1 /*
2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "compiler/compileLog.hpp"
27 #include "gc/shared/barrierSet.hpp"
28 #include "gc/shared/c2/barrierSetC2.hpp"
29 #include "memory/allocation.inline.hpp"
30 #include "opto/addnode.hpp"
31 #include "opto/callnode.hpp"
32 #include "opto/cfgnode.hpp"
33 #include "opto/loopnode.hpp"
34 #include "opto/matcher.hpp"
35 #include "opto/movenode.hpp"
36 #include "opto/mulnode.hpp"
37 #include "opto/opcodes.hpp"
38 #include "opto/phaseX.hpp"
39 #include "opto/subnode.hpp"
40 #include "runtime/sharedRuntime.hpp"
41 
42 // Portions of code courtesy of Clifford Click
43 
44 // Optimization - Graph Style
45 
46 #include "math.h"
47 
48 //=============================================================================
49 //------------------------------Identity---------------------------------------
50 // If right input is a constant 0, return the left input.
Identity(PhaseGVN * phase)51 Node* SubNode::Identity(PhaseGVN* phase) {
52   assert(in(1) != this, "Must already have called Value");
53   assert(in(2) != this, "Must already have called Value");
54 
55   // Remove double negation
56   const Type *zero = add_id();
57   if( phase->type( in(1) )->higher_equal( zero ) &&
58       in(2)->Opcode() == Opcode() &&
59       phase->type( in(2)->in(1) )->higher_equal( zero ) ) {
60     return in(2)->in(2);
61   }
62 
63   // Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y
64   if (in(1)->Opcode() == Op_AddI) {
65     if (in(1)->in(2) == in(2)) {
66       return in(1)->in(1);
67     }
68     if (in(1)->in(1) == in(2)) {
69       return in(1)->in(2);
70     }
71 
72     // Also catch: "(X + Opaque2(Y)) - Y".  In this case, 'Y' is a loop-varying
73     // trip counter and X is likely to be loop-invariant (that's how O2 Nodes
74     // are originally used, although the optimizer sometimes jiggers things).
75     // This folding through an O2 removes a loop-exit use of a loop-varying
76     // value and generally lowers register pressure in and around the loop.
77     if (in(1)->in(2)->Opcode() == Op_Opaque2 && in(1)->in(2)->in(1) == in(2)) {
78       return in(1)->in(1);
79     }
80   }
81 
82   return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this;
83 }
84 
85 //------------------------------Value------------------------------------------
86 // A subtract node differences it's two inputs.
Value_common(PhaseTransform * phase) const87 const Type* SubNode::Value_common(PhaseTransform *phase) const {
88   const Node* in1 = in(1);
89   const Node* in2 = in(2);
90   // Either input is TOP ==> the result is TOP
91   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
92   if( t1 == Type::TOP ) return Type::TOP;
93   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
94   if( t2 == Type::TOP ) return Type::TOP;
95 
96   // Not correct for SubFnode and AddFNode (must check for infinity)
97   // Equal?  Subtract is zero
98   if (in1->eqv_uncast(in2))  return add_id();
99 
100   // Either input is BOTTOM ==> the result is the local BOTTOM
101   if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
102     return bottom_type();
103 
104   return NULL;
105 }
106 
Value(PhaseGVN * phase) const107 const Type* SubNode::Value(PhaseGVN* phase) const {
108   const Type* t = Value_common(phase);
109   if (t != NULL) {
110     return t;
111   }
112   const Type* t1 = phase->type(in(1));
113   const Type* t2 = phase->type(in(2));
114   return sub(t1,t2);            // Local flavor of type subtraction
115 
116 }
117 
make(Node * in1,Node * in2,BasicType bt)118 SubNode* SubNode::make(Node* in1, Node* in2, BasicType bt) {
119   switch (bt) {
120     case T_INT:
121       return new SubINode(in1, in2);
122     case T_LONG:
123       return new SubLNode(in1, in2);
124     default:
125       fatal("Not implemented for %s", type2name(bt));
126   }
127   return NULL;
128 }
129 
130 //=============================================================================
131 //------------------------------Helper function--------------------------------
132 
is_cloop_increment(Node * inc)133 static bool is_cloop_increment(Node* inc) {
134   precond(inc->Opcode() == Op_AddI || inc->Opcode() == Op_AddL);
135 
136   if (!inc->in(1)->is_Phi()) {
137     return false;
138   }
139   const PhiNode* phi = inc->in(1)->as_Phi();
140 
141   if (!phi->region()->is_CountedLoop()) {
142     return false;
143   }
144 
145   return inc == phi->region()->as_CountedLoop()->incr();
146 }
147 
148 // Given the expression '(x + C) - v', or
149 //                      'v - (x + C)', we examine nodes '+' and 'v':
150 //
151 //  1. Do not convert if '+' is a counted-loop increment, because the '-' is
152 //     loop invariant and converting extends the live-range of 'x' to overlap
153 //     with the '+', forcing another register to be used in the loop.
154 //
155 //  2. Do not convert if 'v' is a counted-loop induction variable, because
156 //     'x' might be invariant.
157 //
ok_to_convert(Node * inc,Node * var)158 static bool ok_to_convert(Node* inc, Node* var) {
159   return !(is_cloop_increment(inc) || var->is_cloop_ind_var());
160 }
161 
162 //------------------------------Ideal------------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)163 Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
164   Node *in1 = in(1);
165   Node *in2 = in(2);
166   uint op1 = in1->Opcode();
167   uint op2 = in2->Opcode();
168 
169 #ifdef ASSERT
170   // Check for dead loop
171   if ((in1 == this) || (in2 == this) ||
172       ((op1 == Op_AddI || op1 == Op_SubI) &&
173        ((in1->in(1) == this) || (in1->in(2) == this) ||
174         (in1->in(1) == in1)  || (in1->in(2) == in1)))) {
175     assert(false, "dead loop in SubINode::Ideal");
176   }
177 #endif
178 
179   const Type *t2 = phase->type( in2 );
180   if( t2 == Type::TOP ) return NULL;
181   // Convert "x-c0" into "x+ -c0".
182   if( t2->base() == Type::Int ){        // Might be bottom or top...
183     const TypeInt *i = t2->is_int();
184     if( i->is_con() )
185       return new AddINode(in1, phase->intcon(-i->get_con()));
186   }
187 
188   // Convert "(x+c0) - y" into (x-y) + c0"
189   // Do not collapse (x+c0)-y if "+" is a loop increment or
190   // if "y" is a loop induction variable.
191   if( op1 == Op_AddI && ok_to_convert(in1, in2) ) {
192     const Type *tadd = phase->type( in1->in(2) );
193     if( tadd->singleton() && tadd != Type::TOP ) {
194       Node *sub2 = phase->transform( new SubINode( in1->in(1), in2 ));
195       return new AddINode( sub2, in1->in(2) );
196     }
197   }
198 
199 
200   // Convert "x - (y+c0)" into "(x-y) - c0"
201   // Need the same check as in above optimization but reversed.
202   if (op2 == Op_AddI && ok_to_convert(in2, in1)) {
203     Node* in21 = in2->in(1);
204     Node* in22 = in2->in(2);
205     const TypeInt* tcon = phase->type(in22)->isa_int();
206     if (tcon != NULL && tcon->is_con()) {
207       Node* sub2 = phase->transform( new SubINode(in1, in21) );
208       Node* neg_c0 = phase->intcon(- tcon->get_con());
209       return new AddINode(sub2, neg_c0);
210     }
211   }
212 
213   const Type *t1 = phase->type( in1 );
214   if( t1 == Type::TOP ) return NULL;
215 
216 #ifdef ASSERT
217   // Check for dead loop
218   if ((op2 == Op_AddI || op2 == Op_SubI) &&
219       ((in2->in(1) == this) || (in2->in(2) == this) ||
220        (in2->in(1) == in2)  || (in2->in(2) == in2))) {
221     assert(false, "dead loop in SubINode::Ideal");
222   }
223 #endif
224 
225   // Convert "x - (x+y)" into "-y"
226   if (op2 == Op_AddI && in1 == in2->in(1)) {
227     return new SubINode(phase->intcon(0), in2->in(2));
228   }
229   // Convert "(x-y) - x" into "-y"
230   if (op1 == Op_SubI && in1->in(1) == in2) {
231     return new SubINode(phase->intcon(0), in1->in(2));
232   }
233   // Convert "x - (y+x)" into "-y"
234   if (op2 == Op_AddI && in1 == in2->in(2)) {
235     return new SubINode(phase->intcon(0), in2->in(1));
236   }
237 
238   // Convert "0 - (x-y)" into "y-x"
239   if( t1 == TypeInt::ZERO && op2 == Op_SubI )
240     return new SubINode( in2->in(2), in2->in(1) );
241 
242   // Convert "0 - (x+con)" into "-con-x"
243   jint con;
244   if( t1 == TypeInt::ZERO && op2 == Op_AddI &&
245       (con = in2->in(2)->find_int_con(0)) != 0 )
246     return new SubINode( phase->intcon(-con), in2->in(1) );
247 
248   // Convert "(X+A) - (X+B)" into "A - B"
249   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) )
250     return new SubINode( in1->in(2), in2->in(2) );
251 
252   // Convert "(A+X) - (B+X)" into "A - B"
253   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
254     return new SubINode( in1->in(1), in2->in(1) );
255 
256   // Convert "(A+X) - (X+B)" into "A - B"
257   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) )
258     return new SubINode( in1->in(1), in2->in(2) );
259 
260   // Convert "(X+A) - (B+X)" into "A - B"
261   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) )
262     return new SubINode( in1->in(2), in2->in(1) );
263 
264   // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
265   // nicer to optimize than subtract.
