1 /*
2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "gc/shared/barrierSet.hpp"
27 #include "gc/shared/c2/barrierSetC2.hpp"
28 #include "libadt/vectset.hpp"
29 #include "memory/allocation.inline.hpp"
30 #include "memory/resourceArea.hpp"
31 #include "opto/ad.hpp"
32 #include "opto/callGenerator.hpp"
33 #include "opto/castnode.hpp"
34 #include "opto/cfgnode.hpp"
35 #include "opto/connode.hpp"
36 #include "opto/loopnode.hpp"
37 #include "opto/machnode.hpp"
38 #include "opto/matcher.hpp"
39 #include "opto/node.hpp"
40 #include "opto/opcodes.hpp"
41 #include "opto/regmask.hpp"
42 #include "opto/rootnode.hpp"
43 #include "opto/type.hpp"
44 #include "utilities/copy.hpp"
45 #include "utilities/macros.hpp"
46 #include "utilities/powerOfTwo.hpp"
47 
48 class RegMask;
49 // #include "phase.hpp"
50 class PhaseTransform;
51 class PhaseGVN;
52 
53 // Arena we are currently building Nodes in
54 const uint Node::NotAMachineReg = 0xffff0000;
55 
56 #ifndef PRODUCT
57 extern int nodes_created;
58 #endif
59 #ifdef __clang__
60 #pragma clang diagnostic push
61 #pragma GCC diagnostic ignored "-Wuninitialized"
62 #endif
63 
64 #ifdef ASSERT
65 
66 //-------------------------- construct_node------------------------------------
67 // Set a breakpoint here to identify where a particular node index is built.
verify_construction()68 void Node::verify_construction() {
69   _debug_orig = NULL;
70   int old_debug_idx = Compile::debug_idx();
71   int new_debug_idx = old_debug_idx + 1;
72   if (new_debug_idx > 0) {
73     // Arrange that the lowest five decimal digits of _debug_idx
74     // will repeat those of _idx. In case this is somehow pathological,
75     // we continue to assign negative numbers (!) consecutively.
76     const int mod = 100000;
77     int bump = (int)(_idx - new_debug_idx) % mod;
78     if (bump < 0) {
79       bump += mod;
80     }
81     assert(bump >= 0 && bump < mod, "");
82     new_debug_idx += bump;
83   }
84   Compile::set_debug_idx(new_debug_idx);
85   set_debug_idx(new_debug_idx);
86   Compile* C = Compile::current();
87   assert(C->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
88   if (!C->phase_optimize_finished()) {
89     // Only check assert during parsing and optimization phase. Skip it while generating code.
90     assert(C->live_nodes() <= C->max_node_limit(), "Live Node limit exceeded limit");
91   }
92   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
93     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
94     BREAKPOINT;
95   }
96 #if OPTO_DU_ITERATOR_ASSERT
97   _last_del = NULL;
98   _del_tick = 0;
99 #endif
100   _hash_lock = 0;
101 }
102 
103 
104 // #ifdef ASSERT ...
105 
106 #if OPTO_DU_ITERATOR_ASSERT
sample(const Node * node)107 void DUIterator_Common::sample(const Node* node) {
108   _vdui     = VerifyDUIterators;
109   _node     = node;
110   _outcnt   = node->_outcnt;
111   _del_tick = node->_del_tick;
112   _last     = NULL;
113 }
114 
verify(const Node * node,bool at_end_ok)115 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
116   assert(_node     == node, "consistent iterator source");
117   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
118 }
119 
verify_resync()120 void DUIterator_Common::verify_resync() {
121   // Ensure that the loop body has just deleted the last guy produced.
122   const Node* node = _node;
123   // Ensure that at least one copy of the last-seen edge was deleted.
124   // Note:  It is OK to delete multiple copies of the last-seen edge.
125   // Unfortunately, we have no way to verify that all the deletions delete
126   // that same edge.  On this point we must use the Honor System.
127   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
128   assert(node->_last_del == _last, "must have deleted the edge just produced");
129   // We liked this deletion, so accept the resulting outcnt and tick.
130   _outcnt   = node->_outcnt;
131   _del_tick = node->_del_tick;
132 }
133 
reset(const DUIterator_Common & that)134 void DUIterator_Common::reset(const DUIterator_Common& that) {
135   if (this == &that)  return;  // ignore assignment to self
136   if (!_vdui) {
137     // We need to initialize everything, overwriting garbage values.
138     _last = that._last;
139     _vdui = that._vdui;
140   }
141   // Note:  It is legal (though odd) for an iterator over some node x
142   // to be reassigned to iterate over another node y.  Some doubly-nested
143   // progress loops depend on being able to do this.
144   const Node* node = that._node;
145   // Re-initialize everything, except _last.
146   _node     = node;
147   _outcnt   = node->_outcnt;
148   _del_tick = node->_del_tick;
149 }
150 
sample(const Node * node)151 void DUIterator::sample(const Node* node) {
152   DUIterator_Common::sample(node);      // Initialize the assertion data.
153   _refresh_tick = 0;                    // No refreshes have happened, as yet.
154 }
155 
verify(const Node * node,bool at_end_ok)156 void DUIterator::verify(const Node* node, bool at_end_ok) {
157   DUIterator_Common::verify(node, at_end_ok);
158   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
159 }
160 
verify_increment()161 void DUIterator::verify_increment() {
162   if (_refresh_tick & 1) {
163     // We have refreshed the index during this loop.
164     // Fix up _idx to meet asserts.
165     if (_idx > _outcnt)  _idx = _outcnt;
166   }
167   verify(_node, true);
168 }
169 
verify_resync()170 void DUIterator::verify_resync() {
171   // Note:  We do not assert on _outcnt, because insertions are OK here.
172   DUIterator_Common::verify_resync();
173   // Make sure we are still in sync, possibly with no more out-edges:
174   verify(_node, true);
175 }
176 
reset(const DUIterator & that)177 void DUIterator::reset(const DUIterator& that) {
178   if (this == &that)  return;  // self assignment is always a no-op
179   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
180   assert(that._idx          == 0, "assign only the result of Node::outs()");
181   assert(_idx               == that._idx, "already assigned _idx");
182   if (!_vdui) {
183     // We need to initialize everything, overwriting garbage values.
184     sample(that._node);
185   } else {
186     DUIterator_Common::reset(that);
187     if (_refresh_tick & 1) {
188       _refresh_tick++;                  // Clear the "was refreshed" flag.
189     }
190     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
191   }
192 }
193 
refresh()194 void DUIterator::refresh() {
195   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
196   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
197 }
198 
verify_finish()199 void DUIterator::verify_finish() {
200   // If the loop has killed the node, do not require it to re-run.
201   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
202   // If this assert triggers, it means that a loop used refresh_out_pos
203   // to re-synch an iteration index, but the loop did not correctly
204   // re-run itself, using a "while (progress)" construct.
205   // This iterator enforces the rule that you must keep trying the loop
206   // until it "runs clean" without any need for refreshing.
207   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
208 }
209 
210 
verify(const Node * node,bool at_end_ok)211 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
212   DUIterator_Common::verify(node, at_end_ok);
213   Node** out    = node->_out;
214   uint   cnt    = node->_outcnt;
215   assert(cnt == _outcnt, "no insertions allowed");
216   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
217   // This last check is carefully designed to work for NO_OUT_ARRAY.
218 }
219 
verify_limit()220 void DUIterator_Fast::verify_limit() {
221   const Node* node = _node;
222   verify(node, true);
223   assert(_outp == node->_out + node->_outcnt, "limit still correct");
224 }
225 
verify_resync()226 void DUIterator_Fast::verify_resync() {
227   const Node* node = _node;
228   if (_outp == node->_out + _outcnt) {
229     // Note that the limit imax, not the pointer i, gets updated with the
230     // exact count of deletions.  (For the pointer it's always "--i".)
231     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
232     // This is a limit pointer, with a name like "imax".
233     // Fudge the _last field so that the common assert will be happy.
234     _last = (Node*) node->_last_del;
235     DUIterator_Common::verify_resync();
236   } else {
237     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
238     // A normal internal pointer.
239     DUIterator_Common::verify_resync();
240     // Make sure we are still in sync, possibly with no more out-edges:
241     verify(node, true);
242   }
243 }
244 
verify_relimit(uint n)245 void DUIterator_Fast::verify_relimit(uint n) {
246   const Node* node = _node;
247   assert((int)n > 0, "use imax -= n only with a positive count");
248   // This must be a limit pointer, with a name like "imax".
249   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
250   // The reported number of deletions must match what the node saw.
251   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
252   // Fudge the _last field so that the common assert will be happy.
253   _last = (Node*) node->_last_del;
254   DUIterator_Common::verify_resync();
255 }
256 
reset(const DUIterator_Fast & that)257 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
258   assert(_outp              == that._outp, "already assigned _outp");
259   DUIterator_Common::reset(that);
260 }
261 
verify(const Node * node,bool at_end_ok)262 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
263   // at_end_ok means the _outp is allowed to underflow by 1
264   _outp += at_end_ok;
265   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
266   _outp -= at_end_ok;
267   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
268 }
269 
verify_limit()270 void DUIterator_Last::verify_limit() {
271   // Do not require the limit address to be resynched.
272   //verify(node, true);
273   assert(_outp == _node->_out, "limit still correct");
274 }
275 
verify_step(uint num_edges)276 void DUIterator_Last::verify_step(uint num_edges) {
277   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
278   _outcnt   -= num_edges;
279   _del_tick += num_edges;
280   // Make sure we are still in sync, possibly with no more out-edges:
281   const Node* node = _node;
282   verify(node, true);
283   assert(node->_last_del == _last, "must have deleted the edge just produced");
284 }
285 
286 #endif //OPTO_DU_ITERATOR_ASSERT
287 
288 
289 #endif //ASSERT
290 
291 
292 // This constant used to initialize _out may be any non-null value.
293 // The value NULL is reserved for the top node only.
294 #define NO_OUT_ARRAY ((Node**)-1)
295 
296 // Out-of-line code from node constructors.
297 // Executed only when extra debug info. is being passed around.
init_node_notes(Compile * C,int idx,Node_Notes * nn)298 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
299   C->set_node_notes_at(idx, nn);
300 }
301 
302 // Shared initialization code.
Init(int req)303 inline int Node::Init(int req) {
304   Compile* C = Compile::current();
305   int idx = C->next_unique();
306 
307   // Allocate memory for the necessary number of edges.
308   if (req > 0) {
309     // Allocate space for _in array to have double alignment.
310     _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
311   }
312   // If there are default notes floating around, capture them:
313   Node_Notes* nn = C->default_node_notes();
314   if (nn != NULL)  init_node_notes(C, idx, nn);
315 
316   // Note:  At this point, C is dead,
317   // and we begin to initialize the new Node.
318 
319   _cnt = _max = req;
320   _outcnt = _outmax = 0;
321   _class_id = Class_Node;
322   _flags = 0;
323   _out = NO_OUT_ARRAY;
324   return idx;
325 }
326 
327 //------------------------------Node-------------------------------------------
328 // Create a Node, with a given number of required edges.
