1 /*
2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3  *
4  * This code is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License version 2 only, as
6  * published by the Free Software Foundation.  Oracle designates this
7  * particular file as subject to the "Classpath" exception as provided
8  * by Oracle in the LICENSE file that accompanied this code.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  */
24 
25 /*
26  * This file is available under and governed by the GNU General Public
27  * License version 2 only, as published by the Free Software Foundation.
28  * However, the following notice accompanied the original version of this
29  * file:
30  *
31  * Written by Doug Lea with assistance from members of JCP JSR-166
32  * Expert Group and released to the public domain, as explained at
33  * http://creativecommons.org/publicdomain/zero/1.0/
34  */
35 
36 package java.util.concurrent;
37 
38 import java.util.ArrayList;
39 import java.util.ConcurrentModificationException;
40 import java.util.HashSet;
41 import java.util.Iterator;
42 import java.util.List;
43 import java.util.concurrent.atomic.AtomicInteger;
44 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
45 import java.util.concurrent.locks.Condition;
46 import java.util.concurrent.locks.ReentrantLock;
47 
48 /**
49  * An {@link ExecutorService} that executes each submitted task using
50  * one of possibly several pooled threads, normally configured
51  * using {@link Executors} factory methods.
52  *
53  * <p>Thread pools address two different problems: they usually
54  * provide improved performance when executing large numbers of
55  * asynchronous tasks, due to reduced per-task invocation overhead,
56  * and they provide a means of bounding and managing the resources,
57  * including threads, consumed when executing a collection of tasks.
58  * Each {@code ThreadPoolExecutor} also maintains some basic
59  * statistics, such as the number of completed tasks.
60  *
61  * <p>To be useful across a wide range of contexts, this class
62  * provides many adjustable parameters and extensibility
63  * hooks. However, programmers are urged to use the more convenient
64  * {@link Executors} factory methods {@link
65  * Executors#newCachedThreadPool} (unbounded thread pool, with
66  * automatic thread reclamation), {@link Executors#newFixedThreadPool}
67  * (fixed size thread pool) and {@link
68  * Executors#newSingleThreadExecutor} (single background thread), that
69  * preconfigure settings for the most common usage
70  * scenarios. Otherwise, use the following guide when manually
71  * configuring and tuning this class:
72  *
73  * <dl>
74  *
75  * <dt>Core and maximum pool sizes</dt>
76  *
77  * <dd>A {@code ThreadPoolExecutor} will automatically adjust the
78  * pool size (see {@link #getPoolSize})
79  * according to the bounds set by
80  * corePoolSize (see {@link #getCorePoolSize}) and
81  * maximumPoolSize (see {@link #getMaximumPoolSize}).
82  *
83  * When a new task is submitted in method {@link #execute(Runnable)},
84  * if fewer than corePoolSize threads are running, a new thread is
85  * created to handle the request, even if other worker threads are
86  * idle.  Else if fewer than maximumPoolSize threads are running, a
87  * new thread will be created to handle the request only if the queue
88  * is full.  By setting corePoolSize and maximumPoolSize the same, you
89  * create a fixed-size thread pool. By setting maximumPoolSize to an
90  * essentially unbounded value such as {@code Integer.MAX_VALUE}, you
91  * allow the pool to accommodate an arbitrary number of concurrent
92  * tasks. Most typically, core and maximum pool sizes are set only
93  * upon construction, but they may also be changed dynamically using
94  * {@link #setCorePoolSize} and {@link #setMaximumPoolSize}. </dd>
95  *
96  * <dt>On-demand construction</dt>
97  *
98  * <dd>By default, even core threads are initially created and
99  * started only when new tasks arrive, but this can be overridden
100  * dynamically using method {@link #prestartCoreThread} or {@link
101  * #prestartAllCoreThreads}.  You probably want to prestart threads if
102  * you construct the pool with a non-empty queue. </dd>
103  *
104  * <dt>Creating new threads</dt>
105  *
106  * <dd>New threads are created using a {@link ThreadFactory}.  If not
107  * otherwise specified, a {@link Executors#defaultThreadFactory} is
108  * used, that creates threads to all be in the same {@link
109  * ThreadGroup} and with the same {@code NORM_PRIORITY} priority and
110  * non-daemon status. By supplying a different ThreadFactory, you can
111  * alter the thread's name, thread group, priority, daemon status,
112  * etc. If a {@code ThreadFactory} fails to create a thread when asked
113  * by returning null from {@code newThread}, the executor will
114  * continue, but might not be able to execute any tasks. Threads
115  * should possess the "modifyThread" {@code RuntimePermission}. If
116  * worker threads or other threads using the pool do not possess this
117  * permission, service may be degraded: configuration changes may not
118  * take effect in a timely manner, and a shutdown pool may remain in a
119  * state in which termination is possible but not completed.</dd>
120  *
121  * <dt>Keep-alive times</dt>
122  *
123  * <dd>If the pool currently has more than corePoolSize threads,
124  * excess threads will be terminated if they have been idle for more
125  * than the keepAliveTime (see {@link #getKeepAliveTime(TimeUnit)}).
126  * This provides a means of reducing resource consumption when the
127  * pool is not being actively used. If the pool becomes more active
128  * later, new threads will be constructed. This parameter can also be
129  * changed dynamically using method {@link #setKeepAliveTime(long,
130  * TimeUnit)}.  Using a value of {@code Long.MAX_VALUE} {@link
131  * TimeUnit#NANOSECONDS} effectively disables idle threads from ever
132  * terminating prior to shut down. By default, the keep-alive policy
133  * applies only when there are more than corePoolSize threads, but
134  * method {@link #allowCoreThreadTimeOut(boolean)} can be used to
135  * apply this time-out policy to core threads as well, so long as the
136  * keepAliveTime value is non-zero. </dd>
137  *
138  * <dt>Queuing</dt>
139  *
140  * <dd>Any {@link BlockingQueue} may be used to transfer and hold
141  * submitted tasks.  The use of this queue interacts with pool sizing:
142  *
143  * <ul>
144  *
145  * <li>If fewer than corePoolSize threads are running, the Executor
146  * always prefers adding a new thread
147  * rather than queuing.
148  *
149  * <li>If corePoolSize or more threads are running, the Executor
150  * always prefers queuing a request rather than adding a new
151  * thread.
152  *
153  * <li>If a request cannot be queued, a new thread is created unless
154  * this would exceed maximumPoolSize, in which case, the task will be
155  * rejected.
156  *
157  * </ul>
158  *
159  * There are three general strategies for queuing:
160  * <ol>
161  *
162  * <li><em> Direct handoffs.</em> A good default choice for a work
163  * queue is a {@link SynchronousQueue} that hands off tasks to threads
164  * without otherwise holding them. Here, an attempt to queue a task
165  * will fail if no threads are immediately available to run it, so a
166  * new thread will be constructed. This policy avoids lockups when
167  * handling sets of requests that might have internal dependencies.
168  * Direct handoffs generally require unbounded maximumPoolSizes to
169  * avoid rejection of new submitted tasks. This in turn admits the
170  * possibility of unbounded thread growth when commands continue to
171  * arrive on average faster than they can be processed.
172  *
173  * <li><em> Unbounded queues.</em> Using an unbounded queue (for
174  * example a {@link LinkedBlockingQueue} without a predefined
175  * capacity) will cause new tasks to wait in the queue when all
176  * corePoolSize threads are busy. Thus, no more than corePoolSize
177  * threads will ever be created. (And the value of the maximumPoolSize
178  * therefore doesn't have any effect.)  This may be appropriate when
179  * each task is completely independent of others, so tasks cannot
180  * affect each others execution; for example, in a web page server.
181  * While this style of queuing can be useful in smoothing out
182  * transient bursts of requests, it admits the possibility of
183  * unbounded work queue growth when commands continue to arrive on
184  * average faster than they can be processed.
185  *
186  * <li><em>Bounded queues.</em> A bounded queue (for example, an
187  * {@link ArrayBlockingQueue}) helps prevent resource exhaustion when
188  * used with finite maximumPoolSizes, but can be more difficult to
189  * tune and control.  Queue sizes and maximum pool sizes may be traded
190  * off for each other: Using large queues and small pools minimizes
191  * CPU usage, OS resources, and context-switching overhead, but can
192  * lead to artificially low throughput.  If tasks frequently block (for
193  * example if they are I/O bound), a system may be able to schedule
194  * time for more threads than you otherwise allow. Use of small queues
195  * generally requires larger pool sizes, which keeps CPUs busier but
196  * may encounter unacceptable scheduling overhead, which also
197  * decreases throughput.
198  *
199  * </ol>
200  *
201  * </dd>
202  *
203  * <dt>Rejected tasks</dt>
204  *
205  * <dd>New tasks submitted in method {@link #execute(Runnable)} will be
206  * <em>rejected</em> when the Executor has been shut down, and also when
207  * the Executor uses finite bounds for both maximum threads and work queue
208  * capacity, and is saturated.  In either case, the {@code execute} method
209  * invokes the {@link
210  * RejectedExecutionHandler#rejectedExecution(Runnable, ThreadPoolExecutor)}
211  * method of its {@link RejectedExecutionHandler}.  Four predefined handler
212  * policies are provided:
213  *
214  * <ol>
215  *
216  * <li>In the default {@link ThreadPoolExecutor.AbortPolicy}, the handler
217  * throws a runtime {@link RejectedExecutionException} upon rejection.
218  *
219  * <li>In {@link ThreadPoolExecutor.CallerRunsPolicy}, the thread
220  * that invokes {@code execute} itself runs the task. This provides a
221  * simple feedback control mechanism that will slow down the rate that
222  * new tasks are submitted.
223  *
224  * <li>In {@link ThreadPoolExecutor.DiscardPolicy}, a task that
225  * cannot be executed is simply dropped.
226  *
227  * <li>In {@link ThreadPoolExecutor.DiscardOldestPolicy}, if the
228  * executor is not shut down, the task at the head of the work queue
229  * is dropped, and then execution is retried (which can fail again,
230  * causing this to be repeated.)