266   if( op2 == Op_SubI && in2->outcnt() == 1) {
267     Node *add1 = phase->transform( new AddINode( in1, in2->in(2) ) );
268     return new SubINode( add1, in2->in(1) );
269   }
270 
271   // Convert "0-(A>>31)" into "(A>>>31)"
272   if ( op2 == Op_RShiftI ) {
273     Node *in21 = in2->in(1);
274     Node *in22 = in2->in(2);
275     const TypeInt *zero = phase->type(in1)->isa_int();
276     const TypeInt *t21 = phase->type(in21)->isa_int();
277     const TypeInt *t22 = phase->type(in22)->isa_int();
278     if ( t21 && t22 && zero == TypeInt::ZERO && t22->is_con(31) ) {
279       return new URShiftINode(in21, in22);
280     }
281   }
282 
283   return NULL;
284 }
285 
286 //------------------------------sub--------------------------------------------
287 // A subtract node differences it's two inputs.
sub(const Type * t1,const Type * t2) const288 const Type *SubINode::sub( const Type *t1, const Type *t2 ) const {
289   const TypeInt *r0 = t1->is_int(); // Handy access
290   const TypeInt *r1 = t2->is_int();
291   int32_t lo = java_subtract(r0->_lo, r1->_hi);
292   int32_t hi = java_subtract(r0->_hi, r1->_lo);
293 
294   // We next check for 32-bit overflow.
295   // If that happens, we just assume all integers are possible.
296   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
297        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
298       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
299        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
300     return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen));
301   else                          // Overflow; assume all integers
302     return TypeInt::INT;
303 }
304 
305 //=============================================================================
306 //------------------------------Ideal------------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)307 Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
308   Node *in1 = in(1);
309   Node *in2 = in(2);
310   uint op1 = in1->Opcode();
311   uint op2 = in2->Opcode();
312 
313 #ifdef ASSERT
314   // Check for dead loop
315   if ((in1 == this) || (in2 == this) ||
316       ((op1 == Op_AddL || op1 == Op_SubL) &&
317        ((in1->in(1) == this) || (in1->in(2) == this) ||
318         (in1->in(1) == in1)  || (in1->in(2) == in1)))) {
319     assert(false, "dead loop in SubLNode::Ideal");
320   }
321 #endif
322 
323   if( phase->type( in2 ) == Type::TOP ) return NULL;
324   const TypeLong *i = phase->type( in2 )->isa_long();
325   // Convert "x-c0" into "x+ -c0".
326   if( i &&                      // Might be bottom or top...
327       i->is_con() )
328     return new AddLNode(in1, phase->longcon(-i->get_con()));
329 
330   // Convert "(x+c0) - y" into (x-y) + c0"
331   // Do not collapse (x+c0)-y if "+" is a loop increment or
332   // if "y" is a loop induction variable.
333   if( op1 == Op_AddL && ok_to_convert(in1, in2) ) {
334     Node *in11 = in1->in(1);
335     const Type *tadd = phase->type( in1->in(2) );
336     if( tadd->singleton() && tadd != Type::TOP ) {
337       Node *sub2 = phase->transform( new SubLNode( in11, in2 ));
338       return new AddLNode( sub2, in1->in(2) );
339     }
340   }
341 
342   // Convert "x - (y+c0)" into "(x-y) - c0"
343   // Need the same check as in above optimization but reversed.
344   if (op2 == Op_AddL && ok_to_convert(in2, in1)) {
345     Node* in21 = in2->in(1);
346     Node* in22 = in2->in(2);
347     const TypeLong* tcon = phase->type(in22)->isa_long();
348     if (tcon != NULL && tcon->is_con()) {
349       Node* sub2 = phase->transform( new SubLNode(in1, in21) );
350       Node* neg_c0 = phase->longcon(- tcon->get_con());
351       return new AddLNode(sub2, neg_c0);
352     }
353   }
354 
355   const Type *t1 = phase->type( in1 );
356   if( t1 == Type::TOP ) return NULL;
357 
358 #ifdef ASSERT
359   // Check for dead loop
360   if ((op2 == Op_AddL || op2 == Op_SubL) &&
361       ((in2->in(1) == this) || (in2->in(2) == this) ||
362        (in2->in(1) == in2)  || (in2->in(2) == in2))) {
363     assert(false, "dead loop in SubLNode::Ideal");
364   }
365 #endif
366 
367   // Convert "x - (x+y)" into "-y"
368   if (op2 == Op_AddL && in1 == in2->in(1)) {
369     return new SubLNode(phase->makecon(TypeLong::ZERO), in2->in(2));
370   }
371   // Convert "x - (y+x)" into "-y"
372   if (op2 == Op_AddL && in1 == in2->in(2)) {
373     return new SubLNode(phase->makecon(TypeLong::ZERO), in2->in(1));
374   }
375 
376   // Convert "0 - (x-y)" into "y-x"
377   if( phase->type( in1 ) == TypeLong::ZERO && op2 == Op_SubL )
378     return new SubLNode( in2->in(2), in2->in(1) );
379 
380   // Convert "(X+A) - (X+B)" into "A - B"
381   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) )
382     return new SubLNode( in1->in(2), in2->in(2) );
383 
384   // Convert "(A+X) - (B+X)" into "A - B"
385   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) )
386     return new SubLNode( in1->in(1), in2->in(1) );
387 
388   // Convert "A-(B-C)" into (A+C)-B"
389   if( op2 == Op_SubL && in2->outcnt() == 1) {
390     Node *add1 = phase->transform( new AddLNode( in1, in2->in(2) ) );
391     return new SubLNode( add1, in2->in(1) );
392   }
393 
394   // Convert "0L-(A>>63)" into "(A>>>63)"
395   if ( op2 == Op_RShiftL ) {
396     Node *in21 = in2->in(1);
397     Node *in22 = in2->in(2);
398     const TypeLong *zero = phase->type(in1)->isa_long();
399     const TypeLong *t21 = phase->type(in21)->isa_long();
400     const TypeInt *t22 = phase->type(in22)->isa_int();
401     if ( t21 && t22 && zero == TypeLong::ZERO && t22->is_con(63) ) {
402       return new URShiftLNode(in21, in22);
403     }
404   }
405 
406   return NULL;
407 }
408 
409 //------------------------------sub--------------------------------------------
410 // A subtract node differences it's two inputs.
sub(const Type * t1,const Type * t2) const411 const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const {
412   const TypeLong *r0 = t1->is_long(); // Handy access
413   const TypeLong *r1 = t2->is_long();
414   jlong lo = java_subtract(r0->_lo, r1->_hi);
415   jlong hi = java_subtract(r0->_hi, r1->_lo);
416 
417   // We next check for 32-bit overflow.
418   // If that happens, we just assume all integers are possible.
419   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
420        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
421       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
422        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
423     return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen));
424   else                          // Overflow; assume all integers
425     return TypeLong::LONG;
426 }
427 
428 //=============================================================================
429 //------------------------------Value------------------------------------------
430 // A subtract node differences its two inputs.
Value(PhaseGVN * phase) const431 const Type* SubFPNode::Value(PhaseGVN* phase) const {
432   const Node* in1 = in(1);
433   const Node* in2 = in(2);
434   // Either input is TOP ==> the result is TOP
435   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
436   if( t1 == Type::TOP ) return Type::TOP;
437   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
438   if( t2 == Type::TOP ) return Type::TOP;
439 
440   // if both operands are infinity of same sign, the result is NaN; do
441   // not replace with zero
442   if (t1->is_finite() && t2->is_finite() && in1 == in2) {
443     return add_id();
444   }
445 
446   // Either input is BOTTOM ==> the result is the local BOTTOM
447   const Type *bot = bottom_type();
448   if( (t1 == bot) || (t2 == bot) ||
449       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
450     return bot;
451 
452   return sub(t1,t2);            // Local flavor of type subtraction
453 }
454 
455 
456 //=============================================================================
457 //------------------------------Ideal------------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)458 Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
459   const Type *t2 = phase->type( in(2) );
460   // Convert "x-c0" into "x+ -c0".
461   if( t2->base() == Type::FloatCon ) {  // Might be bottom or top...
462     // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) );
463   }
464 
465   // Not associative because of boundary conditions (infinity)
466   if (IdealizedNumerics && !phase->C->method()->is_strict() &&
467       in(2)->is_Add() && in(1) == in(2)->in(1)) {
468     // Convert "x - (x+y)" into "-y"
469     return new SubFNode(phase->makecon(TypeF::ZERO), in(2)->in(2));
470   }
471 
472   // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes
473   // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0.
474   //if( phase->type(in(1)) == TypeF::ZERO )
475   //return new (phase->C, 2) NegFNode(in(2));
476 
477   return NULL;
478 }
479 
480 //------------------------------sub--------------------------------------------
481 // A subtract node differences its two inputs.
sub(const Type * t1,const Type * t2) const482 const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const {
483   // no folding if one of operands is infinity or NaN, do not do constant folding
484   if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) {
485     return TypeF::make( t1->getf() - t2->getf() );
486   }
487   else if( g_isnan(t1->getf()) ) {
488     return t1;
489   }
490   else if( g_isnan(t2->getf()) ) {
491     return t2;
492   }
493   else {
494     return Type::FLOAT;
495   }
496 }
497 
498 //=============================================================================
499 //------------------------------Ideal------------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)500 Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){
501   const Type *t2 = phase->type( in(2) );
502   // Convert "x-c0" into "x+ -c0".
503   if( t2->base() == Type::DoubleCon ) { // Might be bottom or top...
504     // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) );
505   }
506 
507   // Not associative because of boundary conditions (infinity)
508   if (IdealizedNumerics && !phase->C->method()->is_strict() &&
509       in(2)->is_Add() && in(1) == in(2)->in(1)) {
510     // Convert "x - (x+y)" into "-y"
511     return new SubDNode(phase->makecon(TypeD::ZERO), in(2)->in(2));
512   }
513 
514   // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes
515   // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0.
