1 /*
2  * Copyright (c) 2003, 2021, Oracle and/or its affiliates. All rights reserved.
3  * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved.
4  * Copyright (c) 2021, Azul Systems, Inc. All rights reserved.
5  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
6  *
7  * This code is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 only, as
9  * published by the Free Software Foundation.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  *
25  */
26 
27 #include "precompiled.hpp"
28 #include "asm/macroAssembler.hpp"
29 #include "asm/macroAssembler.inline.hpp"
30 #include "code/codeCache.hpp"
31 #include "code/debugInfoRec.hpp"
32 #include "code/icBuffer.hpp"
33 #include "code/vtableStubs.hpp"
34 #include "compiler/oopMap.hpp"
35 #include "gc/shared/barrierSetAssembler.hpp"
36 #include "interpreter/interpreter.hpp"
37 #include "interpreter/interp_masm.hpp"
38 #include "logging/log.hpp"
39 #include "memory/resourceArea.hpp"
40 #include "nativeInst_aarch64.hpp"
41 #include "oops/compiledICHolder.hpp"
42 #include "oops/klass.inline.hpp"
43 #include "prims/methodHandles.hpp"
44 #include "runtime/jniHandles.hpp"
45 #include "runtime/safepointMechanism.hpp"
46 #include "runtime/sharedRuntime.hpp"
47 #include "runtime/signature.hpp"
48 #include "runtime/stubRoutines.hpp"
49 #include "runtime/vframeArray.hpp"
50 #include "utilities/align.hpp"
51 #include "utilities/formatBuffer.hpp"
52 #include "vmreg_aarch64.inline.hpp"
53 #ifdef COMPILER1
54 #include "c1/c1_Runtime1.hpp"
55 #endif
56 #ifdef COMPILER2
57 #include "adfiles/ad_aarch64.hpp"
58 #include "opto/runtime.hpp"
59 #endif
60 #if INCLUDE_JVMCI
61 #include "jvmci/jvmciJavaClasses.hpp"
62 #endif
63 
64 #define __ masm->
65 
66 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
67 
68 class SimpleRuntimeFrame {
69 
70   public:
71 
72   // Most of the runtime stubs have this simple frame layout.
73   // This class exists to make the layout shared in one place.
74   // Offsets are for compiler stack slots, which are jints.
75   enum layout {
76     // The frame sender code expects that rbp will be in the "natural" place and
77     // will override any oopMap setting for it. We must therefore force the layout
78     // so that it agrees with the frame sender code.
79     // we don't expect any arg reg save area so aarch64 asserts that
80     // frame::arg_reg_save_area_bytes == 0
81     rbp_off = 0,
82     rbp_off2,
83     return_off, return_off2,
84     framesize
85   };
86 };
87 
88 // FIXME -- this is used by C1
89 class RegisterSaver {
90   const bool _save_vectors;
91  public:
RegisterSaver(bool save_vectors)92   RegisterSaver(bool save_vectors) : _save_vectors(save_vectors) {}
93 
94   OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
95   void restore_live_registers(MacroAssembler* masm);
96 
97   // Offsets into the register save area
98   // Used by deoptimization when it is managing result register
99   // values on its own
100 
101   int reg_offset_in_bytes(Register r);
r0_offset_in_bytes()102   int r0_offset_in_bytes()    { return reg_offset_in_bytes(r0); }
rscratch1_offset_in_bytes()103   int rscratch1_offset_in_bytes()    { return reg_offset_in_bytes(rscratch1); }
v0_offset_in_bytes(void)104   int v0_offset_in_bytes(void)   { return 0; }
105 
106   // Capture info about frame layout
107   // Note this is only correct when not saving full vectors.
108   enum layout {
109                 fpu_state_off = 0,
110                 fpu_state_end = fpu_state_off + FPUStateSizeInWords - 1,
111                 // The frame sender code expects that rfp will be in
112                 // the "natural" place and will override any oopMap
113                 // setting for it. We must therefore force the layout
114                 // so that it agrees with the frame sender code.
115                 r0_off = fpu_state_off + FPUStateSizeInWords,
116                 rfp_off = r0_off + (RegisterImpl::number_of_registers - 2) * RegisterImpl::max_slots_per_register,
117                 return_off = rfp_off + RegisterImpl::max_slots_per_register,      // slot for return address
118                 reg_save_size = return_off + RegisterImpl::max_slots_per_register};
119 
120 };
121 
reg_offset_in_bytes(Register r)122 int RegisterSaver::reg_offset_in_bytes(Register r) {
123   // The integer registers are located above the floating point
124   // registers in the stack frame pushed by save_live_registers() so the
125   // offset depends on whether we are saving full vectors, and whether
126   // those vectors are NEON or SVE.
127 
128   int slots_per_vect = FloatRegisterImpl::save_slots_per_register;
129 
130 #if COMPILER2_OR_JVMCI
131   if (_save_vectors) {
132     slots_per_vect = FloatRegisterImpl::slots_per_neon_register;
133 
134 #ifdef COMPILER2
135     if (Matcher::supports_scalable_vector()) {
136       slots_per_vect = Matcher::scalable_vector_reg_size(T_FLOAT);
137     }
138 #endif
139   }
140 #endif
141 
142   int r0_offset = (slots_per_vect * FloatRegisterImpl::number_of_registers) * BytesPerInt;
143   return r0_offset + r->encoding() * wordSize;
144 }
145 
save_live_registers(MacroAssembler * masm,int additional_frame_words,int * total_frame_words)146 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
147   bool use_sve = false;
148   int sve_vector_size_in_bytes = 0;
149   int sve_vector_size_in_slots = 0;
150 
151 #ifdef COMPILER2
152   use_sve = Matcher::supports_scalable_vector();
153   sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE);
154   sve_vector_size_in_slots = Matcher::scalable_vector_reg_size(T_FLOAT);
155 #endif
156 
157 #if COMPILER2_OR_JVMCI
158   if (_save_vectors) {
159     int vect_words = 0;
160     int extra_save_slots_per_register = 0;
161     // Save upper half of vector registers
162     if (use_sve) {
163       extra_save_slots_per_register = sve_vector_size_in_slots - FloatRegisterImpl::save_slots_per_register;
164     } else {
165       extra_save_slots_per_register = FloatRegisterImpl::extra_save_slots_per_neon_register;
166     }
167     vect_words = FloatRegisterImpl::number_of_registers * extra_save_slots_per_register /
168                  VMRegImpl::slots_per_word;
169     additional_frame_words += vect_words;
170   }
171 #else
172   assert(!_save_vectors, "vectors are generated only by C2 and JVMCI");
173 #endif
174 
175   int frame_size_in_bytes = align_up(additional_frame_words * wordSize +
176                                      reg_save_size * BytesPerInt, 16);
177   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
178   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
179   // The caller will allocate additional_frame_words
180   int additional_frame_slots = additional_frame_words * wordSize / BytesPerInt;
181   // CodeBlob frame size is in words.
182   int frame_size_in_words = frame_size_in_bytes / wordSize;
183   *total_frame_words = frame_size_in_words;
184 
185   // Save Integer and Float registers.
186   __ enter();
187   __ push_CPU_state(_save_vectors, use_sve, sve_vector_size_in_bytes);
188 
189   // Set an oopmap for the call site.  This oopmap will map all
190   // oop-registers and debug-info registers as callee-saved.  This
191   // will allow deoptimization at this safepoint to find all possible
192   // debug-info recordings, as well as let GC find all oops.
193 
194   OopMapSet *oop_maps = new OopMapSet();
195   OopMap* oop_map = new OopMap(frame_size_in_slots, 0);
196 
197   for (int i = 0; i < RegisterImpl::number_of_registers; i++) {
198     Register r = as_Register(i);
199     if (r <= rfp && r != rscratch1 && r != rscratch2) {
200       // SP offsets are in 4-byte words.
201       // Register slots are 8 bytes wide, 32 floating-point registers.
202       int sp_offset = RegisterImpl::max_slots_per_register * i +
203                       FloatRegisterImpl::save_slots_per_register * FloatRegisterImpl::number_of_registers;
204       oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset + additional_frame_slots),
205                                 r->as_VMReg());
206     }
207   }
208 
209   for (int i = 0; i < FloatRegisterImpl::number_of_registers; i++) {
210     FloatRegister r = as_FloatRegister(i);
211     int sp_offset = 0;
212     if (_save_vectors) {
213       sp_offset = use_sve ? (sve_vector_size_in_slots * i) :
214                             (FloatRegisterImpl::slots_per_neon_register * i);
215     } else {
216       sp_offset = FloatRegisterImpl::save_slots_per_register * i;
217     }
218     oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset),
219                               r->as_VMReg());
220   }
221 
222   return oop_map;
223 }
224 
restore_live_registers(MacroAssembler * masm)225 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
226 #ifdef COMPILER2
227   __ pop_CPU_state(_save_vectors, Matcher::supports_scalable_vector(),
228                    Matcher::scalable_vector_reg_size(T_BYTE));
229 #else
230 #if !INCLUDE_JVMCI
231   assert(!_save_vectors, "vectors are generated only by C2 and JVMCI");
232 #endif
233   __ pop_CPU_state(_save_vectors);
234 #endif
235   __ leave();
236 
237 }
238 
239 // Is vector's size (in bytes) bigger than a size saved by default?
240 // 8 bytes vector registers are saved by default on AArch64.
is_wide_vector(int size)241 bool SharedRuntime::is_wide_vector(int size) {
242   return size > 8;
243 }
244 
245 // The java_calling_convention describes stack locations as ideal slots on
246 // a frame with no abi restrictions. Since we must observe abi restrictions
247 // (like the placement of the register window) the slots must be biased by
248 // the following value.
reg2offset_in(VMReg r)249 static int reg2offset_in(VMReg r) {
250   // Account for saved rfp and lr
251   // This should really be in_preserve_stack_slots
252   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
253 }
254 
reg2offset_out(VMReg r)255 static int reg2offset_out(VMReg r) {
256   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
257 }
258 
259 // ---------------------------------------------------------------------------
260 // Read the array of BasicTypes from a signature, and compute where the
261 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
262 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
263 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
264 // as framesizes are fixed.
265 // VMRegImpl::stack0 refers to the first slot 0(sp).
266 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
267 // up to RegisterImpl::number_of_registers) are the 64-bit
268 // integer registers.
269 
270 // Note: the INPUTS in sig_bt are in units of Java argument words,
271 // which are 64-bit.  The OUTPUTS are in 32-bit units.
272 
273 // The Java calling convention is a "shifted" version of the C ABI.
274 // By skipping the first C ABI register we can call non-static jni
275 // methods with small numbers of arguments without having to shuffle
276 // the arguments at all. Since we control the java ABI we ought to at
277 // least get some advantage out of it.
278 
java_calling_convention(const BasicType * sig_bt,VMRegPair * regs,int total_args_passed)279 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
280                                            VMRegPair *regs,
281                                            int total_args_passed) {
282 
283   // Create the mapping between argument positions and
284   // registers.
285   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
286     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7
287   };
288   static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
289     j_farg0, j_farg1, j_farg2, j_farg3,
290     j_farg4, j_farg5, j_farg6, j_farg7
291   };
292 
293 
294   uint int_args = 0;
295   uint fp_args = 0;
296   uint stk_args = 0; // inc by 2 each time
297 
298   for (int i = 0; i < total_args_passed; i++) {
299     switch (sig_bt[i]) {
300     case T_BOOLEAN:
301     case T_CHAR:
302     case T_BYTE:
303     case T_SHORT:
304     case T_INT:
305       if (int_args < Argument::n_int_register_parameters_j) {
306         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
307       } else {
308         regs[i].set1(VMRegImpl::stack2reg(stk_args));
309         stk_args += 2;
310       }
311       break;
312     case T_VOID:
313       // halves of T_LONG or T_DOUBLE
314       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
315       regs[i].set_bad();
316       break;
317     case T_LONG:
318       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
319       // fall through
320     case T_OBJECT:
321     case T_ARRAY:
322     case T_ADDRESS:
323       if (int_args < Argument::n_int_register_parameters_j) {
324         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
325       } else {
326         regs[i].set2(VMRegImpl::stack2reg(stk_args));
327         stk_args += 2;
328       }
329       break;
330     case T_FLOAT:
331       if (fp_args < Argument::n_float_register_parameters_j) {
332         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
333       } else {
334         regs[i].set1(VMRegImpl::stack2reg(stk_args));
335         stk_args += 2;
336       }
337       break;
338     case T_DOUBLE:
339       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
340       if (fp_args < Argument::n_float_register_parameters_j) {
341         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
342       } else {
343         regs[i].set2(VMRegImpl::stack2reg(stk_args));
344         stk_args += 2;
345       }
346       break;
347     default:
348       ShouldNotReachHere();
349       break;
350     }
351   }
352 
353   return align_up(stk_args, 2);
354 }
355 
356 // Patch the callers callsite with entry to compiled code if it exists.
patch_callers_callsite(MacroAssembler * masm)357 static void patch_callers_callsite(MacroAssembler *masm) {
358   Label L;
359   __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset())));
360   __ cbz(rscratch1, L);
361 
362   __ enter();
363   __ push_CPU_state();
364 
365   // VM needs caller's callsite
366   // VM needs target method
367   // This needs to be a long call since we will relocate this adapter to
368   // the codeBuffer and it may not reach
369 
370 #ifndef PRODUCT
371   assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
372 #endif
373 
374   __ mov(c_rarg0, rmethod);
375   __ mov(c_rarg1, lr);
376   __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
377   __ blr(rscratch1);
378 
379   // Explicit isb required because fixup_callers_callsite may change the code
380   // stream.
381   __ safepoint_isb();
382 
383   __ pop_CPU_state();
384   // restore sp
385   __ leave();
386   __ bind(L);
387 }
388 
gen_c2i_adapter(MacroAssembler * masm,int total_args_passed,int comp_args_on_stack,const BasicType * sig_bt,const VMRegPair * regs,Label & skip_fixup)389 static void gen_c2i_adapter(MacroAssembler *masm,
390                             int total_args_passed,
391                             int comp_args_on_stack,
392                             const BasicType *sig_bt,
393                             const VMRegPair *regs,
394                             Label& skip_fixup) {
395   // Before we get into the guts of the C2I adapter, see if we should be here
396   // at all.  We've come from compiled code and are attempting to jump to the
397   // interpreter, which means the caller made a static call to get here
398   // (vcalls always get a compiled target if there is one).  Check for a
399   // compiled target.  If there is one, we need to patch the caller's call.