Node(uint req)329 Node::Node(uint req)
330   : _idx(Init(req))
331 #ifdef ASSERT
332   , _parse_idx(_idx)
333   , _indent(0)
334 #endif
335 {
336   assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" );
337   debug_only( verify_construction() );
338   NOT_PRODUCT(nodes_created++);
339   if (req == 0) {
340     _in = NULL;
341   } else {
342     Node** to = _in;
343     for(uint i = 0; i < req; i++) {
344       to[i] = NULL;
345     }
346   }
347 }
348 
349 //------------------------------Node-------------------------------------------
Node(Node * n0)350 Node::Node(Node *n0)
351   : _idx(Init(1))
352 #ifdef ASSERT
353   , _parse_idx(_idx)
354   , _indent(0)
355 #endif
356 {
357   debug_only( verify_construction() );
358   NOT_PRODUCT(nodes_created++);
359   assert( is_not_dead(n0), "can not use dead node");
360   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
361 }
362 
363 //------------------------------Node-------------------------------------------
Node(Node * n0,Node * n1)364 Node::Node(Node *n0, Node *n1)
365   : _idx(Init(2))
366 #ifdef ASSERT
367   , _parse_idx(_idx)
368   , _indent(0)
369 #endif
370 {
371   debug_only( verify_construction() );
372   NOT_PRODUCT(nodes_created++);
373   assert( is_not_dead(n0), "can not use dead node");
374   assert( is_not_dead(n1), "can not use dead node");
375   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
376   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
377 }
378 
379 //------------------------------Node-------------------------------------------
Node(Node * n0,Node * n1,Node * n2)380 Node::Node(Node *n0, Node *n1, Node *n2)
381   : _idx(Init(3))
382 #ifdef ASSERT
383   , _parse_idx(_idx)
384   , _indent(0)
385 #endif
386 {
387   debug_only( verify_construction() );
388   NOT_PRODUCT(nodes_created++);
389   assert( is_not_dead(n0), "can not use dead node");
390   assert( is_not_dead(n1), "can not use dead node");
391   assert( is_not_dead(n2), "can not use dead node");
392   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
393   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
394   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
395 }
396 
397 //------------------------------Node-------------------------------------------
Node(Node * n0,Node * n1,Node * n2,Node * n3)398 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
399   : _idx(Init(4))
400 #ifdef ASSERT
401   , _parse_idx(_idx)
402   , _indent(0)
403 #endif
404 {
405   debug_only( verify_construction() );
406   NOT_PRODUCT(nodes_created++);
407   assert( is_not_dead(n0), "can not use dead node");
408   assert( is_not_dead(n1), "can not use dead node");
409   assert( is_not_dead(n2), "can not use dead node");
410   assert( is_not_dead(n3), "can not use dead node");
411   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
412   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
413   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
414   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
415 }
416 
417 //------------------------------Node-------------------------------------------
Node(Node * n0,Node * n1,Node * n2,Node * n3,Node * n4)418 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
419   : _idx(Init(5))
420 #ifdef ASSERT
421   , _parse_idx(_idx)
422   , _indent(0)
423 #endif
424 {
425   debug_only( verify_construction() );
426   NOT_PRODUCT(nodes_created++);
427   assert( is_not_dead(n0), "can not use dead node");
428   assert( is_not_dead(n1), "can not use dead node");
429   assert( is_not_dead(n2), "can not use dead node");
430   assert( is_not_dead(n3), "can not use dead node");
431   assert( is_not_dead(n4), "can not use dead node");
432   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
433   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
434   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
435   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
436   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
437 }
438 
439 //------------------------------Node-------------------------------------------
Node(Node * n0,Node * n1,Node * n2,Node * n3,Node * n4,Node * n5)440 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
441                      Node *n4, Node *n5)
442   : _idx(Init(6))
443 #ifdef ASSERT
444   , _parse_idx(_idx)
445   , _indent(0)
446 #endif
447 {
448   debug_only( verify_construction() );
449   NOT_PRODUCT(nodes_created++);
450   assert( is_not_dead(n0), "can not use dead node");
451   assert( is_not_dead(n1), "can not use dead node");
452   assert( is_not_dead(n2), "can not use dead node");
453   assert( is_not_dead(n3), "can not use dead node");
454   assert( is_not_dead(n4), "can not use dead node");
455   assert( is_not_dead(n5), "can not use dead node");
456   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
457   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
458   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
459   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
460   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
461   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
462 }
463 
464 //------------------------------Node-------------------------------------------
Node(Node * n0,Node * n1,Node * n2,Node * n3,Node * n4,Node * n5,Node * n6)465 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
466                      Node *n4, Node *n5, Node *n6)
467   : _idx(Init(7))
468 #ifdef ASSERT
469   , _parse_idx(_idx)
470   , _indent(0)
471 #endif
472 {
473   debug_only( verify_construction() );
474   NOT_PRODUCT(nodes_created++);
475   assert( is_not_dead(n0), "can not use dead node");
476   assert( is_not_dead(n1), "can not use dead node");
477   assert( is_not_dead(n2), "can not use dead node");
478   assert( is_not_dead(n3), "can not use dead node");
479   assert( is_not_dead(n4), "can not use dead node");
480   assert( is_not_dead(n5), "can not use dead node");
481   assert( is_not_dead(n6), "can not use dead node");
482   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
483   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
484   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
485   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
486   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
487   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
488   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
489 }
490 
491 #ifdef __clang__
492 #pragma clang diagnostic pop
493 #endif
494 
495 
496 //------------------------------clone------------------------------------------
497 // Clone a Node.
clone() const498 Node *Node::clone() const {
499   Compile* C = Compile::current();
500   uint s = size_of();           // Size of inherited Node
501   Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
502   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
503   // Set the new input pointer array
504   n->_in = (Node**)(((char*)n)+s);
505   // Cannot share the old output pointer array, so kill it
506   n->_out = NO_OUT_ARRAY;
507   // And reset the counters to 0
508   n->_outcnt = 0;
509   n->_outmax = 0;
510   // Unlock this guy, since he is not in any hash table.
511   debug_only(n->_hash_lock = 0);
512   // Walk the old node's input list to duplicate its edges
513   uint i;
514   for( i = 0; i < len(); i++ ) {
515     Node *x = in(i);
516     n->_in[i] = x;
517     if (x != NULL) x->add_out(n);
518   }
519   if (is_macro()) {
520     C->add_macro_node(n);
521   }
522   if (is_expensive()) {
523     C->add_expensive_node(n);
524   }
525   if (for_post_loop_opts_igvn()) {
526     // Don't add cloned node to Compile::_for_post_loop_opts_igvn list automatically.
527     // If it is applicable, it will happen anyway when the cloned node is registered with IGVN.
528     n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
529   }
530   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
531   bs->register_potential_barrier_node(n);
532 
533   n->set_idx(C->next_unique()); // Get new unique index as well
534   debug_only( n->verify_construction() );
535   NOT_PRODUCT(nodes_created++);
536   // Do not patch over the debug_idx of a clone, because it makes it
537   // impossible to break on the clone's moment of creation.
538   //debug_only( n->set_debug_idx( debug_idx() ) );
539 
540   C->copy_node_notes_to(n, (Node*) this);
541 
542   // MachNode clone
543   uint nopnds;
544   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
545     MachNode *mach  = n->as_Mach();
546     MachNode *mthis = this->as_Mach();
547     // Get address of _opnd_array.
548     // It should be the same offset since it is the clone of this node.
549     MachOper **from = mthis->_opnds;
550     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
551                     pointer_delta((const void*)from,
552                                   (const void*)(&mthis->_opnds), 1));
553     mach->_opnds = to;
554     for ( uint i = 0; i < nopnds; ++i ) {
555       to[i] = from[i]->clone();
556     }
557   }
558   if (n->is_Call()) {
559     // cloning CallNode may need to clone JVMState
560     n->as_Call()->clone_jvms(C);
561     // CallGenerator is linked to the original node.
562     CallGenerator* cg = n->as_Call()->generator();
563     if (cg != NULL) {
564       CallGenerator* cloned_cg = cg->with_call_node(n->as_Call());
565       n->as_Call()->set_generator(cloned_cg);
566     }
567   }
568   if (n->is_SafePoint()) {
569     n->as_SafePoint()->clone_replaced_nodes();
570   }
571   return n;                     // Return the clone
572 }
573 
574 //---------------------------setup_is_top--------------------------------------
575 // Call this when changing the top node, to reassert the invariants
576 // required by Node::is_top.  See Compile::set_cached_top_node.
setup_is_top()577 void Node::setup_is_top() {
578   if (this == (Node*)Compile::current()->top()) {
579     // This node has just become top.  Kill its out array.
580     _outcnt = _outmax = 0;
581     _out = NULL;                           // marker value for top
582     assert(is_top(), "must be top");
583   } else {
584     if (_out == NULL)  _out = NO_OUT_ARRAY;
585     assert(!is_top(), "must not be top");
586   }
587 }
588 
589 //------------------------------~Node------------------------------------------
590 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
destruct(PhaseValues * phase)591 void Node::destruct(PhaseValues* phase) {
592   Compile* compile = (phase != NULL) ? phase->C : Compile::current();
593   if (phase != NULL && phase->is_IterGVN()) {
594     phase->is_IterGVN()->_worklist.remove(this);
595   }
596   // If this is the most recently created node, reclaim its index. Otherwise,
597   // record the node as dead to keep liveness information accurate.
598   if ((uint)_idx+1 == compile->unique()) {
599     compile->set_unique(compile->unique()-1);
600   } else {
601     compile->record_dead_node(_idx);
602   }
603   // Clear debug info:
604   Node_Notes* nn = compile->node_notes_at(_idx);
605   if (nn != NULL)  nn->clear();
606   // Walk the input array, freeing the corresponding output edges
607   _cnt = _max;  // forget req/prec distinction
608   uint i;
609   for( i = 0; i < _max; i++ ) {
610     set_req(i, NULL);
611     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
612   }
613   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
614   // See if the input array was allocated just prior to the object
615   int edge_size = _max*sizeof(void*);
616   int out_edge_size = _outmax*sizeof(void*);
617   char *edge_end = ((char*)_in) + edge_size;
618   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
619   int node_size = size_of();
620 
621   // Free the output edge array
622   if (out_edge_size > 0) {
623     compile->node_arena()->Afree(out_array, out_edge_size);
624   }
625 
626   // Free the input edge array and the node itself
627   if( edge_end == (char*)this ) {
628     // It was; free the input array and object all in one hit
629 #ifndef ASSERT
630     compile->node_arena()->Afree(_in,edge_size+node_size);
631 #endif
632   } else {
633     // Free just the input array
634     compile->node_arena()->Afree(_in,edge_size);
635 
636     // Free just the object
637 #ifndef ASSERT
638     compile->node_arena()->Afree(this,node_size);
639 #endif
640   }
641   if (is_macro()) {
642     compile->remove_macro_node(this);
643   }
644   if (is_expensive()) {
645     compile->remove_expensive_node(this);
646   }
647   if (for_post_loop_opts_igvn()) {
648     compile->remove_from_post_loop_opts_igvn(this);
649   }
650 
651   if (is_SafePoint()) {
652     as_SafePoint()->delete_replaced_nodes();
653   }
654   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
655   bs->unregister_potential_barrier_node(this);
656 #ifdef ASSERT
657   // We will not actually delete the storage, but we'll make the node unusable.
658   *(address*)this = badAddress;  // smash the C++ vtbl, probably
659   _in = _out = (Node**) badAddress;
660   _max = _cnt = _outmax = _outcnt = 0;
661   compile->remove_modified_node(this);
662 #endif
663 }
664 
665 //------------------------------grow-------------------------------------------
666 // Grow the input array, making space for more edges
grow(uint len)667 void Node::grow(uint len) {
668   Arena* arena = Compile::current()->node_arena();
669   uint new_max = _max;
670   if( new_max == 0 ) {
671     _max = 4;
672     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
673     Node** to = _in;
674     to[0] = NULL;
675     to[1] = NULL;
676     to[2] = NULL;
677     to[3] = NULL;
678     return;
679   }
680   new_max = next_power_of_2(len);
681   // Trimming to limit allows a uint8 to handle up to 255 edges.
682   // Previously I was using only powers-of-2 which peaked at 128 edges.
683   //if( new_max >= limit ) new_max = limit-1;
684   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
685   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
686   _max = new_max;               // Record new max length
687   // This assertion makes sure that Node::_max is wide enough to
688   // represent the numerical value of new_max.
