1 /*
2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_OPTO_MEMNODE_HPP
26 #define SHARE_OPTO_MEMNODE_HPP
27 
28 #include "opto/multnode.hpp"
29 #include "opto/node.hpp"
30 #include "opto/opcodes.hpp"
31 #include "opto/type.hpp"
32 
33 // Portions of code courtesy of Clifford Click
34 
35 class MultiNode;
36 class PhaseCCP;
37 class PhaseTransform;
38 
39 //------------------------------MemNode----------------------------------------
40 // Load or Store, possibly throwing a NULL pointer exception
41 class MemNode : public Node {
42 private:
43   bool _unaligned_access; // Unaligned access from unsafe
44   bool _mismatched_access; // Mismatched access from unsafe: byte read in integer array for instance
45   bool _unsafe_access;     // Access of unsafe origin.
46   uint8_t _barrier_data;   // Bit field with barrier information
47 
48 protected:
49 #ifdef ASSERT
50   const TypePtr* _adr_type;     // What kind of memory is being addressed?
51 #endif
52   virtual uint size_of() const;
53 public:
54   enum { Control,               // When is it safe to do this load?
55          Memory,                // Chunk of memory is being loaded from
56          Address,               // Actually address, derived from base
57          ValueIn,               // Value to store
58          OopStore               // Preceeding oop store, only in StoreCM
59   };
60   typedef enum { unordered = 0,
61                  acquire,       // Load has to acquire or be succeeded by MemBarAcquire.
62                  release,       // Store has to release or be preceded by MemBarRelease.
63                  seqcst,        // LoadStore has to have both acquire and release semantics.
64                  unset          // The memory ordering is not set (used for testing)
65   } MemOrd;
66 protected:
MemNode(Node * c0,Node * c1,Node * c2,const TypePtr * at)67   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at ) :
68       Node(c0,c1,c2),
69       _unaligned_access(false),
70       _mismatched_access(false),
71       _unsafe_access(false),
72       _barrier_data(0) {
73     init_class_id(Class_Mem);
74     debug_only(_adr_type=at; adr_type();)
75   }
MemNode(Node * c0,Node * c1,Node * c2,const TypePtr * at,Node * c3)76   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 ) :
77       Node(c0,c1,c2,c3),
78       _unaligned_access(false),
79       _mismatched_access(false),
80       _unsafe_access(false),
81       _barrier_data(0) {
82     init_class_id(Class_Mem);
83     debug_only(_adr_type=at; adr_type();)
84   }
MemNode(Node * c0,Node * c1,Node * c2,const TypePtr * at,Node * c3,Node * c4)85   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4) :
86       Node(c0,c1,c2,c3,c4),
87       _unaligned_access(false),
88       _mismatched_access(false),
89       _unsafe_access(false),
90       _barrier_data(0) {
91     init_class_id(Class_Mem);
92     debug_only(_adr_type=at; adr_type();)
93   }
94 
find_previous_arraycopy(PhaseTransform * phase,Node * ld_alloc,Node * & mem,bool can_see_stored_value) const95   virtual Node* find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const { return NULL; }
96   ArrayCopyNode* find_array_copy_clone(PhaseTransform* phase, Node* ld_alloc, Node* mem) const;
97   static bool check_if_adr_maybe_raw(Node* adr);
98 
99 public:
100   // Helpers for the optimizer.  Documented in memnode.cpp.
101   static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
102                                       Node* p2, AllocateNode* a2,
103                                       PhaseTransform* phase);
104   static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
105 
106   static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
107   static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
108   // This one should probably be a phase-specific function:
109   static bool all_controls_dominate(Node* dom, Node* sub);
110 
111   virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
112 
113   // Shared code for Ideal methods:
114   Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
115 
116   // Helper function for adr_type() implementations.
117   static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
118 
119   // Raw access function, to allow copying of adr_type efficiently in
120   // product builds and retain the debug info for debug builds.
raw_adr_type() const121   const TypePtr *raw_adr_type() const {
122 #ifdef ASSERT
123     return _adr_type;
124 #else
125     return 0;
126 #endif
127   }
128 
129   // Map a load or store opcode to its corresponding store opcode.
130   // (Return -1 if unknown.)
store_Opcode() const131   virtual int store_Opcode() const { return -1; }
132 
133   // What is the type of the value in memory?  (T_VOID mean "unspecified".)
134   virtual BasicType memory_type() const = 0;
memory_size() const135   virtual int memory_size() const {
136 #ifdef ASSERT
137     return type2aelembytes(memory_type(), true);
138 #else
139     return type2aelembytes(memory_type());
140 #endif
141   }
142 
barrier_data()143   uint8_t barrier_data() { return _barrier_data; }
set_barrier_data(uint8_t barrier_data)144   void set_barrier_data(uint8_t barrier_data) { _barrier_data = barrier_data; }
145 
146   // Search through memory states which precede this node (load or store).
147   // Look for an exact match for the address, with no intervening
148   // aliased stores.
149   Node* find_previous_store(PhaseTransform* phase);
150 
151   // Can this node (load or store) accurately see a stored value in
152   // the given memory state?  (The state may or may not be in(Memory).)
153   Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
154 
set_unaligned_access()155   void set_unaligned_access() { _unaligned_access = true; }
is_unaligned_access() const156   bool is_unaligned_access() const { return _unaligned_access; }
set_mismatched_access()157   void set_mismatched_access() { _mismatched_access = true; }
is_mismatched_access() const158   bool is_mismatched_access() const { return _mismatched_access; }
set_unsafe_access()159   void set_unsafe_access() { _unsafe_access = true; }
is_unsafe_access() const160   bool is_unsafe_access() const { return _unsafe_access; }
161 
162 #ifndef PRODUCT
163   static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
164   virtual void dump_spec(outputStream *st) const;
165 #endif
166 };
167 
168 //------------------------------LoadNode---------------------------------------
169 // Load value; requires Memory and Address
170 class LoadNode : public MemNode {
171 public:
172   // Some loads (from unsafe) should be pinned: they don't depend only
173   // on the dominating test.  The field _control_dependency below records
174   // whether that node depends only on the dominating test.
175   // Pinned and UnknownControl are similar, but differ in that Pinned
176   // loads are not allowed to float across safepoints, whereas UnknownControl
177   // loads are allowed to do that. Therefore, Pinned is stricter.
178   enum ControlDependency {
179     Pinned,
180     UnknownControl,
181     DependsOnlyOnTest
182   };
183 
184 private:
185   // LoadNode::hash() doesn't take the _control_dependency field
186   // into account: If the graph already has a non-pinned LoadNode and
187   // we add a pinned LoadNode with the same inputs, it's safe for GVN
188   // to replace the pinned LoadNode with the non-pinned LoadNode,
189   // otherwise it wouldn't be safe to have a non pinned LoadNode with
190   // those inputs in the first place. If the graph already has a
191   // pinned LoadNode and we add a non pinned LoadNode with the same
192   // inputs, it's safe (but suboptimal) for GVN to replace the
193   // non-pinned LoadNode by the pinned LoadNode.
194   ControlDependency _control_dependency;
195 
196   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
197   // loads that can be reordered, and such requiring acquire semantics to
198   // adhere to the Java specification.  The required behaviour is stored in
199   // this field.
200   const MemOrd _mo;
201 
202   AllocateNode* is_new_object_mark_load(PhaseGVN *phase) const;
203 
204 protected:
205   virtual bool cmp(const Node &n) const;
206   virtual uint size_of() const; // Size is bigger
207   // Should LoadNode::Ideal() attempt to remove control edges?
208   virtual bool can_remove_control() const;
209   const Type* const _type;      // What kind of value is loaded?
210 
211   virtual Node* find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const;
212 public:
213 
LoadNode(Node * c,Node * mem,Node * adr,const TypePtr * at,const Type * rt,MemOrd mo,ControlDependency control_dependency)214   LoadNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, MemOrd mo, ControlDependency control_dependency)
215     : MemNode(c,mem,adr,at), _control_dependency(control_dependency), _mo(mo), _type(rt) {
216     init_class_id(Class_Load);
217   }
is_unordered() const218   inline bool is_unordered() const { return !is_acquire(); }
is_acquire() const219   inline bool is_acquire() const {
220     assert(_mo == unordered || _mo == acquire, "unexpected");
221     return _mo == acquire;
222   }
is_unsigned() const223   inline bool is_unsigned() const {
224     int lop = Opcode();
225     return (lop == Op_LoadUB) || (lop == Op_LoadUS);
226   }
227 
228   // Polymorphic factory method:
229   static Node* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
230                     const TypePtr* at, const Type *rt, BasicType bt,
231                     MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest,
232                     bool unaligned = false, bool mismatched = false, bool unsafe = false,
233                     uint8_t barrier_data = 0);
234 
235   virtual uint hash()   const;  // Check the type
236 
237   // Handle algebraic identities here.  If we have an identity, return the Node
238   // we are equivalent to.  We look for Load of a Store.
239   virtual Node* Identity(PhaseGVN* phase);
240 
241   // If the load is from Field memory and the pointer is non-null, it might be possible to
242   // zero out the control input.
243   // If the offset is constant and the base is an object allocation,
244   // try to hook me up to the exact initializing store.
245   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
246 
247   // Split instance field load through Phi.
248   Node* split_through_phi(PhaseGVN *phase);
249 
250   // Recover original value from boxed values
251   Node *eliminate_autobox(PhaseGVN *phase);
252 
253   // Compute a new Type for this node.  Basically we just do the pre-check,
254   // then call the virtual add() to set the type.
255   virtual const Type* Value(PhaseGVN* phase) const;
256 
257   // Common methods for LoadKlass and LoadNKlass nodes.