400   patch_callers_callsite(masm);
401 
402   __ bind(skip_fixup);
403 
404   int words_pushed = 0;
405 
406   // Since all args are passed on the stack, total_args_passed *
407   // Interpreter::stackElementSize is the space we need.
408 
409   int extraspace = total_args_passed * Interpreter::stackElementSize;
410 
411   __ mov(r13, sp);
412 
413   // stack is aligned, keep it that way
414   extraspace = align_up(extraspace, 2*wordSize);
415 
416   if (extraspace)
417     __ sub(sp, sp, extraspace);
418 
419   // Now write the args into the outgoing interpreter space
420   for (int i = 0; i < total_args_passed; i++) {
421     if (sig_bt[i] == T_VOID) {
422       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
423       continue;
424     }
425 
426     // offset to start parameters
427     int st_off   = (total_args_passed - i - 1) * Interpreter::stackElementSize;
428     int next_off = st_off - Interpreter::stackElementSize;
429 
430     // Say 4 args:
431     // i   st_off
432     // 0   32 T_LONG
433     // 1   24 T_VOID
434     // 2   16 T_OBJECT
435     // 3    8 T_BOOL
436     // -    0 return address
437     //
438     // However to make thing extra confusing. Because we can fit a Java long/double in
439     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
440     // leaves one slot empty and only stores to a single slot. In this case the
441     // slot that is occupied is the T_VOID slot. See I said it was confusing.
442 
443     VMReg r_1 = regs[i].first();
444     VMReg r_2 = regs[i].second();
445     if (!r_1->is_valid()) {
446       assert(!r_2->is_valid(), "");
447       continue;
448     }
449     if (r_1->is_stack()) {
450       // memory to memory use rscratch1
451       int ld_off = (r_1->reg2stack() * VMRegImpl::stack_slot_size
452                     + extraspace
453                     + words_pushed * wordSize);
454       if (!r_2->is_valid()) {
455         // sign extend??
456         __ ldrw(rscratch1, Address(sp, ld_off));
457         __ str(rscratch1, Address(sp, st_off));
458 
459       } else {
460 
461         __ ldr(rscratch1, Address(sp, ld_off));
462 
463         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
464         // T_DOUBLE and T_LONG use two slots in the interpreter
465         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
466           // ld_off == LSW, ld_off+wordSize == MSW
467           // st_off == MSW, next_off == LSW
468           __ str(rscratch1, Address(sp, next_off));
469 #ifdef ASSERT
470           // Overwrite the unused slot with known junk
471           __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaaaull);
472           __ str(rscratch1, Address(sp, st_off));
473 #endif /* ASSERT */
474         } else {
475           __ str(rscratch1, Address(sp, st_off));
476         }
477       }
478     } else if (r_1->is_Register()) {
479       Register r = r_1->as_Register();
480       if (!r_2->is_valid()) {
481         // must be only an int (or less ) so move only 32bits to slot
482         // why not sign extend??
483         __ str(r, Address(sp, st_off));
484       } else {
485         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
486         // T_DOUBLE and T_LONG use two slots in the interpreter
487         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
488           // jlong/double in gpr
489 #ifdef ASSERT
490           // Overwrite the unused slot with known junk
491           __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaabull);
492           __ str(rscratch1, Address(sp, st_off));
493 #endif /* ASSERT */
494           __ str(r, Address(sp, next_off));
495         } else {
496           __ str(r, Address(sp, st_off));
497         }
498       }
499     } else {
500       assert(r_1->is_FloatRegister(), "");
501       if (!r_2->is_valid()) {
502         // only a float use just part of the slot
503         __ strs(r_1->as_FloatRegister(), Address(sp, st_off));
504       } else {
505 #ifdef ASSERT
506         // Overwrite the unused slot with known junk
507         __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaacull);
508         __ str(rscratch1, Address(sp, st_off));
509 #endif /* ASSERT */
510         __ strd(r_1->as_FloatRegister(), Address(sp, next_off));
511       }
512     }
513   }
514 
515   __ mov(esp, sp); // Interp expects args on caller's expression stack
516 
517   __ ldr(rscratch1, Address(rmethod, in_bytes(Method::interpreter_entry_offset())));
518   __ br(rscratch1);
519 }
520 
521 
gen_i2c_adapter(MacroAssembler * masm,int total_args_passed,int comp_args_on_stack,const BasicType * sig_bt,const VMRegPair * regs)522 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
523                                     int total_args_passed,
524                                     int comp_args_on_stack,
525                                     const BasicType *sig_bt,
526                                     const VMRegPair *regs) {
527 
528   // Note: r13 contains the senderSP on entry. We must preserve it since
529   // we may do a i2c -> c2i transition if we lose a race where compiled
530   // code goes non-entrant while we get args ready.
531 
532   // In addition we use r13 to locate all the interpreter args because
533   // we must align the stack to 16 bytes.
534 
535   // Adapters are frameless.
536 
537   // An i2c adapter is frameless because the *caller* frame, which is
538   // interpreted, routinely repairs its own esp (from
539   // interpreter_frame_last_sp), even if a callee has modified the
540   // stack pointer.  It also recalculates and aligns sp.
541 
542   // A c2i adapter is frameless because the *callee* frame, which is
543   // interpreted, routinely repairs its caller's sp (from sender_sp,
544   // which is set up via the senderSP register).
545 
546   // In other words, if *either* the caller or callee is interpreted, we can
547   // get the stack pointer repaired after a call.
548 
549   // This is why c2i and i2c adapters cannot be indefinitely composed.
550   // In particular, if a c2i adapter were to somehow call an i2c adapter,
551   // both caller and callee would be compiled methods, and neither would
552   // clean up the stack pointer changes performed by the two adapters.
553   // If this happens, control eventually transfers back to the compiled
554   // caller, but with an uncorrected stack, causing delayed havoc.
555 
556   if (VerifyAdapterCalls &&
557       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
558 #if 0
559     // So, let's test for cascading c2i/i2c adapters right now.
560     //  assert(Interpreter::contains($return_addr) ||
561     //         StubRoutines::contains($return_addr),
562     //         "i2c adapter must return to an interpreter frame");
563     __ block_comment("verify_i2c { ");
564     Label L_ok;
565     if (Interpreter::code() != NULL)
566       range_check(masm, rax, r11,
567                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
568                   L_ok);
569     if (StubRoutines::code1() != NULL)
570       range_check(masm, rax, r11,
571                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
572                   L_ok);
573     if (StubRoutines::code2() != NULL)
574       range_check(masm, rax, r11,
575                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
576                   L_ok);
577     const char* msg = "i2c adapter must return to an interpreter frame";
578     __ block_comment(msg);
579     __ stop(msg);
580     __ bind(L_ok);
581     __ block_comment("} verify_i2ce ");
582 #endif
583   }
584 
585   // Cut-out for having no stack args.
586   int comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
587   if (comp_args_on_stack) {
588     __ sub(rscratch1, sp, comp_words_on_stack * wordSize);
589     __ andr(sp, rscratch1, -16);
590   }
591 
592   // Will jump to the compiled code just as if compiled code was doing it.
593   // Pre-load the register-jump target early, to schedule it better.
594   __ ldr(rscratch1, Address(rmethod, in_bytes(Method::from_compiled_offset())));
595 
596 #if INCLUDE_JVMCI
597   if (EnableJVMCI) {
598     // check if this call should be routed towards a specific entry point
599     __ ldr(rscratch2, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
600     Label no_alternative_target;
601     __ cbz(rscratch2, no_alternative_target);
602     __ mov(rscratch1, rscratch2);
603     __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
604     __ bind(no_alternative_target);
605   }
606 #endif // INCLUDE_JVMCI
607 
608   // Now generate the shuffle code.
609   for (int i = 0; i < total_args_passed; i++) {
610     if (sig_bt[i] == T_VOID) {
611       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
612       continue;
613     }
614 
615     // Pick up 0, 1 or 2 words from SP+offset.
616 
617     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
618             "scrambled load targets?");
619     // Load in argument order going down.
620     int ld_off = (total_args_passed - i - 1)*Interpreter::stackElementSize;
621     // Point to interpreter value (vs. tag)
622     int next_off = ld_off - Interpreter::stackElementSize;
623     //
624     //
625     //
626     VMReg r_1 = regs[i].first();
627     VMReg r_2 = regs[i].second();
628     if (!r_1->is_valid()) {
629       assert(!r_2->is_valid(), "");
630       continue;
631     }
632     if (r_1->is_stack()) {
633       // Convert stack slot to an SP offset (+ wordSize to account for return address )
634       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size;
635       if (!r_2->is_valid()) {
636         // sign extend???
637         __ ldrsw(rscratch2, Address(esp, ld_off));
638         __ str(rscratch2, Address(sp, st_off));
639       } else {
640         //
641         // We are using two optoregs. This can be either T_OBJECT,
642         // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates
643         // two slots but only uses one for thr T_LONG or T_DOUBLE case
644         // So we must adjust where to pick up the data to match the
645         // interpreter.
646         //
647         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
648         // are accessed as negative so LSW is at LOW address
649 
650         // ld_off is MSW so get LSW
651         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
652                            next_off : ld_off;
653         __ ldr(rscratch2, Address(esp, offset));
654         // st_off is LSW (i.e. reg.first())
655         __ str(rscratch2, Address(sp, st_off));
656       }
657     } else if (r_1->is_Register()) {  // Register argument
658       Register r = r_1->as_Register();
659       if (r_2->is_valid()) {
660         //
661         // We are using two VMRegs. This can be either T_OBJECT,
662         // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates
663         // two slots but only uses one for thr T_LONG or T_DOUBLE case
664         // So we must adjust where to pick up the data to match the
665         // interpreter.
666 
667         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
668                            next_off : ld_off;
669 
670         // this can be a misaligned move
671         __ ldr(r, Address(esp, offset));
672       } else {
673         // sign extend and use a full word?
674         __ ldrw(r, Address(esp, ld_off));
675       }
676     } else {
677       if (!r_2->is_valid()) {
678         __ ldrs(r_1->as_FloatRegister(), Address(esp, ld_off));
679       } else {
680         __ ldrd(r_1->as_FloatRegister(), Address(esp, next_off));
681       }
682     }
683   }
684 
685   // 6243940 We might end up in handle_wrong_method if
686   // the callee is deoptimized as we race thru here. If that
687   // happens we don't want to take a safepoint because the
688   // caller frame will look interpreted and arguments are now
689   // "compiled" so it is much better to make this transition
690   // invisible to the stack walking code. Unfortunately if
691   // we try and find the callee by normal means a safepoint
692   // is possible. So we stash the desired callee in the thread
693   // and the vm will find there should this case occur.
694 
695   __ str(rmethod, Address(rthread, JavaThread::callee_target_offset()));
696 
697   __ br(rscratch1);
698 }
699 
700 // ---------------------------------------------------------------
generate_i2c2i_adapters(MacroAssembler * masm,int total_args_passed,int comp_args_on_stack,const BasicType * sig_bt,const VMRegPair * regs,AdapterFingerPrint * fingerprint)701 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
702                                                             int total_args_passed,
703                                                             int comp_args_on_stack,
704                                                             const BasicType *sig_bt,
705                                                             const VMRegPair *regs,
706                                                             AdapterFingerPrint* fingerprint) {
707   address i2c_entry = __ pc();
708 
709   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
710 
711   address c2i_unverified_entry = __ pc();
712   Label skip_fixup;
713 
714   Label ok;
715 
716   Register holder = rscratch2;
717   Register receiver = j_rarg0;
718   Register tmp = r10;  // A call-clobbered register not used for arg passing
719 
720   // -------------------------------------------------------------------------
721   // Generate a C2I adapter.  On entry we know rmethod holds the Method* during calls
722   // to the interpreter.  The args start out packed in the compiled layout.  They
723   // need to be unpacked into the interpreter layout.  This will almost always
724   // require some stack space.  We grow the current (compiled) stack, then repack
725   // the args.  We  finally end in a jump to the generic interpreter entry point.
726   // On exit from the interpreter, the interpreter will restore our SP (lest the
727   // compiled code, which relys solely on SP and not FP, get sick).
728 
729   {
730     __ block_comment("c2i_unverified_entry {");
731     __ load_klass(rscratch1, receiver);
732     __ ldr(tmp, Address(holder, CompiledICHolder::holder_klass_offset()));
733     __ cmp(rscratch1, tmp);
734     __ ldr(rmethod, Address(holder, CompiledICHolder::holder_metadata_offset()));
735     __ br(Assembler::EQ, ok);
736     __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
737 
738     __ bind(ok);
739     // Method might have been compiled since the call site was patched to
740     // interpreted; if that is the case treat it as a miss so we can get
741     // the call site corrected.
742     __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset())));
743     __ cbz(rscratch1, skip_fixup);
744     __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
745     __ block_comment("} c2i_unverified_entry");
746   }
747 
748   address c2i_entry = __ pc();
749 
750   // Class initialization barrier for static methods
751   address c2i_no_clinit_check_entry = NULL;
752   if (VM_Version::supports_fast_class_init_checks()) {
753     Label L_skip_barrier;
754 
755     { // Bypass the barrier for non-static methods
756       __ ldrw(rscratch1, Address(rmethod, Method::access_flags_offset()));
757       __ andsw(zr, rscratch1, JVM_ACC_STATIC);
758       __ br(Assembler::EQ, L_skip_barrier); // non-static
759     }
760 
761     __ load_method_holder(rscratch2, rmethod);
762     __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier);
763     __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
764 
765     __ bind(L_skip_barrier);
766     c2i_no_clinit_check_entry = __ pc();
767   }
768 
769   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
770   bs->c2i_entry_barrier(masm);
771 
772   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
773 
774   __ flush();
775   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
776 }
777 
c_calling_convention_priv(const BasicType * sig_bt,VMRegPair * regs,VMRegPair * regs2,int total_args_passed)778 static int c_calling_convention_priv(const BasicType *sig_bt,
779                                          VMRegPair *regs,
780                                          VMRegPair *regs2,
781                                          int total_args_passed) {
782   assert(regs2 == NULL, "not needed on AArch64");
783 
784 // We return the amount of VMRegImpl stack slots we need to reserve for all
785 // the arguments NOT counting out_preserve_stack_slots.