689   assert(_max == new_max && _max > len, "int width of _max is too small");
690 }
691 
692 //-----------------------------out_grow----------------------------------------
693 // Grow the input array, making space for more edges
out_grow(uint len)694 void Node::out_grow( uint len ) {
695   assert(!is_top(), "cannot grow a top node's out array");
696   Arena* arena = Compile::current()->node_arena();
697   uint new_max = _outmax;
698   if( new_max == 0 ) {
699     _outmax = 4;
700     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
701     return;
702   }
703   new_max = next_power_of_2(len);
704   // Trimming to limit allows a uint8 to handle up to 255 edges.
705   // Previously I was using only powers-of-2 which peaked at 128 edges.
706   //if( new_max >= limit ) new_max = limit-1;
707   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
708   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
709   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
710   _outmax = new_max;               // Record new max length
711   // This assertion makes sure that Node::_max is wide enough to
712   // represent the numerical value of new_max.
713   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
714 }
715 
716 #ifdef ASSERT
717 //------------------------------is_dead----------------------------------------
is_dead() const718 bool Node::is_dead() const {
719   // Mach and pinch point nodes may look like dead.
720   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
721     return false;
722   for( uint i = 0; i < _max; i++ )
723     if( _in[i] != NULL )
724       return false;
725   dump();
726   return true;
727 }
728 
is_reachable_from_root() const729 bool Node::is_reachable_from_root() const {
730   ResourceMark rm;
731   Unique_Node_List wq;
732   wq.push((Node*)this);
733   RootNode* root = Compile::current()->root();
734   for (uint i = 0; i < wq.size(); i++) {
735     Node* m = wq.at(i);
736     if (m == root) {
737       return true;
738     }
739     for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
740       Node* u = m->fast_out(j);
741       wq.push(u);
742     }
743   }
744   return false;
745 }
746 #endif
747 
748 //------------------------------is_unreachable---------------------------------
is_unreachable(PhaseIterGVN & igvn) const749 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
750   assert(!is_Mach(), "doesn't work with MachNodes");
751   return outcnt() == 0 || igvn.type(this) == Type::TOP || (in(0) != NULL && in(0)->is_top());
752 }
753 
754 //------------------------------add_req----------------------------------------
755 // Add a new required input at the end
add_req(Node * n)756 void Node::add_req( Node *n ) {
757   assert( is_not_dead(n), "can not use dead node");
758 
759   // Look to see if I can move precedence down one without reallocating
760   if( (_cnt >= _max) || (in(_max-1) != NULL) )
761     grow( _max+1 );
762 
763   // Find a precedence edge to move
764   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
765     uint i;
766     for( i=_cnt; i<_max; i++ )
767       if( in(i) == NULL )       // Find the NULL at end of prec edge list
768         break;                  // There must be one, since we grew the array
769     _in[i] = in(_cnt);          // Move prec over, making space for req edge
770   }
771   _in[_cnt++] = n;            // Stuff over old prec edge
772   if (n != NULL) n->add_out((Node *)this);
773 }
774 
775 //---------------------------add_req_batch-------------------------------------
776 // Add a new required input at the end
add_req_batch(Node * n,uint m)777 void Node::add_req_batch( Node *n, uint m ) {
778   assert( is_not_dead(n), "can not use dead node");
779   // check various edge cases
780   if ((int)m <= 1) {
781     assert((int)m >= 0, "oob");
782     if (m != 0)  add_req(n);
783     return;
784   }
785 
786   // Look to see if I can move precedence down one without reallocating
787   if( (_cnt+m) > _max || _in[_max-m] )
788     grow( _max+m );
789 
790   // Find a precedence edge to move
791   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
792     uint i;
793     for( i=_cnt; i<_max; i++ )
794       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
795         break;                  // There must be one, since we grew the array
796     // Slide all the precs over by m positions (assume #prec << m).
797     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
798   }
799 
800   // Stuff over the old prec edges
801   for(uint i=0; i<m; i++ ) {
802     _in[_cnt++] = n;
803   }
804 
805   // Insert multiple out edges on the node.
806   if (n != NULL && !n->is_top()) {
807     for(uint i=0; i<m; i++ ) {
808       n->add_out((Node *)this);
809     }
810   }
811 }
812 
813 //------------------------------del_req----------------------------------------
814 // Delete the required edge and compact the edge array
del_req(uint idx)815 void Node::del_req( uint idx ) {
816   assert( idx < _cnt, "oob");
817   assert( !VerifyHashTableKeys || _hash_lock == 0,
818           "remove node from hash table before modifying it");
819   // First remove corresponding def-use edge
820   Node *n = in(idx);
821   if (n != NULL) n->del_out((Node *)this);
822   _in[idx] = in(--_cnt); // Compact the array
823   // Avoid spec violation: Gap in prec edges.
824   close_prec_gap_at(_cnt);
825   Compile::current()->record_modified_node(this);
826 }
827 
828 //------------------------------del_req_ordered--------------------------------
829 // Delete the required edge and compact the edge array with preserved order
del_req_ordered(uint idx)830 void Node::del_req_ordered( uint idx ) {
831   assert( idx < _cnt, "oob");
832   assert( !VerifyHashTableKeys || _hash_lock == 0,
833           "remove node from hash table before modifying it");
834   // First remove corresponding def-use edge
835   Node *n = in(idx);
836   if (n != NULL) n->del_out((Node *)this);
837   if (idx < --_cnt) {    // Not last edge ?
838     Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*)));
839   }
840   // Avoid spec violation: Gap in prec edges.
841   close_prec_gap_at(_cnt);
842   Compile::current()->record_modified_node(this);
843 }
844 
845 //------------------------------ins_req----------------------------------------
846 // Insert a new required input at the end
ins_req(uint idx,Node * n)847 void Node::ins_req( uint idx, Node *n ) {
848   assert( is_not_dead(n), "can not use dead node");
849   add_req(NULL);                // Make space
850   assert( idx < _max, "Must have allocated enough space");
851   // Slide over
852   if(_cnt-idx-1 > 0) {
853     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
854   }
855   _in[idx] = n;                            // Stuff over old required edge
856   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
857 }
858 
859 //-----------------------------find_edge---------------------------------------
find_edge(Node * n)860 int Node::find_edge(Node* n) {
861   for (uint i = 0; i < len(); i++) {
862     if (_in[i] == n)  return i;
863   }
864   return -1;
865 }
866 
867 //----------------------------replace_edge-------------------------------------
replace_edge(Node * old,Node * neww)868 int Node::replace_edge(Node* old, Node* neww) {
869   if (old == neww)  return 0;  // nothing to do
870   uint nrep = 0;
871   for (uint i = 0; i < len(); i++) {
872     if (in(i) == old) {
873       if (i < req()) {
874         set_req(i, neww);
875       } else {
876         assert(find_prec_edge(neww) == -1, "spec violation: duplicated prec edge (node %d -> %d)", _idx, neww->_idx);
877         set_prec(i, neww);
878       }
879       nrep++;
880     }
881   }
882   return nrep;
883 }
884 
885 /**
886  * Replace input edges in the range pointing to 'old' node.
887  */
replace_edges_in_range(Node * old,Node * neww,int start,int end)888 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) {
889   if (old == neww)  return 0;  // nothing to do
890   uint nrep = 0;
891   for (int i = start; i < end; i++) {
892     if (in(i) == old) {
893       set_req(i, neww);
894       nrep++;
895     }
896   }
897   return nrep;
898 }
899 
900 //-------------------------disconnect_inputs-----------------------------------
901 // NULL out all inputs to eliminate incoming Def-Use edges.
disconnect_inputs(Compile * C)902 void Node::disconnect_inputs(Compile* C) {
903   // the layout of Node::_in
904   // r: a required input, null is allowed
905   // p: a precedence, null values are all at the end
906   // -----------------------------------
907   // |r|...|r|p|...|p|null|...|null|
908   //         |                     |
909   //         req()                 len()
910   // -----------------------------------
911   for (uint i = 0; i < req(); ++i) {
912     if (in(i) != nullptr) {
913       set_req(i, nullptr);
914     }
915   }
916 
917   // Remove precedence edges if any exist
918   // Note: Safepoints may have precedence edges, even during parsing
919   for (uint i = len(); i > req(); ) {
920     rm_prec(--i);  // no-op if _in[i] is nullptr
921   }
922 
923 #ifdef ASSERT
924   // sanity check
925   for (uint i = 0; i < len(); ++i) {
926     assert(_in[i] == nullptr, "disconnect_inputs() failed!");
927   }
928 #endif
929 
930   // Node::destruct requires all out edges be deleted first
931   // debug_only(destruct();)   // no reuse benefit expected
932   C->record_dead_node(_idx);
933 }
934 
935 //-----------------------------uncast---------------------------------------
936 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
937 // Strip away casting.  (It is depth-limited.)
938 // Optionally, keep casts with dependencies.
uncast(bool keep_deps) const939 Node* Node::uncast(bool keep_deps) const {
940   // Should be inline:
941   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
942   if (is_ConstraintCast()) {
943     return uncast_helper(this, keep_deps);
944   } else {
945     return (Node*) this;
946   }
947 }
948 
949 // Find out of current node that matches opcode.
find_out_with(int opcode)950 Node* Node::find_out_with(int opcode) {
951   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
952     Node* use = fast_out(i);
953     if (use->Opcode() == opcode) {
954       return use;
955     }
956   }
957   return NULL;
958 }
959 
960 // Return true if the current node has an out that matches opcode.
has_out_with(int opcode)961 bool Node::has_out_with(int opcode) {
962   return (find_out_with(opcode) != NULL);
963 }
964 
965 // Return true if the current node has an out that matches any of the opcodes.
has_out_with(int opcode1,int opcode2,int opcode3,int opcode4)966 bool Node::has_out_with(int opcode1, int opcode2, int opcode3, int opcode4) {
967   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
968       int opcode = fast_out(i)->Opcode();
969       if (opcode == opcode1 || opcode == opcode2 || opcode == opcode3 || opcode == opcode4) {
970         return true;
971       }
972   }
973   return false;
974 }
975 
976 
977 //---------------------------uncast_helper-------------------------------------
uncast_helper(const Node * p,bool keep_deps)978 Node* Node::uncast_helper(const Node* p, bool keep_deps) {
979 #ifdef ASSERT
980   uint depth_count = 0;
981   const Node* orig_p = p;
982 #endif
983 
984   while (true) {
985 #ifdef ASSERT
986     if (depth_count >= K) {
987       orig_p->dump(4);
988       if (p != orig_p)
989         p->dump(1);
990     }
991     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
992 #endif
993     if (p == NULL || p->req() != 2) {
994       break;
995     } else if (p->is_ConstraintCast()) {
996       if (keep_deps && p->as_ConstraintCast()->carry_dependency()) {
997         break; // stop at casts with dependencies
998       }
999       p = p->in(1);
1000     } else {
1001       break;
1002     }
1003   }
1004   return (Node*) p;
1005 }
1006 
1007 //------------------------------add_prec---------------------------------------
1008 // Add a new precedence input.  Precedence inputs are unordered, with
1009 // duplicates removed and NULLs packed down at the end.
add_prec(Node * n)1010 void Node::add_prec( Node *n ) {
1011   assert( is_not_dead(n), "can not use dead node");
1012 
1013   // Check for NULL at end
1014   if( _cnt >= _max || in(_max-1) )
1015     grow( _max+1 );
1016 
1017   // Find a precedence edge to move
1018   uint i = _cnt;
1019   while( in(i) != NULL ) {
1020     if (in(i) == n) return; // Avoid spec violation: duplicated prec edge.