516   //if( phase->type(in(1)) == TypeD::ZERO )
517   //return new (phase->C, 2) NegDNode(in(2));
518 
519   return NULL;
520 }
521 
522 //------------------------------sub--------------------------------------------
523 // A subtract node differences its two inputs.
sub(const Type * t1,const Type * t2) const524 const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const {
525   // no folding if one of operands is infinity or NaN, do not do constant folding
526   if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) {
527     return TypeD::make( t1->getd() - t2->getd() );
528   }
529   else if( g_isnan(t1->getd()) ) {
530     return t1;
531   }
532   else if( g_isnan(t2->getd()) ) {
533     return t2;
534   }
535   else {
536     return Type::DOUBLE;
537   }
538 }
539 
540 //=============================================================================
541 //------------------------------Idealize---------------------------------------
542 // Unlike SubNodes, compare must still flatten return value to the
543 // range -1, 0, 1.
544 // And optimizations like those for (X + Y) - X fail if overflow happens.
Identity(PhaseGVN * phase)545 Node* CmpNode::Identity(PhaseGVN* phase) {
546   return this;
547 }
548 
549 #ifndef PRODUCT
550 //----------------------------related------------------------------------------
551 // Related nodes of comparison nodes include all data inputs (until hitting a
552 // control boundary) as well as all outputs until and including control nodes
553 // as well as their projections. In compact mode, data inputs till depth 1 and
554 // all outputs till depth 1 are considered.
related(GrowableArray<Node * > * in_rel,GrowableArray<Node * > * out_rel,bool compact) const555 void CmpNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
556   if (compact) {
557     this->collect_nodes(in_rel, 1, false, true);
558     this->collect_nodes(out_rel, -1, false, false);
559   } else {
560     this->collect_nodes_in_all_data(in_rel, false);
561     this->collect_nodes_out_all_ctrl_boundary(out_rel);
562     // Now, find all control nodes in out_rel, and include their projections
563     // and projection targets (if any) in the result.
564     GrowableArray<Node*> proj(Compile::current()->unique());
565     for (GrowableArrayIterator<Node*> it = out_rel->begin(); it != out_rel->end(); ++it) {
566       Node* n = *it;
567       if (n->is_CFG() && !n->is_Proj()) {
568         // Assume projections and projection targets are found at levels 1 and 2.
569         n->collect_nodes(&proj, -2, false, false);
570         for (GrowableArrayIterator<Node*> p = proj.begin(); p != proj.end(); ++p) {
571           out_rel->append_if_missing(*p);
572         }
573         proj.clear();
574       }
575     }
576   }
577 }
578 
579 #endif
580 
make(Node * in1,Node * in2,BasicType bt,bool unsigned_comp)581 CmpNode *CmpNode::make(Node *in1, Node *in2, BasicType bt, bool unsigned_comp) {
582   switch (bt) {
583     case T_INT:
584       if (unsigned_comp) {
585         return new CmpUNode(in1, in2);
586       }
587       return new CmpINode(in1, in2);
588     case T_LONG:
589       if (unsigned_comp) {
590         return new CmpULNode(in1, in2);
591       }
592       return new CmpLNode(in1, in2);
593     default:
594       fatal("Not implemented for %s", type2name(bt));
595   }
596   return NULL;
597 }
598 
599 //=============================================================================
600 //------------------------------cmp--------------------------------------------
601 // Simplify a CmpI (compare 2 integers) node, based on local information.
602 // If both inputs are constants, compare them.
sub(const Type * t1,const Type * t2) const603 const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const {
604   const TypeInt *r0 = t1->is_int(); // Handy access
605   const TypeInt *r1 = t2->is_int();
606 
607   if( r0->_hi < r1->_lo )       // Range is always low?
608     return TypeInt::CC_LT;
609   else if( r0->_lo > r1->_hi )  // Range is always high?
610     return TypeInt::CC_GT;
611 
612   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
613     assert(r0->get_con() == r1->get_con(), "must be equal");
614     return TypeInt::CC_EQ;      // Equal results.
615   } else if( r0->_hi == r1->_lo ) // Range is never high?
616     return TypeInt::CC_LE;
617   else if( r0->_lo == r1->_hi ) // Range is never low?
618     return TypeInt::CC_GE;
619   return TypeInt::CC;           // else use worst case results
620 }
621 
622 // Simplify a CmpU (compare 2 integers) node, based on local information.
623 // If both inputs are constants, compare them.
sub(const Type * t1,const Type * t2) const624 const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const {
625   assert(!t1->isa_ptr(), "obsolete usage of CmpU");
626 
627   // comparing two unsigned ints
628   const TypeInt *r0 = t1->is_int();   // Handy access
629   const TypeInt *r1 = t2->is_int();
630 
631   // Current installed version
632   // Compare ranges for non-overlap
633   juint lo0 = r0->_lo;
634   juint hi0 = r0->_hi;
635   juint lo1 = r1->_lo;
636   juint hi1 = r1->_hi;
637 
638   // If either one has both negative and positive values,
639   // it therefore contains both 0 and -1, and since [0..-1] is the
640   // full unsigned range, the type must act as an unsigned bottom.
641   bool bot0 = ((jint)(lo0 ^ hi0) < 0);
642   bool bot1 = ((jint)(lo1 ^ hi1) < 0);
643 
644   if (bot0 || bot1) {
645     // All unsigned values are LE -1 and GE 0.
646     if (lo0 == 0 && hi0 == 0) {
647       return TypeInt::CC_LE;            //   0 <= bot
648     } else if ((jint)lo0 == -1 && (jint)hi0 == -1) {
649       return TypeInt::CC_GE;            // -1 >= bot
650     } else if (lo1 == 0 && hi1 == 0) {
651       return TypeInt::CC_GE;            // bot >= 0
652     } else if ((jint)lo1 == -1 && (jint)hi1 == -1) {
653       return TypeInt::CC_LE;            // bot <= -1
654     }
655   } else {
656     // We can use ranges of the form [lo..hi] if signs are the same.
657     assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
658     // results are reversed, '-' > '+' for unsigned compare
659     if (hi0 < lo1) {
660       return TypeInt::CC_LT;            // smaller
661     } else if (lo0 > hi1) {
662       return TypeInt::CC_GT;            // greater
663     } else if (hi0 == lo1 && lo0 == hi1) {
664       return TypeInt::CC_EQ;            // Equal results
665     } else if (lo0 >= hi1) {
666       return TypeInt::CC_GE;
667     } else if (hi0 <= lo1) {
668       // Check for special case in Hashtable::get.  (See below.)
669       if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
670         return TypeInt::CC_LT;
671       return TypeInt::CC_LE;
672     }
673   }
674   // Check for special case in Hashtable::get - the hash index is
675   // mod'ed to the table size so the following range check is useless.
676   // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have
677   // to be positive.
678   // (This is a gross hack, since the sub method never
679   // looks at the structure of the node in any other case.)
680   if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
681     return TypeInt::CC_LT;
682   return TypeInt::CC;                   // else use worst case results
683 }
684 
Value(PhaseGVN * phase) const685 const Type* CmpUNode::Value(PhaseGVN* phase) const {
686   const Type* t = SubNode::Value_common(phase);
687   if (t != NULL) {
688     return t;
689   }
690   const Node* in1 = in(1);
691   const Node* in2 = in(2);
692   const Type* t1 = phase->type(in1);
693   const Type* t2 = phase->type(in2);
694   assert(t1->isa_int(), "CmpU has only Int type inputs");
695   if (t2 == TypeInt::INT) { // Compare to bottom?
696     return bottom_type();
697   }
698   uint in1_op = in1->Opcode();
699   if (in1_op == Op_AddI || in1_op == Op_SubI) {
700     // The problem rise when result of AddI(SubI) may overflow
701     // signed integer value. Let say the input type is
702     // [256, maxint] then +128 will create 2 ranges due to
703     // overflow: [minint, minint+127] and [384, maxint].
704     // But C2 type system keep only 1 type range and as result
705     // it use general [minint, maxint] for this case which we
706     // can't optimize.
707     //
708     // Make 2 separate type ranges based on types of AddI(SubI) inputs
709     // and compare results of their compare. If results are the same
710     // CmpU node can be optimized.
711     const Node* in11 = in1->in(1);
712     const Node* in12 = in1->in(2);
713     const Type* t11 = (in11 == in1) ? Type::TOP : phase->type(in11);
714     const Type* t12 = (in12 == in1) ? Type::TOP : phase->type(in12);
715     // Skip cases when input types are top or bottom.
716     if ((t11 != Type::TOP) && (t11 != TypeInt::INT) &&
717         (t12 != Type::TOP) && (t12 != TypeInt::INT)) {
718       const TypeInt *r0 = t11->is_int();
719       const TypeInt *r1 = t12->is_int();
720       jlong lo_r0 = r0->_lo;
721       jlong hi_r0 = r0->_hi;
722       jlong lo_r1 = r1->_lo;
723       jlong hi_r1 = r1->_hi;
724       if (in1_op == Op_SubI) {
725         jlong tmp = hi_r1;
726         hi_r1 = -lo_r1;
727         lo_r1 = -tmp;
728         // Note, for substructing [minint,x] type range
729         // long arithmetic provides correct overflow answer.
730         // The confusion come from the fact that in 32-bit
731         // -minint == minint but in 64-bit -minint == maxint+1.
732       }
733       jlong lo_long = lo_r0 + lo_r1;
734       jlong hi_long = hi_r0 + hi_r1;
735       int lo_tr1 = min_jint;
736       int hi_tr1 = (int)hi_long;
737       int lo_tr2 = (int)lo_long;
738       int hi_tr2 = max_jint;
739       bool underflow = lo_long != (jlong)lo_tr2;
740       bool overflow  = hi_long != (jlong)hi_tr1;
741       // Use sub(t1, t2) when there is no overflow (one type range)
742       // or when both overflow and underflow (too complex).