786 
787     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
788       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5,  c_rarg6,  c_rarg7
789     };
790     static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
791       c_farg0, c_farg1, c_farg2, c_farg3,
792       c_farg4, c_farg5, c_farg6, c_farg7
793     };
794 
795     uint int_args = 0;
796     uint fp_args = 0;
797     uint stk_args = 0; // inc by 2 each time
798 
799     for (int i = 0; i < total_args_passed; i++) {
800       switch (sig_bt[i]) {
801       case T_BOOLEAN:
802       case T_CHAR:
803       case T_BYTE:
804       case T_SHORT:
805       case T_INT:
806         if (int_args < Argument::n_int_register_parameters_c) {
807           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
808         } else {
809 #ifdef __APPLE__
810           // Less-than word types are stored one after another.
811           // The code is unable to handle this so bailout.
812           return -1;
813 #endif
814           regs[i].set1(VMRegImpl::stack2reg(stk_args));
815           stk_args += 2;
816         }
817         break;
818       case T_LONG:
819         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
820         // fall through
821       case T_OBJECT:
822       case T_ARRAY:
823       case T_ADDRESS:
824       case T_METADATA:
825         if (int_args < Argument::n_int_register_parameters_c) {
826           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
827         } else {
828           regs[i].set2(VMRegImpl::stack2reg(stk_args));
829           stk_args += 2;
830         }
831         break;
832       case T_FLOAT:
833         if (fp_args < Argument::n_float_register_parameters_c) {
834           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
835         } else {
836 #ifdef __APPLE__
837           // Less-than word types are stored one after another.
838           // The code is unable to handle this so bailout.
839           return -1;
840 #endif
841           regs[i].set1(VMRegImpl::stack2reg(stk_args));
842           stk_args += 2;
843         }
844         break;
845       case T_DOUBLE:
846         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
847         if (fp_args < Argument::n_float_register_parameters_c) {
848           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
849         } else {
850           regs[i].set2(VMRegImpl::stack2reg(stk_args));
851           stk_args += 2;
852         }
853         break;
854       case T_VOID: // Halves of longs and doubles
855         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
856         regs[i].set_bad();
857         break;
858       default:
859         ShouldNotReachHere();
860         break;
861       }
862     }
863 
864   return stk_args;
865 }
866 
vector_calling_convention(VMRegPair * regs,uint num_bits,uint total_args_passed)867 int SharedRuntime::vector_calling_convention(VMRegPair *regs,
868                                              uint num_bits,
869                                              uint total_args_passed) {
870   Unimplemented();
871   return 0;
872 }
873 
c_calling_convention(const BasicType * sig_bt,VMRegPair * regs,VMRegPair * regs2,int total_args_passed)874 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
875                                          VMRegPair *regs,
876                                          VMRegPair *regs2,
877                                          int total_args_passed)
878 {
879   int result = c_calling_convention_priv(sig_bt, regs, regs2, total_args_passed);
880   guarantee(result >= 0, "Unsupported arguments configuration");
881   return result;
882 }
883 
884 // On 64 bit we will store integer like items to the stack as
885 // 64 bits items (Aarch64 abi) even though java would only store
886 // 32bits for a parameter. On 32bit it will simply be 32 bits
887 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
move32_64(MacroAssembler * masm,VMRegPair src,VMRegPair dst)888 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
889   if (src.first()->is_stack()) {
890     if (dst.first()->is_stack()) {
891       // stack to stack
892       __ ldr(rscratch1, Address(rfp, reg2offset_in(src.first())));
893       __ str(rscratch1, Address(sp, reg2offset_out(dst.first())));
894     } else {
895       // stack to reg
896       __ ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first())));
897     }
898   } else if (dst.first()->is_stack()) {
899     // reg to stack
900     // Do we really have to sign extend???
901     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
902     __ str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first())));
903   } else {
904     if (dst.first() != src.first()) {
905       __ sxtw(dst.first()->as_Register(), src.first()->as_Register());
906     }
907   }
908 }
909 
910 // An oop arg. Must pass a handle not the oop itself
object_move(MacroAssembler * masm,OopMap * map,int oop_handle_offset,int framesize_in_slots,VMRegPair src,VMRegPair dst,bool is_receiver,int * receiver_offset)911 static void object_move(MacroAssembler* masm,
912                         OopMap* map,
913                         int oop_handle_offset,
914                         int framesize_in_slots,
915                         VMRegPair src,
916                         VMRegPair dst,
917                         bool is_receiver,
918                         int* receiver_offset) {
919 
920   // must pass a handle. First figure out the location we use as a handle
921 
922   Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register();
923 
924   // See if oop is NULL if it is we need no handle
925 
926   if (src.first()->is_stack()) {
927 
928     // Oop is already on the stack as an argument
929     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
930     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
931     if (is_receiver) {
932       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
933     }
934 
935     __ ldr(rscratch1, Address(rfp, reg2offset_in(src.first())));
936     __ lea(rHandle, Address(rfp, reg2offset_in(src.first())));
937     // conditionally move a NULL
938     __ cmp(rscratch1, zr);
939     __ csel(rHandle, zr, rHandle, Assembler::EQ);
940   } else {
941 
942     // Oop is in an a register we must store it to the space we reserve
943     // on the stack for oop_handles and pass a handle if oop is non-NULL
944 
945     const Register rOop = src.first()->as_Register();
946     int oop_slot;
947     if (rOop == j_rarg0)
948       oop_slot = 0;
949     else if (rOop == j_rarg1)
950       oop_slot = 1;
951     else if (rOop == j_rarg2)
952       oop_slot = 2;
953     else if (rOop == j_rarg3)
954       oop_slot = 3;
955     else if (rOop == j_rarg4)
956       oop_slot = 4;
957     else if (rOop == j_rarg5)
958       oop_slot = 5;
959     else if (rOop == j_rarg6)
960       oop_slot = 6;
961     else {
962       assert(rOop == j_rarg7, "wrong register");
963       oop_slot = 7;
964     }
965 
966     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
967     int offset = oop_slot*VMRegImpl::stack_slot_size;
968 
969     map->set_oop(VMRegImpl::stack2reg(oop_slot));
970     // Store oop in handle area, may be NULL
971     __ str(rOop, Address(sp, offset));
972     if (is_receiver) {
973       *receiver_offset = offset;
974     }
975 
976     __ cmp(rOop, zr);
977     __ lea(rHandle, Address(sp, offset));
978     // conditionally move a NULL
979     __ csel(rHandle, zr, rHandle, Assembler::EQ);
980   }
981 
982   // If arg is on the stack then place it otherwise it is already in correct reg.
983   if (dst.first()->is_stack()) {
984     __ str(rHandle, Address(sp, reg2offset_out(dst.first())));
985   }
986 }
987 
988 // A float arg may have to do float reg int reg conversion
float_move(MacroAssembler * masm,VMRegPair src,VMRegPair dst)989 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
990   assert(src.first()->is_stack() && dst.first()->is_stack() ||
991          src.first()->is_reg() && dst.first()->is_reg(), "Unexpected error");
992   if (src.first()->is_stack()) {
993     if (dst.first()->is_stack()) {
994       __ ldrw(rscratch1, Address(rfp, reg2offset_in(src.first())));
995       __ strw(rscratch1, Address(sp, reg2offset_out(dst.first())));
996     } else {
997       ShouldNotReachHere();
998     }
999   } else if (src.first() != dst.first()) {
1000     if (src.is_single_phys_reg() && dst.is_single_phys_reg())
1001       __ fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
1002     else
1003       ShouldNotReachHere();
1004   }
1005 }
1006 
1007 // A long move
long_move(MacroAssembler * masm,VMRegPair src,VMRegPair dst)1008 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1009   if (src.first()->is_stack()) {
1010     if (dst.first()->is_stack()) {
1011       // stack to stack
1012       __ ldr(rscratch1, Address(rfp, reg2offset_in(src.first())));
1013       __ str(rscratch1, Address(sp, reg2offset_out(dst.first())));
1014     } else {
1015       // stack to reg
1016       __ ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first())));
1017     }
1018   } else if (dst.first()->is_stack()) {
1019     // reg to stack
1020     // Do we really have to sign extend???
1021     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
1022     __ str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first())));
1023   } else {
1024     if (dst.first() != src.first()) {
1025       __ mov(dst.first()->as_Register(), src.first()->as_Register());
1026     }
1027   }
1028 }
1029 
1030 
1031 // A double move
double_move(MacroAssembler * masm,VMRegPair src,VMRegPair dst)1032 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1033   assert(src.first()->is_stack() && dst.first()->is_stack() ||
1034          src.first()->is_reg() && dst.first()->is_reg(), "Unexpected error");
1035   if (src.first()->is_stack()) {
1036     if (dst.first()->is_stack()) {
1037       __ ldr(rscratch1, Address(rfp, reg2offset_in(src.first())));
1038       __ str(rscratch1, Address(sp, reg2offset_out(dst.first())));
1039     } else {
1040       ShouldNotReachHere();
1041     }
1042   } else if (src.first() != dst.first()) {
1043     if (src.is_single_phys_reg() && dst.is_single_phys_reg())
1044       __ fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
1045     else
1046       ShouldNotReachHere();
1047   }
1048 }
1049 
1050 
save_native_result(MacroAssembler * masm,BasicType ret_type,int frame_slots)1051 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1052   // We always ignore the frame_slots arg and just use the space just below frame pointer
1053   // which by this time is free to use
1054   switch (ret_type) {
1055   case T_FLOAT:
1056     __ strs(v0, Address(rfp, -wordSize));
1057     break;
1058   case T_DOUBLE:
1059     __ strd(v0, Address(rfp, -wordSize));
1060     break;
1061   case T_VOID:  break;
1062   default: {
1063     __ str(r0, Address(rfp, -wordSize));
1064     }
1065   }
1066 }
1067 
restore_native_result(MacroAssembler * masm,BasicType ret_type,int frame_slots)1068 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1069   // We always ignore the frame_slots arg and just use the space just below frame pointer
1070   // which by this time is free to use
1071   switch (ret_type) {
1072   case T_FLOAT:
1073     __ ldrs(v0, Address(rfp, -wordSize));
1074     break;
1075   case T_DOUBLE:
1076     __ ldrd(v0, Address(rfp, -wordSize));
1077     break;
1078   case T_VOID:  break;
1079   default: {
1080     __ ldr(r0, Address(rfp, -wordSize));
1081     }
1082   }
1083 }
save_args(MacroAssembler * masm,int arg_count,int first_arg,VMRegPair * args)1084 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1085   RegSet x;
1086   for ( int i = first_arg ; i < arg_count ; i++ ) {
1087     if (args[i].first()->is_Register()) {
1088       x = x + args[i].first()->as_Register();
1089     } else if (args[i].first()->is_FloatRegister()) {
1090       __ strd(args[i].first()->as_FloatRegister(), Address(__ pre(sp, -2 * wordSize)));
1091     }
1092   }
1093   __ push(x, sp);
1094 }
1095 
restore_args(MacroAssembler * masm,int arg_count,int first_arg,VMRegPair * args)1096 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1097   RegSet x;
1098   for ( int i = first_arg ; i < arg_count ; i++ ) {
1099     if (args[i].first()->is_Register()) {
1100       x = x + args[i].first()->as_Register();
1101     } else {
1102       ;
1103     }
1104   }
1105   __ pop(x, sp);
1106   for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
1107     if (args[i].first()->is_Register()) {
1108       ;
1109     } else if (args[i].first()->is_FloatRegister()) {
1110       __ ldrd(args[i].first()->as_FloatRegister(), Address(__ post(sp, 2 * wordSize)));
1111     }
1112   }
1113 }
1114 
1115 // Unpack an array argument into a pointer to the body and the length
1116 // if the array is non-null, otherwise pass 0 for both.