1021     i++;
1022   }
1023   _in[i] = n;                                // Stuff prec edge over NULL
1024   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
1025 
1026 #ifdef ASSERT
1027   while ((++i)<_max) { assert(_in[i] == NULL, "spec violation: Gap in prec edges (node %d)", _idx); }
1028 #endif
1029 }
1030 
1031 //------------------------------rm_prec----------------------------------------
1032 // Remove a precedence input.  Precedence inputs are unordered, with
1033 // duplicates removed and NULLs packed down at the end.
rm_prec(uint j)1034 void Node::rm_prec( uint j ) {
1035   assert(j < _max, "oob: i=%d, _max=%d", j, _max);
1036   assert(j >= _cnt, "not a precedence edge");
1037   if (_in[j] == NULL) return;   // Avoid spec violation: Gap in prec edges.
1038   _in[j]->del_out((Node *)this);
1039   close_prec_gap_at(j);
1040 }
1041 
1042 //------------------------------size_of----------------------------------------
size_of() const1043 uint Node::size_of() const { return sizeof(*this); }
1044 
1045 //------------------------------ideal_reg--------------------------------------
ideal_reg() const1046 uint Node::ideal_reg() const { return 0; }
1047 
1048 //------------------------------jvms-------------------------------------------
jvms() const1049 JVMState* Node::jvms() const { return NULL; }
1050 
1051 #ifdef ASSERT
1052 //------------------------------jvms-------------------------------------------
verify_jvms(const JVMState * using_jvms) const1053 bool Node::verify_jvms(const JVMState* using_jvms) const {
1054   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
1055     if (jvms == using_jvms)  return true;
1056   }
1057   return false;
1058 }
1059 
1060 //------------------------------init_NodeProperty------------------------------
init_NodeProperty()1061 void Node::init_NodeProperty() {
1062   assert(_max_classes <= max_juint, "too many NodeProperty classes");
1063   assert(max_flags() <= max_juint, "too many NodeProperty flags");
1064 }
1065 
1066 //-----------------------------max_flags---------------------------------------
max_flags()1067 juint Node::max_flags() {
1068   return (PD::_last_flag << 1) - 1; // allow flags combination
1069 }
1070 #endif
1071 
1072 //------------------------------format-----------------------------------------
1073 // Print as assembly
format(PhaseRegAlloc *,outputStream * st) const1074 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
1075 //------------------------------emit-------------------------------------------
1076 // Emit bytes starting at parameter 'ptr'.
emit(CodeBuffer & cbuf,PhaseRegAlloc * ra_) const1077 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
1078 //------------------------------size-------------------------------------------
1079 // Size of instruction in bytes
size(PhaseRegAlloc * ra_) const1080 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
1081 
1082 //------------------------------CFG Construction-------------------------------
1083 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
1084 // Goto and Return.
is_block_proj() const1085 const Node *Node::is_block_proj() const { return 0; }
1086 
1087 // Minimum guaranteed type
bottom_type() const1088 const Type *Node::bottom_type() const { return Type::BOTTOM; }
1089 
1090 
1091 //------------------------------raise_bottom_type------------------------------
1092 // Get the worst-case Type output for this Node.
raise_bottom_type(const Type * new_type)1093 void Node::raise_bottom_type(const Type* new_type) {
1094   if (is_Type()) {
1095     TypeNode *n = this->as_Type();
1096     if (VerifyAliases) {
1097       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1098     }
1099     n->set_type(new_type);
1100   } else if (is_Load()) {
1101     LoadNode *n = this->as_Load();
1102     if (VerifyAliases) {
1103       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1104     }
1105     n->set_type(new_type);
1106   }
1107 }
1108 
1109 //------------------------------Identity---------------------------------------
1110 // Return a node that the given node is equivalent to.
Identity(PhaseGVN * phase)1111 Node* Node::Identity(PhaseGVN* phase) {
1112   return this;                  // Default to no identities
1113 }
1114 
1115 //------------------------------Value------------------------------------------
1116 // Compute a new Type for a node using the Type of the inputs.
Value(PhaseGVN * phase) const1117 const Type* Node::Value(PhaseGVN* phase) const {
1118   return bottom_type();         // Default to worst-case Type
1119 }
1120 
1121 //------------------------------Ideal------------------------------------------
1122 //
1123 // 'Idealize' the graph rooted at this Node.
1124 //
1125 // In order to be efficient and flexible there are some subtle invariants
1126 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
1127 // these invariants, although its too slow to have on by default.  If you are
1128 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
1129 //
1130 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
1131 // pointer.  If ANY change is made, it must return the root of the reshaped
1132 // graph - even if the root is the same Node.  Example: swapping the inputs
1133 // to an AddINode gives the same answer and same root, but you still have to
1134 // return the 'this' pointer instead of NULL.
1135 //
1136 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
1137 // Identity call to return an old Node; basically if Identity can find
1138 // another Node have the Ideal call make no change and return NULL.
1139 // Example: AddINode::Ideal must check for add of zero; in this case it
1140 // returns NULL instead of doing any graph reshaping.
1141 //
1142 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
1143 // sharing there may be other users of the old Nodes relying on their current
1144 // semantics.  Modifying them will break the other users.
1145 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1146 // "X+3" unchanged in case it is shared.
1147 //
1148 // If you modify the 'this' pointer's inputs, you should use
1149 // 'set_req'.  If you are making a new Node (either as the new root or
1150 // some new internal piece) you may use 'init_req' to set the initial
1151 // value.  You can make a new Node with either 'new' or 'clone'.  In
1152 // either case, def-use info is correctly maintained.
1153 //
1154 // Example: reshape "(X+3)+4" into "X+7":
1155 //    set_req(1, in(1)->in(1));
1156 //    set_req(2, phase->intcon(7));
1157 //    return this;
1158 // Example: reshape "X*4" into "X<<2"
1159 //    return new LShiftINode(in(1), phase->intcon(2));
1160 //
1161 // You must call 'phase->transform(X)' on any new Nodes X you make, except
1162 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1163 //    Node *shift=phase->transform(new LShiftINode(in(1),phase->intcon(5)));
1164 //    return new AddINode(shift, in(1));
1165 //
1166 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1167 // These forms are faster than 'phase->transform(new ConNode())' and Do
1168 // The Right Thing with def-use info.
1169 //
1170 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1171 // graph uses the 'this' Node it must be the root.  If you want a Node with
1172 // the same Opcode as the 'this' pointer use 'clone'.
1173 //
Ideal(PhaseGVN * phase,bool can_reshape)1174 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1175   return NULL;                  // Default to being Ideal already
1176 }
1177 
1178 // Some nodes have specific Ideal subgraph transformations only if they are
1179 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1180 // for the transformations to happen.
has_special_unique_user() const1181 bool Node::has_special_unique_user() const {
1182   assert(outcnt() == 1, "match only for unique out");
1183   Node* n = unique_out();
1184   int op  = Opcode();
1185   if (this->is_Store()) {
1186     // Condition for back-to-back stores folding.
1187     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1188   } else if (this->is_Load() || this->is_DecodeN() || this->is_Phi()) {
1189     // Condition for removing an unused LoadNode or DecodeNNode from the MemBarAcquire precedence input
1190     return n->Opcode() == Op_MemBarAcquire;
1191   } else if (op == Op_AddL) {
1192     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1193     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1194   } else if (op == Op_SubI || op == Op_SubL) {
1195     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1196     return n->Opcode() == op && n->in(2) == this;
1197   } else if (is_If() && (n->is_IfFalse() || n->is_IfTrue())) {
1198     // See IfProjNode::Identity()
1199     return true;
1200   } else {
1201     return false;
1202   }
1203 };
1204 
1205 //--------------------------find_exact_control---------------------------------
1206 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
find_exact_control(Node * ctrl)1207 Node* Node::find_exact_control(Node* ctrl) {
1208   if (ctrl == NULL && this->is_Region())
1209     ctrl = this->as_Region()->is_copy();
1210 
1211   if (ctrl != NULL && ctrl->is_CatchProj()) {
1212     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1213       ctrl = ctrl->in(0);
1214     if (ctrl != NULL && !ctrl->is_top())
1215       ctrl = ctrl->in(0);
1216   }
1217 
1218   if (ctrl != NULL && ctrl->is_Proj())
1219     ctrl = ctrl->in(0);
1220 
1221   return ctrl;
1222 }
1223 
1224 //--------------------------dominates------------------------------------------
1225 // Helper function for MemNode::all_controls_dominate().
1226 // Check if 'this' control node dominates or equal to 'sub' control node.
1227 // We already know that if any path back to Root or Start reaches 'this',
1228 // then all paths so, so this is a simple search for one example,
1229 // not an exhaustive search for a counterexample.
dominates(Node * sub,Node_List & nlist)1230 bool Node::dominates(Node* sub, Node_List &nlist) {
1231   assert(this->is_CFG(), "expecting control");
1232   assert(sub != NULL && sub->is_CFG(), "expecting control");
1233 
1234   // detect dead cycle without regions
1235   int iterations_without_region_limit = DominatorSearchLimit;
1236 
1237   Node* orig_sub = sub;
1238   Node* dom      = this;
1239   bool  met_dom  = false;
1240   nlist.clear();
1241 
1242   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1243   // After seeing 'dom', continue up to Root or Start.
1244   // If we hit a region (backward split point), it may be a loop head.
1245   // Keep going through one of the region's inputs.  If we reach the
1246   // same region again, go through a different input.  Eventually we
1247   // will either exit through the loop head, or give up.
1248   // (If we get confused, break out and return a conservative 'false'.)
1249   while (sub != NULL) {
1250     if (sub->is_top())  break; // Conservative answer for dead code.
1251     if (sub == dom) {
1252       if (nlist.size() == 0) {
1253         // No Region nodes except loops were visited before and the EntryControl
1254         // path was taken for loops: it did not walk in a cycle.
1255         return true;
1256       } else if (met_dom) {
1257         break;          // already met before: walk in a cycle
1258       } else {
1259         // Region nodes were visited. Continue walk up to Start or Root
1260         // to make sure that it did not walk in a cycle.
1261         met_dom = true; // first time meet
1262         iterations_without_region_limit = DominatorSearchLimit; // Reset
1263      }
1264     }
1265     if (sub->is_Start() || sub->is_Root()) {
1266       // Success if we met 'dom' along a path to Start or Root.
1267       // We assume there are no alternative paths that avoid 'dom'.
1268       // (This assumption is up to the caller to ensure!)
1269       return met_dom;
1270     }
1271     Node* up = sub->in(0);
1272     // Normalize simple pass-through regions and projections:
1273     up = sub->find_exact_control(up);
1274     // If sub == up, we found a self-loop.  Try to push past it.
1275     if (sub == up && sub->is_Loop()) {
1276       // Take loop entry path on the way up to 'dom'.
1277       up = sub->in(1); // in(LoopNode::EntryControl);
1278     } else if (sub == up && sub->is_Region() && sub->req() == 2) {
1279       // Take in(1) path on the way up to 'dom' for regions with only one input
1280       up = sub->in(1);
1281     } else if (sub == up && sub->is_Region() && sub->req() == 3) {
1282       // Try both paths for Regions with 2 input paths (it may be a loop head).
1283       // It could give conservative 'false' answer without information
1284       // which region's input is the entry path.
1285       iterations_without_region_limit = DominatorSearchLimit; // Reset
1286 
1287       bool region_was_visited_before = false;
1288       // Was this Region node visited before?
1289       // If so, we have reached it because we accidentally took a
1290       // loop-back edge from 'sub' back into the body of the loop,
1291       // and worked our way up again to the loop header 'sub'.
1292       // So, take the first unexplored path on the way up to 'dom'.
1293       for (int j = nlist.size() - 1; j >= 0; j--) {
1294         intptr_t ni = (intptr_t)nlist.at(j);
1295         Node* visited = (Node*)(ni & ~1);
1296         bool  visited_twice_already = ((ni & 1) != 0);
1297         if (visited == sub) {
1298           if (visited_twice_already) {
1299             // Visited 2 paths, but still stuck in loop body.  Give up.
1300             return false;
1301           }
1302           // The Region node was visited before only once.
1303           // (We will repush with the low bit set, below.)
1304           nlist.remove(j);
1305           // We will find a new edge and re-insert.