231  *
232  * </ol>
233  *
234  * It is possible to define and use other kinds of {@link
235  * RejectedExecutionHandler} classes. Doing so requires some care
236  * especially when policies are designed to work only under particular
237  * capacity or queuing policies. </dd>
238  *
239  * <dt>Hook methods</dt>
240  *
241  * <dd>This class provides {@code protected} overridable
242  * {@link #beforeExecute(Thread, Runnable)} and
243  * {@link #afterExecute(Runnable, Throwable)} methods that are called
244  * before and after execution of each task.  These can be used to
245  * manipulate the execution environment; for example, reinitializing
246  * ThreadLocals, gathering statistics, or adding log entries.
247  * Additionally, method {@link #terminated} can be overridden to perform
248  * any special processing that needs to be done once the Executor has
249  * fully terminated.
250  *
251  * <p>If hook, callback, or BlockingQueue methods throw exceptions,
252  * internal worker threads may in turn fail, abruptly terminate, and
253  * possibly be replaced.</dd>
254  *
255  * <dt>Queue maintenance</dt>
256  *
257  * <dd>Method {@link #getQueue()} allows access to the work queue
258  * for purposes of monitoring and debugging.  Use of this method for
259  * any other purpose is strongly discouraged.  Two supplied methods,
260  * {@link #remove(Runnable)} and {@link #purge} are available to
261  * assist in storage reclamation when large numbers of queued tasks
262  * become cancelled.</dd>
263  *
264  * <dt>Reclamation</dt>
265  *
266  * <dd>A pool that is no longer referenced in a program <em>AND</em>
267  * has no remaining threads may be reclaimed (garbage collected)
268  * without being explicitly shutdown. You can configure a pool to
269  * allow all unused threads to eventually die by setting appropriate
270  * keep-alive times, using a lower bound of zero core threads and/or
271  * setting {@link #allowCoreThreadTimeOut(boolean)}.  </dd>
272  *
273  * </dl>
274  *
275  * <p><b>Extension example</b>. Most extensions of this class
276  * override one or more of the protected hook methods. For example,
277  * here is a subclass that adds a simple pause/resume feature:
278  *
279  * <pre> {@code
280  * class PausableThreadPoolExecutor extends ThreadPoolExecutor {
281  *   private boolean isPaused;
282  *   private ReentrantLock pauseLock = new ReentrantLock();
283  *   private Condition unpaused = pauseLock.newCondition();
284  *
285  *   public PausableThreadPoolExecutor(...) { super(...); }
286  *
287  *   protected void beforeExecute(Thread t, Runnable r) {
288  *     super.beforeExecute(t, r);
289  *     pauseLock.lock();
290  *     try {
291  *       while (isPaused) unpaused.await();
292  *     } catch (InterruptedException ie) {
293  *       t.interrupt();
294  *     } finally {
295  *       pauseLock.unlock();
296  *     }
297  *   }
298  *
299  *   public void pause() {
300  *     pauseLock.lock();
301  *     try {
302  *       isPaused = true;
303  *     } finally {
304  *       pauseLock.unlock();
305  *     }
306  *   }
307  *
308  *   public void resume() {
309  *     pauseLock.lock();
310  *     try {
311  *       isPaused = false;
312  *       unpaused.signalAll();
313  *     } finally {
314  *       pauseLock.unlock();
315  *     }
316  *   }
317  * }}</pre>
318  *
319  * @since 1.5
320  * @author Doug Lea
321  */
322 public class ThreadPoolExecutor extends AbstractExecutorService {
323     /**
324      * The main pool control state, ctl, is an atomic integer packing
325      * two conceptual fields
326      *   workerCount, indicating the effective number of threads
327      *   runState,    indicating whether running, shutting down etc
328      *
329      * In order to pack them into one int, we limit workerCount to
330      * (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
331      * billion) otherwise representable. If this is ever an issue in
332      * the future, the variable can be changed to be an AtomicLong,
333      * and the shift/mask constants below adjusted. But until the need
334      * arises, this code is a bit faster and simpler using an int.
335      *
336      * The workerCount is the number of workers that have been
337      * permitted to start and not permitted to stop.  The value may be
338      * transiently different from the actual number of live threads,
339      * for example when a ThreadFactory fails to create a thread when
340      * asked, and when exiting threads are still performing
341      * bookkeeping before terminating. The user-visible pool size is
342      * reported as the current size of the workers set.
343      *
344      * The runState provides the main lifecycle control, taking on values:
345      *
346      *   RUNNING:  Accept new tasks and process queued tasks
347      *   SHUTDOWN: Don't accept new tasks, but process queued tasks
348      *   STOP:     Don't accept new tasks, don't process queued tasks,
349      *             and interrupt in-progress tasks
350      *   TIDYING:  All tasks have terminated, workerCount is zero,
351      *             the thread transitioning to state TIDYING
352      *             will run the terminated() hook method
353      *   TERMINATED: terminated() has completed
354      *
355      * The numerical order among these values matters, to allow
356      * ordered comparisons. The runState monotonically increases over
357      * time, but need not hit each state. The transitions are:
358      *
359      * RUNNING -> SHUTDOWN
360      *    On invocation of shutdown()
361      * (RUNNING or SHUTDOWN) -> STOP
362      *    On invocation of shutdownNow()
363      * SHUTDOWN -> TIDYING
364      *    When both queue and pool are empty
365      * STOP -> TIDYING
366      *    When pool is empty
367      * TIDYING -> TERMINATED
368      *    When the terminated() hook method has completed
369      *
370      * Threads waiting in awaitTermination() will return when the
371      * state reaches TERMINATED.
372      *
373      * Detecting the transition from SHUTDOWN to TIDYING is less
374      * straightforward than you'd like because the queue may become
375      * empty after non-empty and vice versa during SHUTDOWN state, but
376      * we can only terminate if, after seeing that it is empty, we see
377      * that workerCount is 0 (which sometimes entails a recheck -- see
378      * below).
379      */
380     private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
381     private static final int COUNT_BITS = Integer.SIZE - 3;
382     private static final int COUNT_MASK = (1 << COUNT_BITS) - 1;
383 
384     // runState is stored in the high-order bits
385     private static final int RUNNING    = -1 << COUNT_BITS;
386     private static final int SHUTDOWN   =  0 << COUNT_BITS;
387     private static final int STOP       =  1 << COUNT_BITS;
388     private static final int TIDYING    =  2 << COUNT_BITS;
389     private static final int TERMINATED =  3 << COUNT_BITS;
390 
391     // Packing and unpacking ctl
runStateOf(int c)392     private static int runStateOf(int c)     { return c & ~COUNT_MASK; }
workerCountOf(int c)393     private static int workerCountOf(int c)  { return c & COUNT_MASK; }
ctlOf(int rs, int wc)394     private static int ctlOf(int rs, int wc) { return rs | wc; }
395 
396     /*
397      * Bit field accessors that don't require unpacking ctl.
398      * These depend on the bit layout and on workerCount being never negative.
399      */
400 
runStateLessThan(int c, int s)401     private static boolean runStateLessThan(int c, int s) {
402         return c < s;
403     }
404 
runStateAtLeast(int c, int s)405     private static boolean runStateAtLeast(int c, int s) {
406         return c >= s;
407     }
408 
isRunning(int c)409     private static boolean isRunning(int c) {
410         return c < SHUTDOWN;
411     }
412 
413     /**
414      * Attempts to CAS-increment the workerCount field of ctl.
415      */
compareAndIncrementWorkerCount(int expect)416     private boolean compareAndIncrementWorkerCount(int expect) {
417         return ctl.compareAndSet(expect, expect + 1);
418     }
419 
420     /**
421      * Attempts to CAS-decrement the workerCount field of ctl.
422      */
compareAndDecrementWorkerCount(int expect)423     private boolean compareAndDecrementWorkerCount(int expect) {
424         return ctl.compareAndSet(expect, expect - 1);
425     }
426 
427     /**
428      * Decrements the workerCount field of ctl. This is called only on
429      * abrupt termination of a thread (see processWorkerExit). Other
430      * decrements are performed within getTask.
431      */
decrementWorkerCount()432     private void decrementWorkerCount() {
433         ctl.addAndGet(-1);
434     }
435 
436     /**
437      * The queue used for holding tasks and handing off to worker
438      * threads.  We do not require that workQueue.poll() returning
439      * null necessarily means that workQueue.isEmpty(), so rely
440      * solely on isEmpty to see if the queue is empty (which we must
441      * do for example when deciding whether to transition from
442      * SHUTDOWN to TIDYING).  This accommodates special-purpose
443      * queues such as DelayQueues for which poll() is allowed to
444      * return null even if it may later return non-null when delays
445      * expire.
446      */
447     private final BlockingQueue<Runnable> workQueue;
448 
449     /**
450      * Lock held on access to workers set and related bookkeeping.
451      * While we could use a concurrent set of some sort, it turns out
452      * to be generally preferable to use a lock. Among the reasons is
453      * that this serializes interruptIdleWorkers, which avoids
454      * unnecessary interrupt storms, especially during shutdown.
455      * Otherwise exiting threads would concurrently interrupt those
456      * that have not yet interrupted. It also simplifies some of the
457      * associated statistics bookkeeping of largestPoolSize etc. We
458      * also hold mainLock on shutdown and shutdownNow, for the sake of
459      * ensuring workers set is stable while separately checking
460      * permission to interrupt and actually interrupting.
461      */
462     private final ReentrantLock mainLock = new ReentrantLock();
463 
464     /**
465      * Set containing all worker threads in pool. Accessed only when
466      * holding mainLock.
467      */
468     private final HashSet<Worker> workers = new HashSet<>();
469 
470     /**
471      * Wait condition to support awaitTermination.
472      */
473     private final Condition termination = mainLock.newCondition();
474 
475     /**
476      * Tracks largest attained pool size. Accessed only under
477      * mainLock.
478      */
479     private int largestPoolSize;
480 
481     /**
482      * Counter for completed tasks. Updated only on termination of
483      * worker threads. Accessed only under mainLock.