unpack_array_argument(MacroAssembler * masm,VMRegPair reg,BasicType in_elem_type,VMRegPair body_arg,VMRegPair length_arg)1117 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) { Unimplemented(); }
1118 
1119 
1120 class ComputeMoveOrder: public StackObj {
1121   class MoveOperation: public ResourceObj {
1122     friend class ComputeMoveOrder;
1123    private:
1124     VMRegPair        _src;
1125     VMRegPair        _dst;
1126     int              _src_index;
1127     int              _dst_index;
1128     bool             _processed;
1129     MoveOperation*  _next;
1130     MoveOperation*  _prev;
1131 
get_id(VMRegPair r)1132     static int get_id(VMRegPair r) { Unimplemented(); return 0; }
1133 
1134    public:
MoveOperation(int src_index,VMRegPair src,int dst_index,VMRegPair dst)1135     MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
1136       _src(src)
1137     , _dst(dst)
1138     , _src_index(src_index)
1139     , _dst_index(dst_index)
1140     , _processed(false)
1141     , _next(NULL)
1142     , _prev(NULL) { Unimplemented(); }
1143 
src() const1144     VMRegPair src() const              { Unimplemented(); return _src; }
src_id() const1145     int src_id() const                 { Unimplemented(); return 0; }
src_index() const1146     int src_index() const              { Unimplemented(); return 0; }
dst() const1147     VMRegPair dst() const              { Unimplemented(); return _src; }
set_dst(int i,VMRegPair dst)1148     void set_dst(int i, VMRegPair dst) { Unimplemented(); }
dst_index() const1149     int dst_index() const              { Unimplemented(); return 0; }
dst_id() const1150     int dst_id() const                 { Unimplemented(); return 0; }
next() const1151     MoveOperation* next() const        { Unimplemented(); return 0; }
prev() const1152     MoveOperation* prev() const        { Unimplemented(); return 0; }
set_processed()1153     void set_processed()               { Unimplemented(); }
is_processed() const1154     bool is_processed() const          { Unimplemented(); return 0; }
1155 
1156     // insert
break_cycle(VMRegPair temp_register)1157     void break_cycle(VMRegPair temp_register) { Unimplemented(); }
1158 
link(GrowableArray<MoveOperation * > & killer)1159     void link(GrowableArray<MoveOperation*>& killer) { Unimplemented(); }
1160   };
1161 
1162  private:
1163   GrowableArray<MoveOperation*> edges;
1164 
1165  public:
ComputeMoveOrder(int total_in_args,VMRegPair * in_regs,int total_c_args,VMRegPair * out_regs,BasicType * in_sig_bt,GrowableArray<int> & arg_order,VMRegPair tmp_vmreg)1166   ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
1167                     BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) { Unimplemented(); }
1168 
1169   // Collected all the move operations
add_edge(int src_index,VMRegPair src,int dst_index,VMRegPair dst)1170   void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) { Unimplemented(); }
1171 
1172   // Walk the edges breaking cycles between moves.  The result list
1173   // can be walked in order to produce the proper set of loads
get_store_order(VMRegPair temp_register)1174   GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) { Unimplemented(); return 0; }
1175 };
1176 
1177 
rt_call(MacroAssembler * masm,address dest)1178 static void rt_call(MacroAssembler* masm, address dest) {
1179   CodeBlob *cb = CodeCache::find_blob(dest);
1180   if (cb) {
1181     __ far_call(RuntimeAddress(dest));
1182   } else {
1183     __ lea(rscratch1, RuntimeAddress(dest));
1184     __ blr(rscratch1);
1185   }
1186 }
1187 
verify_oop_args(MacroAssembler * masm,const methodHandle & method,const BasicType * sig_bt,const VMRegPair * regs)1188 static void verify_oop_args(MacroAssembler* masm,
1189                             const methodHandle& method,
1190                             const BasicType* sig_bt,
1191                             const VMRegPair* regs) {
1192   Register temp_reg = r19;  // not part of any compiled calling seq
1193   if (VerifyOops) {
1194     for (int i = 0; i < method->size_of_parameters(); i++) {
1195       if (sig_bt[i] == T_OBJECT ||
1196           sig_bt[i] == T_ARRAY) {
1197         VMReg r = regs[i].first();
1198         assert(r->is_valid(), "bad oop arg");
1199         if (r->is_stack()) {
1200           __ ldr(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
1201           __ verify_oop(temp_reg);
1202         } else {
1203           __ verify_oop(r->as_Register());
1204         }
1205       }
1206     }
1207   }
1208 }
1209 
gen_special_dispatch(MacroAssembler * masm,const methodHandle & method,const BasicType * sig_bt,const VMRegPair * regs)1210 static void gen_special_dispatch(MacroAssembler* masm,
1211                                  const methodHandle& method,
1212                                  const BasicType* sig_bt,
1213                                  const VMRegPair* regs) {
1214   verify_oop_args(masm, method, sig_bt, regs);
1215   vmIntrinsics::ID iid = method->intrinsic_id();
1216 
1217   // Now write the args into the outgoing interpreter space
1218   bool     has_receiver   = false;
1219   Register receiver_reg   = noreg;
1220   int      member_arg_pos = -1;
1221   Register member_reg     = noreg;
1222   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1223   if (ref_kind != 0) {
1224     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1225     member_reg = r19;  // known to be free at this point
1226     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1227   } else if (iid == vmIntrinsics::_invokeBasic || iid == vmIntrinsics::_linkToNative) {
1228     has_receiver = true;
1229   } else {
1230     fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid));
1231   }
1232 
1233   if (member_reg != noreg) {
1234     // Load the member_arg into register, if necessary.
1235     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1236     VMReg r = regs[member_arg_pos].first();
1237     if (r->is_stack()) {
1238       __ ldr(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
1239     } else {
1240       // no data motion is needed
1241       member_reg = r->as_Register();
1242     }
1243   }
1244 
1245   if (has_receiver) {
1246     // Make sure the receiver is loaded into a register.
1247     assert(method->size_of_parameters() > 0, "oob");
1248     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1249     VMReg r = regs[0].first();
1250     assert(r->is_valid(), "bad receiver arg");
1251     if (r->is_stack()) {
1252       // Porting note:  This assumes that compiled calling conventions always
1253       // pass the receiver oop in a register.  If this is not true on some
1254       // platform, pick a temp and load the receiver from stack.
1255       fatal("receiver always in a register");
1256       receiver_reg = r2;  // known to be free at this point
1257       __ ldr(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
1258     } else {
1259       // no data motion is needed
1260       receiver_reg = r->as_Register();
1261     }
1262   }
1263 
1264   // Figure out which address we are really jumping to:
1265   MethodHandles::generate_method_handle_dispatch(masm, iid,
1266                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1267 }
1268 
1269 // ---------------------------------------------------------------------------
1270 // Generate a native wrapper for a given method.  The method takes arguments
1271 // in the Java compiled code convention, marshals them to the native
1272 // convention (handlizes oops, etc), transitions to native, makes the call,
1273 // returns to java state (possibly blocking), unhandlizes any result and
1274 // returns.
1275 //
1276 // Critical native functions are a shorthand for the use of
1277 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1278 // functions.  The wrapper is expected to unpack the arguments before
1279 // passing them to the callee. Critical native functions leave the state _in_Java,
1280 // since they block out GC.
1281 // Some other parts of JNI setup are skipped like the tear down of the JNI handle
1282 // block and the check for pending exceptions it's impossible for them
1283 // to be thrown.
1284 //
generate_native_wrapper(MacroAssembler * masm,const methodHandle & method,int compile_id,BasicType * in_sig_bt,VMRegPair * in_regs,BasicType ret_type,address critical_entry)1285 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1286                                                 const methodHandle& method,
1287                                                 int compile_id,
1288                                                 BasicType* in_sig_bt,
1289                                                 VMRegPair* in_regs,
1290                                                 BasicType ret_type,
1291                                                 address critical_entry) {
1292   if (method->is_method_handle_intrinsic()) {
1293     vmIntrinsics::ID iid = method->intrinsic_id();
1294     intptr_t start = (intptr_t)__ pc();
1295     int vep_offset = ((intptr_t)__ pc()) - start;
1296 
1297     // First instruction must be a nop as it may need to be patched on deoptimisation
1298     __ nop();
1299     gen_special_dispatch(masm,
1300                          method,
1301                          in_sig_bt,
1302                          in_regs);
1303     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1304     __ flush();
1305     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1306     return nmethod::new_native_nmethod(method,
1307                                        compile_id,
1308                                        masm->code(),
1309                                        vep_offset,
1310                                        frame_complete,
1311                                        stack_slots / VMRegImpl::slots_per_word,
1312                                        in_ByteSize(-1),
1313                                        in_ByteSize(-1),
1314                                        (OopMapSet*)NULL);
1315   }
1316   bool is_critical_native = true;
1317   address native_func = critical_entry;
1318   if (native_func == NULL) {
1319     native_func = method->native_function();
1320     is_critical_native = false;
1321   }
1322   assert(native_func != NULL, "must have function");
1323 
1324   // An OopMap for lock (and class if static)
1325   OopMapSet *oop_maps = new OopMapSet();
1326   intptr_t start = (intptr_t)__ pc();
1327 
1328   // We have received a description of where all the java arg are located
1329   // on entry to the wrapper. We need to convert these args to where
1330   // the jni function will expect them. To figure out where they go
1331   // we convert the java signature to a C signature by inserting
1332   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1333 
1334   const int total_in_args = method->size_of_parameters();
1335   int total_c_args = total_in_args;
1336   if (!is_critical_native) {
1337     total_c_args += 1;
1338     if (method->is_static()) {
1339       total_c_args++;
1340     }
1341   } else {
1342     for (int i = 0; i < total_in_args; i++) {
1343       if (in_sig_bt[i] == T_ARRAY) {
1344         total_c_args++;
1345       }
1346     }
1347   }
1348 
1349   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1350   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1351   BasicType* in_elem_bt = NULL;
1352 
1353   int argc = 0;
1354   if (!is_critical_native) {
1355     out_sig_bt[argc++] = T_ADDRESS;
1356     if (method->is_static()) {
1357       out_sig_bt[argc++] = T_OBJECT;
1358     }
1359 
1360     for (int i = 0; i < total_in_args ; i++ ) {
1361       out_sig_bt[argc++] = in_sig_bt[i];
1362     }
1363   } else {
1364     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1365     SignatureStream ss(method->signature());
1366     for (int i = 0; i < total_in_args ; i++ ) {
1367       if (in_sig_bt[i] == T_ARRAY) {
1368         // Arrays are passed as int, elem* pair
1369         out_sig_bt[argc++] = T_INT;
1370         out_sig_bt[argc++] = T_ADDRESS;
1371         ss.skip_array_prefix(1);  // skip one '['
1372         assert(ss.is_primitive(), "primitive type expected");
1373         in_elem_bt[i] = ss.type();
1374       } else {
1375         out_sig_bt[argc++] = in_sig_bt[i];
1376         in_elem_bt[i] = T_VOID;
1377       }
1378       if (in_sig_bt[i] != T_VOID) {
1379         assert(in_sig_bt[i] == ss.type() ||
1380                in_sig_bt[i] == T_ARRAY, "must match");
1381         ss.next();
1382       }
1383     }
1384   }
1385 
1386   // Now figure out where the args must be stored and how much stack space
1387   // they require.
1388   int out_arg_slots;
1389   out_arg_slots = c_calling_convention_priv(out_sig_bt, out_regs, NULL, total_c_args);
1390 
1391   if (out_arg_slots < 0) {
1392     return NULL;
1393   }
1394 
1395   // Compute framesize for the wrapper.  We need to handlize all oops in
1396   // incoming registers
1397 
1398   // Calculate the total number of stack slots we will need.
1399 
1400   // First count the abi requirement plus all of the outgoing args
1401   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1402 
1403   // Now the space for the inbound oop handle area
1404   int total_save_slots = 8 * VMRegImpl::slots_per_word;  // 8 arguments passed in registers
1405   if (is_critical_native) {
1406     // Critical natives may have to call out so they need a save area
1407     // for register arguments.
1408     int double_slots = 0;
1409     int single_slots = 0;
1410     for ( int i = 0; i < total_in_args; i++) {
1411       if (in_regs[i].first()->is_Register()) {
1412         const Register reg = in_regs[i].first()->as_Register();
1413         switch (in_sig_bt[i]) {
1414           case T_BOOLEAN:
1415           case T_BYTE:
1416           case T_SHORT:
1417           case T_CHAR:
1418           case T_INT:  single_slots++; break;
1419           case T_ARRAY:  // specific to LP64 (7145024)
1420           case T_LONG: double_slots++; break;
1421           default:  ShouldNotReachHere();
1422         }
1423       } else if (in_regs[i].first()->is_FloatRegister()) {
1424         ShouldNotReachHere();
1425       }
1426     }
1427     total_save_slots = double_slots * 2 + single_slots;
1428     // align the save area
1429     if (double_slots != 0) {
1430       stack_slots = align_up(stack_slots, 2);
1431     }
1432   }
1433 
1434   int oop_handle_offset = stack_slots;
1435   stack_slots += total_save_slots;
1436 
1437   // Now any space we need for handlizing a klass if static method
1438 
1439   int klass_slot_offset = 0;
1440   int klass_offset = -1;
1441   int lock_slot_offset = 0;
1442   bool is_static = false;
1443 
1444   if (method->is_static()) {
1445     klass_slot_offset = stack_slots;
1446     stack_slots += VMRegImpl::slots_per_word;
1447     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1448     is_static = true;
1449   }
1450 
1451   // Plus a lock if needed
1452 
1453   if (method->is_synchronized()) {
1454     lock_slot_offset = stack_slots;
1455     stack_slots += VMRegImpl::slots_per_word;
1456   }
1457 
1458   // Now a place (+2) to save return values or temp during shuffling
1459   // + 4 for return address (which we own) and saved rfp
1460   stack_slots += 6;
1461 
1462   // Ok The space we have allocated will look like:
1463   //
1464   //
1465   // FP-> |                     |
1466   //      |---------------------|
1467   //      | 2 slots for moves   |
1468   //      |---------------------|
1469   //      | lock box (if sync)  |
1470   //      |---------------------| <- lock_slot_offset
1471   //      | klass (if static)   |
1472   //      |---------------------| <- klass_slot_offset
1473   //      | oopHandle area      |
1474   //      |---------------------| <- oop_handle_offset (8 java arg registers)
1475   //      | outbound memory     |
1476   //      | based arguments     |
1477   //      |                     |
1478   //      |---------------------|
1479   //      |                     |
1480   // SP-> | out_preserved_slots |
1481   //
1482   //
1483 
1484 
1485   // Now compute actual number of stack words we need rounding to make
1486   // stack properly aligned.
1487   stack_slots = align_up(stack_slots, StackAlignmentInSlots);
1488 
1489   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1490 
1491   // First thing make an ic check to see if we should even be here
1492 
1493   // We are free to use all registers as temps without saving them and
1494   // restoring them except rfp. rfp is the only callee save register
1495   // as far as the interpreter and the compiler(s) are concerned.
1496 
1497 
1498   const Register ic_reg = rscratch2;
1499   const Register receiver = j_rarg0;
1500 
1501   Label hit;
1502   Label exception_pending;
1503 
1504   assert_different_registers(ic_reg, receiver, rscratch1);
1505   __ verify_oop(receiver);
1506   __ cmp_klass(receiver, ic_reg, rscratch1);
1507   __ br(Assembler::EQ, hit);
1508 
1509   __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1510 
1511   // Verified entry point must be aligned
1512   __ align(8);
1513 
1514   __ bind(hit);
1515 
1516   int vep_offset = ((intptr_t)__ pc()) - start;
1517 
1518   // If we have to make this method not-entrant we'll overwrite its
1519   // first instruction with a jump.  For this action to be legal we
1520   // must ensure that this first instruction is a B, BL, NOP, BKPT,
1521   // SVC, HVC, or SMC.  Make it a NOP.
1522   __ nop();
1523 
1524   if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) {
1525     Label L_skip_barrier;
1526     __ mov_metadata(rscratch2, method->method_holder()); // InstanceKlass*
1527     __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier);
1528     __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
1529 
1530     __ bind(L_skip_barrier);
1531   }
1532 
1533   // Generate stack overflow check
1534   __ bang_stack_with_offset(checked_cast<int>(StackOverflow::stack_shadow_zone_size()));
1535 
1536   // Generate a new frame for the wrapper.
1537   __ enter();
1538   // -2 because return address is already present and so is saved rfp
1539   __ sub(sp, sp, stack_size - 2*wordSize);
1540 
1541   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
1542   bs->nmethod_entry_barrier(masm);
1543 
1544   // Frame is now completed as far as size and linkage.