258   const Type* klass_value_common(PhaseGVN* phase) const;
259   Node* klass_identity_common(PhaseGVN* phase);
260 
261   virtual uint ideal_reg() const;
262   virtual const Type *bottom_type() const;
263   // Following method is copied from TypeNode:
set_type(const Type * t)264   void set_type(const Type* t) {
265     assert(t != NULL, "sanity");
266     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
267     *(const Type**)&_type = t;   // cast away const-ness
268     // If this node is in the hash table, make sure it doesn't need a rehash.
269     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
270   }
type() const271   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
272 
273   // Do not match memory edge
274   virtual uint match_edge(uint idx) const;
275 
276   // Map a load opcode to its corresponding store opcode.
277   virtual int store_Opcode() const = 0;
278 
279   // Check if the load's memory input is a Phi node with the same control.
280   bool is_instance_field_load_with_local_phi(Node* ctrl);
281 
282   Node* convert_to_unsigned_load(PhaseGVN& gvn);
283   Node* convert_to_signed_load(PhaseGVN& gvn);
284 
285   bool  has_reinterpret_variant(const Type* rt);
286   Node* convert_to_reinterpret_load(PhaseGVN& gvn, const Type* rt);
287 
pin()288   void pin() { _control_dependency = Pinned; }
has_unknown_control_dependency() const289   bool has_unknown_control_dependency() const { return _control_dependency == UnknownControl; }
290 
291 #ifndef PRODUCT
292   virtual void dump_spec(outputStream *st) const;
293 #endif
294 #ifdef ASSERT
295   // Helper function to allow a raw load without control edge for some cases
296   static bool is_immutable_value(Node* adr);
297 #endif
298 protected:
299   const Type* load_array_final_field(const TypeKlassPtr *tkls,
300                                      ciKlass* klass) const;
301 
302   Node* can_see_arraycopy_value(Node* st, PhaseGVN* phase) const;
303 
304   // depends_only_on_test is almost always true, and needs to be almost always
305   // true to enable key hoisting & commoning optimizations.  However, for the
306   // special case of RawPtr loads from TLS top & end, and other loads performed by
307   // GC barriers, the control edge carries the dependence preventing hoisting past
308   // a Safepoint instead of the memory edge.  (An unfortunate consequence of having
309   // Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes
310   // which produce results (new raw memory state) inside of loops preventing all
311   // manner of other optimizations).  Basically, it's ugly but so is the alternative.
312   // See comment in macro.cpp, around line 125 expand_allocate_common().
depends_only_on_test() const313   virtual bool depends_only_on_test() const {
314     return adr_type() != TypeRawPtr::BOTTOM && _control_dependency == DependsOnlyOnTest;
315   }
316 };
317 
318 //------------------------------LoadBNode--------------------------------------
319 // Load a byte (8bits signed) from memory
320 class LoadBNode : public LoadNode {
321 public:
LoadBNode(Node * c,Node * mem,Node * adr,const TypePtr * at,const TypeInt * ti,MemOrd mo,ControlDependency control_dependency=DependsOnlyOnTest)322   LoadBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
323     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
324   virtual int Opcode() const;
ideal_reg() const325   virtual uint ideal_reg() const { return Op_RegI; }
326   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
327   virtual const Type* Value(PhaseGVN* phase) const;
store_Opcode() const328   virtual int store_Opcode() const { return Op_StoreB; }
memory_type() const329   virtual BasicType memory_type() const { return T_BYTE; }
330 };
331 
332 //------------------------------LoadUBNode-------------------------------------
333 // Load a unsigned byte (8bits unsigned) from memory
334 class LoadUBNode : public LoadNode {
335 public:
LoadUBNode(Node * c,Node * mem,Node * adr,const TypePtr * at,const TypeInt * ti,MemOrd mo,ControlDependency control_dependency=DependsOnlyOnTest)336   LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
337     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
338   virtual int Opcode() const;
ideal_reg() const339   virtual uint ideal_reg() const { return Op_RegI; }
340   virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
341   virtual const Type* Value(PhaseGVN* phase) const;
store_Opcode() const342   virtual int store_Opcode() const { return Op_StoreB; }
memory_type() const343   virtual BasicType memory_type() const { return T_BYTE; }
344 };
345 
346 //------------------------------LoadUSNode-------------------------------------
347 // Load an unsigned short/char (16bits unsigned) from memory
348 class LoadUSNode : public LoadNode {
349 public:
LoadUSNode(Node * c,Node * mem,Node * adr,const TypePtr * at,const TypeInt * ti,MemOrd mo,ControlDependency control_dependency=DependsOnlyOnTest)350   LoadUSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
351     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
352   virtual int Opcode() const;
ideal_reg() const353   virtual uint ideal_reg() const { return Op_RegI; }
354   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
355   virtual const Type* Value(PhaseGVN* phase) const;
store_Opcode() const356   virtual int store_Opcode() const { return Op_StoreC; }
memory_type() const357   virtual BasicType memory_type() const { return T_CHAR; }
358 };
359 
360 //------------------------------LoadSNode--------------------------------------
361 // Load a short (16bits signed) from memory
362 class LoadSNode : public LoadNode {
363 public:
LoadSNode(Node * c,Node * mem,Node * adr,const TypePtr * at,const TypeInt * ti,MemOrd mo,ControlDependency control_dependency=DependsOnlyOnTest)364   LoadSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
365     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
366   virtual int Opcode() const;
ideal_reg() const367   virtual uint ideal_reg() const { return Op_RegI; }
368   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
369   virtual const Type* Value(PhaseGVN* phase) const;
store_Opcode() const370   virtual int store_Opcode() const { return Op_StoreC; }
memory_type() const371   virtual BasicType memory_type() const { return T_SHORT; }
372 };
373 
374 //------------------------------LoadINode--------------------------------------
375 // Load an integer from memory
376 class LoadINode : public LoadNode {
377 public:
LoadINode(Node * c,Node * mem,Node * adr,const TypePtr * at,const TypeInt * ti,MemOrd mo,ControlDependency control_dependency=DependsOnlyOnTest)378   LoadINode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
379     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
380   virtual int Opcode() const;
ideal_reg() const381   virtual uint ideal_reg() const { return Op_RegI; }
store_Opcode() const382   virtual int store_Opcode() const { return Op_StoreI; }
memory_type() const383   virtual BasicType memory_type() const { return T_INT; }
384 };
385 
386 //------------------------------LoadRangeNode----------------------------------
387 // Load an array length from the array
388 class LoadRangeNode : public LoadINode {
389 public:
LoadRangeNode(Node * c,Node * mem,Node * adr,const TypeInt * ti=TypeInt::POS)390   LoadRangeNode(Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS)
391     : LoadINode(c, mem, adr, TypeAryPtr::RANGE, ti, MemNode::unordered) {}
392   virtual int Opcode() const;
393   virtual const Type* Value(PhaseGVN* phase) const;
394   virtual Node* Identity(PhaseGVN* phase);
395   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
396 };
397 
398 //------------------------------LoadLNode--------------------------------------
399 // Load a long from memory
400 class LoadLNode : public LoadNode {
hash() const401   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
cmp(const Node & n) const402   virtual bool cmp( const Node &n ) const {
403     return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
404       && LoadNode::cmp(n);
405   }
size_of() const406   virtual uint size_of() const { return sizeof(*this); }
407   const bool _require_atomic_access;  // is piecewise load forbidden?
408 
409 public:
LoadLNode(Node * c,Node * mem,Node * adr,const TypePtr * at,const TypeLong * tl,MemOrd mo,ControlDependency control_dependency=DependsOnlyOnTest,bool require_atomic_access=false)410   LoadLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeLong *tl,
411             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
412     : LoadNode(c, mem, adr, at, tl, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
413   virtual int Opcode() const;
ideal_reg() const414   virtual uint ideal_reg() const { return Op_RegL; }
store_Opcode() const415   virtual int store_Opcode() const { return Op_StoreL; }
memory_type() const416   virtual BasicType memory_type() const { return T_LONG; }
require_atomic_access() const417   bool require_atomic_access() const { return _require_atomic_access; }
418   static LoadLNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
419                                 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest,
420                                 bool unaligned = false, bool mismatched = false, bool unsafe = false, uint8_t barrier_data = 0);
421 #ifndef PRODUCT
dump_spec(outputStream * st) const422   virtual void dump_spec(outputStream *st) const {
423     LoadNode::dump_spec(st);
424     if (_require_atomic_access)  st->print(" Atomic!");
425   }
426 #endif
427 };
428 
429 //------------------------------LoadL_unalignedNode----------------------------
430 // Load a long from unaligned memory
431 class LoadL_unalignedNode : public LoadLNode {
432 public:
LoadL_unalignedNode(Node * c,Node * mem,Node * adr,const TypePtr * at,MemOrd mo,ControlDependency control_dependency=DependsOnlyOnTest)433   LoadL_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
434     : LoadLNode(c, mem, adr, at, TypeLong::LONG, mo, control_dependency) {}
435   virtual int Opcode() const;
436 };
437 
438 //------------------------------LoadFNode--------------------------------------
439 // Load a float (64 bits) from memory
440 class LoadFNode : public LoadNode {
441 public:
LoadFNode(Node * c,Node * mem,Node * adr,const TypePtr * at,const Type * t,MemOrd mo,ControlDependency control_dependency=DependsOnlyOnTest)442   LoadFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
443     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
444   virtual int Opcode() const;
ideal_reg() const445   virtual uint ideal_reg() const { return Op_RegF; }
store_Opcode() const446   virtual int store_Opcode() const { return Op_StoreF; }
memory_type() const447   virtual BasicType memory_type() const { return T_FLOAT; }
448 };
449 
450 //------------------------------LoadDNode--------------------------------------
451 // Load a double (64 bits) from memory
452 class LoadDNode : public LoadNode {
hash() const453   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
cmp(const Node & n) const454   virtual bool cmp( const Node &n ) const {
455     return _require_atomic_access == ((LoadDNode&)n)._require_atomic_access
456       && LoadNode::cmp(n);
457   }
size_of() const458   virtual uint size_of() const { return sizeof(*this); }
459   const bool _require_atomic_access;  // is piecewise load forbidden?