484      */
485     private long completedTaskCount;
486 
487     /*
488      * All user control parameters are declared as volatiles so that
489      * ongoing actions are based on freshest values, but without need
490      * for locking, since no internal invariants depend on them
491      * changing synchronously with respect to other actions.
492      */
493 
494     /**
495      * Factory for new threads. All threads are created using this
496      * factory (via method addWorker).  All callers must be prepared
497      * for addWorker to fail, which may reflect a system or user's
498      * policy limiting the number of threads.  Even though it is not
499      * treated as an error, failure to create threads may result in
500      * new tasks being rejected or existing ones remaining stuck in
501      * the queue.
502      *
503      * We go further and preserve pool invariants even in the face of
504      * errors such as OutOfMemoryError, that might be thrown while
505      * trying to create threads.  Such errors are rather common due to
506      * the need to allocate a native stack in Thread.start, and users
507      * will want to perform clean pool shutdown to clean up.  There
508      * will likely be enough memory available for the cleanup code to
509      * complete without encountering yet another OutOfMemoryError.
510      */
511     private volatile ThreadFactory threadFactory;
512 
513     /**
514      * Handler called when saturated or shutdown in execute.
515      */
516     private volatile RejectedExecutionHandler handler;
517 
518     /**
519      * Timeout in nanoseconds for idle threads waiting for work.
520      * Threads use this timeout when there are more than corePoolSize
521      * present or if allowCoreThreadTimeOut. Otherwise they wait
522      * forever for new work.
523      */
524     private volatile long keepAliveTime;
525 
526     /**
527      * If false (default), core threads stay alive even when idle.
528      * If true, core threads use keepAliveTime to time out waiting
529      * for work.
530      */
531     private volatile boolean allowCoreThreadTimeOut;
532 
533     /**
534      * Core pool size is the minimum number of workers to keep alive
535      * (and not allow to time out etc) unless allowCoreThreadTimeOut
536      * is set, in which case the minimum is zero.
537      *
538      * Since the worker count is actually stored in COUNT_BITS bits,
539      * the effective limit is {@code corePoolSize & COUNT_MASK}.
540      */
541     private volatile int corePoolSize;
542 
543     /**
544      * Maximum pool size.
545      *
546      * Since the worker count is actually stored in COUNT_BITS bits,
547      * the effective limit is {@code maximumPoolSize & COUNT_MASK}.
548      */
549     private volatile int maximumPoolSize;
550 
551     /**
552      * The default rejected execution handler.
553      */
554     private static final RejectedExecutionHandler defaultHandler =
555         new AbortPolicy();
556 
557     /**
558      * Permission required for callers of shutdown and shutdownNow.
559      * We additionally require (see checkShutdownAccess) that callers
560      * have permission to actually interrupt threads in the worker set
561      * (as governed by Thread.interrupt, which relies on
562      * ThreadGroup.checkAccess, which in turn relies on
563      * SecurityManager.checkAccess). Shutdowns are attempted only if
564      * these checks pass.
565      *
566      * All actual invocations of Thread.interrupt (see
567      * interruptIdleWorkers and interruptWorkers) ignore
568      * SecurityExceptions, meaning that the attempted interrupts
569      * silently fail. In the case of shutdown, they should not fail
570      * unless the SecurityManager has inconsistent policies, sometimes
571      * allowing access to a thread and sometimes not. In such cases,
572      * failure to actually interrupt threads may disable or delay full
573      * termination. Other uses of interruptIdleWorkers are advisory,
574      * and failure to actually interrupt will merely delay response to
575      * configuration changes so is not handled exceptionally.
576      */
577     private static final RuntimePermission shutdownPerm =
578         new RuntimePermission("modifyThread");
579 
580     /**
581      * Class Worker mainly maintains interrupt control state for
582      * threads running tasks, along with other minor bookkeeping.
583      * This class opportunistically extends AbstractQueuedSynchronizer
584      * to simplify acquiring and releasing a lock surrounding each
585      * task execution.  This protects against interrupts that are
586      * intended to wake up a worker thread waiting for a task from
587      * instead interrupting a task being run.  We implement a simple
588      * non-reentrant mutual exclusion lock rather than use
589      * ReentrantLock because we do not want worker tasks to be able to
590      * reacquire the lock when they invoke pool control methods like
591      * setCorePoolSize.  Additionally, to suppress interrupts until
592      * the thread actually starts running tasks, we initialize lock
593      * state to a negative value, and clear it upon start (in
594      * runWorker).
595      */
596     private final class Worker
597         extends AbstractQueuedSynchronizer
598         implements Runnable
599     {
600         /**
601          * This class will never be serialized, but we provide a
602          * serialVersionUID to suppress a javac warning.
603          */
604         private static final long serialVersionUID = 6138294804551838833L;
605 
606         /** Thread this worker is running in.  Null if factory fails. */
607         @SuppressWarnings("serial") // Unlikely to be serializable
608         final Thread thread;
609         /** Initial task to run.  Possibly null. */
610         @SuppressWarnings("serial") // Not statically typed as Serializable
611         Runnable firstTask;
612         /** Per-thread task counter */
613         volatile long completedTasks;
614 
615         // TODO: switch to AbstractQueuedLongSynchronizer and move
616         // completedTasks into the lock word.
617 
618         /**
619          * Creates with given first task and thread from ThreadFactory.
620          * @param firstTask the first task (null if none)
621          */
Worker(Runnable firstTask)622         Worker(Runnable firstTask) {
623             setState(-1); // inhibit interrupts until runWorker
624             this.firstTask = firstTask;
625             this.thread = getThreadFactory().newThread(this);
626         }
627 
628         /** Delegates main run loop to outer runWorker. */
run()629         public void run() {
630             runWorker(this);
631         }
632 
633         // Lock methods
634         //
635         // The value 0 represents the unlocked state.
636         // The value 1 represents the locked state.
637 
isHeldExclusively()638         protected boolean isHeldExclusively() {
639             return getState() != 0;
640         }
641 
tryAcquire(int unused)642         protected boolean tryAcquire(int unused) {
643             if (compareAndSetState(0, 1)) {
644                 setExclusiveOwnerThread(Thread.currentThread());
645                 return true;
646             }
647             return false;
648         }
649 
tryRelease(int unused)650         protected boolean tryRelease(int unused) {
651             setExclusiveOwnerThread(null);
652             setState(0);
653             return true;
654         }
655 
lock()656         public void lock()        { acquire(1); }
tryLock()657         public boolean tryLock()  { return tryAcquire(1); }
unlock()658         public void unlock()      { release(1); }
isLocked()659         public boolean isLocked() { return isHeldExclusively(); }
660 
interruptIfStarted()661         void interruptIfStarted() {
662             Thread t;
663             if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
664                 try {
665                     t.interrupt();
666                 } catch (SecurityException ignore) {
667                 }
668             }
669         }
670     }
671 
672     /*
673      * Methods for setting control state
674      */
675 
676     /**
677      * Transitions runState to given target, or leaves it alone if
678      * already at least the given target.
679      *
680      * @param targetState the desired state, either SHUTDOWN or STOP
681      *        (but not TIDYING or TERMINATED -- use tryTerminate for that)
682      */
advanceRunState(int targetState)683     private void advanceRunState(int targetState) {
684         // assert targetState == SHUTDOWN || targetState == STOP;
685         for (;;) {
686             int c = ctl.get();
687             if (runStateAtLeast(c, targetState) ||
688                 ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
689                 break;
690         }
691     }
692 
693     /**
694      * Transitions to TERMINATED state if either (SHUTDOWN and pool
695      * and queue empty) or (STOP and pool empty).  If otherwise
696      * eligible to terminate but workerCount is nonzero, interrupts an
697      * idle worker to ensure that shutdown signals propagate. This
698      * method must be called following any action that might make
699      * termination possible -- reducing worker count or removing tasks
700      * from the queue during shutdown. The method is non-private to
701      * allow access from ScheduledThreadPoolExecutor.
702      */
tryTerminate()703     final void tryTerminate() {
704         for (;;) {
705             int c = ctl.get();
706             if (isRunning(c) ||
707                 runStateAtLeast(c, TIDYING) ||
708                 (runStateLessThan(c, STOP) && ! workQueue.isEmpty()))
709                 return;
710             if (workerCountOf(c) != 0) { // Eligible to terminate
711                 interruptIdleWorkers(ONLY_ONE);
712                 return;
713             }
714 
715             final ReentrantLock mainLock = this.mainLock;
716             mainLock.lock();
717             try {
718                 if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
719                     try {
720                         terminated();
721                     } finally {
722                         ctl.set(ctlOf(TERMINATED, 0));
723                         termination.signalAll();
724                     }
725                     return;
726                 }
727             } finally {
728                 mainLock.unlock();
729             }
730             // else retry on failed CAS
731         }
732     }
733 
734     /*
735      * Methods for controlling interrupts to worker threads.
736      */
737 
738     /**
739      * If there is a security manager, makes sure caller has
740      * permission to shut down threads in general (see shutdownPerm).
741      * If this passes, additionally makes sure the caller is allowed
742      * to interrupt each worker thread. This might not be true even if
743      * first check passed, if the SecurityManager treats some threads
744      * specially.
745      */
checkShutdownAccess()746     private void checkShutdownAccess() {
747         // assert mainLock.isHeldByCurrentThread();
748         SecurityManager security = System.getSecurityManager();
749         if (security != null) {
750             security.checkPermission(shutdownPerm);
751             for (Worker w : workers)
752                 security.checkAccess(w.thread);
753         }
754     }
755 
756     /**
757      * Interrupts all threads, even if active. Ignores SecurityExceptions
758      * (in which case some threads may remain uninterrupted).
759      */
interruptWorkers()760     private void interruptWorkers() {
761         // assert mainLock.isHeldByCurrentThread();
762         for (Worker w : workers)
763             w.interruptIfStarted();
764     }
765 
766     /**
767      * Interrupts threads that might be waiting for tasks (as
768      * indicated by not being locked) so they can check for
769      * termination or configuration changes. Ignores
770      * SecurityExceptions (in which case some threads may remain
771      * uninterrupted).