1545   int frame_complete = ((intptr_t)__ pc()) - start;
1546 
1547   // We use r20 as the oop handle for the receiver/klass
1548   // It is callee save so it survives the call to native
1549 
1550   const Register oop_handle_reg = r20;
1551 
1552   //
1553   // We immediately shuffle the arguments so that any vm call we have to
1554   // make from here on out (sync slow path, jvmti, etc.) we will have
1555   // captured the oops from our caller and have a valid oopMap for
1556   // them.
1557 
1558   // -----------------
1559   // The Grand Shuffle
1560 
1561   // The Java calling convention is either equal (linux) or denser (win64) than the
1562   // c calling convention. However the because of the jni_env argument the c calling
1563   // convention always has at least one more (and two for static) arguments than Java.
1564   // Therefore if we move the args from java -> c backwards then we will never have
1565   // a register->register conflict and we don't have to build a dependency graph
1566   // and figure out how to break any cycles.
1567   //
1568 
1569   // Record esp-based slot for receiver on stack for non-static methods
1570   int receiver_offset = -1;
1571 
1572   // This is a trick. We double the stack slots so we can claim
1573   // the oops in the caller's frame. Since we are sure to have
1574   // more args than the caller doubling is enough to make
1575   // sure we can capture all the incoming oop args from the
1576   // caller.
1577   //
1578   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1579 
1580   // Mark location of rfp (someday)
1581   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rfp));
1582 
1583 
1584   int float_args = 0;
1585   int int_args = 0;
1586 
1587 #ifdef ASSERT
1588   bool reg_destroyed[RegisterImpl::number_of_registers];
1589   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
1590   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
1591     reg_destroyed[r] = false;
1592   }
1593   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
1594     freg_destroyed[f] = false;
1595   }
1596 
1597 #endif /* ASSERT */
1598 
1599   // This may iterate in two different directions depending on the
1600   // kind of native it is.  The reason is that for regular JNI natives
1601   // the incoming and outgoing registers are offset upwards and for
1602   // critical natives they are offset down.
1603   GrowableArray<int> arg_order(2 * total_in_args);
1604   VMRegPair tmp_vmreg;
1605   tmp_vmreg.set2(r19->as_VMReg());
1606 
1607   if (!is_critical_native) {
1608     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
1609       arg_order.push(i);
1610       arg_order.push(c_arg);
1611     }
1612   } else {
1613     // Compute a valid move order, using tmp_vmreg to break any cycles
1614     ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
1615   }
1616 
1617   int temploc = -1;
1618   for (int ai = 0; ai < arg_order.length(); ai += 2) {
1619     int i = arg_order.at(ai);
1620     int c_arg = arg_order.at(ai + 1);
1621     __ block_comment(err_msg("move %d -> %d", i, c_arg));
1622     if (c_arg == -1) {
1623       assert(is_critical_native, "should only be required for critical natives");
1624       // This arg needs to be moved to a temporary
1625       __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
1626       in_regs[i] = tmp_vmreg;
1627       temploc = i;
1628       continue;
1629     } else if (i == -1) {
1630       assert(is_critical_native, "should only be required for critical natives");
1631       // Read from the temporary location
1632       assert(temploc != -1, "must be valid");
1633       i = temploc;
1634       temploc = -1;
1635     }
1636 #ifdef ASSERT
1637     if (in_regs[i].first()->is_Register()) {
1638       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
1639     } else if (in_regs[i].first()->is_FloatRegister()) {
1640       assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!");
1641     }
1642     if (out_regs[c_arg].first()->is_Register()) {
1643       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
1644     } else if (out_regs[c_arg].first()->is_FloatRegister()) {
1645       freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true;
1646     }
1647 #endif /* ASSERT */
1648     switch (in_sig_bt[i]) {
1649       case T_ARRAY:
1650         if (is_critical_native) {
1651           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
1652           c_arg++;
1653 #ifdef ASSERT
1654           if (out_regs[c_arg].first()->is_Register()) {
1655             reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
1656           } else if (out_regs[c_arg].first()->is_FloatRegister()) {
1657             freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true;
1658           }
1659 #endif
1660           int_args++;
1661           break;
1662         }
1663       case T_OBJECT:
1664         assert(!is_critical_native, "no oop arguments");
1665         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1666                     ((i == 0) && (!is_static)),
1667                     &receiver_offset);
1668         int_args++;
1669         break;
1670       case T_VOID:
1671         break;
1672 
1673       case T_FLOAT:
1674         float_move(masm, in_regs[i], out_regs[c_arg]);
1675         float_args++;
1676         break;
1677 
1678       case T_DOUBLE:
1679         assert( i + 1 < total_in_args &&
1680                 in_sig_bt[i + 1] == T_VOID &&
1681                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1682         double_move(masm, in_regs[i], out_regs[c_arg]);
1683         float_args++;
1684         break;
1685 
1686       case T_LONG :
1687         long_move(masm, in_regs[i], out_regs[c_arg]);
1688         int_args++;
1689         break;
1690 
1691       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1692 
1693       default:
1694         move32_64(masm, in_regs[i], out_regs[c_arg]);
1695         int_args++;
1696     }
1697   }
1698 
1699   // point c_arg at the first arg that is already loaded in case we
1700   // need to spill before we call out
1701   int c_arg = total_c_args - total_in_args;
1702 
1703   // Pre-load a static method's oop into c_rarg1.
1704   if (method->is_static() && !is_critical_native) {
1705 
1706     //  load oop into a register
1707     __ movoop(c_rarg1,
1708               JNIHandles::make_local(method->method_holder()->java_mirror()),
1709               /*immediate*/true);
1710 
1711     // Now handlize the static class mirror it's known not-null.
1712     __ str(c_rarg1, Address(sp, klass_offset));
1713     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1714 
1715     // Now get the handle
1716     __ lea(c_rarg1, Address(sp, klass_offset));
1717     // and protect the arg if we must spill
1718     c_arg--;
1719   }
1720 
1721   // Change state to native (we save the return address in the thread, since it might not
1722   // be pushed on the stack when we do a stack traversal).
1723   // We use the same pc/oopMap repeatedly when we call out
1724 
1725   Label native_return;
1726   __ set_last_Java_frame(sp, noreg, native_return, rscratch1);
1727 
1728   Label dtrace_method_entry, dtrace_method_entry_done;
1729   {
1730     uint64_t offset;
1731     __ adrp(rscratch1, ExternalAddress((address)&DTraceMethodProbes), offset);
1732     __ ldrb(rscratch1, Address(rscratch1, offset));
1733     __ cbnzw(rscratch1, dtrace_method_entry);
1734     __ bind(dtrace_method_entry_done);
1735   }
1736 
1737   // RedefineClasses() tracing support for obsolete method entry
1738   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1739     // protect the args we've loaded
1740     save_args(masm, total_c_args, c_arg, out_regs);
1741     __ mov_metadata(c_rarg1, method());
1742     __ call_VM_leaf(
1743       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1744       rthread, c_rarg1);
1745     restore_args(masm, total_c_args, c_arg, out_regs);
1746   }
1747 
1748   // Lock a synchronized method
1749 
1750   // Register definitions used by locking and unlocking
1751 
1752   const Register swap_reg = r0;
1753   const Register obj_reg  = r19;  // Will contain the oop
1754   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
1755   const Register old_hdr  = r13;  // value of old header at unlock time
1756   const Register tmp = lr;
1757 
1758   Label slow_path_lock;
1759   Label lock_done;
1760 
1761   if (method->is_synchronized()) {
1762     assert(!is_critical_native, "unhandled");
1763 
1764     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1765 
1766     // Get the handle (the 2nd argument)
1767     __ mov(oop_handle_reg, c_rarg1);
1768 
1769     // Get address of the box
1770 
1771     __ lea(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
1772 
1773     // Load the oop from the handle
1774     __ ldr(obj_reg, Address(oop_handle_reg, 0));
1775 
1776     if (UseBiasedLocking) {
1777       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp, false, lock_done, &slow_path_lock);
1778     }
1779 
1780     // Load (object->mark() | 1) into swap_reg %r0
1781     __ ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1782     __ orr(swap_reg, rscratch1, 1);
1783 
1784     // Save (object->mark() | 1) into BasicLock's displaced header
1785     __ str(swap_reg, Address(lock_reg, mark_word_offset));
1786 
1787     // src -> dest iff dest == r0 else r0 <- dest
1788     { Label here;
1789       __ cmpxchg_obj_header(r0, lock_reg, obj_reg, rscratch1, lock_done, /*fallthrough*/NULL);
1790     }
1791 
1792     // Hmm should this move to the slow path code area???
1793 
1794     // Test if the oopMark is an obvious stack pointer, i.e.,
1795     //  1) (mark & 3) == 0, and
1796     //  2) sp <= mark < mark + os::pagesize()
1797     // These 3 tests can be done by evaluating the following
1798     // expression: ((mark - sp) & (3 - os::vm_page_size())),
1799     // assuming both stack pointer and pagesize have their
1800     // least significant 2 bits clear.
1801     // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg
1802 
1803     __ sub(swap_reg, sp, swap_reg);
1804     __ neg(swap_reg, swap_reg);
1805     __ ands(swap_reg, swap_reg, 3 - os::vm_page_size());
1806 
1807     // Save the test result, for recursive case, the result is zero
1808     __ str(swap_reg, Address(lock_reg, mark_word_offset));
1809     __ br(Assembler::NE, slow_path_lock);
1810 
1811     // Slow path will re-enter here
1812 
1813     __ bind(lock_done);
1814   }
1815 
1816 
1817   // Finally just about ready to make the JNI call
1818 
1819   // get JNIEnv* which is first argument to native
1820   if (!is_critical_native) {
1821     __ lea(c_rarg0, Address(rthread, in_bytes(JavaThread::jni_environment_offset())));
1822 
1823     // Now set thread in native
1824     __ mov(rscratch1, _thread_in_native);
1825     __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1826     __ stlrw(rscratch1, rscratch2);
1827   }
1828 
1829   rt_call(masm, native_func);
1830 
1831   __ bind(native_return);
1832 
1833   intptr_t return_pc = (intptr_t) __ pc();
1834   oop_maps->add_gc_map(return_pc - start, map);
1835 
1836   // Unpack native results.
1837   switch (ret_type) {
1838   case T_BOOLEAN: __ c2bool(r0);                     break;
1839   case T_CHAR   : __ ubfx(r0, r0, 0, 16);            break;
1840   case T_BYTE   : __ sbfx(r0, r0, 0, 8);             break;
1841   case T_SHORT  : __ sbfx(r0, r0, 0, 16);            break;
1842   case T_INT    : __ sbfx(r0, r0, 0, 32);            break;
1843   case T_DOUBLE :
1844   case T_FLOAT  :
1845     // Result is in v0 we'll save as needed
1846     break;
1847   case T_ARRAY:                 // Really a handle
1848   case T_OBJECT:                // Really a handle
1849       break; // can't de-handlize until after safepoint check
1850   case T_VOID: break;
1851   case T_LONG: break;
1852   default       : ShouldNotReachHere();
1853   }
1854 
1855   Label safepoint_in_progress, safepoint_in_progress_done;
1856   Label after_transition;
1857 
1858   // If this is a critical native, check for a safepoint or suspend request after the call.
1859   // If a safepoint is needed, transition to native, then to native_trans to handle
1860   // safepoints like the native methods that are not critical natives.
1861   if (is_critical_native) {
1862     Label needs_safepoint;
1863     __ safepoint_poll(needs_safepoint, false /* at_return */, true /* acquire */, false /* in_nmethod */);
1864     __ ldrw(rscratch1, Address(rthread, JavaThread::suspend_flags_offset()));
1865     __ cbnzw(rscratch1, needs_safepoint);
1866     __ b(after_transition);
1867     __ bind(needs_safepoint);
1868   }
1869 
1870   // Switch thread to "native transition" state before reading the synchronization state.
1871   // This additional state is necessary because reading and testing the synchronization
1872   // state is not atomic w.r.t. GC, as this scenario demonstrates:
1873   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1874   //     VM thread changes sync state to synchronizing and suspends threads for GC.
1875   //     Thread A is resumed to finish this native method, but doesn't block here since it
1876   //     didn't see any synchronization is progress, and escapes.
1877   __ mov(rscratch1, _thread_in_native_trans);
1878 
1879   __ strw(rscratch1, Address(rthread, JavaThread::thread_state_offset()));
1880 
1881   // Force this write out before the read below
1882   __ dmb(Assembler::ISH);
1883 
1884   __ verify_sve_vector_length();
1885 
1886   // Check for safepoint operation in progress and/or pending suspend requests.
1887   {
1888     // We need an acquire here to ensure that any subsequent load of the
1889     // global SafepointSynchronize::_state flag is ordered after this load
1890     // of the thread-local polling word.  We don't want this poll to
1891     // return false (i.e. not safepointing) and a later poll of the global
1892     // SafepointSynchronize::_state spuriously to return true.
1893     //
1894     // This is to avoid a race when we're in a native->Java transition
1895     // racing the code which wakes up from a safepoint.
1896 
1897     __ safepoint_poll(safepoint_in_progress, true /* at_return */, true /* acquire */, false /* in_nmethod */);
1898     __ ldrw(rscratch1, Address(rthread, JavaThread::suspend_flags_offset()));
1899     __ cbnzw(rscratch1, safepoint_in_progress);
1900     __ bind(safepoint_in_progress_done);
1901   }
1902 
1903   // change thread state
1904   __ mov(rscratch1, _thread_in_Java);
1905   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1906   __ stlrw(rscratch1, rscratch2);
1907   __ bind(after_transition);
1908 
1909   Label reguard;
1910   Label reguard_done;
1911   __ ldrb(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset()));
1912   __ cmpw(rscratch1, StackOverflow::stack_guard_yellow_reserved_disabled);
1913   __ br(Assembler::EQ, reguard);
1914   __ bind(reguard_done);
1915 
1916   // native result if any is live
1917 
1918   // Unlock
1919   Label unlock_done;
1920   Label slow_path_unlock;
1921   if (method->is_synchronized()) {
1922 
1923     // Get locked oop from the handle we passed to jni
1924     __ ldr(obj_reg, Address(oop_handle_reg, 0));
1925 
1926     Label done;
1927 
1928     if (UseBiasedLocking) {
1929       __ biased_locking_exit(obj_reg, old_hdr, done);
1930     }
1931 
1932     // Simple recursive lock?