1306           region_was_visited_before = true;
1307           break;
1308         }
1309       }
1310 
1311       // Find an incoming edge which has not been seen yet; walk through it.
1312       assert(up == sub, "");
1313       uint skip = region_was_visited_before ? 1 : 0;
1314       for (uint i = 1; i < sub->req(); i++) {
1315         Node* in = sub->in(i);
1316         if (in != NULL && !in->is_top() && in != sub) {
1317           if (skip == 0) {
1318             up = in;
1319             break;
1320           }
1321           --skip;               // skip this nontrivial input
1322         }
1323       }
1324 
1325       // Set 0 bit to indicate that both paths were taken.
1326       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1327     }
1328 
1329     if (up == sub) {
1330       break;    // some kind of tight cycle
1331     }
1332     if (up == orig_sub && met_dom) {
1333       // returned back after visiting 'dom'
1334       break;    // some kind of cycle
1335     }
1336     if (--iterations_without_region_limit < 0) {
1337       break;    // dead cycle
1338     }
1339     sub = up;
1340   }
1341 
1342   // Did not meet Root or Start node in pred. chain.
1343   // Conservative answer for dead code.
1344   return false;
1345 }
1346 
1347 //------------------------------remove_dead_region-----------------------------
1348 // This control node is dead.  Follow the subgraph below it making everything
1349 // using it dead as well.  This will happen normally via the usual IterGVN
1350 // worklist but this call is more efficient.  Do not update use-def info
1351 // inside the dead region, just at the borders.
kill_dead_code(Node * dead,PhaseIterGVN * igvn)1352 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1353   // Con's are a popular node to re-hit in the hash table again.
1354   if( dead->is_Con() ) return;
1355 
1356   ResourceMark rm;
1357   Node_List nstack;
1358 
1359   Node *top = igvn->C->top();
1360   nstack.push(dead);
1361   bool has_irreducible_loop = igvn->C->has_irreducible_loop();
1362 
1363   while (nstack.size() > 0) {
1364     dead = nstack.pop();
1365     if (dead->Opcode() == Op_SafePoint) {
1366       dead->as_SafePoint()->disconnect_from_root(igvn);
1367     }
1368     if (dead->outcnt() > 0) {
1369       // Keep dead node on stack until all uses are processed.
1370       nstack.push(dead);
1371       // For all Users of the Dead...    ;-)
1372       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1373         Node* use = dead->last_out(k);
1374         igvn->hash_delete(use);       // Yank from hash table prior to mod
1375         if (use->in(0) == dead) {     // Found another dead node
1376           assert (!use->is_Con(), "Control for Con node should be Root node.");
1377           use->set_req(0, top);       // Cut dead edge to prevent processing
1378           nstack.push(use);           // the dead node again.
1379         } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
1380                    use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
1381                    use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
1382           use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
1383           use->set_req(0, top);       // Cut self edge
1384           nstack.push(use);
1385         } else {                      // Else found a not-dead user
1386           // Dead if all inputs are top or null
1387           bool dead_use = !use->is_Root(); // Keep empty graph alive
1388           for (uint j = 1; j < use->req(); j++) {
1389             Node* in = use->in(j);
1390             if (in == dead) {         // Turn all dead inputs into TOP
1391               use->set_req(j, top);
1392             } else if (in != NULL && !in->is_top()) {
1393               dead_use = false;
1394             }
1395           }
1396           if (dead_use) {
1397             if (use->is_Region()) {
1398               use->set_req(0, top);   // Cut self edge
1399             }
1400             nstack.push(use);
1401           } else {
1402             igvn->_worklist.push(use);
1403           }
1404         }
1405         // Refresh the iterator, since any number of kills might have happened.
1406         k = dead->last_outs(kmin);
1407       }
1408     } else { // (dead->outcnt() == 0)
1409       // Done with outputs.
1410       igvn->hash_delete(dead);
1411       igvn->_worklist.remove(dead);
1412       igvn->set_type(dead, Type::TOP);
1413       // Kill all inputs to the dead guy
1414       for (uint i=0; i < dead->req(); i++) {
1415         Node *n = dead->in(i);      // Get input to dead guy
1416         if (n != NULL && !n->is_top()) { // Input is valid?
1417           dead->set_req(i, top);    // Smash input away
1418           if (n->outcnt() == 0) {   // Input also goes dead?
1419             if (!n->is_Con())
1420               nstack.push(n);       // Clear it out as well
1421           } else if (n->outcnt() == 1 &&
1422                      n->has_special_unique_user()) {
1423             igvn->add_users_to_worklist( n );
1424           } else if (n->outcnt() <= 2 && n->is_Store()) {
1425             // Push store's uses on worklist to enable folding optimization for
1426             // store/store and store/load to the same address.
1427             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1428             // and remove_globally_dead_node().
1429             igvn->add_users_to_worklist( n );
1430           } else {
1431             BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(igvn, n);
1432           }
1433         }
1434       }
1435       igvn->C->remove_useless_node(dead);
1436     } // (dead->outcnt() == 0)
1437   }   // while (nstack.size() > 0) for outputs
1438   return;
1439 }
1440 
1441 //------------------------------remove_dead_region-----------------------------
remove_dead_region(PhaseGVN * phase,bool can_reshape)1442 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1443   Node *n = in(0);
1444   if( !n ) return false;
1445   // Lost control into this guy?  I.e., it became unreachable?
1446   // Aggressively kill all unreachable code.
1447   if (can_reshape && n->is_top()) {
1448     kill_dead_code(this, phase->is_IterGVN());
1449     return false; // Node is dead.
1450   }
1451 
1452   if( n->is_Region() && n->as_Region()->is_copy() ) {
1453     Node *m = n->nonnull_req();
1454     set_req(0, m);
1455     return true;
1456   }
1457   return false;
1458 }
1459 
1460 //------------------------------hash-------------------------------------------
1461 // Hash function over Nodes.
hash() const1462 uint Node::hash() const {
1463   uint sum = 0;
1464   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1465     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1466   return (sum>>2) + _cnt + Opcode();
1467 }
1468 
1469 //------------------------------cmp--------------------------------------------
1470 // Compare special parts of simple Nodes
cmp(const Node & n) const1471 bool Node::cmp( const Node &n ) const {
1472   return true;                  // Must be same
1473 }
1474 
1475 //------------------------------rematerialize-----------------------------------
1476 // Should we clone rather than spill this instruction?
rematerialize() const1477 bool Node::rematerialize() const {
1478   if ( is_Mach() )
1479     return this->as_Mach()->rematerialize();
1480   else
1481     return (_flags & Flag_rematerialize) != 0;
1482 }
1483 
1484 //------------------------------needs_anti_dependence_check---------------------
1485 // Nodes which use memory without consuming it, hence need antidependences.
needs_anti_dependence_check() const1486 bool Node::needs_anti_dependence_check() const {
1487   if (req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0) {
1488     return false;
1489   }
1490   return in(1)->bottom_type()->has_memory();
1491 }
1492 
1493 // Get an integer constant from a ConNode (or CastIINode).
1494 // Return a default value if there is no apparent constant here.
find_int_type() const1495 const TypeInt* Node::find_int_type() const {
1496   if (this->is_Type()) {
1497     return this->as_Type()->type()->isa_int();
1498   } else if (this->is_Con()) {
1499     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1500     return this->bottom_type()->isa_int();
1501   }
1502   return NULL;
1503 }
1504 
find_integer_type(BasicType bt) const1505 const TypeInteger* Node::find_integer_type(BasicType bt) const {
1506   if (this->is_Type()) {
1507     return this->as_Type()->type()->isa_integer(bt);
1508   } else if (this->is_Con()) {
1509     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1510     return this->bottom_type()->isa_integer(bt);
1511   }
1512   return NULL;
1513 }
1514 
1515 // Get a pointer constant from a ConstNode.
1516 // Returns the constant if it is a pointer ConstNode
get_ptr() const1517 intptr_t Node::get_ptr() const {
1518   assert( Opcode() == Op_ConP, "" );
1519   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1520 }
1521 
1522 // Get a narrow oop constant from a ConNNode.
get_narrowcon() const1523 intptr_t Node::get_narrowcon() const {
1524   assert( Opcode() == Op_ConN, "" );
1525   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1526 }
1527 
1528 // Get a long constant from a ConNode.
1529 // Return a default value if there is no apparent constant here.
find_long_type() const1530 const TypeLong* Node::find_long_type() const {
1531   if (this->is_Type()) {
1532     return this->as_Type()->type()->isa_long();
1533   } else if (this->is_Con()) {
1534     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1535     return this->bottom_type()->isa_long();
1536   }
1537   return NULL;
1538 }
1539 
1540 
1541 /**
1542  * Return a ptr type for nodes which should have it.
1543  */
get_ptr_type() const1544 const TypePtr* Node::get_ptr_type() const {
1545   const TypePtr* tp = this->bottom_type()->make_ptr();
1546 #ifdef ASSERT
1547   if (tp == NULL) {
1548     this->dump(1);
1549     assert((tp != NULL), "unexpected node type");
1550   }
1551 #endif
1552   return tp;
1553 }
1554 
1555 // Get a double constant from a ConstNode.
1556 // Returns the constant if it is a double ConstNode
getd() const1557 jdouble Node::getd() const {
1558   assert( Opcode() == Op_ConD, "" );
1559   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1560 }
1561 
1562 // Get a float constant from a ConstNode.
1563 // Returns the constant if it is a float ConstNode
getf() const1564 jfloat Node::getf() const {
1565   assert( Opcode() == Op_ConF, "" );
1566   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1567 }
1568 
1569 #ifndef PRODUCT
1570 
1571 // Call this from debugger:
find_node(Node * n,const int idx)1572 Node* find_node(Node* n, const int idx) {
1573   return n->find(idx);
1574 }
1575 
1576 // Call this from debugger with root node as default:
find_node(const int idx)1577 Node* find_node(const int idx) {
1578   return Compile::current()->root()->find(idx);
1579 }
1580 
1581 // Call this from debugger:
find_ctrl(Node * n,const int idx)1582 Node* find_ctrl(Node* n, const int idx) {
1583   return n->find_ctrl(idx);
1584 }
1585 
1586 // Call this from debugger with root node as default:
find_ctrl(const int idx)1587 Node* find_ctrl(const int idx) {
1588   return Compile::current()->root()->find_ctrl(idx);
1589 }
1590 
1591 //------------------------------find_ctrl--------------------------------------
1592 // Find an ancestor to this node in the control history with given _idx
find_ctrl(int idx)1593 Node* Node::find_ctrl(int idx) {
1594   return find(idx, true);
1595 }
1596 
1597 //------------------------------find-------------------------------------------
1598 // Tries to find the node with the index |idx| starting from this node. If idx is negative,
1599 // the search also includes forward (out) edges. Returns NULL if not found.