772      *
773      * @param onlyOne If true, interrupt at most one worker. This is
774      * called only from tryTerminate when termination is otherwise
775      * enabled but there are still other workers.  In this case, at
776      * most one waiting worker is interrupted to propagate shutdown
777      * signals in case all threads are currently waiting.
778      * Interrupting any arbitrary thread ensures that newly arriving
779      * workers since shutdown began will also eventually exit.
780      * To guarantee eventual termination, it suffices to always
781      * interrupt only one idle worker, but shutdown() interrupts all
782      * idle workers so that redundant workers exit promptly, not
783      * waiting for a straggler task to finish.
784      */
interruptIdleWorkers(boolean onlyOne)785     private void interruptIdleWorkers(boolean onlyOne) {
786         final ReentrantLock mainLock = this.mainLock;
787         mainLock.lock();
788         try {
789             for (Worker w : workers) {
790                 Thread t = w.thread;
791                 if (!t.isInterrupted() && w.tryLock()) {
792                     try {
793                         t.interrupt();
794                     } catch (SecurityException ignore) {
795                     } finally {
796                         w.unlock();
797                     }
798                 }
799                 if (onlyOne)
800                     break;
801             }
802         } finally {
803             mainLock.unlock();
804         }
805     }
806 
807     /**
808      * Common form of interruptIdleWorkers, to avoid having to
809      * remember what the boolean argument means.
810      */
interruptIdleWorkers()811     private void interruptIdleWorkers() {
812         interruptIdleWorkers(false);
813     }
814 
815     private static final boolean ONLY_ONE = true;
816 
817     /*
818      * Misc utilities, most of which are also exported to
819      * ScheduledThreadPoolExecutor
820      */
821 
822     /**
823      * Invokes the rejected execution handler for the given command.
824      * Package-protected for use by ScheduledThreadPoolExecutor.
825      */
reject(Runnable command)826     final void reject(Runnable command) {
827         handler.rejectedExecution(command, this);
828     }
829 
830     /**
831      * Performs any further cleanup following run state transition on
832      * invocation of shutdown.  A no-op here, but used by
833      * ScheduledThreadPoolExecutor to cancel delayed tasks.
834      */
onShutdown()835     void onShutdown() {
836     }
837 
838     /**
839      * Drains the task queue into a new list, normally using
840      * drainTo. But if the queue is a DelayQueue or any other kind of
841      * queue for which poll or drainTo may fail to remove some
842      * elements, it deletes them one by one.
843      */
drainQueue()844     private List<Runnable> drainQueue() {
845         BlockingQueue<Runnable> q = workQueue;
846         ArrayList<Runnable> taskList = new ArrayList<>();
847         q.drainTo(taskList);
848         if (!q.isEmpty()) {
849             for (Runnable r : q.toArray(new Runnable[0])) {
850                 if (q.remove(r))
851                     taskList.add(r);
852             }
853         }
854         return taskList;
855     }
856 
857     /*
858      * Methods for creating, running and cleaning up after workers
859      */
860 
861     /**
862      * Checks if a new worker can be added with respect to current
863      * pool state and the given bound (either core or maximum). If so,
864      * the worker count is adjusted accordingly, and, if possible, a
865      * new worker is created and started, running firstTask as its
866      * first task. This method returns false if the pool is stopped or
867      * eligible to shut down. It also returns false if the thread
868      * factory fails to create a thread when asked.  If the thread
869      * creation fails, either due to the thread factory returning
870      * null, or due to an exception (typically OutOfMemoryError in
871      * Thread.start()), we roll back cleanly.
872      *
873      * @param firstTask the task the new thread should run first (or
874      * null if none). Workers are created with an initial first task
875      * (in method execute()) to bypass queuing when there are fewer
876      * than corePoolSize threads (in which case we always start one),
877      * or when the queue is full (in which case we must bypass queue).
878      * Initially idle threads are usually created via
879      * prestartCoreThread or to replace other dying workers.
880      *
881      * @param core if true use corePoolSize as bound, else
882      * maximumPoolSize. (A boolean indicator is used here rather than a
883      * value to ensure reads of fresh values after checking other pool
884      * state).
885      * @return true if successful
886      */
addWorker(Runnable firstTask, boolean core)887     private boolean addWorker(Runnable firstTask, boolean core) {
888         retry:
889         for (int c = ctl.get();;) {
890             // Check if queue empty only if necessary.
891             if (runStateAtLeast(c, SHUTDOWN)
892                 && (runStateAtLeast(c, STOP)
893                     || firstTask != null
894                     || workQueue.isEmpty()))
895                 return false;
896 
897             for (;;) {
898                 if (workerCountOf(c)
899                     >= ((core ? corePoolSize : maximumPoolSize) & COUNT_MASK))
900                     return false;
901                 if (compareAndIncrementWorkerCount(c))
902                     break retry;
903                 c = ctl.get();  // Re-read ctl
904                 if (runStateAtLeast(c, SHUTDOWN))
905                     continue retry;
906                 // else CAS failed due to workerCount change; retry inner loop
907             }
908         }
909 
910         boolean workerStarted = false;
911         boolean workerAdded = false;
912         Worker w = null;
913         try {
914             w = new Worker(firstTask);
915             final Thread t = w.thread;
916             if (t != null) {
917                 final ReentrantLock mainLock = this.mainLock;
918                 mainLock.lock();
919                 try {
920                     // Recheck while holding lock.
921                     // Back out on ThreadFactory failure or if
922                     // shut down before lock acquired.
923                     int c = ctl.get();
924 
925                     if (isRunning(c) ||
926                         (runStateLessThan(c, STOP) && firstTask == null)) {
927                         if (t.getState() != Thread.State.NEW)
928                             throw new IllegalThreadStateException();
929                         workers.add(w);
930                         workerAdded = true;
931                         int s = workers.size();
932                         if (s > largestPoolSize)
933                             largestPoolSize = s;
934                     }
935                 } finally {
936                     mainLock.unlock();
937                 }
938                 if (workerAdded) {
939                     t.start();
940                     workerStarted = true;
941                 }
942             }
943         } finally {
944             if (! workerStarted)
945                 addWorkerFailed(w);
946         }
947         return workerStarted;
948     }
949 
950     /**
951      * Rolls back the worker thread creation.
952      * - removes worker from workers, if present
953      * - decrements worker count
954      * - rechecks for termination, in case the existence of this
955      *   worker was holding up termination
956      */
addWorkerFailed(Worker w)957     private void addWorkerFailed(Worker w) {
958         final ReentrantLock mainLock = this.mainLock;
959         mainLock.lock();
960         try {
961             if (w != null)
962                 workers.remove(w);
963             decrementWorkerCount();
964             tryTerminate();
965         } finally {
966             mainLock.unlock();
967         }
968     }
969 
970     /**
971      * Performs cleanup and bookkeeping for a dying worker. Called
972      * only from worker threads. Unless completedAbruptly is set,
973      * assumes that workerCount has already been adjusted to account
974      * for exit.  This method removes thread from worker set, and
975      * possibly terminates the pool or replaces the worker if either
976      * it exited due to user task exception or if fewer than
977      * corePoolSize workers are running or queue is non-empty but
978      * there are no workers.
979      *
980      * @param w the worker
981      * @param completedAbruptly if the worker died due to user exception
982      */
processWorkerExit(Worker w, boolean completedAbruptly)983     private void processWorkerExit(Worker w, boolean completedAbruptly) {
984         if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
985             decrementWorkerCount();
986 
987         final ReentrantLock mainLock = this.mainLock;
988         mainLock.lock();
989         try {
990             completedTaskCount += w.completedTasks;
991             workers.remove(w);
992         } finally {
993             mainLock.unlock();
994         }
995 
996         tryTerminate();
997 
998         int c = ctl.get();
999         if (runStateLessThan(c, STOP)) {
1000             if (!completedAbruptly) {
1001                 int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
1002                 if (min == 0 && ! workQueue.isEmpty())
1003                     min = 1;
1004                 if (workerCountOf(c) >= min)
1005                     return; // replacement not needed
1006             }
1007             addWorker(null, false);
1008         }
1009     }
1010 
1011     /**
1012      * Performs blocking or timed wait for a task, depending on
1013      * current configuration settings, or returns null if this worker
1014      * must exit because of any of:
1015      * 1. There are more than maximumPoolSize workers (due to
1016      *    a call to setMaximumPoolSize).
1017      * 2. The pool is stopped.
1018      * 3. The pool is shutdown and the queue is empty.
1019      * 4. This worker timed out waiting for a task, and timed-out
1020      *    workers are subject to termination (that is,
1021      *    {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
1022      *    both before and after the timed wait, and if the queue is
1023      *    non-empty, this worker is not the last thread in the pool.
1024      *
1025      * @return task, or null if the worker must exit, in which case
1026      *         workerCount is decremented
1027      */
getTask()1028     private Runnable getTask() {
1029         boolean timedOut = false; // Did the last poll() time out?
1030 
1031         for (;;) {
1032             int c = ctl.get();
1033 
1034             // Check if queue empty only if necessary.
1035             if (runStateAtLeast(c, SHUTDOWN)
1036                 && (runStateAtLeast(c, STOP) || workQueue.isEmpty())) {
1037                 decrementWorkerCount();
1038                 return null;
1039             }
1040 
1041             int wc = workerCountOf(c);
1042 
1043             // Are workers subject to culling?
1044             boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
1045 
1046             if ((wc > maximumPoolSize || (timed && timedOut))
1047                 && (wc > 1 || workQueue.isEmpty())) {
1048                 if (compareAndDecrementWorkerCount(c))
1049                     return null;
1050                 continue;
1051             }
1052 
1053             try {
1054                 Runnable r = timed ?
1055                     workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
1056                     workQueue.take();
1057                 if (r != null)
1058                     return r;
1059                 timedOut = true;
1060             } catch (InterruptedException retry) {
1061                 timedOut = false;
1062             }
1063         }
1064     }
1065 
1066     /**
1067      * Main worker run loop.  Repeatedly gets tasks from queue and
1068      * executes them, while coping with a number of issues:
1069      *
1070      * 1. We may start out with an initial task, in which case we
1071      * don't need to get the first one. Otherwise, as long as pool is
1072      * running, we get tasks from getTask. If it returns null then the
1073      * worker exits due to changed pool state or configuration
1074      * parameters.  Other exits result from exception throws in
1075      * external code, in which case completedAbruptly holds, which
1076      * usually leads processWorkerExit to replace this thread.
