceeding_node_budget(uint required = 0) {
1514     assert(C->live_nodes() < C->max_node_limit(), "sanity");
1515     uint available = C->max_node_limit() - C->live_nodes();
1516     return available < required + _nodes_required + REQUIRE_MIN;
1517   }
1518 
require_nodes(uint require,uint minreq=REQUIRE_MIN)1519   uint require_nodes(uint require, uint minreq = REQUIRE_MIN) {
1520     precond(require > 0);
1521     _nodes_required += MAX2(require, minreq);
1522     return _nodes_required;
1523   }
1524 
may_require_nodes(uint require,uint minreq=REQUIRE_MIN)1525   bool may_require_nodes(uint require, uint minreq = REQUIRE_MIN) {
1526     return !exceeding_node_budget(require) && require_nodes(require, minreq) > 0;
1527   }
1528 
require_nodes_begin()1529   uint require_nodes_begin() {
1530     assert(_nodes_required == UINT_MAX, "Bad state (begin).");
1531     _nodes_required = 0;
1532     return C->live_nodes();
1533   }
1534 
1535   // When a node request is final,  optionally check that the requested number
1536   // of nodes was  reasonably correct with respect to the  number of new nodes
1537   // introduced since the last 'begin'. Always check that we have not exceeded
1538   // the maximum node limit.
require_nodes_final(uint live_at_begin,bool check_estimate)1539   void require_nodes_final(uint live_at_begin, bool check_estimate) {
1540     assert(_nodes_required < UINT_MAX, "Bad state (final).");
1541 
1542 #ifdef ASSERT
1543     if (check_estimate) {
1544       // Check that the node budget request was not off by too much (x2).
1545       // Should this be the case we _surely_ need to improve the estimates
1546       // used in our budget calculations.
1547       if (C->live_nodes() - live_at_begin > 2 * _nodes_required) {
1548         log_info(compilation)("Bad node estimate: actual = %d >> request = %d",
1549                               C->live_nodes() - live_at_begin, _nodes_required);
1550       }
1551     }
1552 #endif
1553     // Assert that we have stayed within the node budget limit.
1554     assert(C->live_nodes() < C->max_node_limit(),
1555            "Exceeding node budget limit: %d + %d > %d (request = %d)",
1556            C->live_nodes() - live_at_begin, live_at_begin,
1557            C->max_node_limit(), _nodes_required);
1558 
1559     _nodes_required = UINT_MAX;
1560   }
1561 
1562   // Clone loop predicates to slow and fast loop when unswitching a loop
1563   void clone_predicates_to_unswitched_loop(IdealLoopTree* loop, const Node_List& old_new, ProjNode*& iffast_pred, ProjNode*& ifslow_pred);
1564   ProjNode* clone_predicate_to_unswitched_loop(ProjNode* predicate_proj, Node* new_entry, Deoptimization::DeoptReason reason);
1565   void clone_skeleton_predicates_to_unswitched_loop(IdealLoopTree* loop, const Node_List& old_new, Deoptimization::DeoptReason reason,
1566                                                     ProjNode* old_predicate_proj, ProjNode* iffast_pred, ProjNode* ifslow_pred);
1567   ProjNode* clone_skeleton_predicate_for_unswitched_loops(Node* iff, ProjNode* predicate, Node* uncommon_proj, Deoptimization::DeoptReason reason,
1568                                                           ProjNode* output_proj, IdealLoopTree* loop);
1569   void check_created_predicate_for_unswitching(const Node* new_entry) const PRODUCT_RETURN;
1570 
1571   bool _created_loop_node;
1572 #ifdef ASSERT
1573   void dump_real_LCA(Node* early, Node* wrong_lca);
1574   bool check_idom_chains_intersection(const Node* n, uint& idom_idx_new, uint& idom_idx_other, const Node_List* nodes_seen) const;
1575 #endif
1576 
1577 public:
set_created_loop_node()1578   void set_created_loop_node() { _created_loop_node = true; }
created_loop_node()1579   bool created_loop_node()     { return _created_loop_node; }
1580   void register_new_node(Node* n, Node* blk);
1581 
1582 #ifdef ASSERT
1583   void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA);
1584 #endif
1585 
1586 #ifndef PRODUCT
1587   void dump() const;
1588   void dump_idom(Node* n) const;
1589   void dump(IdealLoopTree* loop, uint rpo_idx, Node_List &rpo_list) const;
1590   void verify() const;          // Major slow  :-)
1591   void verify_compare(Node* n, const PhaseIdealLoop* loop_verify, VectorSet &visited) const;
get_loop_idx(Node * n) const1592   IdealLoopTree* get_loop_idx(Node* n) const {
1593     // Dead nodes have no loop, so return the top level loop instead
1594     return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root;
1595   }
1596   // Print some stats
1597   static void print_statistics();
1598   static int _loop_invokes;     // Count of PhaseIdealLoop invokes
1599   static int _loop_work;        // Sum of PhaseIdealLoop x _unique
1600   static volatile int _long_loop_candidates;
1601   static volatile int _long_loop_nests;
1602   static volatile int _long_loop_counted_loops;
1603 #endif
1604 
1605   void rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const;
1606 
1607   void check_long_counted_loop(IdealLoopTree* loop, Node* x) NOT_DEBUG_RETURN;
1608 
1609   LoopNode* create_inner_head(IdealLoopTree* loop, LongCountedLoopNode* head, LongCountedLoopEndNode* exit_test);
1610 
1611   bool is_safe_load_ctrl(Node* ctrl);
1612 };
1613 
1614 
1615 class AutoNodeBudget : public StackObj
1616 {
1617 public:
1618   enum budget_check_t { BUDGET_CHECK, NO_BUDGET_CHECK };
1619 
AutoNodeBudget(PhaseIdealLoop * phase,budget_check_t chk=BUDGET_CHECK)1620   AutoNodeBudget(PhaseIdealLoop* phase, budget_check_t chk = BUDGET_CHECK)
1621     : _phase(phase),
1622       _check_at_final(chk == BUDGET_CHECK),
1623       _nodes_at_begin(0)
1624   {
1625     precond(_phase != NULL);
1626 
1627     _nodes_at_begin = _phase->require_nodes_begin();
1628   }
1629 
~AutoNodeBudget()1630   ~AutoNodeBudget() {
1631 #ifndef PRODUCT
1632     if (TraceLoopOpts) {
1633       uint request = _phase->nodes_required();
1634       uint delta   = _phase->C->live_nodes() - _nodes_at_begin;
1635 
1636       if (request < delta) {
1637         tty->print_cr("Exceeding node budget: %d < %d", request, delta);
1638       } else {
1639         uint const REQUIRE_MIN = PhaseIdealLoop::REQUIRE_MIN;
1640         // Identify the worst estimates as "poor" ones.
1641         if (request > REQUIRE_MIN && delta > 0) {
1642           if ((delta >  REQUIRE_MIN && request >  3 * delta) ||
1643               (delta <= REQUIRE_MIN && request > 10 * delta)) {
1644             tty->print_cr("Poor node estimate: %d >> %d", request, delta);
1645           }
1646         }
1647       }
1648     }
1649 #endif // PRODUCT
1650     _phase->require_nodes_final(_nodes_at_begin, _check_at_final);
1651   }
1652 
1653 private:
1654   PhaseIdealLoop* _phase;
1655   bool _check_at_final;
1656   uint _nodes_at_begin;
1657 };
1658 
1659 
1660 // This kit may be used for making of a reserved copy of a loop before this loop
1661 //  goes under non-reversible changes.
1662 //
1663 // Function create_reserve() creates a reserved copy (clone) of the loop.
1664 // The reserved copy is created by calling
1665 // PhaseIdealLoop::create_reserve_version_of_loop - see there how
1666 // the original and reserved loops are connected in the outer graph.
1667 // If create_reserve succeeded, it returns 'true' and _has_reserved is set to 'true'.