1600 // If only_ctrl is set, the search will only be done on control nodes. Returns NULL if
1601 // not found or if the node to be found is not a control node (search will not find it).
find(const int idx,bool only_ctrl)1602 Node* Node::find(const int idx, bool only_ctrl) {
1603   ResourceMark rm;
1604   VectorSet old_space;
1605   VectorSet new_space;
1606   Node_List worklist;
1607   Arena* old_arena = Compile::current()->old_arena();
1608   add_to_worklist(this, &worklist, old_arena, &old_space, &new_space);
1609   Node* result = NULL;
1610   int node_idx = (idx >= 0) ? idx : -idx;
1611 
1612   for (uint list_index = 0; list_index < worklist.size(); list_index++) {
1613     Node* n = worklist[list_index];
1614 
1615     if ((int)n->_idx == node_idx debug_only(|| n->debug_idx() == node_idx)) {
1616       if (result != NULL) {
1617         tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1618                   (uintptr_t)result, (uintptr_t)n, node_idx);
1619       }
1620       result = n;
1621     }
1622 
1623     for (uint i = 0; i < n->len(); i++) {
1624       if (!only_ctrl || n->is_Region() || (n->Opcode() == Op_Root) || (i == TypeFunc::Control)) {
1625         // If only_ctrl is set: Add regions, the root node, or control inputs only
1626         add_to_worklist(n->in(i), &worklist, old_arena, &old_space, &new_space);
1627       }
1628     }
1629 
1630     // Also search along forward edges if idx is negative and the search is not done on control nodes only
1631     if (idx < 0 && !only_ctrl) {
1632       for (uint i = 0; i < n->outcnt(); i++) {
1633         add_to_worklist(n->raw_out(i), &worklist, old_arena, &old_space, &new_space);
1634       }
1635     }
1636 #ifdef ASSERT
1637     // Search along debug_orig edges last
1638     Node* orig = n->debug_orig();
1639     while (orig != NULL && add_to_worklist(orig, &worklist, old_arena, &old_space, &new_space)) {
1640       orig = orig->debug_orig();
1641     }
1642 #endif // ASSERT
1643   }
1644   return result;
1645 }
1646 
add_to_worklist(Node * n,Node_List * worklist,Arena * old_arena,VectorSet * old_space,VectorSet * new_space)1647 bool Node::add_to_worklist(Node* n, Node_List* worklist, Arena* old_arena, VectorSet* old_space, VectorSet* new_space) {
1648   if (NotANode(n)) {
1649     return false; // Gracefully handle NULL, -1, 0xabababab, etc.
1650   }
1651 
1652   // Contained in new_space or old_space? Check old_arena first since it's mostly empty.
1653   VectorSet* v = old_arena->contains(n) ? old_space : new_space;
1654   if (!v->test_set(n->_idx)) {
1655     worklist->push(n);
1656     return true;
1657   }
1658   return false;
1659 }
1660 
1661 // -----------------------------Name-------------------------------------------
1662 extern const char *NodeClassNames[];
Name() const1663 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1664 
is_disconnected(const Node * n)1665 static bool is_disconnected(const Node* n) {
1666   for (uint i = 0; i < n->req(); i++) {
1667     if (n->in(i) != NULL)  return false;
1668   }
1669   return true;
1670 }
1671 
1672 #ifdef ASSERT
dump_orig(outputStream * st,bool print_key) const1673 void Node::dump_orig(outputStream *st, bool print_key) const {
1674   Compile* C = Compile::current();
1675   Node* orig = _debug_orig;
1676   if (NotANode(orig)) orig = NULL;
1677   if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1678   if (orig == NULL) return;
1679   if (print_key) {
1680     st->print(" !orig=");
1681   }
1682   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1683   if (NotANode(fast)) fast = NULL;
1684   while (orig != NULL) {
1685     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1686     if (discon) st->print("[");
1687     if (!Compile::current()->node_arena()->contains(orig))
1688       st->print("o");
1689     st->print("%d", orig->_idx);
1690     if (discon) st->print("]");
1691     orig = orig->debug_orig();
1692     if (NotANode(orig)) orig = NULL;
1693     if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1694     if (orig != NULL) st->print(",");
1695     if (fast != NULL) {
1696       // Step fast twice for each single step of orig:
1697       fast = fast->debug_orig();
1698       if (NotANode(fast)) fast = NULL;
1699       if (fast != NULL && fast != orig) {
1700         fast = fast->debug_orig();
1701         if (NotANode(fast)) fast = NULL;
1702       }
1703       if (fast == orig) {
1704         st->print("...");
1705         break;
1706       }
1707     }
1708   }
1709 }
1710 
set_debug_orig(Node * orig)1711 void Node::set_debug_orig(Node* orig) {
1712   _debug_orig = orig;
1713   if (BreakAtNode == 0)  return;
1714   if (NotANode(orig))  orig = NULL;
1715   int trip = 10;
1716   while (orig != NULL) {
1717     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1718       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1719                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1720       BREAKPOINT;
1721     }
1722     orig = orig->debug_orig();
1723     if (NotANode(orig))  orig = NULL;
1724     if (trip-- <= 0)  break;
1725   }
1726 }
1727 #endif //ASSERT
1728 
1729 //------------------------------dump------------------------------------------
1730 // Dump a Node
dump(const char * suffix,bool mark,outputStream * st) const1731 void Node::dump(const char* suffix, bool mark, outputStream *st) const {
1732   Compile* C = Compile::current();
1733   bool is_new = C->node_arena()->contains(this);
1734   C->_in_dump_cnt++;
1735 
1736   if (_indent > 0) {
1737     st->print("%*s", (_indent << 1), "  ");
1738   }
1739 
1740   st->print("%c%d%s%s  === ", is_new ? ' ' : 'o', _idx, mark ? " >" : "  ", Name());
1741 
1742   // Dump the required and precedence inputs
1743   dump_req(st);
1744   dump_prec(st);
1745   // Dump the outputs
1746   dump_out(st);
1747 
1748   if (is_disconnected(this)) {
1749 #ifdef ASSERT
1750     st->print("  [%d]",debug_idx());
1751     dump_orig(st);
1752 #endif
1753     st->cr();
1754     C->_in_dump_cnt--;
1755     return;                     // don't process dead nodes
1756   }
1757 
1758   if (C->clone_map().value(_idx) != 0) {
1759     C->clone_map().dump(_idx);
1760   }
1761   // Dump node-specific info
1762   dump_spec(st);
1763 #ifdef ASSERT
1764   // Dump the non-reset _debug_idx
1765   if (Verbose && WizardMode) {
1766     st->print("  [%d]",debug_idx());
1767   }
1768 #endif
1769 
1770   const Type *t = bottom_type();
1771 
1772   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1773     const TypeInstPtr  *toop = t->isa_instptr();
1774     const TypeKlassPtr *tkls = t->isa_klassptr();
1775     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1776     if (klass && klass->is_loaded() && klass->is_interface()) {
1777       st->print("  Interface:");
1778     } else if (toop) {
1779       st->print("  Oop:");
1780     } else if (tkls) {
1781       st->print("  Klass:");
1782     }
1783     t->dump_on(st);
1784   } else if (t == Type::MEMORY) {
1785     st->print("  Memory:");
1786     MemNode::dump_adr_type(this, adr_type(), st);
1787   } else if (Verbose || WizardMode) {
1788     st->print("  Type:");
1789     if (t) {
1790       t->dump_on(st);
1791     } else {
1792       st->print("no type");
1793     }
1794   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
1795     // Dump MachSpillcopy vector type.
1796     t->dump_on(st);
1797   }
1798   if (is_new) {
1799     DEBUG_ONLY(dump_orig(st));
1800     Node_Notes* nn = C->node_notes_at(_idx);
1801     if (nn != NULL && !nn->is_clear()) {
1802       if (nn->jvms() != NULL) {
1803         st->print(" !jvms:");
1804         nn->jvms()->dump_spec(st);
1805       }
1806     }
1807   }
1808   if (suffix) st->print("%s", suffix);
1809   C->_in_dump_cnt--;
1810 }
1811 
1812 //------------------------------dump_req--------------------------------------
dump_req(outputStream * st) const1813 void Node::dump_req(outputStream *st) const {
1814   // Dump the required input edges
1815   for (uint i = 0; i < req(); i++) {    // For all required inputs
1816     Node* d = in(i);
1817     if (d == NULL) {
1818       st->print("_ ");
1819     } else if (NotANode(d)) {
1820       st->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1821     } else {
1822       st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1823     }
1824   }
1825 }
1826 
1827 
1828 //------------------------------dump_prec-------------------------------------
dump_prec(outputStream * st) const1829 void Node::dump_prec(outputStream *st) const {
1830   // Dump the precedence edges
1831   int any_prec = 0;
1832   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1833     Node* p = in(i);
1834     if (p != NULL) {
1835       if (!any_prec++) st->print(" |");
1836       if (NotANode(p)) { st->print("NotANode "); continue; }
1837       st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1838     }
1839   }
1840 }
1841 
1842 //------------------------------dump_out--------------------------------------
dump_out(outputStream * st) const1843 void Node::dump_out(outputStream *st) const {
1844   // Delimit the output edges
1845   st->print(" [[");
1846   // Dump the output edges
1847   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1848     Node* u = _out[i];
1849     if (u == NULL) {
1850       st->print("_ ");
1851     } else if (NotANode(u)) {
1852       st->print("NotANode ");
1853     } else {
1854       st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1855     }
1856   }
1857   st->print("]] ");
1858 }
1859 
1860 //----------------------------collect_nodes_i----------------------------------
1861 // Collects nodes from an Ideal graph, starting from a given start node and
1862 // moving in a given direction until a certain depth (distance from the start
1863 // node) is reached. Duplicates are ignored.
1864 // Arguments:
1865 //   queue:         the nodes are collected into this array.
1866 //   start:         the node at which to start collecting.
1867 //   direction:     if this is a positive number, collect input nodes; if it is
1868 //                  a negative number, collect output nodes.
1869 //   depth:         collect nodes up to this distance from the start node.
1870 //   include_start: whether to include the start node in the result collection.
1871 //   only_ctrl:     whether to regard control edges only during traversal.
1872 //   only_data:     whether to regard data edges only during traversal.
collect_nodes_i(GrowableArray<Node * > * queue,const Node * start,int direction,uint depth,bool include_start,bool only_ctrl,bool only_data)1873 static void collect_nodes_i(GrowableArray<Node*>* queue, const Node* start, int direction, uint depth, bool include_start, bool only_ctrl, bool only_data) {
1874   bool indent = depth <= PrintIdealIndentThreshold;
1875   Node* s = (Node*) start; // remove const
1876   queue->append(s);
1877   int begin = 0;
1878   int end = 0;
1879 
1880   s->set_indent(0);
1881   for(uint i = 0; i < depth; i++) {
1882     end = queue->length();
1883     for(int j = begin; j < end; j++) {
1884       Node* tp  = queue->at(j);
1885       uint limit = direction > 0 ? tp->len() : tp->outcnt();
1886       for(uint k = 0; k < limit; k++) {
1887         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1888 
1889         if (NotANode(n))  continue;
1890         // do not recurse through top or the root (would reach unrelated stuff)
1891         if (n->is_Root() || n->is_top()) continue;
1892         if (only_ctrl && !n->is_CFG()) continue;
1893         if (only_data && n->is_CFG()) continue;
1894         bool in_queue = queue->contains(n);
1895         if (!in_queue) {
1896           queue->append(n);
1897           n->set_indent(indent ? (i + 1) : 0);
1898         }
1899       }
1900     }
1901     begin = end;
1902   }
1903   if (!include_start) {
1904     queue->remove(s);
1905   }
1906 }
1907 
1908 //------------------------------dump_nodes-------------------------------------
dump_nodes(const Node * start,int d,bool only_ctrl)1909 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1910   if (NotANode(start)) return;
1911 
1912   GrowableArray <Node *> queue(Compile::current()->live_nodes());
1913   collect_nodes_i(&queue, start, d, (uint) ABS(d), true, only_ctrl, false);
1914 
1915   int end = queue.length();
1916   if (d > 0) {
1917     for(int j = end-1; j >= 0; j--) {
1918       queue.at(j)->dump();
1919     }
1920   } else {
1921     for(int j = 0; j < end; j++) {
1922       queue.at(j)->dump();
1923     }
1924   }
1925 }
1926 
1927 //------------------------------dump-------------------------------------------
dump(int d) const1928 void Node::dump(int d) const {
1929   dump_nodes(this, d, false);
1930 }
1931 
1932 //------------------------------dump_ctrl--------------------------------------
1933 // Dump a Node's control history to depth
dump_ctrl(int d) const1934 void Node::dump_ctrl(int d) const {
1935   dump_nodes(this, d, true);
1936 }
1937 
1938 //-----------------------------dump_compact------------------------------------
dump_comp() const1939 void Node::dump_comp() const {
1940   this->dump_comp("\n");
1941 }
1942 
1943 //-----------------------------dump_compact------------------------------------
1944 // Dump a Node in compact representation, i.e., just print its name and index.
