1 /*
2  * Copyright (c) 2006, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_OPTO_OPTOREG_HPP
26 #define SHARE_OPTO_OPTOREG_HPP
27 
28 #include "utilities/macros.hpp"
29 
30 // AdGlobals contains c2 specific register handling code as specified
31 // in the .ad files.
32 #include CPU_HEADER(adfiles/adGlobals)
33 
34 //------------------------------OptoReg----------------------------------------
35 // We eventually need Registers for the Real World.  Registers are essentially
36 // non-SSA names.  A Register is represented as a number.  Non-regular values
37 // (e.g., Control, Memory, I/O) use the Special register.  The actual machine
38 // registers (as described in the ADL file for a machine) start at zero.
39 // Stack-slots (spill locations) start at the nest Chunk past the last machine
40 // register.
41 //
42 // Note that stack spill-slots are treated as a very large register set.
43 // They have all the correct properties for a Register: not aliased (unique
44 // named).  There is some simple mapping from a stack-slot register number
45 // to the actual location on the stack; this mapping depends on the calling
46 // conventions and is described in the ADL.
47 //
48 // Note that Name is not enum. C++ standard defines that the range of enum
49 // is the range of smallest bit-field that can represent all enumerators
50 // declared in the enum. The result of assigning a value to enum is undefined
51 // if the value is outside the enumeration's valid range. OptoReg::Name is
52 // typedef'ed as int, because it needs to be able to represent spill-slots.
53 //
54 class OptoReg {
55 
56  friend class C2Compiler;
57  public:
58   typedef int Name;
59   enum {
60     // Chunk 0
61     Physical = AdlcVMDeps::Physical, // Start of physical regs
62     // A few oddballs at the edge of the world
63     Special = -2,               // All special (not allocated) values
64     Bad = -1                    // Not a register
65   };
66 
67  private:
68 
69  static const VMReg opto2vm[REG_COUNT];
70  static Name vm2opto[ConcreteRegisterImpl::number_of_registers];
71 
72  public:
73 
74   // Stack pointer register
75   static OptoReg::Name c_frame_pointer;
76 
77 
78 
79   // Increment a register number.  As in:
80   //    "for ( OptoReg::Name i; i=Control; i = add(i,1) ) ..."
add(Name x,int y)81   static Name add( Name x, int y ) { return Name(x+y); }
82 
83   // (We would like to have an operator+ for RegName, but it is not
84   // a class, so this would be illegal in C++.)
85 
86   static void dump(int, outputStream *st = tty);
87 
88   // Get the stack slot number of an OptoReg::Name
reg2stack(OptoReg::Name r)89   static unsigned int reg2stack( OptoReg::Name r) {
90     assert( r >= stack0(), " must be");
91     return r - stack0();
92   }
93 
invalidate(Name n)94   static void invalidate(Name n) {
95     vm2opto[n] = Bad;
96   }
97 
98   // convert a stack slot number into an OptoReg::Name
stack2reg(int idx)99   static OptoReg::Name stack2reg( int idx) {
100     return Name(stack0() + idx);
101   }
102 
is_stack(Name n)103   static bool is_stack(Name n) {
104     return n >= stack0();
105   }
106 
is_valid(Name n)107   static bool is_valid(Name n) {
108     return (n != Bad);
109   }
110 
is_reg(Name n)111   static bool is_reg(Name n) {
112     return  is_valid(n) && !is_stack(n);
113   }
114 
as_VMReg(OptoReg::Name n)115   static VMReg as_VMReg(OptoReg::Name n) {
116     if (is_reg(n)) {
117       // Must use table, it'd be nice if Bad was indexable...
118       return opto2vm[n];
119     } else {
120       assert(!is_stack(n), "must un warp");
121       return VMRegImpl::Bad();
122     }
123   }
124 
125   // Can un-warp a stack slot or convert a register or Bad
as_VMReg(OptoReg::Name n,int frame_size,int arg_count)126   static VMReg as_VMReg(OptoReg::Name n, int frame_size, int arg_count) {
127     if (is_reg(n)) {
128       // Must use table, it'd be nice if Bad was indexable...