1933 
1934     __ ldr(rscratch1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
1935     __ cbz(rscratch1, done);
1936 
1937     // Must save r0 if if it is live now because cmpxchg must use it
1938     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1939       save_native_result(masm, ret_type, stack_slots);
1940     }
1941 
1942 
1943     // get address of the stack lock
1944     __ lea(r0, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
1945     //  get old displaced header
1946     __ ldr(old_hdr, Address(r0, 0));
1947 
1948     // Atomic swap old header if oop still contains the stack lock
1949     Label succeed;
1950     __ cmpxchg_obj_header(r0, old_hdr, obj_reg, rscratch1, succeed, &slow_path_unlock);
1951     __ bind(succeed);
1952 
1953     // slow path re-enters here
1954     __ bind(unlock_done);
1955     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1956       restore_native_result(masm, ret_type, stack_slots);
1957     }
1958 
1959     __ bind(done);
1960   }
1961 
1962   Label dtrace_method_exit, dtrace_method_exit_done;
1963   {
1964     uint64_t offset;
1965     __ adrp(rscratch1, ExternalAddress((address)&DTraceMethodProbes), offset);
1966     __ ldrb(rscratch1, Address(rscratch1, offset));
1967     __ cbnzw(rscratch1, dtrace_method_exit);
1968     __ bind(dtrace_method_exit_done);
1969   }
1970 
1971   __ reset_last_Java_frame(false);
1972 
1973   // Unbox oop result, e.g. JNIHandles::resolve result.
1974   if (is_reference_type(ret_type)) {
1975     __ resolve_jobject(r0, rthread, rscratch2);
1976   }
1977 
1978   if (CheckJNICalls) {
1979     // clear_pending_jni_exception_check
1980     __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset()));
1981   }
1982 
1983   if (!is_critical_native) {
1984     // reset handle block
1985     __ ldr(r2, Address(rthread, JavaThread::active_handles_offset()));
1986     __ str(zr, Address(r2, JNIHandleBlock::top_offset_in_bytes()));
1987   }
1988 
1989   __ leave();
1990 
1991   if (!is_critical_native) {
1992     // Any exception pending?
1993     __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
1994     __ cbnz(rscratch1, exception_pending);
1995   }
1996 
1997   // We're done
1998   __ ret(lr);
1999 
2000   // Unexpected paths are out of line and go here
2001 
2002   if (!is_critical_native) {
2003     // forward the exception
2004     __ bind(exception_pending);
2005 
2006     // and forward the exception
2007     __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2008   }
2009 
2010   // Slow path locking & unlocking
2011   if (method->is_synchronized()) {
2012 
2013     __ block_comment("Slow path lock {");
2014     __ bind(slow_path_lock);
2015 
2016     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2017     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2018 
2019     // protect the args we've loaded
2020     save_args(masm, total_c_args, c_arg, out_regs);
2021 
2022     __ mov(c_rarg0, obj_reg);
2023     __ mov(c_rarg1, lock_reg);
2024     __ mov(c_rarg2, rthread);
2025 
2026     // Not a leaf but we have last_Java_frame setup as we want
2027     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
2028     restore_args(masm, total_c_args, c_arg, out_regs);
2029 
2030 #ifdef ASSERT
2031     { Label L;
2032       __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2033       __ cbz(rscratch1, L);
2034       __ stop("no pending exception allowed on exit from monitorenter");
2035       __ bind(L);
2036     }
2037 #endif
2038     __ b(lock_done);
2039 
2040     __ block_comment("} Slow path lock");
2041 
2042     __ block_comment("Slow path unlock {");
2043     __ bind(slow_path_unlock);
2044 
2045     // If we haven't already saved the native result we must save it now as xmm registers
2046     // are still exposed.
2047 
2048     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2049       save_native_result(masm, ret_type, stack_slots);
2050     }
2051 
2052     __ mov(c_rarg2, rthread);
2053     __ lea(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
2054     __ mov(c_rarg0, obj_reg);
2055 
2056     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2057     // NOTE that obj_reg == r19 currently
2058     __ ldr(r19, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2059     __ str(zr, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2060 
2061     rt_call(masm, CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C));
2062 
2063 #ifdef ASSERT
2064     {
2065       Label L;
2066       __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2067       __ cbz(rscratch1, L);
2068       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2069       __ bind(L);
2070     }
2071 #endif /* ASSERT */
2072 
2073     __ str(r19, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2074 
2075     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2076       restore_native_result(masm, ret_type, stack_slots);
2077     }
2078     __ b(unlock_done);
2079 
2080     __ block_comment("} Slow path unlock");
2081 
2082   } // synchronized
2083 
2084   // SLOW PATH Reguard the stack if needed
2085 
2086   __ bind(reguard);
2087   save_native_result(masm, ret_type, stack_slots);
2088   rt_call(masm, CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
2089   restore_native_result(masm, ret_type, stack_slots);
2090   // and continue
2091   __ b(reguard_done);
2092 
2093   // SLOW PATH safepoint
2094   {
2095     __ block_comment("safepoint {");
2096     __ bind(safepoint_in_progress);
2097 
2098     // Don't use call_VM as it will see a possible pending exception and forward it
2099     // and never return here preventing us from clearing _last_native_pc down below.
2100     //
2101     save_native_result(masm, ret_type, stack_slots);
2102     __ mov(c_rarg0, rthread);
2103 #ifndef PRODUCT
2104   assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
2105 #endif
2106     __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
2107     __ blr(rscratch1);
2108 
2109     // Restore any method result value
2110     restore_native_result(masm, ret_type, stack_slots);
2111 
2112     __ b(safepoint_in_progress_done);
2113     __ block_comment("} safepoint");
2114   }
2115 
2116   // SLOW PATH dtrace support
2117   {
2118     __ block_comment("dtrace entry {");
2119     __ bind(dtrace_method_entry);
2120 
2121     // We have all of the arguments setup at this point. We must not touch any register
2122     // argument registers at this point (what if we save/restore them there are no oop?
2123 
2124     save_args(masm, total_c_args, c_arg, out_regs);
2125     __ mov_metadata(c_rarg1, method());
2126     __ call_VM_leaf(
2127       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2128       rthread, c_rarg1);
2129     restore_args(masm, total_c_args, c_arg, out_regs);
2130     __ b(dtrace_method_entry_done);
2131     __ block_comment("} dtrace entry");
2132   }
2133 
2134   {
2135     __ block_comment("dtrace exit {");
2136     __ bind(dtrace_method_exit);
2137     save_native_result(masm, ret_type, stack_slots);
2138     __ mov_metadata(c_rarg1, method());
2139     __ call_VM_leaf(
2140          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2141          rthread, c_rarg1);
2142     restore_native_result(masm, ret_type, stack_slots);
2143     __ b(dtrace_method_exit_done);
2144     __ block_comment("} dtrace exit");
2145   }
2146 
2147 
2148   __ flush();
2149 
2150   nmethod *nm = nmethod::new_native_nmethod(method,
2151                                             compile_id,
2152                                             masm->code(),
2153                                             vep_offset,
2154                                             frame_complete,
2155                                             stack_slots / VMRegImpl::slots_per_word,
2156                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2157                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2158                                             oop_maps);
2159 
2160   return nm;
2161 }
2162 
2163 // this function returns the adjust size (in number of words) to a c2i adapter
2164 // activation for use during deoptimization
last_frame_adjust(int callee_parameters,int callee_locals)2165 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
2166   assert(callee_locals >= callee_parameters,
2167           "test and remove; got more parms than locals");
2168   if (callee_locals < callee_parameters)
2169     return 0;                   // No adjustment for negative locals
2170   int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2171   // diff is counted in stack words
2172   return align_up(diff, 2);
2173 }
2174 
2175 
2176 //------------------------------generate_deopt_blob----------------------------
generate_deopt_blob()2177 void SharedRuntime::generate_deopt_blob() {
2178   // Allocate space for the code
2179   ResourceMark rm;
2180   // Setup code generation tools
2181   int pad = 0;
2182 #if INCLUDE_JVMCI
2183   if (EnableJVMCI) {
2184     pad += 512; // Increase the buffer size when compiling for JVMCI
2185   }
2186 #endif
2187   CodeBuffer buffer("deopt_blob", 2048+pad, 1024);
2188   MacroAssembler* masm = new MacroAssembler(&buffer);
2189   int frame_size_in_words;
2190   OopMap* map = NULL;
2191   OopMapSet *oop_maps = new OopMapSet();
2192   RegisterSaver reg_save(COMPILER2_OR_JVMCI != 0);
2193 
2194   // -------------
2195   // This code enters when returning to a de-optimized nmethod.  A return
2196   // address has been pushed on the the stack, and return values are in
2197   // registers.
2198   // If we are doing a normal deopt then we were called from the patched
2199   // nmethod from the point we returned to the nmethod. So the return
2200   // address on the stack is wrong by NativeCall::instruction_size
2201   // We will adjust the value so it looks like we have the original return
2202   // address on the stack (like when we eagerly deoptimized).
2203   // In the case of an exception pending when deoptimizing, we enter
2204   // with a return address on the stack that points after the call we patched
2205   // into the exception handler. We have the following register state from,
2206   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
2207   //    r0: exception oop
2208   //    r19: exception handler
2209   //    r3: throwing pc
2210   // So in this case we simply jam r3 into the useless return address and
2211   // the stack looks just like we want.
2212   //
2213   // At this point we need to de-opt.  We save the argument return
2214   // registers.  We call the first C routine, fetch_unroll_info().  This
2215   // routine captures the return values and returns a structure which
2216   // describes the current frame size and the sizes of all replacement frames.
2217   // The current frame is compiled code and may contain many inlined
2218   // functions, each with their own JVM state.  We pop the current frame, then
2219   // push all the new frames.  Then we call the C routine unpack_frames() to
2220   // populate these frames.  Finally unpack_frames() returns us the new target
2221   // address.  Notice that callee-save registers are BLOWN here; they have
2222   // already been captured in the vframeArray at the time the return PC was
2223   // patched.
2224   address start = __ pc();
2225   Label cont;
2226 
2227   // Prolog for non exception case!
2228 
2229   // Save everything in sight.
2230   map = reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2231 
2232   // Normal deoptimization.  Save exec mode for unpack_frames.
2233   __ movw(rcpool, Deoptimization::Unpack_deopt); // callee-saved
2234   __ b(cont);
2235 
2236   int reexecute_offset = __ pc() - start;
2237 #if INCLUDE_JVMCI && !defined(COMPILER1)
2238   if (EnableJVMCI && UseJVMCICompiler) {
2239     // JVMCI does not use this kind of deoptimization
2240     __ should_not_reach_here();
2241   }
2242 #endif
2243 
2244   // Reexecute case
2245   // return address is the pc describes what bci to do re-execute at
2246 
2247   // No need to update map as each call to save_live_registers will produce identical oopmap
2248   (void) reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2249 
2250   __ movw(rcpool, Deoptimization::Unpack_reexecute); // callee-saved
2251   __ b(cont);
2252 
2253 #if INCLUDE_JVMCI
2254   Label after_fetch_unroll_info_call;
2255   int implicit_exception_uncommon_trap_offset = 0;
2256   int uncommon_trap_offset = 0;
2257 
2258   if (EnableJVMCI) {
2259     implicit_exception_uncommon_trap_offset = __ pc() - start;
2260 
2261     __ ldr(lr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
2262     __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
2263 
2264     uncommon_trap_offset = __ pc() - start;
2265 
2266     // Save everything in sight.
2267     reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2268     // fetch_unroll_info needs to call last_java_frame()
2269     Label retaddr;
2270     __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2271 
2272     __ ldrw(c_rarg1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset())));
2273     __ movw(rscratch1, -1);
2274     __ strw(rscratch1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset())));
2275 
2276     __ movw(rcpool, (int32_t)Deoptimization::Unpack_reexecute);
2277     __ mov(c_rarg0, rthread);
2278     __ movw(c_rarg2, rcpool); // exec mode
2279     __ lea(rscratch1,
2280            RuntimeAddress(CAST_FROM_FN_PTR(address,
2281                                            Deoptimization::uncommon_trap)));
2282     __ blr(rscratch1);
2283     __ bind(retaddr);
2284     oop_maps->add_gc_map( __ pc()-start, map->deep_copy());
2285 
2286     __ reset_last_Java_frame(false);
2287 
2288     __ b(after_fetch_unroll_info_call);
2289   } // EnableJVMCI
2290 #endif // INCLUDE_JVMCI
2291 
2292   int exception_offset = __ pc() - start;
2293 
2294   // Prolog for exception case
2295 
2296   // all registers are dead at this entry point, except for r0, and
2297   // r3 which contain the exception oop and exception pc
2298   // respectively.  Set them in TLS and fall thru to the
2299   // unpack_with_exception_in_tls entry point.
2300 
2301   __ str(r3, Address(rthread, JavaThread::exception_pc_offset()));
2302   __ str(r0, Address(rthread, JavaThread::exception_oop_offset()));
2303 
2304   int exception_in_tls_offset = __ pc() - start;
2305 
2306   // new implementation because exception oop is now passed in JavaThread
2307 
2308   // Prolog for exception case
2309   // All registers must be preserved because they might be used by LinearScan
2310   // Exceptiop oop and throwing PC are passed in JavaThread
2311   // tos: stack at point of call to method that threw the exception (i.e. only
2312   // args are on the stack, no return address)
2313 
2314   // The return address pushed by save_live_registers will be patched
2315   // later with the throwing pc. The correct value is not available
2316   // now because loading it from memory would destroy registers.
2317 
2318   // NB: The SP at this point must be the SP of the method that is
2319   // being deoptimized.  Deoptimization assumes that the frame created
2320   // here by save_live_registers is immediately below the method's SP.
2321   // This is a somewhat fragile mechanism.
2322 
2323   // Save everything in sight.
2324   map = reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2325 
2326   // Now it is safe to overwrite any register
2327 
2328   // Deopt during an exception.  Save exec mode for unpack_frames.