1077      *
1078      * 2. Before running any task, the lock is acquired to prevent
1079      * other pool interrupts while the task is executing, and then we
1080      * ensure that unless pool is stopping, this thread does not have
1081      * its interrupt set.
1082      *
1083      * 3. Each task run is preceded by a call to beforeExecute, which
1084      * might throw an exception, in which case we cause thread to die
1085      * (breaking loop with completedAbruptly true) without processing
1086      * the task.
1087      *
1088      * 4. Assuming beforeExecute completes normally, we run the task,
1089      * gathering any of its thrown exceptions to send to afterExecute.
1090      * We separately handle RuntimeException, Error (both of which the
1091      * specs guarantee that we trap) and arbitrary Throwables.
1092      * Because we cannot rethrow Throwables within Runnable.run, we
1093      * wrap them within Errors on the way out (to the thread's
1094      * UncaughtExceptionHandler).  Any thrown exception also
1095      * conservatively causes thread to die.
1096      *
1097      * 5. After task.run completes, we call afterExecute, which may
1098      * also throw an exception, which will also cause thread to
1099      * die. According to JLS Sec 14.20, this exception is the one that
1100      * will be in effect even if task.run throws.
1101      *
1102      * The net effect of the exception mechanics is that afterExecute
1103      * and the thread's UncaughtExceptionHandler have as accurate
1104      * information as we can provide about any problems encountered by
1105      * user code.
1106      *
1107      * @param w the worker
1108      */
runWorker(Worker w)1109     final void runWorker(Worker w) {
1110         Thread wt = Thread.currentThread();
1111         Runnable task = w.firstTask;
1112         w.firstTask = null;
1113         w.unlock(); // allow interrupts
1114         boolean completedAbruptly = true;
1115         try {
1116             while (task != null || (task = getTask()) != null) {
1117                 w.lock();
1118                 // If pool is stopping, ensure thread is interrupted;
1119                 // if not, ensure thread is not interrupted.  This
1120                 // requires a recheck in second case to deal with
1121                 // shutdownNow race while clearing interrupt
1122                 if ((runStateAtLeast(ctl.get(), STOP) ||
1123                      (Thread.interrupted() &&
1124                       runStateAtLeast(ctl.get(), STOP))) &&
1125                     !wt.isInterrupted())
1126                     wt.interrupt();
1127                 try {
1128                     beforeExecute(wt, task);
1129                     try {
1130                         task.run();
1131                         afterExecute(task, null);
1132                     } catch (Throwable ex) {
1133                         afterExecute(task, ex);
1134                         throw ex;
1135                     }
1136                 } finally {
1137                     task = null;
1138                     w.completedTasks++;
1139                     w.unlock();
1140                 }
1141             }
1142             completedAbruptly = false;
1143         } finally {
1144             processWorkerExit(w, completedAbruptly);
1145         }
1146     }
1147 
1148     // Public constructors and methods
1149 
1150     /**
1151      * Creates a new {@code ThreadPoolExecutor} with the given initial
1152      * parameters, the default thread factory and the default rejected
1153      * execution handler.
1154      *
1155      * <p>It may be more convenient to use one of the {@link Executors}
1156      * factory methods instead of this general purpose constructor.
1157      *
1158      * @param corePoolSize the number of threads to keep in the pool, even
1159      *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
1160      * @param maximumPoolSize the maximum number of threads to allow in the
1161      *        pool
1162      * @param keepAliveTime when the number of threads is greater than
1163      *        the core, this is the maximum time that excess idle threads
1164      *        will wait for new tasks before terminating.
1165      * @param unit the time unit for the {@code keepAliveTime} argument
1166      * @param workQueue the queue to use for holding tasks before they are
1167      *        executed.  This queue will hold only the {@code Runnable}
1168      *        tasks submitted by the {@code execute} method.
1169      * @throws IllegalArgumentException if one of the following holds:<br>
1170      *         {@code corePoolSize < 0}<br>
1171      *         {@code keepAliveTime < 0}<br>
1172      *         {@code maximumPoolSize <= 0}<br>
1173      *         {@code maximumPoolSize < corePoolSize}
1174      * @throws NullPointerException if {@code workQueue} is null
1175      */
ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue)1176     public ThreadPoolExecutor(int corePoolSize,
1177                               int maximumPoolSize,
1178                               long keepAliveTime,
1179                               TimeUnit unit,
1180                               BlockingQueue<Runnable> workQueue) {
1181         this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1182              Executors.defaultThreadFactory(), defaultHandler);
1183     }
1184 
1185     /**
1186      * Creates a new {@code ThreadPoolExecutor} with the given initial
1187      * parameters and {@linkplain ThreadPoolExecutor.AbortPolicy
1188      * default rejected execution handler}.
1189      *
1190      * @param corePoolSize the number of threads to keep in the pool, even
1191      *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
1192      * @param maximumPoolSize the maximum number of threads to allow in the
1193      *        pool
1194      * @param keepAliveTime when the number of threads is greater than
1195      *        the core, this is the maximum time that excess idle threads
1196      *        will wait for new tasks before terminating.
1197      * @param unit the time unit for the {@code keepAliveTime} argument
1198      * @param workQueue the queue to use for holding tasks before they are
1199      *        executed.  This queue will hold only the {@code Runnable}
1200      *        tasks submitted by the {@code execute} method.
1201      * @param threadFactory the factory to use when the executor
1202      *        creates a new thread
1203      * @throws IllegalArgumentException if one of the following holds:<br>
1204      *         {@code corePoolSize < 0}<br>
1205      *         {@code keepAliveTime < 0}<br>
1206      *         {@code maximumPoolSize <= 0}<br>
1207      *         {@code maximumPoolSize < corePoolSize}
1208      * @throws NullPointerException if {@code workQueue}
1209      *         or {@code threadFactory} is null
1210      */
ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory)1211     public ThreadPoolExecutor(int corePoolSize,
1212                               int maximumPoolSize,
1213                               long keepAliveTime,
1214                               TimeUnit unit,
1215                               BlockingQueue<Runnable> workQueue,
1216                               ThreadFactory threadFactory) {
1217         this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1218              threadFactory, defaultHandler);
1219     }
1220 
1221     /**
1222      * Creates a new {@code ThreadPoolExecutor} with the given initial
1223      * parameters and
1224      * {@linkplain Executors#defaultThreadFactory default thread factory}.
1225      *
1226      * @param corePoolSize the number of threads to keep in the pool, even
1227      *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
1228      * @param maximumPoolSize the maximum number of threads to allow in the
1229      *        pool
1230      * @param keepAliveTime when the number of threads is greater than
1231      *        the core, this is the maximum time that excess idle threads
1232      *        will wait for new tasks before terminating.
1233      * @param unit the time unit for the {@code keepAliveTime} argument
1234      * @param workQueue the queue to use for holding tasks before they are
1235      *        executed.  This queue will hold only the {@code Runnable}
1236      *        tasks submitted by the {@code execute} method.
1237      * @param handler the handler to use when execution is blocked
1238      *        because the thread bounds and queue capacities are reached
1239      * @throws IllegalArgumentException if one of the following holds:<br>
1240      *         {@code corePoolSize < 0}<br>
1241      *         {@code keepAliveTime < 0}<br>
1242      *         {@code maximumPoolSize <= 0}<br>
1243      *         {@code maximumPoolSize < corePoolSize}
1244      * @throws NullPointerException if {@code workQueue}
1245      *         or {@code handler} is null
1246      */
ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, RejectedExecutionHandler handler)1247     public ThreadPoolExecutor(int corePoolSize,
1248                               int maximumPoolSize,
1249                               long keepAliveTime,
1250                               TimeUnit unit,
1251                               BlockingQueue<Runnable> workQueue,
1252                               RejectedExecutionHandler handler) {
1253         this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1254              Executors.defaultThreadFactory(), handler);
1255     }
1256 
1257     /**
1258      * Creates a new {@code ThreadPoolExecutor} with the given initial
1259      * parameters.
1260      *
1261      * @param corePoolSize the number of threads to keep in the pool, even
1262      *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
1263      * @param maximumPoolSize the maximum number of threads to allow in the
1264      *        pool
1265      * @param keepAliveTime when the number of threads is greater than
1266      *        the core, this is the maximum time that excess idle threads
1267      *        will wait for new tasks before terminating.
1268      * @param unit the time unit for the {@code keepAliveTime} argument
1269      * @param workQueue the queue to use for holding tasks before they are
1270      *        executed.  This queue will hold only the {@code Runnable}
1271      *        tasks submitted by the {@code execute} method.
1272      * @param threadFactory the factory to use when the executor
1273      *        creates a new thread
1274      * @param handler the handler to use when execution is blocked
1275      *        because the thread bounds and queue capacities are reached
1276      * @throws IllegalArgumentException if one of the following holds:<br>
1277      *         {@code corePoolSize < 0}<br>
1278      *         {@code keepAliveTime < 0}<br>
1279      *         {@code maximumPoolSize <= 0}<br>
1280      *         {@code maximumPoolSize < corePoolSize}
1281      * @throws NullPointerException if {@code workQueue}
1282      *         or {@code threadFactory} or {@code handler} is null
1283      */
ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler)1284     public ThreadPoolExecutor(int corePoolSize,
1285                               int maximumPoolSize,
1286                               long keepAliveTime,
1287                               TimeUnit unit,
1288                               BlockingQueue<Runnable> workQueue,
1289                               ThreadFactory threadFactory,
1290                               RejectedExecutionHandler handler) {
1291         if (corePoolSize < 0 ||
1292             maximumPoolSize <= 0 ||
1293             maximumPoolSize < corePoolSize ||
1294             keepAliveTime < 0)
1295             throw new IllegalArgumentException();
1296         if (workQueue == null || threadFactory == null || handler == null)
1297             throw new NullPointerException();
1298         this.corePoolSize = corePoolSize;
1299         this.maximumPoolSize = maximumPoolSize;
1300         this.workQueue = workQueue;
1301         this.keepAliveTime = unit.toNanos(keepAliveTime);
1302         this.threadFactory = threadFactory;
1303         this.handler = handler;
1304     }
1305 
1306     /**
1307      * Executes the given task sometime in the future.  The task
1308      * may execute in a new thread or in an existing pooled thread.