460 
461 public:
LoadDNode(Node * c,Node * mem,Node * adr,const TypePtr * at,const Type * t,MemOrd mo,ControlDependency control_dependency=DependsOnlyOnTest,bool require_atomic_access=false)462   LoadDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t,
463             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
464     : LoadNode(c, mem, adr, at, t, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
465   virtual int Opcode() const;
ideal_reg() const466   virtual uint ideal_reg() const { return Op_RegD; }
store_Opcode() const467   virtual int store_Opcode() const { return Op_StoreD; }
memory_type() const468   virtual BasicType memory_type() const { return T_DOUBLE; }
require_atomic_access() const469   bool require_atomic_access() const { return _require_atomic_access; }
470   static LoadDNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
471                                 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest,
472                                 bool unaligned = false, bool mismatched = false, bool unsafe = false, uint8_t barrier_data = 0);
473 #ifndef PRODUCT
dump_spec(outputStream * st) const474   virtual void dump_spec(outputStream *st) const {
475     LoadNode::dump_spec(st);
476     if (_require_atomic_access)  st->print(" Atomic!");
477   }
478 #endif
479 };
480 
481 //------------------------------LoadD_unalignedNode----------------------------
482 // Load a double from unaligned memory
483 class LoadD_unalignedNode : public LoadDNode {
484 public:
LoadD_unalignedNode(Node * c,Node * mem,Node * adr,const TypePtr * at,MemOrd mo,ControlDependency control_dependency=DependsOnlyOnTest)485   LoadD_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
486     : LoadDNode(c, mem, adr, at, Type::DOUBLE, mo, control_dependency) {}
487   virtual int Opcode() const;
488 };
489 
490 //------------------------------LoadPNode--------------------------------------
491 // Load a pointer from memory (either object or array)
492 class LoadPNode : public LoadNode {
493 public:
LoadPNode(Node * c,Node * mem,Node * adr,const TypePtr * at,const TypePtr * t,MemOrd mo,ControlDependency control_dependency=DependsOnlyOnTest)494   LoadPNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
495     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
496   virtual int Opcode() const;
ideal_reg() const497   virtual uint ideal_reg() const { return Op_RegP; }
store_Opcode() const498   virtual int store_Opcode() const { return Op_StoreP; }
memory_type() const499   virtual BasicType memory_type() const { return T_ADDRESS; }
500 };
501 
502 
503 //------------------------------LoadNNode--------------------------------------
504 // Load a narrow oop from memory (either object or array)
505 class LoadNNode : public LoadNode {
506 public:
LoadNNode(Node * c,Node * mem,Node * adr,const TypePtr * at,const Type * t,MemOrd mo,ControlDependency control_dependency=DependsOnlyOnTest)507   LoadNNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
508     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
509   virtual int Opcode() const;
ideal_reg() const510   virtual uint ideal_reg() const { return Op_RegN; }
store_Opcode() const511   virtual int store_Opcode() const { return Op_StoreN; }
memory_type() const512   virtual BasicType memory_type() const { return T_NARROWOOP; }
513 };
514 
515 //------------------------------LoadKlassNode----------------------------------
516 // Load a Klass from an object
517 class LoadKlassNode : public LoadPNode {
518 protected:
519   // In most cases, LoadKlassNode does not have the control input set. If the control
520   // input is set, it must not be removed (by LoadNode::Ideal()).
521   virtual bool can_remove_control() const;
522 public:
LoadKlassNode(Node * c,Node * mem,Node * adr,const TypePtr * at,const TypeKlassPtr * tk,MemOrd mo)523   LoadKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk, MemOrd mo)
524     : LoadPNode(c, mem, adr, at, tk, mo) {}
525   virtual int Opcode() const;
526   virtual const Type* Value(PhaseGVN* phase) const;
527   virtual Node* Identity(PhaseGVN* phase);
depends_only_on_test() const528   virtual bool depends_only_on_test() const { return true; }
529 
530   // Polymorphic factory method:
531   static Node* make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at,
532                     const TypeKlassPtr* tk = TypeKlassPtr::OBJECT);
533 };
534 
535 //------------------------------LoadNKlassNode---------------------------------
536 // Load a narrow Klass from an object.
537 class LoadNKlassNode : public LoadNNode {
538 public:
LoadNKlassNode(Node * c,Node * mem,Node * adr,const TypePtr * at,const TypeNarrowKlass * tk,MemOrd mo)539   LoadNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk, MemOrd mo)
540     : LoadNNode(c, mem, adr, at, tk, mo) {}
541   virtual int Opcode() const;
ideal_reg() const542   virtual uint ideal_reg() const { return Op_RegN; }
store_Opcode() const543   virtual int store_Opcode() const { return Op_StoreNKlass; }
memory_type() const544   virtual BasicType memory_type() const { return T_NARROWKLASS; }
545 
546   virtual const Type* Value(PhaseGVN* phase) const;
547   virtual Node* Identity(PhaseGVN* phase);
depends_only_on_test() const548   virtual bool depends_only_on_test() const { return true; }
549 };
550 
551 
552 //------------------------------StoreNode--------------------------------------
553 // Store value; requires Store, Address and Value
554 class StoreNode : public MemNode {
555 private:
556   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
557   // stores that can be reordered, and such requiring release semantics to
558   // adhere to the Java specification.  The required behaviour is stored in
559   // this field.
560   const MemOrd _mo;
561   // Needed for proper cloning.
size_of() const562   virtual uint size_of() const { return sizeof(*this); }
563 protected:
564   virtual bool cmp( const Node &n ) const;
depends_only_on_test() const565   virtual bool depends_only_on_test() const { return false; }
566 
567   Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
568   Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
569 
570 public:
571   // We must ensure that stores of object references will be visible
572   // only after the object's initialization. So the callers of this
573   // procedure must indicate that the store requires `release'
574   // semantics, if the stored value is an object reference that might
575   // point to a new object and may become externally visible.
StoreNode(Node * c,Node * mem,Node * adr,const TypePtr * at,Node * val,MemOrd mo)576   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
577     : MemNode(c, mem, adr, at, val), _mo(mo) {
578     init_class_id(Class_Store);
579   }
StoreNode(Node * c,Node * mem,Node * adr,const TypePtr * at,Node * val,Node * oop_store,MemOrd mo)580   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, MemOrd mo)
581     : MemNode(c, mem, adr, at, val, oop_store), _mo(mo) {
582     init_class_id(Class_Store);
583   }
584 
is_unordered() const585   inline bool is_unordered() const { return !is_release(); }
is_release() const586   inline bool is_release() const {
587     assert((_mo == unordered || _mo == release), "unexpected");
588     return _mo == release;
589   }
590 
591   // Conservatively release stores of object references in order to
592   // ensure visibility of object initialization.
release_if_reference(const BasicType t)593   static inline MemOrd release_if_reference(const BasicType t) {
594 #ifdef AARCH64
595     // AArch64 doesn't need a release store here because object
596     // initialization contains the necessary barriers.
597     return unordered;
598 #else
599     const MemOrd mo = (t == T_ARRAY ||
600                        t == T_ADDRESS || // Might be the address of an object reference (`boxing').
601                        t == T_OBJECT) ? release : unordered;
602     return mo;
603 #endif
604   }
605 
606   // Polymorphic factory method
607   //
608   // We must ensure that stores of object references will be visible
609   // only after the object's initialization. So the callers of this
610   // procedure must indicate that the store requires `release'
611   // semantics, if the stored value is an object reference that might
612   // point to a new object and may become externally visible.
613   static StoreNode* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
614                          const TypePtr* at, Node *val, BasicType bt, MemOrd mo);
615 
616   virtual uint hash() const;    // Check the type
617 
618   // If the store is to Field memory and the pointer is non-null, we can
619   // zero out the control input.
620   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
621 
622   // Compute a new Type for this node.  Basically we just do the pre-check,
623   // then call the virtual add() to set the type.
624   virtual const Type* Value(PhaseGVN* phase) const;
625 
626   // Check for identity function on memory (Load then Store at same address)
627   virtual Node* Identity(PhaseGVN* phase);
628 
629   // Do not match memory edge
630   virtual uint match_edge(uint idx) const;
631 
632   virtual const Type *bottom_type() const;  // returns Type::MEMORY
633 
634   // Map a store opcode to its corresponding own opcode, trivially.
store_Opcode() const635   virtual int store_Opcode() const { return Opcode(); }
636 
637   // have all possible loads of the value stored been optimized away?