2329   __ mov(rcpool, Deoptimization::Unpack_exception); // callee-saved
2330 
2331   // load throwing pc from JavaThread and patch it as the return address
2332   // of the current frame. Then clear the field in JavaThread
2333 
2334   __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset()));
2335   __ str(r3, Address(rfp, wordSize));
2336   __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
2337 
2338 #ifdef ASSERT
2339   // verify that there is really an exception oop in JavaThread
2340   __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
2341   __ verify_oop(r0);
2342 
2343   // verify that there is no pending exception
2344   Label no_pending_exception;
2345   __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
2346   __ cbz(rscratch1, no_pending_exception);
2347   __ stop("must not have pending exception here");
2348   __ bind(no_pending_exception);
2349 #endif
2350 
2351   __ bind(cont);
2352 
2353   // Call C code.  Need thread and this frame, but NOT official VM entry
2354   // crud.  We cannot block on this call, no GC can happen.
2355   //
2356   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
2357 
2358   // fetch_unroll_info needs to call last_java_frame().
2359 
2360   Label retaddr;
2361   __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2362 #ifdef ASSERT0
2363   { Label L;
2364     __ ldr(rscratch1, Address(rthread,
2365                               JavaThread::last_Java_fp_offset()));
2366     __ cbz(rscratch1, L);
2367     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
2368     __ bind(L);
2369   }
2370 #endif // ASSERT
2371   __ mov(c_rarg0, rthread);
2372   __ mov(c_rarg1, rcpool);
2373   __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2374   __ blr(rscratch1);
2375   __ bind(retaddr);
2376 
2377   // Need to have an oopmap that tells fetch_unroll_info where to
2378   // find any register it might need.
2379   oop_maps->add_gc_map(__ pc() - start, map);
2380 
2381   __ reset_last_Java_frame(false);
2382 
2383 #if INCLUDE_JVMCI
2384   if (EnableJVMCI) {
2385     __ bind(after_fetch_unroll_info_call);
2386   }
2387 #endif
2388 
2389   // Load UnrollBlock* into r5
2390   __ mov(r5, r0);
2391 
2392   __ ldrw(rcpool, Address(r5, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
2393    Label noException;
2394   __ cmpw(rcpool, Deoptimization::Unpack_exception);   // Was exception pending?
2395   __ br(Assembler::NE, noException);
2396   __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
2397   // QQQ this is useless it was NULL above
2398   __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset()));
2399   __ str(zr, Address(rthread, JavaThread::exception_oop_offset()));
2400   __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
2401 
2402   __ verify_oop(r0);
2403 
2404   // Overwrite the result registers with the exception results.
2405   __ str(r0, Address(sp, reg_save.r0_offset_in_bytes()));
2406   // I think this is useless
2407   // __ str(r3, Address(sp, RegisterSaver::r3_offset_in_bytes()));
2408 
2409   __ bind(noException);
2410 
2411   // Only register save data is on the stack.
2412   // Now restore the result registers.  Everything else is either dead
2413   // or captured in the vframeArray.
2414 
2415   // Restore fp result register
2416   __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes()));
2417   // Restore integer result register
2418   __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes()));
2419 
2420   // Pop all of the register save area off the stack
2421   __ add(sp, sp, frame_size_in_words * wordSize);
2422 
2423   // All of the register save area has been popped of the stack. Only the
2424   // return address remains.
2425 
2426   // Pop all the frames we must move/replace.
2427   //
2428   // Frame picture (youngest to oldest)
2429   // 1: self-frame (no frame link)
2430   // 2: deopting frame  (no frame link)
2431   // 3: caller of deopting frame (could be compiled/interpreted).
2432   //
2433   // Note: by leaving the return address of self-frame on the stack
2434   // and using the size of frame 2 to adjust the stack
2435   // when we are done the return to frame 3 will still be on the stack.
2436 
2437   // Pop deoptimized frame
2438   __ ldrw(r2, Address(r5, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2439   __ sub(r2, r2, 2 * wordSize);
2440   __ add(sp, sp, r2);
2441   __ ldp(rfp, lr, __ post(sp, 2 * wordSize));
2442   // LR should now be the return address to the caller (3)
2443 
2444 #ifdef ASSERT
2445   // Compilers generate code that bang the stack by as much as the
2446   // interpreter would need. So this stack banging should never
2447   // trigger a fault. Verify that it does not on non product builds.
2448   __ ldrw(r19, Address(r5, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2449   __ bang_stack_size(r19, r2);
2450 #endif
2451   // Load address of array of frame pcs into r2
2452   __ ldr(r2, Address(r5, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2453 
2454   // Trash the old pc
2455   // __ addptr(sp, wordSize);  FIXME ????
2456 
2457   // Load address of array of frame sizes into r4
2458   __ ldr(r4, Address(r5, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2459 
2460   // Load counter into r3
2461   __ ldrw(r3, Address(r5, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2462 
2463   // Now adjust the caller's stack to make up for the extra locals
2464   // but record the original sp so that we can save it in the skeletal interpreter
2465   // frame and the stack walking of interpreter_sender will get the unextended sp
2466   // value and not the "real" sp value.
2467 
2468   const Register sender_sp = r6;
2469 
2470   __ mov(sender_sp, sp);
2471   __ ldrw(r19, Address(r5,
2472                        Deoptimization::UnrollBlock::
2473                        caller_adjustment_offset_in_bytes()));
2474   __ sub(sp, sp, r19);
2475 
2476   // Push interpreter frames in a loop
2477   __ mov(rscratch1, (uint64_t)0xDEADDEAD);        // Make a recognizable pattern
2478   __ mov(rscratch2, rscratch1);
2479   Label loop;
2480   __ bind(loop);
2481   __ ldr(r19, Address(__ post(r4, wordSize)));          // Load frame size
2482   __ sub(r19, r19, 2*wordSize);           // We'll push pc and fp by hand
2483   __ ldr(lr, Address(__ post(r2, wordSize)));  // Load pc
2484   __ enter();                           // Save old & set new fp
2485   __ sub(sp, sp, r19);                  // Prolog
2486   // This value is corrected by layout_activation_impl
2487   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
2488   __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable
2489   __ mov(sender_sp, sp);               // Pass sender_sp to next frame
2490   __ sub(r3, r3, 1);                   // Decrement counter
2491   __ cbnz(r3, loop);
2492 
2493     // Re-push self-frame
2494   __ ldr(lr, Address(r2));
2495   __ enter();
2496 
2497   // Allocate a full sized register save area.  We subtract 2 because
2498   // enter() just pushed 2 words
2499   __ sub(sp, sp, (frame_size_in_words - 2) * wordSize);
2500 
2501   // Restore frame locals after moving the frame
2502   __ strd(v0, Address(sp, reg_save.v0_offset_in_bytes()));
2503   __ str(r0, Address(sp, reg_save.r0_offset_in_bytes()));
2504 
2505   // Call C code.  Need thread but NOT official VM entry
2506   // crud.  We cannot block on this call, no GC can happen.  Call should
2507   // restore return values to their stack-slots with the new SP.
2508   //
2509   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
2510 
2511   // Use rfp because the frames look interpreted now
2512   // Don't need the precise return PC here, just precise enough to point into this code blob.
2513   address the_pc = __ pc();
2514   __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
2515 
2516   __ mov(c_rarg0, rthread);
2517   __ movw(c_rarg1, rcpool); // second arg: exec_mode
2518   __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2519   __ blr(rscratch1);
2520 
2521   // Set an oopmap for the call site
2522   // Use the same PC we used for the last java frame
2523   oop_maps->add_gc_map(the_pc - start,
2524                        new OopMap( frame_size_in_words, 0 ));
2525 
2526   // Clear fp AND pc
2527   __ reset_last_Java_frame(true);
2528 
2529   // Collect return values
2530   __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes()));
2531   __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes()));
2532   // I think this is useless (throwing pc?)
2533   // __ ldr(r3, Address(sp, RegisterSaver::r3_offset_in_bytes()));
2534 
2535   // Pop self-frame.
2536   __ leave();                           // Epilog
2537 
2538   // Jump to interpreter
2539   __ ret(lr);
2540 
2541   // Make sure all code is generated
2542   masm->flush();
2543 
2544   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2545   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2546 #if INCLUDE_JVMCI
2547   if (EnableJVMCI) {
2548     _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset);
2549     _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset);
2550   }
2551 #endif
2552 }
2553 
2554 // Number of stack slots between incoming argument block and the start of
2555 // a new frame.  The PROLOG must add this many slots to the stack.  The
2556 // EPILOG must remove this many slots. aarch64 needs two slots for
2557 // return address and fp.
2558 // TODO think this is correct but check
in_preserve_stack_slots()2559 uint SharedRuntime::in_preserve_stack_slots() {
2560   return 4;
2561 }
2562 
out_preserve_stack_slots()2563 uint SharedRuntime::out_preserve_stack_slots() {
2564   return 0;
2565 }
2566 
2567 #ifdef COMPILER2
2568 //------------------------------generate_uncommon_trap_blob--------------------
generate_uncommon_trap_blob()2569 void SharedRuntime::generate_uncommon_trap_blob() {
2570   // Allocate space for the code
2571   ResourceMark rm;
2572   // Setup code generation tools
2573   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
2574   MacroAssembler* masm = new MacroAssembler(&buffer);
2575 
2576   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
2577 
2578   address start = __ pc();
2579 
2580   // Push self-frame.  We get here with a return address in LR
2581   // and sp should be 16 byte aligned
2582   // push rfp and retaddr by hand
2583   __ stp(rfp, lr, Address(__ pre(sp, -2 * wordSize)));
2584   // we don't expect an arg reg save area
2585 #ifndef PRODUCT
2586   assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
2587 #endif
2588   // compiler left unloaded_class_index in j_rarg0 move to where the
2589   // runtime expects it.
2590   if (c_rarg1 != j_rarg0) {
2591     __ movw(c_rarg1, j_rarg0);
2592   }
2593 
2594   // we need to set the past SP to the stack pointer of the stub frame
2595   // and the pc to the address where this runtime call will return
2596   // although actually any pc in this code blob will do).
2597   Label retaddr;
2598   __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2599 
2600   // Call C code.  Need thread but NOT official VM entry
2601   // crud.  We cannot block on this call, no GC can happen.  Call should
2602   // capture callee-saved registers as well as return values.
2603   // Thread is in rdi already.
2604   //
2605   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
2606   //
2607   // n.b. 2 gp args, 0 fp args, integral return type
2608 
2609   __ mov(c_rarg0, rthread);
2610   __ movw(c_rarg2, (unsigned)Deoptimization::Unpack_uncommon_trap);
2611   __ lea(rscratch1,
2612          RuntimeAddress(CAST_FROM_FN_PTR(address,
2613                                          Deoptimization::uncommon_trap)));
2614   __ blr(rscratch1);
2615   __ bind(retaddr);
2616 
2617   // Set an oopmap for the call site
2618   OopMapSet* oop_maps = new OopMapSet();
2619   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
2620 
2621   // location of rfp is known implicitly by the frame sender code
2622 
2623   oop_maps->add_gc_map(__ pc() - start, map);
2624 
2625   __ reset_last_Java_frame(false);
2626 
2627   // move UnrollBlock* into r4
2628   __ mov(r4, r0);
2629 
2630 #ifdef ASSERT
2631   { Label L;
2632     __ ldrw(rscratch1, Address(r4, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
2633     __ cmpw(rscratch1, (unsigned)Deoptimization::Unpack_uncommon_trap);
2634     __ br(Assembler::EQ, L);
2635     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
2636     __ bind(L);
2637   }
2638 #endif
2639 
2640   // Pop all the frames we must move/replace.
2641   //
2642   // Frame picture (youngest to oldest)
2643   // 1: self-frame (no frame link)
2644   // 2: deopting frame  (no frame link)
2645   // 3: caller of deopting frame (could be compiled/interpreted).
2646 
2647   // Pop self-frame.  We have no frame, and must rely only on r0 and sp.
2648   __ add(sp, sp, (SimpleRuntimeFrame::framesize) << LogBytesPerInt); // Epilog!
2649 
2650   // Pop deoptimized frame (int)
2651   __ ldrw(r2, Address(r4,
2652                       Deoptimization::UnrollBlock::
2653                       size_of_deoptimized_frame_offset_in_bytes()));
2654   __ sub(r2, r2, 2 * wordSize);
2655   __ add(sp, sp, r2);
2656   __ ldp(rfp, lr, __ post(sp, 2 * wordSize));
2657   // LR should now be the return address to the caller (3) frame
2658 
2659 #ifdef ASSERT
2660   // Compilers generate code that bang the stack by as much as the
2661   // interpreter would need. So this stack banging should never
2662   // trigger a fault. Verify that it does not on non product builds.
2663   __ ldrw(r1, Address(r4,
2664                       Deoptimization::UnrollBlock::
2665                       total_frame_sizes_offset_in_bytes()));
2666   __ bang_stack_size(r1, r2);
2667 #endif
2668 
2669   // Load address of array of frame pcs into r2 (address*)
2670   __ ldr(r2, Address(r4,
2671                      Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2672 
2673   // Load address of array of frame sizes into r5 (intptr_t*)
2674   __ ldr(r5, Address(r4,
2675                      Deoptimization::UnrollBlock::
2676                      frame_sizes_offset_in_bytes()));
2677 
2678   // Counter
2679   __ ldrw(r3, Address(r4,
2680                       Deoptimization::UnrollBlock::
2681                       number_of_frames_offset_in_bytes())); // (int)
2682 
2683   // Now adjust the caller's stack to make up for the extra locals but
2684   // record the original sp so that we can save it in the skeletal
2685   // interpreter frame and the stack walking of interpreter_sender
2686   // will get the unextended sp value and not the "real" sp value.