1945 // Nodes can specify additional specifics to print in compact representation by
1946 // implementing dump_compact_spec.
dump_comp(const char * suffix,outputStream * st) const1947 void Node::dump_comp(const char* suffix, outputStream *st) const {
1948   Compile* C = Compile::current();
1949   C->_in_dump_cnt++;
1950   st->print("%s(%d)", Name(), _idx);
1951   this->dump_compact_spec(st);
1952   if (suffix) {
1953     st->print("%s", suffix);
1954   }
1955   C->_in_dump_cnt--;
1956 }
1957 
1958 //----------------------------dump_related-------------------------------------
1959 // Dump a Node's related nodes - the notion of "related" depends on the Node at
1960 // hand and is determined by the implementation of the virtual method rel.
dump_related() const1961 void Node::dump_related() const {
1962   Compile* C = Compile::current();
1963   GrowableArray <Node *> in_rel(C->unique());
1964   GrowableArray <Node *> out_rel(C->unique());
1965   this->related(&in_rel, &out_rel, false);
1966   for (int i = in_rel.length() - 1; i >= 0; i--) {
1967     in_rel.at(i)->dump();
1968   }
1969   this->dump("\n", true);
1970   for (int i = 0; i < out_rel.length(); i++) {
1971     out_rel.at(i)->dump();
1972   }
1973 }
1974 
1975 //----------------------------dump_related-------------------------------------
1976 // Dump a Node's related nodes up to a given depth (distance from the start
1977 // node).
1978 // Arguments:
1979 //   d_in:  depth for input nodes.
1980 //   d_out: depth for output nodes (note: this also is a positive number).
dump_related(uint d_in,uint d_out) const1981 void Node::dump_related(uint d_in, uint d_out) const {
1982   Compile* C = Compile::current();
1983   GrowableArray <Node *> in_rel(C->unique());
1984   GrowableArray <Node *> out_rel(C->unique());
1985 
1986   // call collect_nodes_i directly
1987   collect_nodes_i(&in_rel, this, 1, d_in, false, false, false);
1988   collect_nodes_i(&out_rel, this, -1, d_out, false, false, false);
1989 
1990   for (int i = in_rel.length() - 1; i >= 0; i--) {
1991     in_rel.at(i)->dump();
1992   }
1993   this->dump("\n", true);
1994   for (int i = 0; i < out_rel.length(); i++) {
1995     out_rel.at(i)->dump();
1996   }
1997 }
1998 
1999 //------------------------dump_related_compact---------------------------------
2000 // Dump a Node's related nodes in compact representation. The notion of
2001 // "related" depends on the Node at hand and is determined by the implementation
2002 // of the virtual method rel.
dump_related_compact() const2003 void Node::dump_related_compact() const {
2004   Compile* C = Compile::current();
2005   GrowableArray <Node *> in_rel(C->unique());
2006   GrowableArray <Node *> out_rel(C->unique());
2007   this->related(&in_rel, &out_rel, true);
2008   int n_in = in_rel.length();
2009   int n_out = out_rel.length();
2010 
2011   this->dump_comp(n_in == 0 ? "\n" : "  ");
2012   for (int i = 0; i < n_in; i++) {
2013     in_rel.at(i)->dump_comp(i == n_in - 1 ? "\n" : "  ");
2014   }
2015   for (int i = 0; i < n_out; i++) {
2016     out_rel.at(i)->dump_comp(i == n_out - 1 ? "\n" : "  ");
2017   }
2018 }
2019 
2020 //------------------------------related----------------------------------------
2021 // Collect a Node's related nodes. The default behaviour just collects the
2022 // inputs and outputs at depth 1, including both control and data flow edges,
2023 // regardless of whether the presentation is compact or not. For data nodes,
2024 // the default is to collect all data inputs (till level 1 if compact), and
2025 // outputs till level 1.
related(GrowableArray<Node * > * in_rel,GrowableArray<Node * > * out_rel,bool compact) const2026 void Node::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2027   if (this->is_CFG()) {
2028     collect_nodes_i(in_rel, this, 1, 1, false, false, false);
2029     collect_nodes_i(out_rel, this, -1, 1, false, false, false);
2030   } else {
2031     if (compact) {
2032       this->collect_nodes(in_rel, 1, false, true);
2033     } else {
2034       this->collect_nodes_in_all_data(in_rel, false);
2035     }
2036     this->collect_nodes(out_rel, -1, false, false);
2037   }
2038 }
2039 
2040 //---------------------------collect_nodes-------------------------------------
2041 // An entry point to the low-level node collection facility, to start from a
2042 // given node in the graph. The start node is by default not included in the
2043 // result.
2044 // Arguments:
2045 //   ns:   collect the nodes into this data structure.
2046 //   d:    the depth (distance from start node) to which nodes should be
2047 //         collected. A value >0 indicates input nodes, a value <0, output
2048 //         nodes.
2049 //   ctrl: include only control nodes.
2050 //   data: include only data nodes.
collect_nodes(GrowableArray<Node * > * ns,int d,bool ctrl,bool data) const2051 void Node::collect_nodes(GrowableArray<Node*> *ns, int d, bool ctrl, bool data) const {
2052   if (ctrl && data) {
2053     // ignore nonsensical combination
2054     return;
2055   }
2056   collect_nodes_i(ns, this, d, (uint) ABS(d), false, ctrl, data);
2057 }
2058 
2059 //--------------------------collect_nodes_in-----------------------------------
collect_nodes_in(Node * start,GrowableArray<Node * > * ns,bool primary_is_data,bool collect_secondary)2060 static void collect_nodes_in(Node* start, GrowableArray<Node*> *ns, bool primary_is_data, bool collect_secondary) {
2061   // The maximum depth is determined using a BFS that visits all primary (data
2062   // or control) inputs and increments the depth at each level.
2063   uint d_in = 0;
2064   GrowableArray<Node*> nodes(Compile::current()->unique());
2065   nodes.push(start);
2066   int nodes_at_current_level = 1;
2067   int n_idx = 0;
2068   while (nodes_at_current_level > 0) {
2069     // Add all primary inputs reachable from the current level to the list, and
2070     // increase the depth if there were any.
2071     int nodes_at_next_level = 0;
2072     bool nodes_added = false;
2073     while (nodes_at_current_level > 0) {
2074       nodes_at_current_level--;
2075       Node* current = nodes.at(n_idx++);
2076       for (uint i = 0; i < current->len(); i++) {
2077         Node* n = current->in(i);
2078         if (NotANode(n)) {
2079           continue;
2080         }
2081         if ((primary_is_data && n->is_CFG()) || (!primary_is_data && !n->is_CFG())) {
2082           continue;
2083         }
2084         if (!nodes.contains(n)) {
2085           nodes.push(n);
2086           nodes_added = true;
2087           nodes_at_next_level++;
2088         }
2089       }
2090     }
2091     if (nodes_added) {
2092       d_in++;
2093     }
2094     nodes_at_current_level = nodes_at_next_level;
2095   }
2096   start->collect_nodes(ns, d_in, !primary_is_data, primary_is_data);
2097   if (collect_secondary) {
2098     // Now, iterate over the secondary nodes in ns and add the respective
2099     // boundary reachable from them.
2100     GrowableArray<Node*> sns(Compile::current()->unique());
2101     for (GrowableArrayIterator<Node*> it = ns->begin(); it != ns->end(); ++it) {
2102       Node* n = *it;
2103       n->collect_nodes(&sns, 1, primary_is_data, !primary_is_data);
2104       for (GrowableArrayIterator<Node*> d = sns.begin(); d != sns.end(); ++d) {
2105         ns->append_if_missing(*d);
2106       }
2107       sns.clear();
2108     }
2109   }
2110 }
2111 
2112 //---------------------collect_nodes_in_all_data-------------------------------
2113 // Collect the entire data input graph. Include the control boundary if
2114 // requested.
2115 // Arguments:
2116 //   ns:   collect the nodes into this data structure.
2117 //   ctrl: if true, include the control boundary.
collect_nodes_in_all_data(GrowableArray<Node * > * ns,bool ctrl) const2118 void Node::collect_nodes_in_all_data(GrowableArray<Node*> *ns, bool ctrl) const {
2119   collect_nodes_in((Node*) this, ns, true, ctrl);
2120 }
2121 
2122 //--------------------------collect_nodes_in_all_ctrl--------------------------
2123 // Collect the entire control input graph. Include the data boundary if
2124 // requested.
2125 //   ns:   collect the nodes into this data structure.
2126 //   data: if true, include the control boundary.
collect_nodes_in_all_ctrl(GrowableArray<Node * > * ns,bool data) const2127 void Node::collect_nodes_in_all_ctrl(GrowableArray<Node*> *ns, bool data) const {
2128   collect_nodes_in((Node*) this, ns, false, data);
2129 }
2130 
2131 //------------------collect_nodes_out_all_ctrl_boundary------------------------
2132 // Collect the entire output graph until hitting control node boundaries, and
2133 // include those.
collect_nodes_out_all_ctrl_boundary(GrowableArray<Node * > * ns) const2134 void Node::collect_nodes_out_all_ctrl_boundary(GrowableArray<Node*> *ns) const {
2135   // Perform a BFS and stop at control nodes.
2136   GrowableArray<Node*> nodes(Compile::current()->unique());
2137   nodes.push((Node*) this);
2138   while (nodes.length() > 0) {
2139     Node* current = nodes.pop();
2140     if (NotANode(current)) {
2141       continue;
2142     }
2143     ns->append_if_missing(current);
2144     if (!current->is_CFG()) {
2145       for (DUIterator i = current->outs(); current->has_out(i); i++) {
2146         nodes.push(current->out(i));
2147       }
2148     }
2149   }
2150   ns->remove((Node*) this);
2151 }
2152 
2153 // VERIFICATION CODE
2154 // For each input edge to a node (ie - for each Use-Def edge), verify that
2155 // there is a corresponding Def-Use edge.
2156 //------------------------------verify_edges-----------------------------------
verify_edges(Unique_Node_List & visited)2157 void Node::verify_edges(Unique_Node_List &visited) {
2158   uint i, j, idx;
2159   int  cnt;
2160   Node *n;
2161 
2162   // Recursive termination test
2163   if (visited.member(this))  return;
2164   visited.push(this);
2165 
2166   // Walk over all input edges, checking for correspondence
2167   for( i = 0; i < len(); i++ ) {
2168     n = in(i);
2169     if (n != NULL && !n->is_top()) {
2170       // Count instances of (Node *)this
2171       cnt = 0;
2172       for (idx = 0; idx < n->_outcnt; idx++ ) {
2173         if (n->_out[idx] == (Node *)this)  cnt++;
2174       }
2175       assert( cnt > 0,"Failed to find Def-Use edge." );
2176       // Check for duplicate edges
2177       // walk the input array downcounting the input edges to n
2178       for( j = 0; j < len(); j++ ) {
2179         if( in(j) == n ) cnt--;
2180       }
2181       assert( cnt == 0,"Mismatched edge count.");
2182     } else if (n == NULL) {
2183       assert(i >= req() || i == 0 || is_Region() || is_Phi() || is_ArrayCopy() || (is_Unlock() && i == req()-1)
2184               || (is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion
2185               "only region, phi, arraycopy, unlock or membar nodes have null data edges");
2186     } else {
2187       assert(n->is_top(), "sanity");
2188       // Nothing to check.