1668 //
1669 // By default the reserved copy (clone) of the loop is created as dead code - it is
1670 // dominated in the outer loop by this node chain:
1671 //   intcon(1)->If->IfFalse->reserved_copy.
1672 // The original loop is dominated by the the same node chain but IfTrue projection:
1673 //   intcon(0)->If->IfTrue->original_loop.
1674 //
1675 // In this implementation of CountedLoopReserveKit the ctor includes create_reserve()
1676 // and the dtor, checks _use_new value.
1677 // If _use_new == false, it "switches" control to reserved copy of the loop
1678 // by simple replacing of node intcon(1) with node intcon(0).
1679 //
1680 // Here is a proposed example of usage (see also SuperWord::output in superword.cpp).
1681 //
1682 // void CountedLoopReserveKit_example()
1683 // {
1684 //    CountedLoopReserveKit lrk((phase, lpt, DoReserveCopy = true); // create local object
1685 //    if (DoReserveCopy && !lrk.has_reserved()) {
1686 //      return; //failed to create reserved loop copy
1687 //    }
1688 //    ...
1689 //    //something is wrong, switch to original loop
1690 ///   if(something_is_wrong) return; // ~CountedLoopReserveKit makes the switch
1691 //    ...
1692 //    //everything worked ok, return with the newly modified loop
1693 //    lrk.use_new();
1694 //    return; // ~CountedLoopReserveKit does nothing once use_new() was called
1695 //  }
1696 //
1697 // Keep in mind, that by default if create_reserve() is not followed by use_new()
1698 // the dtor will "switch to the original" loop.
1699 // NOTE. You you modify outside of the original loop this class is no help.
1700 //
1701 class CountedLoopReserveKit {
1702   private:
1703     PhaseIdealLoop* _phase;
1704     IdealLoopTree*  _lpt;
1705     LoopNode*       _lp;
1706     IfNode*         _iff;
1707     LoopNode*       _lp_reserved;
1708     bool            _has_reserved;
1709     bool            _use_new;
1710     const bool      _active; //may be set to false in ctor, then the object is dummy
1711 
1712   public:
1713     CountedLoopReserveKit(PhaseIdealLoop* phase, IdealLoopTree *loop, bool active);
1714     ~CountedLoopReserveKit();
use_new()1715     void use_new()                {_use_new = true;}
set_iff(IfNode * x)1716     void set_iff(IfNode* x)       {_iff = x;}
has_reserved() const1717     bool has_reserved()     const { return _active && _has_reserved;}
1718   private:
1719     bool create_reserve();
1720 };// class CountedLoopReserveKit
1721 
tail()1722 inline Node* IdealLoopTree::tail() {
1723   // Handle lazy update of _tail field.
1724   if (_tail->in(0) == NULL) {
1725     _tail = _phase->get_ctrl(_tail);
1726   }
1727   return _tail;
1728 }
1729 
head()1730 inline Node* IdealLoopTree::head() {
1731   // Handle lazy update of _head field.
1732   if (_head->in(0) == NULL) {
1733     _head = _phase->get_ctrl(_head);
1734   }
1735   return _head;
1736 }
1737 
1738 // Iterate over the loop tree using a preorder, left-to-right traversal.
1739 //
1740 // Example that visits all counted loops from within PhaseIdealLoop
1741 //
1742 //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1743 //   IdealLoopTree* lpt = iter.current();
1744 //   if (!lpt->is_counted()) continue;
1745 //   ...
1746 class LoopTreeIterator : public StackObj {
1747 private:
1748   IdealLoopTree* _root;
1749   IdealLoopTree* _curnt;
1750 
1751 public:
LoopTreeIterator(IdealLoopTree * root)1752   LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
1753 
done()1754   bool done() { return _curnt == NULL; }       // Finished iterating?
1755 
1756   void next();                                 // Advance to next loop tree
1757 
current()1758   IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
1759 };
1760 
1761 #endif // SHARE_OPTO_LOOPNODE_HPP
1762