743       if ((underflow != overflow) && (hi_tr1 < lo_tr2)) {
744         // Overflow only on one boundary, compare 2 separate type ranges.
745         int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here
746         const TypeInt* tr1 = TypeInt::make(lo_tr1, hi_tr1, w);
747         const TypeInt* tr2 = TypeInt::make(lo_tr2, hi_tr2, w);
748         const Type* cmp1 = sub(tr1, t2);
749         const Type* cmp2 = sub(tr2, t2);
750         if (cmp1 == cmp2) {
751           return cmp1; // Hit!
752         }
753       }
754     }
755   }
756 
757   return sub(t1, t2);            // Local flavor of type subtraction
758 }
759 
is_index_range_check() const760 bool CmpUNode::is_index_range_check() const {
761   // Check for the "(X ModI Y) CmpU Y" shape
762   return (in(1)->Opcode() == Op_ModI &&
763           in(1)->in(2)->eqv_uncast(in(2)));
764 }
765 
766 //------------------------------Idealize---------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)767 Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) {
768   if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) {
769     switch (in(1)->Opcode()) {
770     case Op_CmpL3:              // Collapse a CmpL3/CmpI into a CmpL
771       return new CmpLNode(in(1)->in(1),in(1)->in(2));
772     case Op_CmpF3:              // Collapse a CmpF3/CmpI into a CmpF
773       return new CmpFNode(in(1)->in(1),in(1)->in(2));
774     case Op_CmpD3:              // Collapse a CmpD3/CmpI into a CmpD
775       return new CmpDNode(in(1)->in(1),in(1)->in(2));
776     //case Op_SubI:
777       // If (x - y) cannot overflow, then ((x - y) <?> 0)
778       // can be turned into (x <?> y).
779       // This is handled (with more general cases) by Ideal_sub_algebra.
780     }
781   }
782   return NULL;                  // No change
783 }
784 
Ideal(PhaseGVN * phase,bool can_reshape)785 Node *CmpLNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
786   const TypeLong *t2 = phase->type(in(2))->isa_long();
787   if (Opcode() == Op_CmpL && in(1)->Opcode() == Op_ConvI2L && t2 && t2->is_con()) {
788     const jlong con = t2->get_con();
789     if (con >= min_jint && con <= max_jint) {
790       return new CmpINode(in(1)->in(1), phase->intcon((jint)con));
791     }
792   }
793   return NULL;
794 }
795 
796 //=============================================================================
797 // Simplify a CmpL (compare 2 longs ) node, based on local information.
798 // If both inputs are constants, compare them.
sub(const Type * t1,const Type * t2) const799 const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const {
800   const TypeLong *r0 = t1->is_long(); // Handy access
801   const TypeLong *r1 = t2->is_long();
802 
803   if( r0->_hi < r1->_lo )       // Range is always low?
804     return TypeInt::CC_LT;
805   else if( r0->_lo > r1->_hi )  // Range is always high?
806     return TypeInt::CC_GT;
807 
808   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
809     assert(r0->get_con() == r1->get_con(), "must be equal");
810     return TypeInt::CC_EQ;      // Equal results.
811   } else if( r0->_hi == r1->_lo ) // Range is never high?
812     return TypeInt::CC_LE;
813   else if( r0->_lo == r1->_hi ) // Range is never low?
814     return TypeInt::CC_GE;
815   return TypeInt::CC;           // else use worst case results
816 }
817 
818 
819 // Simplify a CmpUL (compare 2 unsigned longs) node, based on local information.
820 // If both inputs are constants, compare them.
sub(const Type * t1,const Type * t2) const821 const Type* CmpULNode::sub(const Type* t1, const Type* t2) const {
822   assert(!t1->isa_ptr(), "obsolete usage of CmpUL");
823 
824   // comparing two unsigned longs
825   const TypeLong* r0 = t1->is_long();   // Handy access
826   const TypeLong* r1 = t2->is_long();
827 
828   // Current installed version
829   // Compare ranges for non-overlap
830   julong lo0 = r0->_lo;
831   julong hi0 = r0->_hi;
832   julong lo1 = r1->_lo;
833   julong hi1 = r1->_hi;
834 
835   // If either one has both negative and positive values,
836   // it therefore contains both 0 and -1, and since [0..-1] is the
837   // full unsigned range, the type must act as an unsigned bottom.
838   bool bot0 = ((jlong)(lo0 ^ hi0) < 0);
839   bool bot1 = ((jlong)(lo1 ^ hi1) < 0);
840 
841   if (bot0 || bot1) {
842     // All unsigned values are LE -1 and GE 0.
843     if (lo0 == 0 && hi0 == 0) {
844       return TypeInt::CC_LE;            //   0 <= bot
845     } else if ((jlong)lo0 == -1 && (jlong)hi0 == -1) {
846       return TypeInt::CC_GE;            // -1 >= bot
847     } else if (lo1 == 0 && hi1 == 0) {
848       return TypeInt::CC_GE;            // bot >= 0
849     } else if ((jlong)lo1 == -1 && (jlong)hi1 == -1) {
850       return TypeInt::CC_LE;            // bot <= -1
851     }
852   } else {
853     // We can use ranges of the form [lo..hi] if signs are the same.
854     assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
855     // results are reversed, '-' > '+' for unsigned compare
856     if (hi0 < lo1) {
857       return TypeInt::CC_LT;            // smaller
858     } else if (lo0 > hi1) {
859       return TypeInt::CC_GT;            // greater
860     } else if (hi0 == lo1 && lo0 == hi1) {
861       return TypeInt::CC_EQ;            // Equal results
862     } else if (lo0 >= hi1) {
863       return TypeInt::CC_GE;
864     } else if (hi0 <= lo1) {
865       return TypeInt::CC_LE;
866     }
867   }
868 
869   return TypeInt::CC;                   // else use worst case results
870 }
871 
872 //=============================================================================
873 //------------------------------sub--------------------------------------------
874 // Simplify an CmpP (compare 2 pointers) node, based on local information.
875 // If both inputs are constants, compare them.
sub(const Type * t1,const Type * t2) const876 const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const {
877   const TypePtr *r0 = t1->is_ptr(); // Handy access
878   const TypePtr *r1 = t2->is_ptr();
879 
880   // Undefined inputs makes for an undefined result
881   if( TypePtr::above_centerline(r0->_ptr) ||
882       TypePtr::above_centerline(r1->_ptr) )
883     return Type::TOP;
884 
885   if (r0 == r1 && r0->singleton()) {
886     // Equal pointer constants (klasses, nulls, etc.)
887     return TypeInt::CC_EQ;
888   }
889 
890   // See if it is 2 unrelated classes.
891   const TypeOopPtr* oop_p0 = r0->isa_oopptr();
892   const TypeOopPtr* oop_p1 = r1->isa_oopptr();
893   bool both_oop_ptr = oop_p0 && oop_p1;
894 
895   if (both_oop_ptr) {
896     Node* in1 = in(1)->uncast();
897     Node* in2 = in(2)->uncast();
898     AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1, NULL);
899     AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2, NULL);
900     if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, NULL)) {
901       return TypeInt::CC_GT;  // different pointers
902     }
903   }
904 
905   const TypeKlassPtr* klass_p0 = r0->isa_klassptr();
906   const TypeKlassPtr* klass_p1 = r1->isa_klassptr();
907 
908   if (both_oop_ptr || (klass_p0 && klass_p1)) { // both or neither are klass pointers
909     ciKlass* klass0 = NULL;
910     bool    xklass0 = false;
911     ciKlass* klass1 = NULL;
912     bool    xklass1 = false;
913 
914     if (oop_p0) {
915       klass0 = oop_p0->klass();
916       xklass0 = oop_p0->klass_is_exact();
917     } else {
918       assert(klass_p0, "must be non-null if oop_p0 is null");
919       klass0 = klass_p0->klass();
920       xklass0 = klass_p0->klass_is_exact();
921     }
922 
923     if (oop_p1) {
924       klass1 = oop_p1->klass();
925       xklass1 = oop_p1->klass_is_exact();
926     } else {
927       assert(klass_p1, "must be non-null if oop_p1 is null");
928       klass1 = klass_p1->klass();
929       xklass1 = klass_p1->klass_is_exact();
930     }
931 
932     if (klass0 && klass1 &&
933         klass0->is_loaded() && !klass0->is_interface() && // do not trust interfaces
934         klass1->is_loaded() && !klass1->is_interface() &&
935         (!klass0->is_obj_array_klass() ||
936          !klass0->as_obj_array_klass()->base_element_klass()->is_interface()) &&
937         (!klass1->is_obj_array_klass() ||
938          !klass1->as_obj_array_klass()->base_element_klass()->is_interface())) {
939       bool unrelated_classes = false;
940       // See if neither subclasses the other, or if the class on top
941       // is precise.  In either of these cases, the compare is known
942       // to fail if at least one of the pointers is provably not null.
943       if (klass0->equals(klass1)) {  // if types are unequal but klasses are equal
944         // Do nothing; we know nothing for imprecise types
945       } else if (klass0->is_subtype_of(klass1)) {
946         // If klass1's type is PRECISE, then classes are unrelated.
947         unrelated_classes = xklass1;
948       } else if (klass1->is_subtype_of(klass0)) {
949         // If klass0's type is PRECISE, then classes are unrelated.
950         unrelated_classes = xklass0;
951       } else {                  // Neither subtypes the other
952         unrelated_classes = true;
953       }
954       if (unrelated_classes) {
955         // The oops classes are known to be unrelated. If the joined PTRs of
956         // two oops is not Null and not Bottom, then we are sure that one
957         // of the two oops is non-null, and the comparison will always fail.