638   bool value_never_loaded(PhaseTransform *phase) const;
639 
640   bool  has_reinterpret_variant(const Type* vt);
641   Node* convert_to_reinterpret_store(PhaseGVN& gvn, Node* val, const Type* vt);
642 
643   MemBarNode* trailing_membar() const;
644 };
645 
646 //------------------------------StoreBNode-------------------------------------
647 // Store byte to memory
648 class StoreBNode : public StoreNode {
649 public:
StoreBNode(Node * c,Node * mem,Node * adr,const TypePtr * at,Node * val,MemOrd mo)650   StoreBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
651     : StoreNode(c, mem, adr, at, val, mo) {}
652   virtual int Opcode() const;
653   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
memory_type() const654   virtual BasicType memory_type() const { return T_BYTE; }
655 };
656 
657 //------------------------------StoreCNode-------------------------------------
658 // Store char/short to memory
659 class StoreCNode : public StoreNode {
660 public:
StoreCNode(Node * c,Node * mem,Node * adr,const TypePtr * at,Node * val,MemOrd mo)661   StoreCNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
662     : StoreNode(c, mem, adr, at, val, mo) {}
663   virtual int Opcode() const;
664   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
memory_type() const665   virtual BasicType memory_type() const { return T_CHAR; }
666 };
667 
668 //------------------------------StoreINode-------------------------------------
669 // Store int to memory
670 class StoreINode : public StoreNode {
671 public:
StoreINode(Node * c,Node * mem,Node * adr,const TypePtr * at,Node * val,MemOrd mo)672   StoreINode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
673     : StoreNode(c, mem, adr, at, val, mo) {}
674   virtual int Opcode() const;
memory_type() const675   virtual BasicType memory_type() const { return T_INT; }
676 };
677 
678 //------------------------------StoreLNode-------------------------------------
679 // Store long to memory
680 class StoreLNode : public StoreNode {
hash() const681   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
cmp(const Node & n) const682   virtual bool cmp( const Node &n ) const {
683     return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
684       && StoreNode::cmp(n);
685   }
size_of() const686   virtual uint size_of() const { return sizeof(*this); }
687   const bool _require_atomic_access;  // is piecewise store forbidden?
688 
689 public:
StoreLNode(Node * c,Node * mem,Node * adr,const TypePtr * at,Node * val,MemOrd mo,bool require_atomic_access=false)690   StoreLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo, bool require_atomic_access = false)
691     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
692   virtual int Opcode() const;
memory_type() const693   virtual BasicType memory_type() const { return T_LONG; }
require_atomic_access() const694   bool require_atomic_access() const { return _require_atomic_access; }
695   static StoreLNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
696 #ifndef PRODUCT
dump_spec(outputStream * st) const697   virtual void dump_spec(outputStream *st) const {
698     StoreNode::dump_spec(st);
699     if (_require_atomic_access)  st->print(" Atomic!");
700   }
701 #endif
702 };
703 
704 //------------------------------StoreFNode-------------------------------------
705 // Store float to memory
706 class StoreFNode : public StoreNode {
707 public:
StoreFNode(Node * c,Node * mem,Node * adr,const TypePtr * at,Node * val,MemOrd mo)708   StoreFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
709     : StoreNode(c, mem, adr, at, val, mo) {}
710   virtual int Opcode() const;
memory_type() const711   virtual BasicType memory_type() const { return T_FLOAT; }
712 };
713 
714 //------------------------------StoreDNode-------------------------------------
715 // Store double to memory
716 class StoreDNode : public StoreNode {
hash() const717   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
cmp(const Node & n) const718   virtual bool cmp( const Node &n ) const {
719     return _require_atomic_access == ((StoreDNode&)n)._require_atomic_access
720       && StoreNode::cmp(n);
721   }
size_of() const722   virtual uint size_of() const { return sizeof(*this); }
723   const bool _require_atomic_access;  // is piecewise store forbidden?
724 public:
StoreDNode(Node * c,Node * mem,Node * adr,const TypePtr * at,Node * val,MemOrd mo,bool require_atomic_access=false)725   StoreDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
726              MemOrd mo, bool require_atomic_access = false)
727     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
728   virtual int Opcode() const;
memory_type() const729   virtual BasicType memory_type() const { return T_DOUBLE; }
require_atomic_access() const730   bool require_atomic_access() const { return _require_atomic_access; }
731   static StoreDNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
732 #ifndef PRODUCT
dump_spec(outputStream * st) const733   virtual void dump_spec(outputStream *st) const {
734     StoreNode::dump_spec(st);
735     if (_require_atomic_access)  st->print(" Atomic!");
736   }
737 #endif
738 
739 };
740 
741 //------------------------------StorePNode-------------------------------------
742 // Store pointer to memory
743 class StorePNode : public StoreNode {
744 public:
StorePNode(Node * c,Node * mem,Node * adr,const TypePtr * at,Node * val,MemOrd mo)745   StorePNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
746     : StoreNode(c, mem, adr, at, val, mo) {}
747   virtual int Opcode() const;
memory_type() const748   virtual BasicType memory_type() const { return T_ADDRESS; }
749 };
750 
751 //------------------------------StoreNNode-------------------------------------
752 // Store narrow oop to memory
753 class StoreNNode : public StoreNode {
754 public:
StoreNNode(Node * c,Node * mem,Node * adr,const TypePtr * at,Node * val,MemOrd mo)755   StoreNNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
756     : StoreNode(c, mem, adr, at, val, mo) {}
757   virtual int Opcode() const;
memory_type() const758   virtual BasicType memory_type() const { return T_NARROWOOP; }
759 };
760 
761 //------------------------------StoreNKlassNode--------------------------------------
762 // Store narrow klass to memory
763 class StoreNKlassNode : public StoreNNode {
764 public:
StoreNKlassNode(Node * c,Node * mem,Node * adr,const TypePtr * at,Node * val,MemOrd mo)765   StoreNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
766     : StoreNNode(c, mem, adr, at, val, mo) {}
767   virtual int Opcode() const;
memory_type() const768   virtual BasicType memory_type() const { return T_NARROWKLASS; }
769 };
770 
771 //------------------------------StoreCMNode-----------------------------------
772 // Store card-mark byte to memory for CM
773 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
774 // Preceeding equivalent StoreCMs may be eliminated.
775 class StoreCMNode : public StoreNode {
776  private:
hash() const777   virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
cmp(const Node & n) const778   virtual bool cmp( const Node &n ) const {
779     return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
780       && StoreNode::cmp(n);
781   }
size_of() const782   virtual uint size_of() const { return sizeof(*this); }
783   int _oop_alias_idx;   // The alias_idx of OopStore
784 
785 public:
StoreCMNode(Node * c,Node * mem,Node * adr,const TypePtr * at,Node * val,Node * oop_store,int oop_alias_idx)786   StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
787     StoreNode(c, mem, adr, at, val, oop_store, MemNode::release),
788     _oop_alias_idx(oop_alias_idx) {
789     assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
790            _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
791            "bad oop alias idx");
792   }
793   virtual int Opcode() const;
794   virtual Node* Identity(PhaseGVN* phase);
795   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
796   virtual const Type* Value(PhaseGVN* phase) const;
memory_type() const797   virtual BasicType memory_type() const { return T_VOID; } // unspecific
oop_alias_idx() const798   int oop_alias_idx() const { return _oop_alias_idx; }
799 };
800 
801 //------------------------------LoadPLockedNode---------------------------------
802 // Load-locked a pointer from memory (either object or array).
803 // On Sparc & Intel this is implemented as a normal pointer load.
804 // On PowerPC and friends it's a real load-locked.
805 class LoadPLockedNode : public LoadPNode {
806 public:
LoadPLockedNode(Node * c,Node * mem,Node * adr,MemOrd mo)807   LoadPLockedNode(Node *c, Node *mem, Node *adr, MemOrd mo)
808     : LoadPNode(c, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, mo) {}
809   virtual int Opcode() const;
store_Opcode() const810   virtual int store_Opcode() const { return Op_StorePConditional; }
depends_only_on_test() const811   virtual bool depends_only_on_test() const { return true; }
812 };
813 
814 //------------------------------SCMemProjNode---------------------------------------
815 // This class defines a projection of the memory  state of a store conditional node.
816 // These nodes return a value, but also update memory.
817 class SCMemProjNode : public ProjNode {
818 public:
819   enum {SCMEMPROJCON = (uint)-2};
SCMemProjNode(Node * src)820   SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
821   virtual int Opcode() const;
is_CFG() const822   virtual bool      is_CFG() const  { return false; }
bottom_type() const823   virtual const Type *bottom_type() const {return Type::MEMORY;}
adr_type() const824   virtual const TypePtr *adr_type() const {
825     Node* ctrl = in(0);
826     if (ctrl == NULL)  return NULL; // node is dead
827     return ctrl->in(MemNode::Memory)->adr_type();
828   }
ideal_reg() const829   virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
830   virtual const Type* Value(PhaseGVN* phase) const;
831 #ifndef PRODUCT
dump_spec(outputStream * st) const832   virtual void dump_spec(outputStream *st) const {};
833 #endif
834 };
835 
836 //------------------------------LoadStoreNode---------------------------
837 // Note: is_Mem() method returns 'true' for this class.
838 class LoadStoreNode : public Node {
839 private:
840   const Type* const _type;      // What kind of value is loaded?
841   const TypePtr* _adr_type;     // What kind of memory is being addressed?
842   uint8_t _barrier_data;        // Bit field with barrier information
843   virtual uint size_of() const; // Size is bigger
844 public:
845   LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
depends_only_on_test() const846   virtual bool depends_only_on_test() const { return false; }
match_edge(uint idx) const847   virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
848 
bottom_type() const849   virtual const Type *bottom_type() const { return _type; }
850   virtual uint ideal_reg() const;
adr_type() const851   virtual const class TypePtr *adr_type() const { return _adr_type; }  // returns bottom_type of address
852 
853   bool result_not_used() const;
854   MemBarNode* trailing_membar() const;
855 
barrier_data()856   uint8_t barrier_data() { return _barrier_data; }
set_barrier_data(uint8_t barrier_data)857   void set_barrier_data(uint8_t barrier_data) { _barrier_data = barrier_data; }
858 };
859 
860 class LoadStoreConditionalNode : public LoadStoreNode {
861 public:
862   enum {
863     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
864   };
865   LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
866 };
867 
868 //------------------------------StorePConditionalNode---------------------------
869 // Conditionally store pointer to memory, if no change since prior
870 // load-locked.  Sets flags for success or failure of the store.