129       return opto2vm[n];
130     } else if (is_stack(n)) {
131       int stack_slot = reg2stack(n);
132       if (stack_slot < arg_count) {
133         return VMRegImpl::stack2reg(stack_slot + frame_size);
134       }
135       return VMRegImpl::stack2reg(stack_slot - arg_count);
136       // return return VMRegImpl::stack2reg(reg2stack(OptoReg::add(n, -arg_count)));
137     } else {
138       return VMRegImpl::Bad();
139     }
140   }
141 
as_OptoReg(VMReg r)142   static OptoReg::Name as_OptoReg(VMReg r) {
143     if (r->is_stack()) {
144       assert(false, "must warp");
145       return stack2reg(r->reg2stack());
146     } else if (r->is_valid()) {
147       // Must use table, it'd be nice if Bad was indexable...
148       return vm2opto[r->value()];
149     } else {
150       return Bad;
151     }
152   }
153 
stack0()154   static OptoReg::Name stack0() {
155     return VMRegImpl::stack0->value();
156   }
157 
regname(OptoReg::Name n)158   static const char* regname(OptoReg::Name n) {
159     return as_VMReg(n)->name();
160   }
161 
162 };
163 
164 //---------------------------OptoRegPair-------------------------------------------
165 // Pairs of 32-bit registers for the allocator.
166 // This is a very similar class to VMRegPair. C2 only interfaces with VMRegPair
167 // via the calling convention code which is shared between the compilers.
168 // Since C2 uses OptoRegs for register allocation it is more efficient to use
169 // VMRegPair internally for nodes that can contain a pair of OptoRegs rather
170 // than use VMRegPair and continually be converting back and forth. So normally
171 // C2 will take in a VMRegPair from the calling convention code and immediately
172 // convert them to an OptoRegPair and stay in the OptoReg world. The only over
173 // conversion between OptoRegs and VMRegs is for debug info and oopMaps. This
174 // is not a high bandwidth spot and so it is not an issue.
175 // Note that onde other consequence of staying in the OptoReg world with OptoRegPairs
176 // is that there are "physical" OptoRegs that are not representable in the VMReg
177 // world, notably flags. [ But by design there is "space" in the VMReg world
178 // for such registers they just may not be concrete ]. So if we were to use VMRegPair
179 // then the VMReg world would have to have a representation for these registers
180 // so that a OptoReg->VMReg->OptoReg would reproduce ther original OptoReg. As it
181 // stands if you convert a flag (condition code) to a VMReg you will get VMRegImpl::Bad
182 // and converting that will return OptoReg::Bad losing the identity of the OptoReg.
183 
184 class OptoRegPair {
185   friend class VMStructs;
186 private:
187   short _second;
188   short _first;
189 public:
set_bad()190   void set_bad (                   ) { _second = OptoReg::Bad; _first = OptoReg::Bad; }
set1(OptoReg::Name n)191   void set1    ( OptoReg::Name n  ) { _second = OptoReg::Bad; _first = n; }
set2(OptoReg::Name n)192   void set2    ( OptoReg::Name n  ) { _second = n + 1;       _first = n; }
set_pair(OptoReg::Name second,OptoReg::Name first)193   void set_pair( OptoReg::Name second, OptoReg::Name first    ) { _second= second;    _first= first; }
set_ptr(OptoReg::Name ptr)194   void set_ptr ( OptoReg::Name ptr ) {
195 #ifdef _LP64
196     _second = ptr+1;
197 #else
198     _second = OptoReg::Bad;
199 #endif
200     _first = ptr;
201   }
202 
second() const203   OptoReg::Name second() const { return _second; }
first() const204   OptoReg::Name first() const { return _first; }
OptoRegPair(OptoReg::Name second,OptoReg::Name first)205   OptoRegPair(OptoReg::Name second, OptoReg::Name first) {  _second = second; _first = first; }
OptoRegPair(OptoReg::Name f)206   OptoRegPair(OptoReg::Name f) { _second = OptoReg::Bad; _first = f; }
OptoRegPair()207   OptoRegPair() { _second = OptoReg::Bad; _first = OptoReg::Bad; }
208 };
209 
210 #endif // SHARE_OPTO_OPTOREG_HPP
211