958         TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
959         if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
960           return TypeInt::CC_GT;
961         }
962       }
963     }
964   }
965 
966   // Known constants can be compared exactly
967   // Null can be distinguished from any NotNull pointers
968   // Unknown inputs makes an unknown result
969   if( r0->singleton() ) {
970     intptr_t bits0 = r0->get_con();
971     if( r1->singleton() )
972       return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
973     return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
974   } else if( r1->singleton() ) {
975     intptr_t bits1 = r1->get_con();
976     return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
977   } else
978     return TypeInt::CC;
979 }
980 
isa_java_mirror_load(PhaseGVN * phase,Node * n)981 static inline Node* isa_java_mirror_load(PhaseGVN* phase, Node* n) {
982   // Return the klass node for (indirect load from OopHandle)
983   //   LoadBarrier?(LoadP(LoadP(AddP(foo:Klass, #java_mirror))))
984   //   or NULL if not matching.
985   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
986     n = bs->step_over_gc_barrier(n);
987 
988   if (n->Opcode() != Op_LoadP) return NULL;
989 
990   const TypeInstPtr* tp = phase->type(n)->isa_instptr();
991   if (!tp || tp->klass() != phase->C->env()->Class_klass()) return NULL;
992 
993   Node* adr = n->in(MemNode::Address);
994   // First load from OopHandle: ((OopHandle)mirror)->resolve(); may need barrier.
995   if (adr->Opcode() != Op_LoadP || !phase->type(adr)->isa_rawptr()) return NULL;
996   adr = adr->in(MemNode::Address);
997 
998   intptr_t off = 0;
999   Node* k = AddPNode::Ideal_base_and_offset(adr, phase, off);
1000   if (k == NULL)  return NULL;
1001   const TypeKlassPtr* tkp = phase->type(k)->isa_klassptr();
1002   if (!tkp || off != in_bytes(Klass::java_mirror_offset())) return NULL;
1003 
1004   // We've found the klass node of a Java mirror load.
1005   return k;
1006 }
1007 
isa_const_java_mirror(PhaseGVN * phase,Node * n)1008 static inline Node* isa_const_java_mirror(PhaseGVN* phase, Node* n) {
1009   // for ConP(Foo.class) return ConP(Foo.klass)
1010   // otherwise return NULL
1011   if (!n->is_Con()) return NULL;
1012 
1013   const TypeInstPtr* tp = phase->type(n)->isa_instptr();
1014   if (!tp) return NULL;
1015 
1016   ciType* mirror_type = tp->java_mirror_type();
1017   // TypeInstPtr::java_mirror_type() returns non-NULL for compile-
1018   // time Class constants only.
1019   if (!mirror_type) return NULL;
1020 
1021   // x.getClass() == int.class can never be true (for all primitive types)
1022   // Return a ConP(NULL) node for this case.
1023   if (mirror_type->is_classless()) {
1024     return phase->makecon(TypePtr::NULL_PTR);
1025   }
1026 
1027   // return the ConP(Foo.klass)
1028   assert(mirror_type->is_klass(), "mirror_type should represent a Klass*");
1029   return phase->makecon(TypeKlassPtr::make(mirror_type->as_klass()));
1030 }
1031 
1032 //------------------------------Ideal------------------------------------------
1033 // Normalize comparisons between Java mirror loads to compare the klass instead.
1034 //
1035 // Also check for the case of comparing an unknown klass loaded from the primary
1036 // super-type array vs a known klass with no subtypes.  This amounts to
1037 // checking to see an unknown klass subtypes a known klass with no subtypes;
1038 // this only happens on an exact match.  We can shorten this test by 1 load.
Ideal(PhaseGVN * phase,bool can_reshape)1039 Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
1040   // Normalize comparisons between Java mirrors into comparisons of the low-
1041   // level klass, where a dependent load could be shortened.
1042   //
1043   // The new pattern has a nice effect of matching the same pattern used in the
1044   // fast path of instanceof/checkcast/Class.isInstance(), which allows
1045   // redundant exact type check be optimized away by GVN.
1046   // For example, in
1047   //   if (x.getClass() == Foo.class) {
1048   //     Foo foo = (Foo) x;
1049   //     // ... use a ...
1050   //   }
1051   // a CmpPNode could be shared between if_acmpne and checkcast
1052   {
1053     Node* k1 = isa_java_mirror_load(phase, in(1));
1054     Node* k2 = isa_java_mirror_load(phase, in(2));
1055     Node* conk2 = isa_const_java_mirror(phase, in(2));
1056 
1057     if (k1 && (k2 || conk2)) {
1058       Node* lhs = k1;
1059       Node* rhs = (k2 != NULL) ? k2 : conk2;
1060       PhaseIterGVN* igvn = phase->is_IterGVN();
1061       if (igvn != NULL) {
1062         set_req_X(1, lhs, igvn);
1063         set_req_X(2, rhs, igvn);
1064       } else {
1065         set_req(1, lhs);
1066         set_req(2, rhs);
1067       }
1068       return this;
1069     }
1070   }
1071 
1072   // Constant pointer on right?
1073   const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr();
1074   if (t2 == NULL || !t2->klass_is_exact())
1075     return NULL;
1076   // Get the constant klass we are comparing to.
1077   ciKlass* superklass = t2->klass();
1078 
1079   // Now check for LoadKlass on left.
1080   Node* ldk1 = in(1);
1081   if (ldk1->is_DecodeNKlass()) {
1082     ldk1 = ldk1->in(1);
1083     if (ldk1->Opcode() != Op_LoadNKlass )
1084       return NULL;
1085   } else if (ldk1->Opcode() != Op_LoadKlass )
1086     return NULL;
1087   // Take apart the address of the LoadKlass:
1088   Node* adr1 = ldk1->in(MemNode::Address);
1089   intptr_t con2 = 0;
1090   Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2);
1091   if (ldk2 == NULL)
1092     return NULL;
1093   if (con2 == oopDesc::klass_offset_in_bytes()) {
1094     // We are inspecting an object's concrete class.
1095     // Short-circuit the check if the query is abstract.
1096     if (superklass->is_interface() ||
1097         superklass->is_abstract()) {
1098       // Make it come out always false:
1099       this->set_req(2, phase->makecon(TypePtr::NULL_PTR));
1100       return this;
1101     }
1102   }
1103 
1104   // Check for a LoadKlass from primary supertype array.
1105   // Any nested loadklass from loadklass+con must be from the p.s. array.
1106   if (ldk2->is_DecodeNKlass()) {
1107     // Keep ldk2 as DecodeN since it could be used in CmpP below.
1108     if (ldk2->in(1)->Opcode() != Op_LoadNKlass )
1109       return NULL;
1110   } else if (ldk2->Opcode() != Op_LoadKlass)
1111     return NULL;
1112 
1113   // Verify that we understand the situation
1114   if (con2 != (intptr_t) superklass->super_check_offset())
1115     return NULL;                // Might be element-klass loading from array klass
1116 
1117   // If 'superklass' has no subklasses and is not an interface, then we are
1118   // assured that the only input which will pass the type check is
1119   // 'superklass' itself.
1120   //
1121   // We could be more liberal here, and allow the optimization on interfaces
1122   // which have a single implementor.  This would require us to increase the
1123   // expressiveness of the add_dependency() mechanism.
1124   // %%% Do this after we fix TypeOopPtr:  Deps are expressive enough now.
1125 
1126   // Object arrays must have their base element have no subtypes
1127   while (superklass->is_obj_array_klass()) {
1128     ciType* elem = superklass->as_obj_array_klass()->element_type();
1129     superklass = elem->as_klass();
1130   }
1131   if (superklass->is_instance_klass()) {
1132     ciInstanceKlass* ik = superklass->as_instance_klass();
1133     if (ik->has_subklass() || ik->is_interface())  return NULL;
1134     // Add a dependency if there is a chance that a subclass will be added later.
1135     if (!ik->is_final()) {
1136       phase->C->dependencies()->assert_leaf_type(ik);
1137     }
1138   }
1139 
1140   // Bypass the dependent load, and compare directly
1141   this->set_req(1,ldk2);
1142 
1143   return this;
1144 }
1145 
1146 //=============================================================================
1147 //------------------------------sub--------------------------------------------
1148 // Simplify an CmpN (compare 2 pointers) node, based on local information.
1149 // If both inputs are constants, compare them.
sub(const Type * t1,const Type * t2) const1150 const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const {
1151   ShouldNotReachHere();
1152   return bottom_type();
1153 }
1154 
1155 //------------------------------Ideal------------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)1156 Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
1157   return NULL;
1158 }
1159 
1160 //=============================================================================
1161 //------------------------------Value------------------------------------------
1162 // Simplify an CmpF (compare 2 floats ) node, based on local information.
1163 // If both inputs are constants, compare them.
Value(PhaseGVN * phase) const1164 const Type* CmpFNode::Value(PhaseGVN* phase) const {
1165   const Node* in1 = in(1);
1166   const Node* in2 = in(2);
1167   // Either input is TOP ==> the result is TOP
1168   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
1169   if( t1 == Type::TOP ) return Type::TOP;
1170   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
1171   if( t2 == Type::TOP ) return Type::TOP;
1172 
1173   // Not constants?  Don't know squat - even if they are the same
1174   // value!  If they are NaN's they compare to LT instead of EQ.
1175   const TypeF *tf1 = t1->isa_float_constant();
1176   const TypeF *tf2 = t2->isa_float_constant();
1177   if( !tf1 || !tf2 ) return TypeInt::CC;
1178 
1179   // This implements the Java bytecode fcmpl, so unordered returns -1.