871 class StorePConditionalNode : public LoadStoreConditionalNode {
872 public:
StorePConditionalNode(Node * c,Node * mem,Node * adr,Node * val,Node * ll)873   StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
874   virtual int Opcode() const;
875   // Produces flags
ideal_reg() const876   virtual uint ideal_reg() const { return Op_RegFlags; }
877 };
878 
879 //------------------------------StoreIConditionalNode---------------------------
880 // Conditionally store int to memory, if no change since prior
881 // load-locked.  Sets flags for success or failure of the store.
882 class StoreIConditionalNode : public LoadStoreConditionalNode {
883 public:
StoreIConditionalNode(Node * c,Node * mem,Node * adr,Node * val,Node * ii)884   StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
885   virtual int Opcode() const;
886   // Produces flags
ideal_reg() const887   virtual uint ideal_reg() const { return Op_RegFlags; }
888 };
889 
890 //------------------------------StoreLConditionalNode---------------------------
891 // Conditionally store long to memory, if no change since prior
892 // load-locked.  Sets flags for success or failure of the store.
893 class StoreLConditionalNode : public LoadStoreConditionalNode {
894 public:
StoreLConditionalNode(Node * c,Node * mem,Node * adr,Node * val,Node * ll)895   StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
896   virtual int Opcode() const;
897   // Produces flags
ideal_reg() const898   virtual uint ideal_reg() const { return Op_RegFlags; }
899 };
900 
901 class CompareAndSwapNode : public LoadStoreConditionalNode {
902 private:
903   const MemNode::MemOrd _mem_ord;
904 public:
CompareAndSwapNode(Node * c,Node * mem,Node * adr,Node * val,Node * ex,MemNode::MemOrd mem_ord)905   CompareAndSwapNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : LoadStoreConditionalNode(c, mem, adr, val, ex), _mem_ord(mem_ord) {}
order() const906   MemNode::MemOrd order() const {
907     return _mem_ord;
908   }
size_of() const909   virtual uint size_of() const { return sizeof(*this); }
910 };
911 
912 class CompareAndExchangeNode : public LoadStoreNode {
913 private:
914   const MemNode::MemOrd _mem_ord;
915 public:
916   enum {
917     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
918   };
CompareAndExchangeNode(Node * c,Node * mem,Node * adr,Node * val,Node * ex,MemNode::MemOrd mem_ord,const TypePtr * at,const Type * t)919   CompareAndExchangeNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord, const TypePtr* at, const Type* t) :
920     LoadStoreNode(c, mem, adr, val, at, t, 5), _mem_ord(mem_ord) {
921      init_req(ExpectedIn, ex );
922   }
923 
order() const924   MemNode::MemOrd order() const {
925     return _mem_ord;
926   }
size_of() const927   virtual uint size_of() const { return sizeof(*this); }
928 };
929 
930 //------------------------------CompareAndSwapBNode---------------------------
931 class CompareAndSwapBNode : public CompareAndSwapNode {
932 public:
CompareAndSwapBNode(Node * c,Node * mem,Node * adr,Node * val,Node * ex,MemNode::MemOrd mem_ord)933   CompareAndSwapBNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
934   virtual int Opcode() const;
935 };
936 
937 //------------------------------CompareAndSwapSNode---------------------------
938 class CompareAndSwapSNode : public CompareAndSwapNode {
939 public:
CompareAndSwapSNode(Node * c,Node * mem,Node * adr,Node * val,Node * ex,MemNode::MemOrd mem_ord)940   CompareAndSwapSNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
941   virtual int Opcode() const;
942 };
943 
944 //------------------------------CompareAndSwapINode---------------------------
945 class CompareAndSwapINode : public CompareAndSwapNode {
946 public:
CompareAndSwapINode(Node * c,Node * mem,Node * adr,Node * val,Node * ex,MemNode::MemOrd mem_ord)947   CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
948   virtual int Opcode() const;
949 };
950 
951 //------------------------------CompareAndSwapLNode---------------------------
952 class CompareAndSwapLNode : public CompareAndSwapNode {
953 public:
CompareAndSwapLNode(Node * c,Node * mem,Node * adr,Node * val,Node * ex,MemNode::MemOrd mem_ord)954   CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
955   virtual int Opcode() const;
956 };
957 
958 //------------------------------CompareAndSwapPNode---------------------------
959 class CompareAndSwapPNode : public CompareAndSwapNode {
960 public:
CompareAndSwapPNode(Node * c,Node * mem,Node * adr,Node * val,Node * ex,MemNode::MemOrd mem_ord)961   CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
962   virtual int Opcode() const;
963 };
964 
965 //------------------------------CompareAndSwapNNode---------------------------
966 class CompareAndSwapNNode : public CompareAndSwapNode {
967 public:
CompareAndSwapNNode(Node * c,Node * mem,Node * adr,Node * val,Node * ex,MemNode::MemOrd mem_ord)968   CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
969   virtual int Opcode() const;
970 };
971 
972 //------------------------------WeakCompareAndSwapBNode---------------------------
973 class WeakCompareAndSwapBNode : public CompareAndSwapNode {
974 public:
WeakCompareAndSwapBNode(Node * c,Node * mem,Node * adr,Node * val,Node * ex,MemNode::MemOrd mem_ord)975   WeakCompareAndSwapBNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
976   virtual int Opcode() const;
977 };
978 
979 //------------------------------WeakCompareAndSwapSNode---------------------------
980 class WeakCompareAndSwapSNode : public CompareAndSwapNode {
981 public:
WeakCompareAndSwapSNode(Node * c,Node * mem,Node * adr,Node * val,Node * ex,MemNode::MemOrd mem_ord)982   WeakCompareAndSwapSNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
983   virtual int Opcode() const;
984 };
985 
986 //------------------------------WeakCompareAndSwapINode---------------------------
987 class WeakCompareAndSwapINode : public CompareAndSwapNode {
988 public:
WeakCompareAndSwapINode(Node * c,Node * mem,Node * adr,Node * val,Node * ex,MemNode::MemOrd mem_ord)989   WeakCompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
990   virtual int Opcode() const;
991 };
992 
993 //------------------------------WeakCompareAndSwapLNode---------------------------
994 class WeakCompareAndSwapLNode : public CompareAndSwapNode {
995 public:
WeakCompareAndSwapLNode(Node * c,Node * mem,Node * adr,Node * val,Node * ex,MemNode::MemOrd mem_ord)996   WeakCompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
997   virtual int Opcode() const;
998 };
999 
1000 //------------------------------WeakCompareAndSwapPNode---------------------------
1001 class WeakCompareAndSwapPNode : public CompareAndSwapNode {
1002 public:
WeakCompareAndSwapPNode(Node * c,Node * mem,Node * adr,Node * val,Node * ex,MemNode::MemOrd mem_ord)1003   WeakCompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
1004   virtual int Opcode() const;
1005 };
1006 
1007 //------------------------------WeakCompareAndSwapNNode---------------------------
1008 class WeakCompareAndSwapNNode : public CompareAndSwapNode {
1009 public:
WeakCompareAndSwapNNode(Node * c,Node * mem,Node * adr,Node * val,Node * ex,MemNode::MemOrd mem_ord)1010   WeakCompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
1011   virtual int Opcode() const;
1012 };
1013 
1014 //------------------------------CompareAndExchangeBNode---------------------------
1015 class CompareAndExchangeBNode : public CompareAndExchangeNode {
1016 public:
CompareAndExchangeBNode(Node * c,Node * mem,Node * adr,Node * val,Node * ex,const TypePtr * at,MemNode::MemOrd mem_ord)1017   CompareAndExchangeBNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeInt::BYTE) { }
1018   virtual int Opcode() const;
1019 };
1020 
1021 
1022 //------------------------------CompareAndExchangeSNode---------------------------
1023 class CompareAndExchangeSNode : public CompareAndExchangeNode {
1024 public:
CompareAndExchangeSNode(Node * c,Node * mem,Node * adr,Node * val,Node * ex,const TypePtr * at,MemNode::MemOrd mem_ord)1025   CompareAndExchangeSNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeInt::SHORT) { }
1026   virtual int Opcode() const;
1027 };
1028 
1029 //------------------------------CompareAndExchangeLNode---------------------------
1030 class CompareAndExchangeLNode : public CompareAndExchangeNode {
1031 public:
CompareAndExchangeLNode(Node * c,Node * mem,Node * adr,Node * val,Node * ex,const TypePtr * at,MemNode::MemOrd mem_ord)1032   CompareAndExchangeLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeLong::LONG) { }
1033   virtual int Opcode() const;
1034 };
1035 
1036 
1037 //------------------------------CompareAndExchangeINode---------------------------
1038 class CompareAndExchangeINode : public CompareAndExchangeNode {
1039 public:
CompareAndExchangeINode(Node * c,Node * mem,Node * adr,Node * val,Node * ex,const TypePtr * at,MemNode::MemOrd mem_ord)1040   CompareAndExchangeINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeInt::INT) { }
1041   virtual int Opcode() const;
1042 };
1043 
1044 
1045 //------------------------------CompareAndExchangePNode---------------------------
1046 class CompareAndExchangePNode : public CompareAndExchangeNode {
1047 public:
CompareAndExchangePNode(Node * c,Node * mem,Node * adr,Node * val,Node * ex,const TypePtr * at,const Type * t,MemNode::MemOrd mem_ord)1048   CompareAndExchangePNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, const Type* t, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, t) { }
1049   virtual int Opcode() const;
1050 };
1051 
1052 //------------------------------CompareAndExchangeNNode---------------------------
1053 class CompareAndExchangeNNode : public CompareAndExchangeNode {
1054 public:
CompareAndExchangeNNode(Node * c,Node * mem,Node * adr,Node * val,Node * ex,const TypePtr * at,const Type * t,MemNode::MemOrd mem_ord)1055   CompareAndExchangeNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, const Type* t, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, t) { }
1056   virtual int Opcode() const;
1057 };
1058 