1309      *
1310      * If the task cannot be submitted for execution, either because this
1311      * executor has been shutdown or because its capacity has been reached,
1312      * the task is handled by the current {@link RejectedExecutionHandler}.
1313      *
1314      * @param command the task to execute
1315      * @throws RejectedExecutionException at discretion of
1316      *         {@code RejectedExecutionHandler}, if the task
1317      *         cannot be accepted for execution
1318      * @throws NullPointerException if {@code command} is null
1319      */
execute(Runnable command)1320     public void execute(Runnable command) {
1321         if (command == null)
1322             throw new NullPointerException();
1323         /*
1324          * Proceed in 3 steps:
1325          *
1326          * 1. If fewer than corePoolSize threads are running, try to
1327          * start a new thread with the given command as its first
1328          * task.  The call to addWorker atomically checks runState and
1329          * workerCount, and so prevents false alarms that would add
1330          * threads when it shouldn't, by returning false.
1331          *
1332          * 2. If a task can be successfully queued, then we still need
1333          * to double-check whether we should have added a thread
1334          * (because existing ones died since last checking) or that
1335          * the pool shut down since entry into this method. So we
1336          * recheck state and if necessary roll back the enqueuing if
1337          * stopped, or start a new thread if there are none.
1338          *
1339          * 3. If we cannot queue task, then we try to add a new
1340          * thread.  If it fails, we know we are shut down or saturated
1341          * and so reject the task.
1342          */
1343         int c = ctl.get();
1344         if (workerCountOf(c) < corePoolSize) {
1345             if (addWorker(command, true))
1346                 return;
1347             c = ctl.get();
1348         }
1349         if (isRunning(c) && workQueue.offer(command)) {
1350             int recheck = ctl.get();
1351             if (! isRunning(recheck) && remove(command))
1352                 reject(command);
1353             else if (workerCountOf(recheck) == 0)
1354                 addWorker(null, false);
1355         }
1356         else if (!addWorker(command, false))
1357             reject(command);
1358     }
1359 
1360     /**
1361      * Initiates an orderly shutdown in which previously submitted
1362      * tasks are executed, but no new tasks will be accepted.
1363      * Invocation has no additional effect if already shut down.
1364      *
1365      * <p>This method does not wait for previously submitted tasks to
1366      * complete execution.  Use {@link #awaitTermination awaitTermination}
1367      * to do that.
1368      *
1369      * @throws SecurityException {@inheritDoc}
1370      */
shutdown()1371     public void shutdown() {
1372         final ReentrantLock mainLock = this.mainLock;
1373         mainLock.lock();
1374         try {
1375             checkShutdownAccess();
1376             advanceRunState(SHUTDOWN);
1377             interruptIdleWorkers();
1378             onShutdown(); // hook for ScheduledThreadPoolExecutor
1379         } finally {
1380             mainLock.unlock();
1381         }
1382         tryTerminate();
1383     }
1384 
1385     /**
1386      * Attempts to stop all actively executing tasks, halts the
1387      * processing of waiting tasks, and returns a list of the tasks
1388      * that were awaiting execution. These tasks are drained (removed)
1389      * from the task queue upon return from this method.
1390      *
1391      * <p>This method does not wait for actively executing tasks to
1392      * terminate.  Use {@link #awaitTermination awaitTermination} to
1393      * do that.
1394      *
1395      * <p>There are no guarantees beyond best-effort attempts to stop
1396      * processing actively executing tasks.  This implementation
1397      * interrupts tasks via {@link Thread#interrupt}; any task that
1398      * fails to respond to interrupts may never terminate.
1399      *
1400      * @throws SecurityException {@inheritDoc}
1401      */
shutdownNow()1402     public List<Runnable> shutdownNow() {
1403         List<Runnable> tasks;
1404         final ReentrantLock mainLock = this.mainLock;
1405         mainLock.lock();
1406         try {
1407             checkShutdownAccess();
1408             advanceRunState(STOP);
1409             interruptWorkers();
1410             tasks = drainQueue();
1411         } finally {
1412             mainLock.unlock();
1413         }
1414         tryTerminate();
1415         return tasks;
1416     }
1417 
isShutdown()1418     public boolean isShutdown() {
1419         return runStateAtLeast(ctl.get(), SHUTDOWN);
1420     }
1421 
1422     /** Used by ScheduledThreadPoolExecutor. */
isStopped()1423     boolean isStopped() {
1424         return runStateAtLeast(ctl.get(), STOP);
1425     }
1426 
1427     /**
1428      * Returns true if this executor is in the process of terminating
1429      * after {@link #shutdown} or {@link #shutdownNow} but has not
1430      * completely terminated.  This method may be useful for
1431      * debugging. A return of {@code true} reported a sufficient
1432      * period after shutdown may indicate that submitted tasks have
1433      * ignored or suppressed interruption, causing this executor not
1434      * to properly terminate.
1435      *
1436      * @return {@code true} if terminating but not yet terminated
1437      */
isTerminating()1438     public boolean isTerminating() {
1439         int c = ctl.get();
1440         return runStateAtLeast(c, SHUTDOWN) && runStateLessThan(c, TERMINATED);
1441     }
1442 
isTerminated()1443     public boolean isTerminated() {
1444         return runStateAtLeast(ctl.get(), TERMINATED);
1445     }
1446 
awaitTermination(long timeout, TimeUnit unit)1447     public boolean awaitTermination(long timeout, TimeUnit unit)
1448         throws InterruptedException {
1449         long nanos = unit.toNanos(timeout);
1450         final ReentrantLock mainLock = this.mainLock;
1451         mainLock.lock();
1452         try {
1453             while (runStateLessThan(ctl.get(), TERMINATED)) {
1454                 if (nanos <= 0L)
1455                     return false;
1456                 nanos = termination.awaitNanos(nanos);
1457             }
1458             return true;
1459         } finally {
1460             mainLock.unlock();
1461         }
1462     }
1463 
1464     // Override without "throws Throwable" for compatibility with subclasses
1465     // whose finalize method invokes super.finalize() (as is recommended).
1466     // Before JDK 11, finalize() had a non-empty method body.
1467 
1468     /**
1469      * @implNote Previous versions of this class had a finalize method
1470      * that shut down this executor, but in this version, finalize
1471      * does nothing.
1472      */
1473     @Deprecated(since="9")
finalize()1474     protected void finalize() {}
1475 
1476     /**
1477      * Sets the thread factory used to create new threads.
1478      *
1479      * @param threadFactory the new thread factory
1480      * @throws NullPointerException if threadFactory is null
1481      * @see #getThreadFactory
1482      */
setThreadFactory(ThreadFactory threadFactory)1483     public void setThreadFactory(ThreadFactory threadFactory) {
1484         if (threadFactory == null)
1485             throw new NullPointerException();
1486         this.threadFactory = threadFactory;
1487     }
1488 
1489     /**
1490      * Returns the thread factory used to create new threads.
1491      *
1492      * @return the current thread factory
1493      * @see #setThreadFactory(ThreadFactory)
1494      */
getThreadFactory()1495     public ThreadFactory getThreadFactory() {
1496         return threadFactory;
1497     }
1498 
1499     /**
1500      * Sets a new handler for unexecutable tasks.
1501      *
1502      * @param handler the new handler
1503      * @throws NullPointerException if handler is null
1504      * @see #getRejectedExecutionHandler
1505      */
setRejectedExecutionHandler(RejectedExecutionHandler handler)1506     public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
1507         if (handler == null)
1508             throw new NullPointerException();
1509         this.handler = handler;
1510     }
1511 
1512     /**
1513      * Returns the current handler for unexecutable tasks.
1514      *
1515      * @return the current handler
1516      * @see #setRejectedExecutionHandler(RejectedExecutionHandler)
1517      */
getRejectedExecutionHandler()1518     public RejectedExecutionHandler getRejectedExecutionHandler() {
1519         return handler;
1520     }
1521 
1522     /**
1523      * Sets the core number of threads.  This overrides any value set
1524      * in the constructor.  If the new value is smaller than the
1525      * current value, excess existing threads will be terminated when
1526      * they next become idle.  If larger, new threads will, if needed,
1527      * be started to execute any queued tasks.
1528      *
1529      * @param corePoolSize the new core size
1530      * @throws IllegalArgumentException if {@code corePoolSize < 0}
1531      *         or {@code corePoolSize} is greater than the {@linkplain
1532      *         #getMaximumPoolSize() maximum pool size}
1533      * @see #getCorePoolSize
1534      */
setCorePoolSize(int corePoolSize)1535     public void setCorePoolSize(int corePoolSize) {
1536         if (corePoolSize < 0 || maximumPoolSize < corePoolSize)
1537             throw new IllegalArgumentException();
1538         int delta = corePoolSize - this.corePoolSize;
1539         this.corePoolSize = corePoolSize;
1540         if (workerCountOf(ctl.get()) > corePoolSize)
1541             interruptIdleWorkers();
1542         else if (delta > 0) {
1543             // We don't really know how many new threads are "needed".
1544             // As a heuristic, prestart enough new workers (up to new
1545             // core size) to handle the current number of tasks in
1546             // queue, but stop if queue becomes empty while doing so.
1547             int k = Math.min(delta, workQueue.size());
1548             while (k-- > 0 && addWorker(null, true)) {
1549                 if (workQueue.isEmpty())
1550                     break;
1551             }
1552         }
1553     }
1554 
1555     /**
1556      * Returns the core number of threads.