1180   if( tf1->is_nan() || tf2->is_nan() )
1181     return TypeInt::CC_LT;
1182 
1183   if( tf1->_f < tf2->_f ) return TypeInt::CC_LT;
1184   if( tf1->_f > tf2->_f ) return TypeInt::CC_GT;
1185   assert( tf1->_f == tf2->_f, "do not understand FP behavior" );
1186   return TypeInt::CC_EQ;
1187 }
1188 
1189 
1190 //=============================================================================
1191 //------------------------------Value------------------------------------------
1192 // Simplify an CmpD (compare 2 doubles ) node, based on local information.
1193 // If both inputs are constants, compare them.
Value(PhaseGVN * phase) const1194 const Type* CmpDNode::Value(PhaseGVN* phase) const {
1195   const Node* in1 = in(1);
1196   const Node* in2 = in(2);
1197   // Either input is TOP ==> the result is TOP
1198   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
1199   if( t1 == Type::TOP ) return Type::TOP;
1200   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
1201   if( t2 == Type::TOP ) return Type::TOP;
1202 
1203   // Not constants?  Don't know squat - even if they are the same
1204   // value!  If they are NaN's they compare to LT instead of EQ.
1205   const TypeD *td1 = t1->isa_double_constant();
1206   const TypeD *td2 = t2->isa_double_constant();
1207   if( !td1 || !td2 ) return TypeInt::CC;
1208 
1209   // This implements the Java bytecode dcmpl, so unordered returns -1.
1210   if( td1->is_nan() || td2->is_nan() )
1211     return TypeInt::CC_LT;
1212 
1213   if( td1->_d < td2->_d ) return TypeInt::CC_LT;
1214   if( td1->_d > td2->_d ) return TypeInt::CC_GT;
1215   assert( td1->_d == td2->_d, "do not understand FP behavior" );
1216   return TypeInt::CC_EQ;
1217 }
1218 
1219 //------------------------------Ideal------------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)1220 Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){
1221   // Check if we can change this to a CmpF and remove a ConvD2F operation.
1222   // Change  (CMPD (F2D (float)) (ConD value))
1223   // To      (CMPF      (float)  (ConF value))
1224   // Valid when 'value' does not lose precision as a float.
1225   // Benefits: eliminates conversion, does not require 24-bit mode
1226 
1227   // NaNs prevent commuting operands.  This transform works regardless of the
1228   // order of ConD and ConvF2D inputs by preserving the original order.
1229   int idx_f2d = 1;              // ConvF2D on left side?
1230   if( in(idx_f2d)->Opcode() != Op_ConvF2D )
1231     idx_f2d = 2;                // No, swap to check for reversed args
1232   int idx_con = 3-idx_f2d;      // Check for the constant on other input
1233 
1234   if( ConvertCmpD2CmpF &&
1235       in(idx_f2d)->Opcode() == Op_ConvF2D &&
1236       in(idx_con)->Opcode() == Op_ConD ) {
1237     const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant();
1238     double t2_value_as_double = t2->_d;
1239     float  t2_value_as_float  = (float)t2_value_as_double;
1240     if( t2_value_as_double == (double)t2_value_as_float ) {
1241       // Test value can be represented as a float
1242       // Eliminate the conversion to double and create new comparison
1243       Node *new_in1 = in(idx_f2d)->in(1);
1244       Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) );
1245       if( idx_f2d != 1 ) {      // Must flip args to match original order
1246         Node *tmp = new_in1;
1247         new_in1 = new_in2;
1248         new_in2 = tmp;
1249       }
1250       CmpFNode *new_cmp = (Opcode() == Op_CmpD3)
1251         ? new CmpF3Node( new_in1, new_in2 )
1252         : new CmpFNode ( new_in1, new_in2 ) ;
1253       return new_cmp;           // Changed to CmpFNode
1254     }
1255     // Testing value required the precision of a double
1256   }
1257   return NULL;                  // No change
1258 }
1259 
1260 
1261 //=============================================================================
1262 //------------------------------cc2logical-------------------------------------
1263 // Convert a condition code type to a logical type
cc2logical(const Type * CC) const1264 const Type *BoolTest::cc2logical( const Type *CC ) const {
1265   if( CC == Type::TOP ) return Type::TOP;
1266   if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse
1267   const TypeInt *ti = CC->is_int();
1268   if( ti->is_con() ) {          // Only 1 kind of condition codes set?
1269     // Match low order 2 bits
1270     int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0;
1271     if( _test & 4 ) tmp = 1-tmp;     // Optionally complement result
1272     return TypeInt::make(tmp);       // Boolean result
1273   }
1274 
1275   if( CC == TypeInt::CC_GE ) {
1276     if( _test == ge ) return TypeInt::ONE;
1277     if( _test == lt ) return TypeInt::ZERO;
1278   }
1279   if( CC == TypeInt::CC_LE ) {
1280     if( _test == le ) return TypeInt::ONE;
1281     if( _test == gt ) return TypeInt::ZERO;
1282   }
1283 
1284   return TypeInt::BOOL;
1285 }
1286 
1287 //------------------------------dump_spec-------------------------------------
1288 // Print special per-node info
dump_on(outputStream * st) const1289 void BoolTest::dump_on(outputStream *st) const {
1290   const char *msg[] = {"eq","gt","of","lt","ne","le","nof","ge"};
1291   st->print("%s", msg[_test]);
1292 }
1293 
1294 // Returns the logical AND of two tests (or 'never' if both tests can never be true).
1295 // For example, a test for 'le' followed by a test for 'lt' is equivalent with 'lt'.
merge(BoolTest other) const1296 BoolTest::mask BoolTest::merge(BoolTest other) const {
1297   const mask res[illegal+1][illegal+1] = {
1298     // eq,      gt,      of,      lt,      ne,      le,      nof,     ge,      never,   illegal
1299       {eq,      never,   illegal, never,   never,   eq,      illegal, eq,      never,   illegal},  // eq
1300       {never,   gt,      illegal, never,   gt,      never,   illegal, gt,      never,   illegal},  // gt
1301       {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, never,   illegal},  // of
1302       {never,   never,   illegal, lt,      lt,      lt,      illegal, never,   never,   illegal},  // lt
1303       {never,   gt,      illegal, lt,      ne,      lt,      illegal, gt,      never,   illegal},  // ne
1304       {eq,      never,   illegal, lt,      lt,      le,      illegal, eq,      never,   illegal},  // le
1305       {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, never,   illegal},  // nof
1306       {eq,      gt,      illegal, never,   gt,      eq,      illegal, ge,      never,   illegal},  // ge
1307       {never,   never,   never,   never,   never,   never,   never,   never,   never,   illegal},  // never
1308       {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal}}; // illegal
1309   return res[_test][other._test];
1310 }
1311 
1312 //=============================================================================
hash() const1313 uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); }
size_of() const1314 uint BoolNode::size_of() const { return sizeof(BoolNode); }
1315 
1316 //------------------------------operator==-------------------------------------
cmp(const Node & n) const1317 bool BoolNode::cmp( const Node &n ) const {
1318   const BoolNode *b = (const BoolNode *)&n; // Cast up
1319   return (_test._test == b->_test._test);
1320 }
1321 
1322 //-------------------------------make_predicate--------------------------------
make_predicate(Node * test_value,PhaseGVN * phase)1323 Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) {
1324   if (test_value->is_Con())   return test_value;
1325   if (test_value->is_Bool())  return test_value;
1326   if (test_value->is_CMove() &&
1327       test_value->in(CMoveNode::Condition)->is_Bool()) {
1328     BoolNode*   bol   = test_value->in(CMoveNode::Condition)->as_Bool();
1329     const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse));
1330     const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue));
1331     if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) {
1332       return bol;
1333     } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) {
1334       return phase->transform( bol->negate(phase) );
1335     }
1336     // Else fall through.  The CMove gets in the way of the test.
1337     // It should be the case that make_predicate(bol->as_int_value()) == bol.
1338   }
1339   Node* cmp = new CmpINode(test_value, phase->intcon(0));
1340   cmp = phase->transform(cmp);
1341   Node* bol = new BoolNode(cmp, BoolTest::ne);
1342   return phase->transform(bol);
1343 }
1344 
1345 //--------------------------------as_int_value---------------------------------
as_int_value(PhaseGVN * phase)1346 Node* BoolNode::as_int_value(PhaseGVN* phase) {
1347   // Inverse to make_predicate.  The CMove probably boils down to a Conv2B.
1348   Node* cmov = CMoveNode::make(NULL, this,
1349                                phase->intcon(0), phase->intcon(1),
1350                                TypeInt::BOOL);
1351   return phase->transform(cmov);
1352 }
1353 
1354 //----------------------------------negate-------------------------------------
negate(PhaseGVN * phase)1355 BoolNode* BoolNode::negate(PhaseGVN* phase) {
1356   return new BoolNode(in(1), _test.negate());
1357 }
1358 
1359 // Change "bool eq/ne (cmp (add/sub A B) C)" into false/true if add/sub
1360 // overflows and we can prove that C is not in the two resulting ranges.