1059 //------------------------------GetAndAddBNode---------------------------
1060 class GetAndAddBNode : public LoadStoreNode {
1061 public:
GetAndAddBNode(Node * c,Node * mem,Node * adr,Node * val,const TypePtr * at)1062   GetAndAddBNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::BYTE, 4) { }
1063   virtual int Opcode() const;
1064 };
1065 
1066 //------------------------------GetAndAddSNode---------------------------
1067 class GetAndAddSNode : public LoadStoreNode {
1068 public:
GetAndAddSNode(Node * c,Node * mem,Node * adr,Node * val,const TypePtr * at)1069   GetAndAddSNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::SHORT, 4) { }
1070   virtual int Opcode() const;
1071 };
1072 
1073 //------------------------------GetAndAddINode---------------------------
1074 class GetAndAddINode : public LoadStoreNode {
1075 public:
GetAndAddINode(Node * c,Node * mem,Node * adr,Node * val,const TypePtr * at)1076   GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
1077   virtual int Opcode() const;
1078 };
1079 
1080 //------------------------------GetAndAddLNode---------------------------
1081 class GetAndAddLNode : public LoadStoreNode {
1082 public:
GetAndAddLNode(Node * c,Node * mem,Node * adr,Node * val,const TypePtr * at)1083   GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
1084   virtual int Opcode() const;
1085 };
1086 
1087 //------------------------------GetAndSetBNode---------------------------
1088 class GetAndSetBNode : public LoadStoreNode {
1089 public:
GetAndSetBNode(Node * c,Node * mem,Node * adr,Node * val,const TypePtr * at)1090   GetAndSetBNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::BYTE, 4) { }
1091   virtual int Opcode() const;
1092 };
1093 
1094 //------------------------------GetAndSetSNode---------------------------
1095 class GetAndSetSNode : public LoadStoreNode {
1096 public:
GetAndSetSNode(Node * c,Node * mem,Node * adr,Node * val,const TypePtr * at)1097   GetAndSetSNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::SHORT, 4) { }
1098   virtual int Opcode() const;
1099 };
1100 
1101 //------------------------------GetAndSetINode---------------------------
1102 class GetAndSetINode : public LoadStoreNode {
1103 public:
GetAndSetINode(Node * c,Node * mem,Node * adr,Node * val,const TypePtr * at)1104   GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
1105   virtual int Opcode() const;
1106 };
1107 
1108 //------------------------------GetAndSetLNode---------------------------
1109 class GetAndSetLNode : public LoadStoreNode {
1110 public:
GetAndSetLNode(Node * c,Node * mem,Node * adr,Node * val,const TypePtr * at)1111   GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
1112   virtual int Opcode() const;
1113 };
1114 
1115 //------------------------------GetAndSetPNode---------------------------
1116 class GetAndSetPNode : public LoadStoreNode {
1117 public:
GetAndSetPNode(Node * c,Node * mem,Node * adr,Node * val,const TypePtr * at,const Type * t)1118   GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
1119   virtual int Opcode() const;
1120 };
1121 
1122 //------------------------------GetAndSetNNode---------------------------
1123 class GetAndSetNNode : public LoadStoreNode {
1124 public:
GetAndSetNNode(Node * c,Node * mem,Node * adr,Node * val,const TypePtr * at,const Type * t)1125   GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
1126   virtual int Opcode() const;
1127 };
1128 
1129 //------------------------------ClearArray-------------------------------------
1130 class ClearArrayNode: public Node {
1131 private:
1132   bool _is_large;
1133 public:
ClearArrayNode(Node * ctrl,Node * arymem,Node * word_cnt,Node * base,bool is_large)1134   ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base, bool is_large)
1135     : Node(ctrl,arymem,word_cnt,base), _is_large(is_large) {
1136     init_class_id(Class_ClearArray);
1137   }
1138   virtual int         Opcode() const;
bottom_type() const1139   virtual const Type *bottom_type() const { return Type::MEMORY; }
1140   // ClearArray modifies array elements, and so affects only the
1141   // array memory addressed by the bottom_type of its base address.
1142   virtual const class TypePtr *adr_type() const;
1143   virtual Node* Identity(PhaseGVN* phase);
1144   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1145   virtual uint match_edge(uint idx) const;
is_large() const1146   bool is_large() const { return _is_large; }
1147 
1148   // Clear the given area of an object or array.
1149   // The start offset must always be aligned mod BytesPerInt.
1150   // The end offset must always be aligned mod BytesPerLong.
1151   // Return the new memory.
1152   static Node* clear_memory(Node* control, Node* mem, Node* dest,
1153                             intptr_t start_offset,
1154                             intptr_t end_offset,
1155                             PhaseGVN* phase);
1156   static Node* clear_memory(Node* control, Node* mem, Node* dest,
1157                             intptr_t start_offset,
1158                             Node* end_offset,
1159                             PhaseGVN* phase);
1160   static Node* clear_memory(Node* control, Node* mem, Node* dest,
1161                             Node* start_offset,
1162                             Node* end_offset,
1163                             PhaseGVN* phase);
1164   // Return allocation input memory edge if it is different instance
1165   // or itself if it is the one we are looking for.
1166   static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
1167 };
1168 
1169 //------------------------------MemBar-----------------------------------------
1170 // There are different flavors of Memory Barriers to match the Java Memory
1171 // Model.  Monitor-enter and volatile-load act as Aquires: no following ref
1172 // can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
1173 // volatile-load.  Monitor-exit and volatile-store act as Release: no
1174 // preceding ref can be moved to after them.  We insert a MemBar-Release
1175 // before a FastUnlock or volatile-store.  All volatiles need to be
1176 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
1177 // separate it from any following volatile-load.
1178 class MemBarNode: public MultiNode {
1179   virtual uint hash() const ;                  // { return NO_HASH; }
1180   virtual bool cmp( const Node &n ) const ;    // Always fail, except on self
1181 
size_of() const1182   virtual uint size_of() const { return sizeof(*this); }
1183   // Memory type this node is serializing.  Usually either rawptr or bottom.
1184   const TypePtr* _adr_type;
1185 
1186   // How is this membar related to a nearby memory access?
1187   enum {
1188     Standalone,
1189     TrailingLoad,
1190     TrailingStore,
1191     LeadingStore,
1192     TrailingLoadStore,
1193     LeadingLoadStore,
1194     TrailingPartialArrayCopy
1195   } _kind;
1196 
1197 #ifdef ASSERT
1198   uint _pair_idx;
1199 #endif
1200 
1201 public:
1202   enum {
1203     Precedent = TypeFunc::Parms  // optional edge to force precedence
1204   };
1205   MemBarNode(Compile* C, int alias_idx, Node* precedent);
1206   virtual int Opcode() const = 0;
adr_type() const1207   virtual const class TypePtr *adr_type() const { return _adr_type; }
1208   virtual const Type* Value(PhaseGVN* phase) const;
1209   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
match_edge(uint idx) const1210   virtual uint match_edge(uint idx) const { return 0; }
bottom_type() const1211   virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
1212   virtual Node *match( const ProjNode *proj, const Matcher *m );
1213   // Factory method.  Builds a wide or narrow membar.
1214   // Optional 'precedent' becomes an extra edge if not null.
1215   static MemBarNode* make(Compile* C, int opcode,
1216                           int alias_idx = Compile::AliasIdxBot,
1217                           Node* precedent = NULL);
1218 
1219   MemBarNode* trailing_membar() const;
1220   MemBarNode* leading_membar() const;
1221 
set_trailing_load()1222   void set_trailing_load() { _kind = TrailingLoad; }
trailing_load() const1223   bool trailing_load() const { return _kind == TrailingLoad; }
trailing_store() const1224   bool trailing_store() const { return _kind == TrailingStore; }
leading_store() const1225   bool leading_store() const { return _kind == LeadingStore; }
trailing_load_store() const1226   bool trailing_load_store() const { return _kind == TrailingLoadStore; }
leading_load_store() const1227   bool leading_load_store() const { return _kind == LeadingLoadStore; }
trailing() const1228   bool trailing() const { return _kind == TrailingLoad || _kind == TrailingStore || _kind == TrailingLoadStore; }
leading() const1229   bool leading() const { return _kind == LeadingStore || _kind == LeadingLoadStore; }
standalone() const1230   bool standalone() const { return _kind == Standalone; }
set_trailing_partial_array_copy()1231   void set_trailing_partial_array_copy() { _kind = TrailingPartialArrayCopy; }
trailing_partial_array_copy() const1232   bool trailing_partial_array_copy() const { return _kind == TrailingPartialArrayCopy; }
1233 
1234   static void set_store_pair(MemBarNode* leading, MemBarNode* trailing);
1235   static void set_load_store_pair(MemBarNode* leading, MemBarNode* trailing);
1236 
1237   void remove(PhaseIterGVN *igvn);
1238 };
1239 
1240 // "Acquire" - no following ref can move before (but earlier refs can
1241 // follow, like an early Load stalled in cache).  Requires multi-cpu
1242 // visibility.  Inserted after a volatile load.
1243 class MemBarAcquireNode: public MemBarNode {
1244 public:
MemBarAcquireNode(Compile * C,int alias_idx,Node * precedent)1245   MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
1246     : MemBarNode(C, alias_idx, precedent) {}
1247   virtual int Opcode() const;
1248 };
1249 
1250 // "Acquire" - no following ref can move before (but earlier refs can
1251 // follow, like an early Load stalled in cache).  Requires multi-cpu
1252 // visibility.  Inserted independ of any load, as required
1253 // for intrinsic Unsafe.loadFence().