1557      *
1558      * @return the core number of threads
1559      * @see #setCorePoolSize
1560      */
getCorePoolSize()1561     public int getCorePoolSize() {
1562         return corePoolSize;
1563     }
1564 
1565     /**
1566      * Starts a core thread, causing it to idly wait for work. This
1567      * overrides the default policy of starting core threads only when
1568      * new tasks are executed. This method will return {@code false}
1569      * if all core threads have already been started.
1570      *
1571      * @return {@code true} if a thread was started
1572      */
prestartCoreThread()1573     public boolean prestartCoreThread() {
1574         return workerCountOf(ctl.get()) < corePoolSize &&
1575             addWorker(null, true);
1576     }
1577 
1578     /**
1579      * Same as prestartCoreThread except arranges that at least one
1580      * thread is started even if corePoolSize is 0.
1581      */
ensurePrestart()1582     void ensurePrestart() {
1583         int wc = workerCountOf(ctl.get());
1584         if (wc < corePoolSize)
1585             addWorker(null, true);
1586         else if (wc == 0)
1587             addWorker(null, false);
1588     }
1589 
1590     /**
1591      * Starts all core threads, causing them to idly wait for work. This
1592      * overrides the default policy of starting core threads only when
1593      * new tasks are executed.
1594      *
1595      * @return the number of threads started
1596      */
prestartAllCoreThreads()1597     public int prestartAllCoreThreads() {
1598         int n = 0;
1599         while (addWorker(null, true))
1600             ++n;
1601         return n;
1602     }
1603 
1604     /**
1605      * Returns true if this pool allows core threads to time out and
1606      * terminate if no tasks arrive within the keepAlive time, being
1607      * replaced if needed when new tasks arrive. When true, the same
1608      * keep-alive policy applying to non-core threads applies also to
1609      * core threads. When false (the default), core threads are never
1610      * terminated due to lack of incoming tasks.
1611      *
1612      * @return {@code true} if core threads are allowed to time out,
1613      *         else {@code false}
1614      *
1615      * @since 1.6
1616      */
allowsCoreThreadTimeOut()1617     public boolean allowsCoreThreadTimeOut() {
1618         return allowCoreThreadTimeOut;
1619     }
1620 
1621     /**
1622      * Sets the policy governing whether core threads may time out and
1623      * terminate if no tasks arrive within the keep-alive time, being
1624      * replaced if needed when new tasks arrive. When false, core
1625      * threads are never terminated due to lack of incoming
1626      * tasks. When true, the same keep-alive policy applying to
1627      * non-core threads applies also to core threads. To avoid
1628      * continual thread replacement, the keep-alive time must be
1629      * greater than zero when setting {@code true}. This method
1630      * should in general be called before the pool is actively used.
1631      *
1632      * @param value {@code true} if should time out, else {@code false}
1633      * @throws IllegalArgumentException if value is {@code true}
1634      *         and the current keep-alive time is not greater than zero
1635      *
1636      * @since 1.6
1637      */
allowCoreThreadTimeOut(boolean value)1638     public void allowCoreThreadTimeOut(boolean value) {
1639         if (value && keepAliveTime <= 0)
1640             throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1641         if (value != allowCoreThreadTimeOut) {
1642             allowCoreThreadTimeOut = value;
1643             if (value)
1644                 interruptIdleWorkers();
1645         }
1646     }
1647 
1648     /**
1649      * Sets the maximum allowed number of threads. This overrides any
1650      * value set in the constructor. If the new value is smaller than
1651      * the current value, excess existing threads will be
1652      * terminated when they next become idle.
1653      *
1654      * @param maximumPoolSize the new maximum
1655      * @throws IllegalArgumentException if the new maximum is
1656      *         less than or equal to zero, or
1657      *         less than the {@linkplain #getCorePoolSize core pool size}
1658      * @see #getMaximumPoolSize
1659      */
setMaximumPoolSize(int maximumPoolSize)1660     public void setMaximumPoolSize(int maximumPoolSize) {
1661         if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
1662             throw new IllegalArgumentException();
1663         this.maximumPoolSize = maximumPoolSize;
1664         if (workerCountOf(ctl.get()) > maximumPoolSize)
1665             interruptIdleWorkers();
1666     }
1667 
1668     /**
1669      * Returns the maximum allowed number of threads.
1670      *
1671      * @return the maximum allowed number of threads
1672      * @see #setMaximumPoolSize
1673      */
getMaximumPoolSize()1674     public int getMaximumPoolSize() {
1675         return maximumPoolSize;
1676     }
1677 
1678     /**
1679      * Sets the thread keep-alive time, which is the amount of time
1680      * that threads may remain idle before being terminated.
1681      * Threads that wait this amount of time without processing a
1682      * task will be terminated if there are more than the core
1683      * number of threads currently in the pool, or if this pool
1684      * {@linkplain #allowsCoreThreadTimeOut() allows core thread timeout}.
1685      * This overrides any value set in the constructor.
1686      *
1687      * @param time the time to wait.  A time value of zero will cause
1688      *        excess threads to terminate immediately after executing tasks.
1689      * @param unit the time unit of the {@code time} argument
1690      * @throws IllegalArgumentException if {@code time} less than zero or
1691      *         if {@code time} is zero and {@code allowsCoreThreadTimeOut}
1692      * @see #getKeepAliveTime(TimeUnit)
1693      */
setKeepAliveTime(long time, TimeUnit unit)1694     public void setKeepAliveTime(long time, TimeUnit unit) {
1695         if (time < 0)
1696             throw new IllegalArgumentException();
1697         if (time == 0 && allowsCoreThreadTimeOut())
1698             throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1699         long keepAliveTime = unit.toNanos(time);
1700         long delta = keepAliveTime - this.keepAliveTime;
1701         this.keepAliveTime = keepAliveTime;
1702         if (delta < 0)
1703             interruptIdleWorkers();
1704     }
1705 
1706     /**
1707      * Returns the thread keep-alive time, which is the amount of time
1708      * that threads may remain idle before being terminated.
1709      * Threads that wait this amount of time without processing a
1710      * task will be terminated if there are more than the core
1711      * number of threads currently in the pool, or if this pool
1712      * {@linkplain #allowsCoreThreadTimeOut() allows core thread timeout}.
1713      *
1714      * @param unit the desired time unit of the result
1715      * @return the time limit
1716      * @see #setKeepAliveTime(long, TimeUnit)
1717      */
getKeepAliveTime(TimeUnit unit)1718     public long getKeepAliveTime(TimeUnit unit) {
1719         return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS);
1720     }
1721 
1722     /* User-level queue utilities */
1723 
1724     /**
1725      * Returns the task queue used by this executor. Access to the
1726      * task queue is intended primarily for debugging and monitoring.
1727      * This queue may be in active use.  Retrieving the task queue
1728      * does not prevent queued tasks from executing.
1729      *
1730      * @return the task queue
1731      */
getQueue()1732     public BlockingQueue<Runnable> getQueue() {
1733         return workQueue;
1734     }
1735 
1736     /**
1737      * Removes this task from the executor's internal queue if it is
1738      * present, thus causing it not to be run if it has not already
1739      * started.
1740      *
1741      * <p>This method may be useful as one part of a cancellation
1742      * scheme.  It may fail to remove tasks that have been converted
1743      * into other forms before being placed on the internal queue.
1744      * For example, a task entered using {@code submit} might be
1745      * converted into a form that maintains {@code Future} status.
1746      * However, in such cases, method {@link #purge} may be used to
1747      * remove those Futures that have been cancelled.
1748      *
1749      * @param task the task to remove
1750      * @return {@code true} if the task was removed
1751      */
remove(Runnable task)1752     public boolean remove(Runnable task) {
1753         boolean removed = workQueue.remove(task);
1754         tryTerminate(); // In case SHUTDOWN and now empty
1755         return removed;
1756     }
1757 
1758     /**
1759      * Tries to remove from the work queue all {@link Future}
1760      * tasks that have been cancelled. This method can be useful as a
1761      * storage reclamation operation, that has no other impact on
1762      * functionality. Cancelled tasks are never executed, but may
1763      * accumulate in work queues until worker threads can actively
1764      * remove them. Invoking this method instead tries to remove them now.
1765      * However, this method may fail to remove tasks in
1766      * the presence of interference by other threads.
1767      */
purge()1768     public void purge() {
1769         final BlockingQueue<Runnable> q = workQueue;
1770         try {
1771             Iterator<Runnable> it = q.iterator();
1772             while (it.hasNext()) {
1773                 Runnable r = it.next();
1774                 if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1775                     it.remove();
1776             }
1777         } catch (ConcurrentModificationException fallThrough) {
1778             // Take slow path if we encounter interference during traversal.
1779             // Make copy for traversal and call remove for cancelled entries.
1780             // The slow path is more likely to be O(N*N).
1781             for (Object r : q.toArray())
1782                 if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1783                     q.remove(r);
1784         }
1785 
1786         tryTerminate(); // In case SHUTDOWN and now empty
1787     }
1788 
1789     /* Statistics */
1790 
1791     /**
1792      * Returns the current number of threads in the pool.
1793      *
1794      * @return the number of threads
1795      */
getPoolSize()1796     public int getPoolSize() {
1797         final ReentrantLock mainLock = this.mainLock;
1798         mainLock.lock();
1799         try {
1800             // Remove rare and surprising possibility of
1801             // isTerminated() && getPoolSize() > 0
1802             return runStateAtLeast(ctl.get(), TIDYING) ? 0
1803                 : workers.size();
1804         } finally {
1805             mainLock.unlock();
1806         }
1807     }
1808 
1809     /**
1810      * Returns the approximate number of threads that are actively
1811      * executing tasks.
1812      *
1813      * @return the number of threads
1814      */
getActiveCount()1815     public int getActiveCount() {
1816         final ReentrantLock mainLock = this.mainLock;
1817         mainLock.lock();
1818         try {
1819             int n = 0;
1820             for (Worker w : workers)
1821                 if (w.isLocked())
1822                     ++n;
1823             return n;
1824         } finally {
1825             mainLock.unlock();
1826         }
1827     }
1828 
1829     /**
1830      * Returns the largest number of threads that have ever
1831      * simultaneously been in the pool.