1361 // This optimization is similar to the one performed by CmpUNode::Value().
fold_cmpI(PhaseGVN * phase,SubNode * cmp,Node * cmp1,int cmp_op,int cmp1_op,const TypeInt * cmp2_type)1362 Node* BoolNode::fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op,
1363                           int cmp1_op, const TypeInt* cmp2_type) {
1364   // Only optimize eq/ne integer comparison of add/sub
1365   if((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1366      (cmp_op == Op_CmpI) && (cmp1_op == Op_AddI || cmp1_op == Op_SubI)) {
1367     // Skip cases were inputs of add/sub are not integers or of bottom type
1368     const TypeInt* r0 = phase->type(cmp1->in(1))->isa_int();
1369     const TypeInt* r1 = phase->type(cmp1->in(2))->isa_int();
1370     if ((r0 != NULL) && (r0 != TypeInt::INT) &&
1371         (r1 != NULL) && (r1 != TypeInt::INT) &&
1372         (cmp2_type != TypeInt::INT)) {
1373       // Compute exact (long) type range of add/sub result
1374       jlong lo_long = r0->_lo;
1375       jlong hi_long = r0->_hi;
1376       if (cmp1_op == Op_AddI) {
1377         lo_long += r1->_lo;
1378         hi_long += r1->_hi;
1379       } else {
1380         lo_long -= r1->_hi;
1381         hi_long -= r1->_lo;
1382       }
1383       // Check for over-/underflow by casting to integer
1384       int lo_int = (int)lo_long;
1385       int hi_int = (int)hi_long;
1386       bool underflow = lo_long != (jlong)lo_int;
1387       bool overflow  = hi_long != (jlong)hi_int;
1388       if ((underflow != overflow) && (hi_int < lo_int)) {
1389         // Overflow on one boundary, compute resulting type ranges:
1390         // tr1 [MIN_INT, hi_int] and tr2 [lo_int, MAX_INT]
1391         int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here
1392         const TypeInt* tr1 = TypeInt::make(min_jint, hi_int, w);
1393         const TypeInt* tr2 = TypeInt::make(lo_int, max_jint, w);
1394         // Compare second input of cmp to both type ranges
1395         const Type* sub_tr1 = cmp->sub(tr1, cmp2_type);
1396         const Type* sub_tr2 = cmp->sub(tr2, cmp2_type);
1397         if (sub_tr1 == TypeInt::CC_LT && sub_tr2 == TypeInt::CC_GT) {
1398           // The result of the add/sub will never equal cmp2. Replace BoolNode
1399           // by false (0) if it tests for equality and by true (1) otherwise.
1400           return ConINode::make((_test._test == BoolTest::eq) ? 0 : 1);
1401         }
1402       }
1403     }
1404   }
1405   return NULL;
1406 }
1407 
is_counted_loop_cmp(Node * cmp)1408 static bool is_counted_loop_cmp(Node *cmp) {
1409   Node *n = cmp->in(1)->in(1);
1410   return n != NULL &&
1411          n->is_Phi() &&
1412          n->in(0) != NULL &&
1413          n->in(0)->is_CountedLoop() &&
1414          n->in(0)->as_CountedLoop()->phi() == n;
1415 }
1416 
1417 //------------------------------Ideal------------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)1418 Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1419   // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)".
1420   // This moves the constant to the right.  Helps value-numbering.
1421   Node *cmp = in(1);
1422   if( !cmp->is_Sub() ) return NULL;
1423   int cop = cmp->Opcode();
1424   if( cop == Op_FastLock || cop == Op_FastUnlock || cmp->is_SubTypeCheck()) return NULL;
1425   Node *cmp1 = cmp->in(1);
1426   Node *cmp2 = cmp->in(2);
1427   if( !cmp1 ) return NULL;
1428 
1429   if (_test._test == BoolTest::overflow || _test._test == BoolTest::no_overflow) {
1430     return NULL;
1431   }
1432 
1433   // Constant on left?
1434   Node *con = cmp1;
1435   uint op2 = cmp2->Opcode();
1436   // Move constants to the right of compare's to canonicalize.
1437   // Do not muck with Opaque1 nodes, as this indicates a loop
1438   // guard that cannot change shape.
1439   if( con->is_Con() && !cmp2->is_Con() && op2 != Op_Opaque1 &&
1440       // Because of NaN's, CmpD and CmpF are not commutative
1441       cop != Op_CmpD && cop != Op_CmpF &&
1442       // Protect against swapping inputs to a compare when it is used by a
1443       // counted loop exit, which requires maintaining the loop-limit as in(2)
1444       !is_counted_loop_exit_test() ) {
1445     // Ok, commute the constant to the right of the cmp node.
1446     // Clone the Node, getting a new Node of the same class
1447     cmp = cmp->clone();
1448     // Swap inputs to the clone
1449     cmp->swap_edges(1, 2);
1450     cmp = phase->transform( cmp );
1451     return new BoolNode( cmp, _test.commute() );
1452   }
1453 
1454   // Change "bool eq/ne (cmp (and X 16) 16)" into "bool ne/eq (cmp (and X 16) 0)".
1455   if (cop == Op_CmpI &&
1456       (_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1457       cmp1->Opcode() == Op_AndI && cmp2->Opcode() == Op_ConI &&
1458       cmp1->in(2)->Opcode() == Op_ConI) {
1459     const TypeInt *t12 = phase->type(cmp2)->isa_int();
1460     const TypeInt *t112 = phase->type(cmp1->in(2))->isa_int();
1461     if (t12 && t12->is_con() && t112 && t112->is_con() &&
1462         t12->get_con() == t112->get_con() && is_power_of_2(t12->get_con())) {
1463       Node *ncmp = phase->transform(new CmpINode(cmp1, phase->intcon(0)));
1464       return new BoolNode(ncmp, _test.negate());
1465     }
1466   }
1467 
1468   // Same for long type: change "bool eq/ne (cmp (and X 16) 16)" into "bool ne/eq (cmp (and X 16) 0)".
1469   if (cop == Op_CmpL &&
1470       (_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1471       cmp1->Opcode() == Op_AndL && cmp2->Opcode() == Op_ConL &&
1472       cmp1->in(2)->Opcode() == Op_ConL) {
1473     const TypeLong *t12 = phase->type(cmp2)->isa_long();
1474     const TypeLong *t112 = phase->type(cmp1->in(2))->isa_long();
1475     if (t12 && t12->is_con() && t112 && t112->is_con() &&
1476         t12->get_con() == t112->get_con() && is_power_of_2(t12->get_con())) {
1477       Node *ncmp = phase->transform(new CmpLNode(cmp1, phase->longcon(0)));
1478       return new BoolNode(ncmp, _test.negate());
1479     }
1480   }
1481 
1482   // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)".
1483   // The XOR-1 is an idiom used to flip the sense of a bool.  We flip the
1484   // test instead.
1485   int cmp1_op = cmp1->Opcode();
1486   const TypeInt* cmp2_type = phase->type(cmp2)->isa_int();
1487   if (cmp2_type == NULL)  return NULL;
1488   Node* j_xor = cmp1;
1489   if( cmp2_type == TypeInt::ZERO &&
1490       cmp1_op == Op_XorI &&
1491       j_xor->in(1) != j_xor &&          // An xor of itself is dead
1492       phase->type( j_xor->in(1) ) == TypeInt::BOOL &&
1493       phase->type( j_xor->in(2) ) == TypeInt::ONE &&
1494       (_test._test == BoolTest::eq ||
1495        _test._test == BoolTest::ne) ) {
1496     Node *ncmp = phase->transform(new CmpINode(j_xor->in(1),cmp2));
1497     return new BoolNode( ncmp, _test.negate() );
1498   }
1499 
1500   // Change ((x & m) u<= m) or ((m & x) u<= m) to always true
1501   // Same with ((x & m) u< m+1) and ((m & x) u< m+1)
1502   if (cop == Op_CmpU &&
1503       cmp1_op == Op_AndI) {
1504     Node* bound = NULL;
1505     if (_test._test == BoolTest::le) {
1506       bound = cmp2;
1507     } else if (_test._test == BoolTest::lt &&
1508                cmp2->Opcode() == Op_AddI &&
1509                cmp2->in(2)->find_int_con(0) == 1) {
1510       bound = cmp2->in(1);
1511     }
1512     if (cmp1->in(2) == bound || cmp1->in(1) == bound) {
1513       return ConINode::make(1);
1514     }
1515   }
1516 
1517   // Change ((x & (m - 1)) u< m) into (m > 0)
1518   // This is the off-by-one variant of the above
1519   if (cop == Op_CmpU &&
1520       _test._test == BoolTest::lt &&
1521       cmp1_op == Op_AndI) {
1522     Node* l = cmp1->in(1);
1523     Node* r = cmp1->in(2);
1524     for (int repeat = 0; repeat < 2; repeat++) {
1525       bool match = r->Opcode() == Op_AddI && r->in(2)->find_int_con(0) == -1 &&
1526                    r->in(1) == cmp2;
1527       if (match) {
1528         // arraylength known to be non-negative, so a (arraylength != 0) is sufficient,
1529         // but to be compatible with the array range check pattern, use (arraylength u> 0)
1530         Node* ncmp = cmp2->Opcode() == Op_LoadRange
1531                      ? phase->transform(new CmpUNode(cmp2, phase->intcon(0)))
1532                      : phase->transform(new CmpINode(cmp2, phase->intcon(0)));
1533         return new BoolNode(ncmp, BoolTest::gt);
1534       } else {
1535         // commute and try again
1536         l = cmp1->in(2);
1537         r = cmp1->in(1);
1538       }
1539     }
1540   }
1541 
1542   // Change x u< 1 or x u<= 0 to x == 0
1543   if (cop == Op_CmpU &&
1544       cmp1_op != Op_LoadRange &&
1545       ((_test._test == BoolTest::lt &&
1546         cmp2->find_int_con(-1) == 1) ||
1547        (_test._test == BoolTest::le &&
1548         cmp2->find_int_con(-1) == 0))) {
1549     Node* ncmp = phase->transform(new CmpINode(cmp1, phase->intcon(0)));
1550     return new BoolNode(ncmp, BoolTest::eq);
1551   }
1552 
1553   // Change (arraylength <= 0) or (arraylength == 0)
1554   //   into (arraylength u<= 0)
1555   // Also change (arraylength != 0) into (arraylength u> 0)
1556   // The latter version matches the code pattern generated for
1557   // array range checks, which will more likely be optimized later.