1254 class LoadFenceNode: public MemBarNode {
1255 public:
LoadFenceNode(Compile * C,int alias_idx,Node * precedent)1256   LoadFenceNode(Compile* C, int alias_idx, Node* precedent)
1257     : MemBarNode(C, alias_idx, precedent) {}
1258   virtual int Opcode() const;
1259 };
1260 
1261 // "Release" - no earlier ref can move after (but later refs can move
1262 // up, like a speculative pipelined cache-hitting Load).  Requires
1263 // multi-cpu visibility.  Inserted before a volatile store.
1264 class MemBarReleaseNode: public MemBarNode {
1265 public:
MemBarReleaseNode(Compile * C,int alias_idx,Node * precedent)1266   MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
1267     : MemBarNode(C, alias_idx, precedent) {}
1268   virtual int Opcode() const;
1269 };
1270 
1271 // "Release" - no earlier ref can move after (but later refs can move
1272 // up, like a speculative pipelined cache-hitting Load).  Requires
1273 // multi-cpu visibility.  Inserted independent of any store, as required
1274 // for intrinsic Unsafe.storeFence().
1275 class StoreFenceNode: public MemBarNode {
1276 public:
StoreFenceNode(Compile * C,int alias_idx,Node * precedent)1277   StoreFenceNode(Compile* C, int alias_idx, Node* precedent)
1278     : MemBarNode(C, alias_idx, precedent) {}
1279   virtual int Opcode() const;
1280 };
1281 
1282 // "Acquire" - no following ref can move before (but earlier refs can
1283 // follow, like an early Load stalled in cache).  Requires multi-cpu
1284 // visibility.  Inserted after a FastLock.
1285 class MemBarAcquireLockNode: public MemBarNode {
1286 public:
MemBarAcquireLockNode(Compile * C,int alias_idx,Node * precedent)1287   MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
1288     : MemBarNode(C, alias_idx, precedent) {}
1289   virtual int Opcode() const;
1290 };
1291 
1292 // "Release" - no earlier ref can move after (but later refs can move
1293 // up, like a speculative pipelined cache-hitting Load).  Requires
1294 // multi-cpu visibility.  Inserted before a FastUnLock.
1295 class MemBarReleaseLockNode: public MemBarNode {
1296 public:
MemBarReleaseLockNode(Compile * C,int alias_idx,Node * precedent)1297   MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
1298     : MemBarNode(C, alias_idx, precedent) {}
1299   virtual int Opcode() const;
1300 };
1301 
1302 class MemBarStoreStoreNode: public MemBarNode {
1303 public:
MemBarStoreStoreNode(Compile * C,int alias_idx,Node * precedent)1304   MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
1305     : MemBarNode(C, alias_idx, precedent) {
1306     init_class_id(Class_MemBarStoreStore);
1307   }
1308   virtual int Opcode() const;
1309 };
1310 
1311 // Ordering between a volatile store and a following volatile load.
1312 // Requires multi-CPU visibility?
1313 class MemBarVolatileNode: public MemBarNode {
1314 public:
MemBarVolatileNode(Compile * C,int alias_idx,Node * precedent)1315   MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
1316     : MemBarNode(C, alias_idx, precedent) {}
1317   virtual int Opcode() const;
1318 };
1319 
1320 // Ordering within the same CPU.  Used to order unsafe memory references
1321 // inside the compiler when we lack alias info.  Not needed "outside" the
1322 // compiler because the CPU does all the ordering for us.
1323 class MemBarCPUOrderNode: public MemBarNode {
1324 public:
MemBarCPUOrderNode(Compile * C,int alias_idx,Node * precedent)1325   MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
1326     : MemBarNode(C, alias_idx, precedent) {}
1327   virtual int Opcode() const;
ideal_reg() const1328   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1329 };
1330 
1331 class OnSpinWaitNode: public MemBarNode {
1332 public:
OnSpinWaitNode(Compile * C,int alias_idx,Node * precedent)1333   OnSpinWaitNode(Compile* C, int alias_idx, Node* precedent)
1334     : MemBarNode(C, alias_idx, precedent) {}
1335   virtual int Opcode() const;
1336 };
1337 
1338 // Isolation of object setup after an AllocateNode and before next safepoint.
1339 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
1340 class InitializeNode: public MemBarNode {
1341   friend class AllocateNode;
1342 
1343   enum {
1344     Incomplete    = 0,
1345     Complete      = 1,
1346     WithArraycopy = 2
1347   };
1348   int _is_complete;
1349 
1350   bool _does_not_escape;
1351 
1352 public:
1353   enum {
1354     Control    = TypeFunc::Control,
1355     Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
1356     RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
1357     RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
1358   };
1359 
1360   InitializeNode(Compile* C, int adr_type, Node* rawoop);
1361   virtual int Opcode() const;
size_of() const1362   virtual uint size_of() const { return sizeof(*this); }
ideal_reg() const1363   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1364   virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
1365 
1366   // Manage incoming memory edges via a MergeMem on in(Memory):
1367   Node* memory(uint alias_idx);
1368 
1369   // The raw memory edge coming directly from the Allocation.
1370   // The contents of this memory are *always* all-zero-bits.
zero_memory()1371   Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
1372 
1373   // Return the corresponding allocation for this initialization (or null if none).
1374   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
1375   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
1376   AllocateNode* allocation();
1377 
1378   // Anything other than zeroing in this init?
1379   bool is_non_zero();
1380 
1381   // An InitializeNode must completed before macro expansion is done.
1382   // Completion requires that the AllocateNode must be followed by
1383   // initialization of the new memory to zero, then to any initializers.
is_complete()1384   bool is_complete() { return _is_complete != Incomplete; }
is_complete_with_arraycopy()1385   bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
1386 
1387   // Mark complete.  (Must not yet be complete.)
1388   void set_complete(PhaseGVN* phase);
set_complete_with_arraycopy()1389   void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
1390 
does_not_escape()1391   bool does_not_escape() { return _does_not_escape; }
set_does_not_escape()1392   void set_does_not_escape() { _does_not_escape = true; }
1393 
1394 #ifdef ASSERT
1395   // ensure all non-degenerate stores are ordered and non-overlapping
1396   bool stores_are_sane(PhaseTransform* phase);
1397 #endif //ASSERT
1398 
1399   // See if this store can be captured; return offset where it initializes.
1400   // Return 0 if the store cannot be moved (any sort of problem).
1401   intptr_t can_capture_store(StoreNode* st, PhaseGVN* phase, bool can_reshape);
1402 
1403   // Capture another store; reformat it to write my internal raw memory.
1404   // Return the captured copy, else NULL if there is some sort of problem.
1405   Node* capture_store(StoreNode* st, intptr_t start, PhaseGVN* phase, bool can_reshape);
1406 
1407   // Find captured store which corresponds to the range [start..start+size).
1408   // Return my own memory projection (meaning the initial zero bits)
1409   // if there is no such store.  Return NULL if there is a problem.
1410   Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
1411 
1412   // Called when the associated AllocateNode is expanded into CFG.
1413   Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
1414                         intptr_t header_size, Node* size_in_bytes,
1415                         PhaseIterGVN* phase);
1416 
1417  private:
1418   void remove_extra_zeroes();
1419 
1420   // Find out where a captured store should be placed (or already is placed).
1421   int captured_store_insertion_point(intptr_t start, int size_in_bytes,
1422                                      PhaseTransform* phase);
1423 
1424   static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
1425 
1426   Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
1427 
1428   bool detect_init_independence(Node* value, PhaseGVN* phase);
1429 
1430   void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
1431                                PhaseGVN* phase);
1432 
1433   intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
1434 };
1435 
1436 //------------------------------MergeMem---------------------------------------
1437 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
1438 class MergeMemNode: public Node {
1439   virtual uint hash() const ;                  // { return NO_HASH; }
1440   virtual bool cmp( const Node &n ) const ;    // Always fail, except on self
1441   friend class MergeMemStream;
1442   MergeMemNode(Node* def);  // clients use MergeMemNode::make
1443 
1444 public:
1445   // If the input is a whole memory state, clone it with all its slices intact.
1446   // Otherwise, make a new memory state with just that base memory input.
1447   // In either case, the result is a newly created MergeMem.
1448   static MergeMemNode* make(Node* base_memory);
1449 
1450   virtual int Opcode() const;
1451   virtual Node* Identity(PhaseGVN* phase);
1452   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
ideal_reg() const1453   virtual uint ideal_reg() const { return NotAMachineReg; }
match_edge(uint idx) const1454   virtual uint match_edge(uint idx) const { return 0; }
1455   virtual const RegMask &out_RegMask() const;
bottom_type() const1456   virtual const Type *bottom_type() const { return Type::MEMORY; }
adr_type() const1457   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
1458   // sparse accessors
1459   // Fetch the previously stored "set_memory_at", or else the base memory.
1460   // (Caller should clone it if it is a phi-nest.)