1832      *
1833      * @return the number of threads
1834      */
getLargestPoolSize()1835     public int getLargestPoolSize() {
1836         final ReentrantLock mainLock = this.mainLock;
1837         mainLock.lock();
1838         try {
1839             return largestPoolSize;
1840         } finally {
1841             mainLock.unlock();
1842         }
1843     }
1844 
1845     /**
1846      * Returns the approximate total number of tasks that have ever been
1847      * scheduled for execution. Because the states of tasks and
1848      * threads may change dynamically during computation, the returned
1849      * value is only an approximation.
1850      *
1851      * @return the number of tasks
1852      */
getTaskCount()1853     public long getTaskCount() {
1854         final ReentrantLock mainLock = this.mainLock;
1855         mainLock.lock();
1856         try {
1857             long n = completedTaskCount;
1858             for (Worker w : workers) {
1859                 n += w.completedTasks;
1860                 if (w.isLocked())
1861                     ++n;
1862             }
1863             return n + workQueue.size();
1864         } finally {
1865             mainLock.unlock();
1866         }
1867     }
1868 
1869     /**
1870      * Returns the approximate total number of tasks that have
1871      * completed execution. Because the states of tasks and threads
1872      * may change dynamically during computation, the returned value
1873      * is only an approximation, but one that does not ever decrease
1874      * across successive calls.
1875      *
1876      * @return the number of tasks
1877      */
getCompletedTaskCount()1878     public long getCompletedTaskCount() {
1879         final ReentrantLock mainLock = this.mainLock;
1880         mainLock.lock();
1881         try {
1882             long n = completedTaskCount;
1883             for (Worker w : workers)
1884                 n += w.completedTasks;
1885             return n;
1886         } finally {
1887             mainLock.unlock();
1888         }
1889     }
1890 
1891     /**
1892      * Returns a string identifying this pool, as well as its state,
1893      * including indications of run state and estimated worker and
1894      * task counts.
1895      *
1896      * @return a string identifying this pool, as well as its state
1897      */
toString()1898     public String toString() {
1899         long ncompleted;
1900         int nworkers, nactive;
1901         final ReentrantLock mainLock = this.mainLock;
1902         mainLock.lock();
1903         try {
1904             ncompleted = completedTaskCount;
1905             nactive = 0;
1906             nworkers = workers.size();
1907             for (Worker w : workers) {
1908                 ncompleted += w.completedTasks;
1909                 if (w.isLocked())
1910                     ++nactive;
1911             }
1912         } finally {
1913             mainLock.unlock();
1914         }
1915         int c = ctl.get();
1916         String runState =
1917             isRunning(c) ? "Running" :
1918             runStateAtLeast(c, TERMINATED) ? "Terminated" :
1919             "Shutting down";
1920         return super.toString() +
1921             "[" + runState +
1922             ", pool size = " + nworkers +
1923             ", active threads = " + nactive +
1924             ", queued tasks = " + workQueue.size() +
1925             ", completed tasks = " + ncompleted +
1926             "]";
1927     }
1928 
1929     /* Extension hooks */
1930 
1931     /**
1932      * Method invoked prior to executing the given Runnable in the
1933      * given thread.  This method is invoked by thread {@code t} that
1934      * will execute task {@code r}, and may be used to re-initialize
1935      * ThreadLocals, or to perform logging.
1936      *
1937      * <p>This implementation does nothing, but may be customized in
1938      * subclasses. Note: To properly nest multiple overridings, subclasses
1939      * should generally invoke {@code super.beforeExecute} at the end of
1940      * this method.
1941      *
1942      * @param t the thread that will run task {@code r}
1943      * @param r the task that will be executed
1944      */
beforeExecute(Thread t, Runnable r)1945     protected void beforeExecute(Thread t, Runnable r) { }
1946 
1947     /**
1948      * Method invoked upon completion of execution of the given Runnable.
1949      * This method is invoked by the thread that executed the task. If
1950      * non-null, the Throwable is the uncaught {@code RuntimeException}
1951      * or {@code Error} that caused execution to terminate abruptly.
1952      *
1953      * <p>This implementation does nothing, but may be customized in
1954      * subclasses. Note: To properly nest multiple overridings, subclasses
1955      * should generally invoke {@code super.afterExecute} at the
1956      * beginning of this method.
1957      *
1958      * <p><b>Note:</b> When actions are enclosed in tasks (such as
1959      * {@link FutureTask}) either explicitly or via methods such as
1960      * {@code submit}, these task objects catch and maintain
1961      * computational exceptions, and so they do not cause abrupt
1962      * termination, and the internal exceptions are <em>not</em>
1963      * passed to this method. If you would like to trap both kinds of
1964      * failures in this method, you can further probe for such cases,
1965      * as in this sample subclass that prints either the direct cause
1966      * or the underlying exception if a task has been aborted:
1967      *
1968      * <pre> {@code
1969      * class ExtendedExecutor extends ThreadPoolExecutor {
1970      *   // ...
1971      *   protected void afterExecute(Runnable r, Throwable t) {
1972      *     super.afterExecute(r, t);
1973      *     if (t == null
1974      *         && r instanceof Future<?>
1975      *         && ((Future<?>)r).isDone()) {
1976      *       try {
1977      *         Object result = ((Future<?>) r).get();
1978      *       } catch (CancellationException ce) {
1979      *         t = ce;
1980      *       } catch (ExecutionException ee) {
1981      *         t = ee.getCause();
1982      *       } catch (InterruptedException ie) {
1983      *         // ignore/reset
1984      *         Thread.currentThread().interrupt();
1985      *       }
1986      *     }
1987      *     if (t != null)
1988      *       System.out.println(t);
1989      *   }
1990      * }}</pre>
1991      *
1992      * @param r the runnable that has completed
1993      * @param t the exception that caused termination, or null if
1994      * execution completed normally
1995      */
afterExecute(Runnable r, Throwable t)1996     protected void afterExecute(Runnable r, Throwable t) { }
1997 
1998     /**
1999      * Method invoked when the Executor has terminated.  Default
2000      * implementation does nothing. Note: To properly nest multiple
2001      * overridings, subclasses should generally invoke
2002      * {@code super.terminated} within this method.
2003      */
terminated()2004     protected void terminated() { }
2005 
2006     /* Predefined RejectedExecutionHandlers */
2007 
2008     /**
2009      * A handler for rejected tasks that runs the rejected task
2010      * directly in the calling thread of the {@code execute} method,
2011      * unless the executor has been shut down, in which case the task
2012      * is discarded.
2013      */
2014     public static class CallerRunsPolicy implements RejectedExecutionHandler {
2015         /**
2016          * Creates a {@code CallerRunsPolicy}.
2017          */
CallerRunsPolicy()2018         public CallerRunsPolicy() { }
2019 
2020         /**
2021          * Executes task r in the caller's thread, unless the executor
2022          * has been shut down, in which case the task is discarded.
2023          *
2024          * @param r the runnable task requested to be executed
2025          * @param e the executor attempting to execute this task
2026          */
rejectedExecution(Runnable r, ThreadPoolExecutor e)2027         public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2028             if (!e.isShutdown()) {
2029                 r.run();
2030             }
2031         }
2032     }
2033 
2034     /**
2035      * A handler for rejected tasks that throws a
2036      * {@link RejectedExecutionException}.
2037      *
2038      * This is the default handler for {@link ThreadPoolExecutor} and
2039      * {@link ScheduledThreadPoolExecutor}.
2040      */
2041     public static class AbortPolicy implements RejectedExecutionHandler {
2042         /**
2043          * Creates an {@code AbortPolicy}.
2044          */
AbortPolicy()2045         public AbortPolicy() { }
2046 
2047         /**
2048          * Always throws RejectedExecutionException.
2049          *
2050          * @param r the runnable task requested to be executed
2051          * @param e the executor attempting to execute this task
2052          * @throws RejectedExecutionException always
2053          */
rejectedExecution(Runnable r, ThreadPoolExecutor e)2054         public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2055             throw new RejectedExecutionException("Task " + r.toString() +
2056                                                  " rejected from " +
2057                                                  e.toString());
2058         }
2059     }
2060 
2061     /**
2062      * A handler for rejected tasks that silently discards the
2063      * rejected task.
2064      */
2065     public static class DiscardPolicy implements RejectedExecutionHandler {
2066         /**
2067          * Creates a {@code DiscardPolicy}.
2068          */
DiscardPolicy()2069         public DiscardPolicy() { }
2070 
2071         /**
2072          * Does nothing, which has the effect of discarding task r.
2073          *
2074          * @param r the runnable task requested to be executed
2075          * @param e the executor attempting to execute this task
2076          */
rejectedExecution(Runnable r, ThreadPoolExecutor e)2077         public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2078         }
2079     }
2080 
2081     /**
2082      * A handler for rejected tasks that discards the oldest unhandled
2083      * request and then retries {@code execute}, unless the executor
2084      * is shut down, in which case the task is discarded.
2085      */
2086     public static class DiscardOldestPolicy implements RejectedExecutionHandler {
2087         /**
2088          * Creates a {@code DiscardOldestPolicy} for the given executor.
2089          */
DiscardOldestPolicy()2090         public DiscardOldestPolicy() { }
2091 
2092         /**
2093          * Obtains and ignores the next task that the executor
2094          * would otherwise execute, if one is immediately available,
2095          * and then retries execution of task r, unless the executor
2096          * is shut down, in which case task r is instead discarded.
2097          *
2098          * @param r the runnable task requested to be executed
2099          * @param e the executor attempting to execute this task
2100          */
rejectedExecution(Runnable r, ThreadPoolExecutor e)2101         public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2102             if (!e.isShutdown()) {
2103                 e.getQueue().poll();
2104                 e.execute(r);
2105             }
2106         }
2107     }
2108 }
2109