1558   if (cop == Op_CmpI &&
1559       cmp1_op == Op_LoadRange &&
1560       cmp2->find_int_con(-1) == 0) {
1561     if (_test._test == BoolTest::le || _test._test == BoolTest::eq) {
1562       Node* ncmp = phase->transform(new CmpUNode(cmp1, cmp2));
1563       return new BoolNode(ncmp, BoolTest::le);
1564     } else if (_test._test == BoolTest::ne) {
1565       Node* ncmp = phase->transform(new CmpUNode(cmp1, cmp2));
1566       return new BoolNode(ncmp, BoolTest::gt);
1567     }
1568   }
1569 
1570   // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)".
1571   // This is a standard idiom for branching on a boolean value.
1572   Node *c2b = cmp1;
1573   if( cmp2_type == TypeInt::ZERO &&
1574       cmp1_op == Op_Conv2B &&
1575       (_test._test == BoolTest::eq ||
1576        _test._test == BoolTest::ne) ) {
1577     Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int()
1578        ? (Node*)new CmpINode(c2b->in(1),cmp2)
1579        : (Node*)new CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR))
1580     );
1581     return new BoolNode( ncmp, _test._test );
1582   }
1583 
1584   // Comparing a SubI against a zero is equal to comparing the SubI
1585   // arguments directly.  This only works for eq and ne comparisons
1586   // due to possible integer overflow.
1587   if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1588         (cop == Op_CmpI) &&
1589         (cmp1_op == Op_SubI) &&
1590         ( cmp2_type == TypeInt::ZERO ) ) {
1591     Node *ncmp = phase->transform( new CmpINode(cmp1->in(1),cmp1->in(2)));
1592     return new BoolNode( ncmp, _test._test );
1593   }
1594 
1595   // Same as above but with and AddI of a constant
1596   if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1597       cop == Op_CmpI &&
1598       cmp1_op == Op_AddI &&
1599       cmp1->in(2) != NULL &&
1600       phase->type(cmp1->in(2))->isa_int() &&
1601       phase->type(cmp1->in(2))->is_int()->is_con() &&
1602       cmp2_type == TypeInt::ZERO &&
1603       !is_counted_loop_cmp(cmp) // modifying the exit test of a counted loop messes the counted loop shape
1604       ) {
1605     const TypeInt* cmp1_in2 = phase->type(cmp1->in(2))->is_int();
1606     Node *ncmp = phase->transform( new CmpINode(cmp1->in(1),phase->intcon(-cmp1_in2->_hi)));
1607     return new BoolNode( ncmp, _test._test );
1608   }
1609 
1610   // Change "bool eq/ne (cmp (phi (X -X) 0))" into "bool eq/ne (cmp X 0)"
1611   // since zero check of conditional negation of an integer is equal to
1612   // zero check of the integer directly.
1613   if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1614       (cop == Op_CmpI) &&
1615       (cmp2_type == TypeInt::ZERO) &&
1616       (cmp1_op == Op_Phi)) {
1617     // There should be a diamond phi with true path at index 1 or 2
1618     PhiNode *phi = cmp1->as_Phi();
1619     int idx_true = phi->is_diamond_phi();
1620     if (idx_true != 0) {
1621       // True input is in(idx_true) while false input is in(3 - idx_true)
1622       Node *tin = phi->in(idx_true);
1623       Node *fin = phi->in(3 - idx_true);
1624       if ((tin->Opcode() == Op_SubI) &&
1625           (phase->type(tin->in(1)) == TypeInt::ZERO) &&
1626           (tin->in(2) == fin)) {
1627         // Found conditional negation at true path, create a new CmpINode without that
1628         Node *ncmp = phase->transform(new CmpINode(fin, cmp2));
1629         return new BoolNode(ncmp, _test._test);
1630       }
1631       if ((fin->Opcode() == Op_SubI) &&
1632           (phase->type(fin->in(1)) == TypeInt::ZERO) &&
1633           (fin->in(2) == tin)) {
1634         // Found conditional negation at false path, create a new CmpINode without that
1635         Node *ncmp = phase->transform(new CmpINode(tin, cmp2));
1636         return new BoolNode(ncmp, _test._test);
1637       }
1638     }
1639   }
1640 
1641   // Change (-A vs 0) into (A vs 0) by commuting the test.  Disallow in the
1642   // most general case because negating 0x80000000 does nothing.  Needed for
1643   // the CmpF3/SubI/CmpI idiom.
1644   if( cop == Op_CmpI &&
1645       cmp1_op == Op_SubI &&
1646       cmp2_type == TypeInt::ZERO &&
1647       phase->type( cmp1->in(1) ) == TypeInt::ZERO &&
1648       phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) {
1649     Node *ncmp = phase->transform( new CmpINode(cmp1->in(2),cmp2));
1650     return new BoolNode( ncmp, _test.commute() );
1651   }
1652 
1653   // Try to optimize signed integer comparison
1654   return fold_cmpI(phase, cmp->as_Sub(), cmp1, cop, cmp1_op, cmp2_type);
1655 
1656   //  The transformation below is not valid for either signed or unsigned
1657   //  comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE.
1658   //  This transformation can be resurrected when we are able to
1659   //  make inferences about the range of values being subtracted from
1660   //  (or added to) relative to the wraparound point.
1661   //
1662   //    // Remove +/-1's if possible.
1663   //    // "X <= Y-1" becomes "X <  Y"
1664   //    // "X+1 <= Y" becomes "X <  Y"
1665   //    // "X <  Y+1" becomes "X <= Y"
1666   //    // "X-1 <  Y" becomes "X <= Y"
1667   //    // Do not this to compares off of the counted-loop-end.  These guys are
1668   //    // checking the trip counter and they want to use the post-incremented
1669   //    // counter.  If they use the PRE-incremented counter, then the counter has
1670   //    // to be incremented in a private block on a loop backedge.
1671   //    if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd )
1672   //      return NULL;
1673   //  #ifndef PRODUCT
1674   //    // Do not do this in a wash GVN pass during verification.
1675   //    // Gets triggered by too many simple optimizations to be bothered with
1676   //    // re-trying it again and again.
1677   //    if( !phase->allow_progress() ) return NULL;
1678   //  #endif
1679   //    // Not valid for unsigned compare because of corner cases in involving zero.
1680   //    // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an
1681   //    // exception in case X is 0 (because 0-1 turns into 4billion unsigned but
1682   //    // "0 <=u Y" is always true).
1683   //    if( cmp->Opcode() == Op_CmpU ) return NULL;
1684   //    int cmp2_op = cmp2->Opcode();
1685   //    if( _test._test == BoolTest::le ) {
1686   //      if( cmp1_op == Op_AddI &&
1687   //          phase->type( cmp1->in(2) ) == TypeInt::ONE )
1688   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt );
1689   //      else if( cmp2_op == Op_AddI &&
1690   //         phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 )
1691   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt );
1692   //    } else if( _test._test == BoolTest::lt ) {
1693   //      if( cmp1_op == Op_AddI &&
1694   //          phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 )
1695   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le );
1696   //      else if( cmp2_op == Op_AddI &&
1697   //         phase->type( cmp2->in(2) ) == TypeInt::ONE )
1698   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le );
1699   //    }
1700 }
1701 
1702 //------------------------------Value------------------------------------------
1703 // Simplify a Bool (convert condition codes to boolean (1 or 0)) node,
1704 // based on local information.   If the input is constant, do it.
Value(PhaseGVN * phase) const1705 const Type* BoolNode::Value(PhaseGVN* phase) const {
1706   return _test.cc2logical( phase->type( in(1) ) );
1707 }
1708 
1709 #ifndef PRODUCT
1710 //------------------------------dump_spec--------------------------------------
1711 // Dump special per-node info
dump_spec(outputStream * st) const1712 void BoolNode::dump_spec(outputStream *st) const {
1713   st->print("[");
1714   _test.dump_on(st);
1715   st->print("]");
1716 }
1717 
1718 //-------------------------------related---------------------------------------
1719 // A BoolNode's related nodes are all of its data inputs, and all of its
1720 // outputs until control nodes are hit, which are included. In compact
1721 // representation, inputs till level 3 and immediate outputs are included.
related(GrowableArray<Node * > * in_rel,GrowableArray<Node * > * out_rel,bool compact) const1722 void BoolNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
1723   if (compact) {
1724     this->collect_nodes(in_rel, 3, false, true);
1725     this->collect_nodes(out_rel, -1, false, false);
1726   } else {
1727     this->collect_nodes_in_all_data(in_rel, false);
1728     this->collect_nodes_out_all_ctrl_boundary(out_rel);
1729   }
1730 }
1731 #endif
1732 
1733 //----------------------is_counted_loop_exit_test------------------------------
1734 // Returns true if node is used by a counted loop node.
is_counted_loop_exit_test()1735 bool BoolNode::is_counted_loop_exit_test() {
1736   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
1737     Node* use = fast_out(i);
1738     if (use->is_CountedLoopEnd()) {
1739       return true;
1740     }
1741   }
1742   return false;
1743 }
1744 
1745 //=============================================================================
1746 //------------------------------Value------------------------------------------
1747 // Compute sqrt
Value(PhaseGVN * phase) const1748 const Type* SqrtDNode::Value(PhaseGVN* phase) const {
1749   const Type *t1 = phase->type( in(1) );
1750   if( t1 == Type::TOP ) return Type::TOP;
1751   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1752   double d = t1->getd();
1753   if( d < 0.0 ) return Type::DOUBLE;
1754   return TypeD::make( sqrt( d ) );
1755 }
1756 
Value(PhaseGVN * phase) const1757 const Type* SqrtFNode::Value(PhaseGVN* phase) const {
1758   const Type *t1 = phase->type( in(1) );
1759   if( t1 == Type::TOP ) return Type::TOP;
1760   if( t1->base() != Type::FloatCon ) return Type::FLOAT;
1761   float f = t1->getf();
1762   if( f < 0.0f ) return Type::FLOAT;
1763   return TypeF::make( (float)sqrt( (double)f ) );
1764 }
1765