1461   Node* memory_at(uint alias_idx) const;
1462   // set the memory, regardless of its previous value
1463   void set_memory_at(uint alias_idx, Node* n);
1464   // the "base" is the memory that provides the non-finite support
base_memory() const1465   Node* base_memory() const       { return in(Compile::AliasIdxBot); }
1466   // warning: setting the base can implicitly set any of the other slices too
1467   void set_base_memory(Node* def);
1468   // sentinel value which denotes a copy of the base memory:
empty_memory() const1469   Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
1470   static Node* make_empty_memory(); // where the sentinel comes from
is_empty_memory(Node * n) const1471   bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
1472   // hook for the iterator, to perform any necessary setup
1473   void iteration_setup(const MergeMemNode* other = NULL);
1474   // push sentinels until I am at least as long as the other (semantic no-op)
1475   void grow_to_match(const MergeMemNode* other);
1476   bool verify_sparse() const PRODUCT_RETURN0;
1477 #ifndef PRODUCT
1478   virtual void dump_spec(outputStream *st) const;
1479 #endif
1480 };
1481 
1482 class MergeMemStream : public StackObj {
1483  private:
1484   MergeMemNode*       _mm;
1485   const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
1486   Node*               _mm_base;  // loop-invariant base memory of _mm
1487   int                 _idx;
1488   int                 _cnt;
1489   Node*               _mem;
1490   Node*               _mem2;
1491   int                 _cnt2;
1492 
init(MergeMemNode * mm,const MergeMemNode * mm2=NULL)1493   void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
1494     // subsume_node will break sparseness at times, whenever a memory slice
1495     // folds down to a copy of the base ("fat") memory.  In such a case,
1496     // the raw edge will update to base, although it should be top.
1497     // This iterator will recognize either top or base_memory as an
1498     // "empty" slice.  See is_empty, is_empty2, and next below.
1499     //
1500     // The sparseness property is repaired in MergeMemNode::Ideal.
1501     // As long as access to a MergeMem goes through this iterator
1502     // or the memory_at accessor, flaws in the sparseness will
1503     // never be observed.
1504     //
1505     // Also, iteration_setup repairs sparseness.
1506     assert(mm->verify_sparse(), "please, no dups of base");
1507     assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
1508 
1509     _mm  = mm;
1510     _mm_base = mm->base_memory();
1511     _mm2 = mm2;
1512     _cnt = mm->req();
1513     _idx = Compile::AliasIdxBot-1; // start at the base memory
1514     _mem = NULL;
1515     _mem2 = NULL;
1516   }
1517 
1518 #ifdef ASSERT
check_memory() const1519   Node* check_memory() const {
1520     if (at_base_memory())
1521       return _mm->base_memory();
1522     else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
1523       return _mm->memory_at(_idx);
1524     else
1525       return _mm_base;
1526   }
check_memory2() const1527   Node* check_memory2() const {
1528     return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
1529   }
1530 #endif
1531 
1532   static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
assert_synch() const1533   void assert_synch() const {
1534     assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
1535            "no side-effects except through the stream");
1536   }
1537 
1538  public:
1539 
1540   // expected usages:
1541   // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
1542   // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
1543 
1544   // iterate over one merge
MergeMemStream(MergeMemNode * mm)1545   MergeMemStream(MergeMemNode* mm) {
1546     mm->iteration_setup();
1547     init(mm);
1548     debug_only(_cnt2 = 999);
1549   }
1550   // iterate in parallel over two merges
1551   // only iterates through non-empty elements of mm2
MergeMemStream(MergeMemNode * mm,const MergeMemNode * mm2)1552   MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
1553     assert(mm2, "second argument must be a MergeMem also");
1554     ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
1555     mm->iteration_setup(mm2);
1556     init(mm, mm2);
1557     _cnt2 = mm2->req();
1558   }
1559 #ifdef ASSERT
~MergeMemStream()1560   ~MergeMemStream() {
1561     assert_synch();
1562   }
1563 #endif
1564 
all_memory() const1565   MergeMemNode* all_memory() const {
1566     return _mm;
1567   }
base_memory() const1568   Node* base_memory() const {
1569     assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
1570     return _mm_base;
1571   }
all_memory2() const1572   const MergeMemNode* all_memory2() const {
1573     assert(_mm2 != NULL, "");
1574     return _mm2;
1575   }
at_base_memory() const1576   bool at_base_memory() const {
1577     return _idx == Compile::AliasIdxBot;
1578   }
alias_idx() const1579   int alias_idx() const {
1580     assert(_mem, "must call next 1st");
1581     return _idx;
1582   }
1583 
adr_type() const1584   const TypePtr* adr_type() const {
1585     return Compile::current()->get_adr_type(alias_idx());
1586   }
1587 
adr_type(Compile * C) const1588   const TypePtr* adr_type(Compile* C) const {
1589     return C->get_adr_type(alias_idx());
1590   }
is_empty() const1591   bool is_empty() const {
1592     assert(_mem, "must call next 1st");
1593     assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
1594     return _mem->is_top();
1595   }
is_empty2() const1596   bool is_empty2() const {
1597     assert(_mem2, "must call next 1st");
1598     assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
1599     return _mem2->is_top();
1600   }
memory() const1601   Node* memory() const {
1602     assert(!is_empty(), "must not be empty");
1603     assert_synch();
1604     return _mem;
1605   }
1606   // get the current memory, regardless of empty or non-empty status
force_memory() const1607   Node* force_memory() const {
1608     assert(!is_empty() || !at_base_memory(), "");
1609     // Use _mm_base to defend against updates to _mem->base_memory().
1610     Node *mem = _mem->is_top() ? _mm_base : _mem;
1611     assert(mem == check_memory(), "");
1612     return mem;
1613   }
memory2() const1614   Node* memory2() const {
1615     assert(_mem2 == check_memory2(), "");
1616     return _mem2;
1617   }
set_memory(Node * mem)1618   void set_memory(Node* mem) {
1619     if (at_base_memory()) {
1620       // Note that this does not change the invariant _mm_base.
1621       _mm->set_base_memory(mem);
1622     } else {
1623       _mm->set_memory_at(_idx, mem);
1624     }
1625     _mem = mem;
1626     assert_synch();
1627   }
1628 
1629   // Recover from a side effect to the MergeMemNode.
set_memory()1630   void set_memory() {
1631     _mem = _mm->in(_idx);
1632   }
1633 
next()1634   bool next()  { return next(false); }
next2()1635   bool next2() { return next(true); }
1636 
next_non_empty()1637   bool next_non_empty()  { return next_non_empty(false); }
next_non_empty2()1638   bool next_non_empty2() { return next_non_empty(true); }
1639   // next_non_empty2 can yield states where is_empty() is true
1640 
1641  private:
1642   // find the next item, which might be empty
next(bool have_mm2)1643   bool next(bool have_mm2) {
1644     assert((_mm2 != NULL) == have_mm2, "use other next");
1645     assert_synch();
1646     if (++_idx < _cnt) {
1647       // Note:  This iterator allows _mm to be non-sparse.
1648       // It behaves the same whether _mem is top or base_memory.
1649       _mem = _mm->in(_idx);
1650       if (have_mm2)
1651         _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
1652       return true;
1653     }
1654     return false;
1655   }
1656 
1657   // find the next non-empty item
next_non_empty(bool have_mm2)1658   bool next_non_empty(bool have_mm2) {
1659     while (next(have_mm2)) {
1660       if (!is_empty()) {
1661         // make sure _mem2 is filled in sensibly
1662         if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
1663         return true;
1664       } else if (have_mm2 && !is_empty2()) {
1665         return true;   // is_empty() == true
1666       }
1667     }
1668     return false;
1669   }
1670 };
1671 
1672 // cachewb node for guaranteeing writeback of the cache line at a
1673 // given address to (non-volatile) RAM
1674 class CacheWBNode : public Node {
1675 public:
CacheWBNode(Node * ctrl,Node * mem,Node * addr)1676   CacheWBNode(Node *ctrl, Node *mem, Node *addr) : Node(ctrl, mem, addr) {}
1677   virtual int Opcode() const;
ideal_reg() const1678   virtual uint ideal_reg() const { return NotAMachineReg; }
match_edge(uint idx) const1679   virtual uint match_edge(uint idx) const { return (idx == 2); }
adr_type() const1680   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
bottom_type() const1681   virtual const Type *bottom_type() const { return Type::MEMORY; }
1682 };
1683 
1684 // cachewb pre sync node for ensuring that writebacks are serialised
1685 // relative to preceding or following stores
1686 class CacheWBPreSyncNode : public Node {
1687 public:
CacheWBPreSyncNode(Node * ctrl,Node * mem)1688   CacheWBPreSyncNode(Node *ctrl, Node *mem) : Node(ctrl, mem) {}
1689   virtual int Opcode() const;
ideal_reg() const1690   virtual uint ideal_reg() const { return NotAMachineReg; }
match_edge(uint idx) const1691   virtual uint match_edge(uint idx) const { return false; }
adr_type() const1692   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
bottom_type() const1693   virtual const Type *bottom_type() const { return Type::MEMORY; }
1694 };
1695 
1696 // cachewb pre sync node for ensuring that writebacks are serialised
1697 // relative to preceding or following stores
1698 class CacheWBPostSyncNode : public Node {
1699 public:
CacheWBPostSyncNode(Node * ctrl,Node * mem)1700   CacheWBPostSyncNode(Node *ctrl, Node *mem) : Node(ctrl, mem) {}
1701   virtual int Opcode() const;
ideal_reg() const1702   virtual uint ideal_reg() const { return NotAMachineReg; }
match_edge(uint idx) const1703   virtual uint match_edge(uint idx) const { return false; }
adr_type() const1704   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
bottom_type() const1705   virtual const Type *bottom_type() const { return Type::MEMORY; }
1706 };
1707 
1708 //------------------------------Prefetch---------------------------------------
1709 
1710 // Allocation prefetch which may fault, TLAB size have to be adjusted.
1711 class PrefetchAllocationNode : public Node {
1712 public:
PrefetchAllocationNode(Node * mem,Node * adr)1713   PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
1714   virtual int Opcode() const;
ideal_reg() const1715   virtual uint ideal_reg() const { return NotAMachineReg; }
match_edge(uint idx) const1716   virtual uint match_edge(uint idx) const { return idx==2; }
bottom_type() const1717   virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
1718 };
1719 
1720 #endif // SHARE_OPTO_MEMNODE_HPP
1721