2189     }
2190   }
2191   // Recursive walk over all input edges
2192   for( i = 0; i < len(); i++ ) {
2193     n = in(i);
2194     if( n != NULL )
2195       in(i)->verify_edges(visited);
2196   }
2197 }
2198 
2199 // Verify all nodes if verify_depth is negative
verify(Node * n,int verify_depth)2200 void Node::verify(Node* n, int verify_depth) {
2201   assert(verify_depth != 0, "depth should not be 0");
2202   ResourceMark rm;
2203   VectorSet old_space;
2204   VectorSet new_space;
2205   Node_List worklist;
2206   worklist.push(n);
2207   Compile* C = Compile::current();
2208   uint last_index_on_current_depth = 0;
2209   verify_depth--; // Visiting the first node on depth 1
2210   // Only add nodes to worklist if verify_depth is negative (visit all nodes) or greater than 0
2211   bool add_to_worklist = verify_depth != 0;
2212 
2213 
2214   for (uint list_index = 0; list_index < worklist.size(); list_index++) {
2215     n = worklist[list_index];
2216 
2217     if (n->is_Con() && n->bottom_type() == Type::TOP) {
2218       if (C->cached_top_node() == NULL) {
2219         C->set_cached_top_node((Node*)n);
2220       }
2221       assert(C->cached_top_node() == n, "TOP node must be unique");
2222     }
2223 
2224     for (uint i = 0; i < n->len(); i++) {
2225       Node* x = n->in(i);
2226       if (!x || x->is_top()) {
2227         continue;
2228       }
2229 
2230       // Verify my input has a def-use edge to me
2231       // Count use-def edges from n to x
2232       int cnt = 0;
2233       for (uint j = 0; j < n->len(); j++) {
2234         if (n->in(j) == x) {
2235           cnt++;
2236         }
2237       }
2238 
2239       // Count def-use edges from x to n
2240       uint max = x->_outcnt;
2241       for (uint k = 0; k < max; k++) {
2242         if (x->_out[k] == n) {
2243           cnt--;
2244         }
2245       }
2246       assert(cnt == 0, "mismatched def-use edge counts");
2247 
2248       // Contained in new_space or old_space?
2249       VectorSet* v = C->node_arena()->contains(x) ? &new_space : &old_space;
2250       // Check for visited in the proper space. Numberings are not unique
2251       // across spaces so we need a separate VectorSet for each space.
2252       if (add_to_worklist && !v->test_set(x->_idx)) {
2253         worklist.push(x);
2254       }
2255     }
2256 
2257     if (verify_depth > 0 && list_index == last_index_on_current_depth) {
2258       // All nodes on this depth were processed and its inputs are on the worklist. Decrement verify_depth and
2259       // store the current last list index which is the last node in the list with the new depth. All nodes
2260       // added afterwards will have a new depth again. Stop adding new nodes if depth limit is reached (=0).
2261       verify_depth--;
2262       if (verify_depth == 0) {
2263         add_to_worklist = false;
2264       }
2265       last_index_on_current_depth = worklist.size() - 1;
2266     }
2267   }
2268 }
2269 #endif // not PRODUCT
2270 
2271 //------------------------------Registers--------------------------------------
2272 // Do we Match on this edge index or not?  Generally false for Control
2273 // and true for everything else.  Weird for calls & returns.
match_edge(uint idx) const2274 uint Node::match_edge(uint idx) const {
2275   return idx;                   // True for other than index 0 (control)
2276 }
2277 
2278 // Register classes are defined for specific machines
out_RegMask() const2279 const RegMask &Node::out_RegMask() const {
2280   ShouldNotCallThis();
2281   return RegMask::Empty;
2282 }
2283 
in_RegMask(uint) const2284 const RegMask &Node::in_RegMask(uint) const {
2285   ShouldNotCallThis();
2286   return RegMask::Empty;
2287 }
2288 
grow(uint i)2289 void Node_Array::grow(uint i) {
2290   assert(_max > 0, "invariant");
2291   uint old = _max;
2292   _max = next_power_of_2(i);
2293   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
2294   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
2295 }
2296 
insert(uint i,Node * n)2297 void Node_Array::insert(uint i, Node* n) {
2298   if (_nodes[_max - 1]) {
2299     grow(_max);
2300   }
2301   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i + 1], ((_max - i - 1) * sizeof(Node*)));
2302   _nodes[i] = n;
2303 }
2304 
remove(uint i)2305 void Node_Array::remove(uint i) {
2306   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i + 1], (HeapWord*)&_nodes[i], ((_max - i - 1) * sizeof(Node*)));
2307   _nodes[_max - 1] = NULL;
2308 }
2309 
dump() const2310 void Node_Array::dump() const {
2311 #ifndef PRODUCT
2312   for (uint i = 0; i < _max; i++) {
2313     Node* nn = _nodes[i];
2314     if (nn != NULL) {
2315       tty->print("%5d--> ",i); nn->dump();
2316     }
2317   }
2318 #endif
2319 }
2320 
2321 //--------------------------is_iteratively_computed------------------------------
2322 // Operation appears to be iteratively computed (such as an induction variable)
2323 // It is possible for this operation to return false for a loop-varying
2324 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
is_iteratively_computed()2325 bool Node::is_iteratively_computed() {
2326   if (ideal_reg()) { // does operation have a result register?
2327     for (uint i = 1; i < req(); i++) {
2328       Node* n = in(i);
2329       if (n != NULL && n->is_Phi()) {
2330         for (uint j = 1; j < n->req(); j++) {
2331           if (n->in(j) == this) {
2332             return true;
2333           }
2334         }
2335       }
2336     }
2337   }
2338   return false;
2339 }
2340 
2341 //--------------------------find_similar------------------------------
2342 // Return a node with opcode "opc" and same inputs as "this" if one can
2343 // be found; Otherwise return NULL;
find_similar(int opc)2344 Node* Node::find_similar(int opc) {
2345   if (req() >= 2) {
2346     Node* def = in(1);
2347     if (def && def->outcnt() >= 2) {
2348       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
2349         Node* use = def->fast_out(i);
2350         if (use != this &&
2351             use->Opcode() == opc &&
2352             use->req() == req()) {
2353           uint j;
2354           for (j = 0; j < use->req(); j++) {
2355             if (use->in(j) != in(j)) {
2356               break;
2357             }
2358           }
2359           if (j == use->req()) {
2360             return use;
2361           }
2362         }
2363       }
2364     }
2365   }
2366   return NULL;
2367 }
2368 
2369 
2370 //--------------------------unique_ctrl_out------------------------------
2371 // Return the unique control out if only one. Null if none or more than one.
unique_ctrl_out() const2372 Node* Node::unique_ctrl_out() const {
2373   Node* found = NULL;
2374   for (uint i = 0; i < outcnt(); i++) {
2375     Node* use = raw_out(i);
2376     if (use->is_CFG() && use != this) {
2377       if (found != NULL) {
2378         return NULL;
2379       }
2380       found = use;
2381     }
2382   }
2383   return found;
2384 }
2385 
ensure_control_or_add_prec(Node * c)2386 void Node::ensure_control_or_add_prec(Node* c) {
2387   if (in(0) == NULL) {
2388     set_req(0, c);
2389   } else if (in(0) != c) {
2390     add_prec(c);
2391   }
2392 }
2393 
is_dead_loop_safe() const2394 bool Node::is_dead_loop_safe() const {
2395   if (is_Phi()) {
2396     return true;
2397   }
2398   if (is_Proj() && in(0) == NULL)  {
2399     return true;
2400   }
2401   if ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0) {
2402     if (!is_Proj()) {
2403       return true;
2404     }
2405     if (in(0)->is_Allocate()) {
2406       return false;
2407     }
2408     // MemNode::can_see_stored_value() peeks through the boxing call
2409     if (in(0)->is_CallStaticJava() && in(0)->as_CallStaticJava()->is_boxing_method()) {
2410       return false;
2411     }
2412     return true;
2413   }
2414   return false;
2415 }
2416 
2417 //=============================================================================
2418 //------------------------------yank-------------------------------------------
2419 // Find and remove
yank(Node * n)2420 void Node_List::yank( Node *n ) {
2421   uint i;
2422   for (i = 0; i < _cnt; i++) {
2423     if (_nodes[i] == n) {
2424       break;
2425     }
2426   }
2427 
2428   if (i < _cnt) {
2429     _nodes[i] = _nodes[--_cnt];
2430   }
2431 }
2432 
2433 //------------------------------dump-------------------------------------------
dump() const2434 void Node_List::dump() const {
2435 #ifndef PRODUCT
2436   for (uint i = 0; i < _cnt; i++) {
2437     if (_nodes[i]) {
2438       tty->print("%5d--> ", i);
2439       _nodes[i]->dump();
2440     }
2441   }
2442 #endif
2443 }
2444 
dump_simple() const2445 void Node_List::dump_simple() const {
2446 #ifndef PRODUCT
2447   for (uint i = 0; i < _cnt; i++) {
2448     if( _nodes[i] ) {
2449       tty->print(" %d", _nodes[i]->_idx);
2450     } else {
2451       tty->print(" NULL");
2452     }
2453   }
2454 #endif
2455 }
2456 
2457 //=============================================================================
2458 //------------------------------remove-----------------------------------------
remove(Node * n)2459 void Unique_Node_List::remove(Node* n) {
2460   if (_in_worklist.test(n->_idx)) {
2461     for (uint i = 0; i < size(); i++) {
2462       if (_nodes[i] == n) {
2463         map(i, Node_List::pop());
2464         _in_worklist.remove(n->_idx);
2465         return;
2466       }
2467     }
2468     ShouldNotReachHere();
2469   }
2470 }
2471 
2472 //-----------------------remove_useless_nodes----------------------------------
2473 // Remove useless nodes from worklist
remove_useless_nodes(VectorSet & useful)2474 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
2475   for (uint i = 0; i < size(); ++i) {
2476     Node *n = at(i);
2477     assert( n != NULL, "Did not expect null entries in worklist");
2478     if (!useful.test(n->_idx)) {
2479       _in_worklist.remove(n->_idx);
2480       map(i, Node_List::pop());
2481       --i;  // Visit popped node
2482       // If it was last entry, loop terminates since size() was also reduced
2483     }
2484   }
2485 }
2486 
2487 //=============================================================================
grow()2488 void Node_Stack::grow() {
2489   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2490   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2491   size_t max = old_max << 1;             // max * 2
2492   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2493   _inode_max = _inodes + max;
2494   _inode_top = _inodes + old_top;        // restore _top
2495 }
2496 
2497 // Node_Stack is used to map nodes.
find(uint idx) const2498 Node* Node_Stack::find(uint idx) const {
2499   uint sz = size();
2500   for (uint i = 0; i < sz; i++) {
2501     if (idx == index_at(i)) {
2502       return node_at(i);
2503     }
2504   }
2505   return NULL;
2506 }
2507 
2508 //=============================================================================
size_of() const2509 uint TypeNode::size_of() const { return sizeof(*this); }
2510 #ifndef PRODUCT
dump_spec(outputStream * st) const2511 void TypeNode::dump_spec(outputStream *st) const {
2512   if (!Verbose && !WizardMode) {
2513     // standard dump does this in Verbose and WizardMode
2514     st->print(" #"); _type->dump_on(st);
2515   }
2516 }
2517 
dump_compact_spec(outputStream * st) const2518 void TypeNode::dump_compact_spec(outputStream *st) const {
2519   st->print("#");
2520   _type->dump_on(st);
2521 }
2522 #endif
hash() const2523 uint TypeNode::hash() const {
2524   return Node::hash() + _type->hash();
2525 }
cmp(const Node & n) const2526 bool TypeNode::cmp(const Node& n) const {
2527   return !Type::cmp(_type, ((TypeNode&)n)._type);
2528 }
bottom_type() const2529 const Type* TypeNode::bottom_type() const { return _type; }
Value(PhaseGVN * phase) const2530 const Type* TypeNode::Value(PhaseGVN* phase) const { return _type; }
2531 
2532 //------------------------------ideal_reg--------------------------------------
ideal_reg() const2533 uint TypeNode::ideal_reg() const {
2534   return _type->ideal_reg();
2535 }
2536