2687 
2688   const Register sender_sp = r8;
2689 
2690   __ mov(sender_sp, sp);
2691   __ ldrw(r1, Address(r4,
2692                       Deoptimization::UnrollBlock::
2693                       caller_adjustment_offset_in_bytes())); // (int)
2694   __ sub(sp, sp, r1);
2695 
2696   // Push interpreter frames in a loop
2697   Label loop;
2698   __ bind(loop);
2699   __ ldr(r1, Address(r5, 0));       // Load frame size
2700   __ sub(r1, r1, 2 * wordSize);     // We'll push pc and rfp by hand
2701   __ ldr(lr, Address(r2, 0));       // Save return address
2702   __ enter();                       // and old rfp & set new rfp
2703   __ sub(sp, sp, r1);               // Prolog
2704   __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable
2705   // This value is corrected by layout_activation_impl
2706   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
2707   __ mov(sender_sp, sp);          // Pass sender_sp to next frame
2708   __ add(r5, r5, wordSize);       // Bump array pointer (sizes)
2709   __ add(r2, r2, wordSize);       // Bump array pointer (pcs)
2710   __ subsw(r3, r3, 1);            // Decrement counter
2711   __ br(Assembler::GT, loop);
2712   __ ldr(lr, Address(r2, 0));     // save final return address
2713   // Re-push self-frame
2714   __ enter();                     // & old rfp & set new rfp
2715 
2716   // Use rfp because the frames look interpreted now
2717   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
2718   // Don't need the precise return PC here, just precise enough to point into this code blob.
2719   address the_pc = __ pc();
2720   __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
2721 
2722   // Call C code.  Need thread but NOT official VM entry
2723   // crud.  We cannot block on this call, no GC can happen.  Call should
2724   // restore return values to their stack-slots with the new SP.
2725   // Thread is in rdi already.
2726   //
2727   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
2728   //
2729   // n.b. 2 gp args, 0 fp args, integral return type
2730 
2731   // sp should already be aligned
2732   __ mov(c_rarg0, rthread);
2733   __ movw(c_rarg1, (unsigned)Deoptimization::Unpack_uncommon_trap);
2734   __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2735   __ blr(rscratch1);
2736 
2737   // Set an oopmap for the call site
2738   // Use the same PC we used for the last java frame
2739   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
2740 
2741   // Clear fp AND pc
2742   __ reset_last_Java_frame(true);
2743 
2744   // Pop self-frame.
2745   __ leave();                 // Epilog
2746 
2747   // Jump to interpreter
2748   __ ret(lr);
2749 
2750   // Make sure all code is generated
2751   masm->flush();
2752 
2753   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
2754                                                  SimpleRuntimeFrame::framesize >> 1);
2755 }
2756 #endif // COMPILER2
2757 
2758 
2759 //------------------------------generate_handler_blob------
2760 //
2761 // Generate a special Compile2Runtime blob that saves all registers,
2762 // and setup oopmap.
2763 //
generate_handler_blob(address call_ptr,int poll_type)2764 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
2765   ResourceMark rm;
2766   OopMapSet *oop_maps = new OopMapSet();
2767   OopMap* map;
2768 
2769   // Allocate space for the code.  Setup code generation tools.
2770   CodeBuffer buffer("handler_blob", 2048, 1024);
2771   MacroAssembler* masm = new MacroAssembler(&buffer);
2772 
2773   address start   = __ pc();
2774   address call_pc = NULL;
2775   int frame_size_in_words;
2776   bool cause_return = (poll_type == POLL_AT_RETURN);
2777   RegisterSaver reg_save(poll_type == POLL_AT_VECTOR_LOOP /* save_vectors */);
2778 
2779   // Save Integer and Float registers.
2780   map = reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2781 
2782   // The following is basically a call_VM.  However, we need the precise
2783   // address of the call in order to generate an oopmap. Hence, we do all the
2784   // work outselves.
2785 
2786   Label retaddr;
2787   __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2788 
2789   // The return address must always be correct so that frame constructor never
2790   // sees an invalid pc.
2791 
2792   if (!cause_return) {
2793     // overwrite the return address pushed by save_live_registers
2794     // Additionally, r20 is a callee-saved register so we can look at
2795     // it later to determine if someone changed the return address for
2796     // us!
2797     __ ldr(r20, Address(rthread, JavaThread::saved_exception_pc_offset()));
2798     __ str(r20, Address(rfp, wordSize));
2799   }
2800 
2801   // Do the call
2802   __ mov(c_rarg0, rthread);
2803   __ lea(rscratch1, RuntimeAddress(call_ptr));
2804   __ blr(rscratch1);
2805   __ bind(retaddr);
2806 
2807   // Set an oopmap for the call site.  This oopmap will map all
2808   // oop-registers and debug-info registers as callee-saved.  This
2809   // will allow deoptimization at this safepoint to find all possible
2810   // debug-info recordings, as well as let GC find all oops.
2811 
2812   oop_maps->add_gc_map( __ pc() - start, map);
2813 
2814   Label noException;
2815 
2816   __ reset_last_Java_frame(false);
2817 
2818   __ membar(Assembler::LoadLoad | Assembler::LoadStore);
2819 
2820   __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
2821   __ cbz(rscratch1, noException);
2822 
2823   // Exception pending
2824 
2825   reg_save.restore_live_registers(masm);
2826 
2827   __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2828 
2829   // No exception case
2830   __ bind(noException);
2831 
2832   Label no_adjust, bail;
2833   if (!cause_return) {
2834     // If our stashed return pc was modified by the runtime we avoid touching it
2835     __ ldr(rscratch1, Address(rfp, wordSize));
2836     __ cmp(r20, rscratch1);
2837     __ br(Assembler::NE, no_adjust);
2838 
2839 #ifdef ASSERT
2840     // Verify the correct encoding of the poll we're about to skip.
2841     // See NativeInstruction::is_ldrw_to_zr()
2842     __ ldrw(rscratch1, Address(r20));
2843     __ ubfx(rscratch2, rscratch1, 22, 10);
2844     __ cmpw(rscratch2, 0b1011100101);
2845     __ br(Assembler::NE, bail);
2846     __ ubfx(rscratch2, rscratch1, 0, 5);
2847     __ cmpw(rscratch2, 0b11111);
2848     __ br(Assembler::NE, bail);
2849 #endif
2850     // Adjust return pc forward to step over the safepoint poll instruction
2851     __ add(r20, r20, NativeInstruction::instruction_size);
2852     __ str(r20, Address(rfp, wordSize));
2853   }
2854 
2855   __ bind(no_adjust);
2856   // Normal exit, restore registers and exit.
2857   reg_save.restore_live_registers(masm);
2858 
2859   __ ret(lr);
2860 
2861 #ifdef ASSERT
2862   __ bind(bail);
2863   __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected");
2864 #endif
2865 
2866   // Make sure all code is generated
2867   masm->flush();
2868 
2869   // Fill-out other meta info
2870   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
2871 }
2872 
2873 //
2874 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
2875 //
2876 // Generate a stub that calls into vm to find out the proper destination
2877 // of a java call. All the argument registers are live at this point
2878 // but since this is generic code we don't know what they are and the caller
2879 // must do any gc of the args.
2880 //
generate_resolve_blob(address destination,const char * name)2881 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
2882   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
2883 
2884   // allocate space for the code
2885   ResourceMark rm;
2886 
2887   CodeBuffer buffer(name, 1000, 512);
2888   MacroAssembler* masm                = new MacroAssembler(&buffer);
2889 
2890   int frame_size_in_words;
2891   RegisterSaver reg_save(false /* save_vectors */);
2892 
2893   OopMapSet *oop_maps = new OopMapSet();
2894   OopMap* map = NULL;
2895 
2896   int start = __ offset();
2897 
2898   map = reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2899 
2900   int frame_complete = __ offset();
2901 
2902   {
2903     Label retaddr;
2904     __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2905 
2906     __ mov(c_rarg0, rthread);
2907     __ lea(rscratch1, RuntimeAddress(destination));
2908 
2909     __ blr(rscratch1);
2910     __ bind(retaddr);
2911   }
2912 
2913   // Set an oopmap for the call site.
2914   // We need this not only for callee-saved registers, but also for volatile
2915   // registers that the compiler might be keeping live across a safepoint.
2916 
2917   oop_maps->add_gc_map( __ offset() - start, map);
2918 
2919   // r0 contains the address we are going to jump to assuming no exception got installed
2920 
2921   // clear last_Java_sp
2922   __ reset_last_Java_frame(false);
2923   // check for pending exceptions
2924   Label pending;
2925   __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
2926   __ cbnz(rscratch1, pending);
2927 
2928   // get the returned Method*
2929   __ get_vm_result_2(rmethod, rthread);
2930   __ str(rmethod, Address(sp, reg_save.reg_offset_in_bytes(rmethod)));
2931 
2932   // r0 is where we want to jump, overwrite rscratch1 which is saved and scratch
2933   __ str(r0, Address(sp, reg_save.rscratch1_offset_in_bytes()));
2934   reg_save.restore_live_registers(masm);
2935 
2936   // We are back the the original state on entry and ready to go.
2937 
2938   __ br(rscratch1);
2939 
2940   // Pending exception after the safepoint
2941 
2942   __ bind(pending);
2943 
2944   reg_save.restore_live_registers(masm);
2945 
2946   // exception pending => remove activation and forward to exception handler
2947 
2948   __ str(zr, Address(rthread, JavaThread::vm_result_offset()));
2949 
2950   __ ldr(r0, Address(rthread, Thread::pending_exception_offset()));
2951   __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2952 
2953   // -------------
2954   // make sure all code is generated
2955   masm->flush();
2956 
2957   // return the  blob
2958   // frame_size_words or bytes??
2959   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
2960 }
2961 
2962 #ifdef COMPILER2
2963 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
2964 //
2965 //------------------------------generate_exception_blob---------------------------
2966 // creates exception blob at the end
2967 // Using exception blob, this code is jumped from a compiled method.
2968 // (see emit_exception_handler in x86_64.ad file)
2969 //
2970 // Given an exception pc at a call we call into the runtime for the
2971 // handler in this method. This handler might merely restore state
2972 // (i.e. callee save registers) unwind the frame and jump to the
2973 // exception handler for the nmethod if there is no Java level handler
2974 // for the nmethod.
2975 //
2976 // This code is entered with a jmp.
2977 //
2978 // Arguments:
2979 //   r0: exception oop
2980 //   r3: exception pc
2981 //
2982 // Results:
2983 //   r0: exception oop
2984 //   r3: exception pc in caller or ???
2985 //   destination: exception handler of caller
2986 //
2987 // Note: the exception pc MUST be at a call (precise debug information)
2988 //       Registers r0, r3, r2, r4, r5, r8-r11 are not callee saved.
2989 //
2990 
generate_exception_blob()2991 void OptoRuntime::generate_exception_blob() {
2992   assert(!OptoRuntime::is_callee_saved_register(R3_num), "");
2993   assert(!OptoRuntime::is_callee_saved_register(R0_num), "");
2994   assert(!OptoRuntime::is_callee_saved_register(R2_num), "");
2995 
2996   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
2997 
2998   // Allocate space for the code
2999   ResourceMark rm;
3000   // Setup code generation tools
3001   CodeBuffer buffer("exception_blob", 2048, 1024);
3002   MacroAssembler* masm = new MacroAssembler(&buffer);
3003 
3004   // TODO check various assumptions made here
3005   //
3006   // make sure we do so before running this
3007 
3008   address start = __ pc();
3009 
3010   // push rfp and retaddr by hand
3011   // Exception pc is 'return address' for stack walker
3012   __ stp(rfp, lr, Address(__ pre(sp, -2 * wordSize)));
3013   // there are no callee save registers and we don't expect an
3014   // arg reg save area
3015 #ifndef PRODUCT
3016   assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
3017 #endif
3018   // Store exception in Thread object. We cannot pass any arguments to the
3019   // handle_exception call, since we do not want to make any assumption
3020   // about the size of the frame where the exception happened in.
3021   __ str(r0, Address(rthread, JavaThread::exception_oop_offset()));
3022   __ str(r3, Address(rthread, JavaThread::exception_pc_offset()));
3023 
3024   // This call does all the hard work.  It checks if an exception handler
3025   // exists in the method.
3026   // If so, it returns the handler address.
3027   // If not, it prepares for stack-unwinding, restoring the callee-save
3028   // registers of the frame being removed.
3029   //
3030   // address OptoRuntime::handle_exception_C(JavaThread* thread)
3031   //
3032   // n.b. 1 gp arg, 0 fp args, integral return type
3033 
3034   // the stack should always be aligned
3035   address the_pc = __ pc();
3036   __ set_last_Java_frame(sp, noreg, the_pc, rscratch1);
3037   __ mov(c_rarg0, rthread);
3038   __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
3039   __ blr(rscratch1);
3040   // handle_exception_C is a special VM call which does not require an explicit
3041   // instruction sync afterwards.
3042 
3043   // May jump to SVE compiled code
3044   __ reinitialize_ptrue();
3045 
3046   // Set an oopmap for the call site.  This oopmap will only be used if we
3047   // are unwinding the stack.  Hence, all locations will be dead.
3048   // Callee-saved registers will be the same as the frame above (i.e.,
3049   // handle_exception_stub), since they were restored when we got the
3050   // exception.
3051 
3052   OopMapSet* oop_maps = new OopMapSet();
3053 
3054   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3055 
3056   __ reset_last_Java_frame(false);
3057 
3058   // Restore callee-saved registers
3059 
3060   // rfp is an implicitly saved callee saved register (i.e. the calling
3061   // convention will save restore it in prolog/epilog) Other than that
3062   // there are no callee save registers now that adapter frames are gone.
3063   // and we dont' expect an arg reg save area
3064   __ ldp(rfp, r3, Address(__ post(sp, 2 * wordSize)));
3065 
3066   // r0: exception handler
3067 
3068   // We have a handler in r0 (could be deopt blob).
3069   __ mov(r8, r0);
3070 
3071   // Get the exception oop
3072   __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
3073   // Get the exception pc in case we are deoptimized
3074   __ ldr(r4, Address(rthread, JavaThread::exception_pc_offset()));
3075 #ifdef ASSERT
3076   __ str(zr, Address(rthread, JavaThread::exception_handler_pc_offset()));
3077   __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
3078 #endif
3079   // Clear the exception oop so GC no longer processes it as a root.
3080   __ str(zr, Address(rthread, JavaThread::exception_oop_offset()));
3081 
3082   // r0: exception oop
3083   // r8:  exception handler
3084   // r4: exception pc
3085   // Jump to handler
3086 
3087   __ br(r8);
3088 
3089   // Make sure all code is generated
3090   masm->flush();
3091 
3092   // Set exception blob
3093   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
3094 }
3095 
3096 // ---------------------------------------------------------------
3097 
3098 class NativeInvokerGenerator : public StubCodeGenerator {
3099   address _call_target;
3100   int _shadow_space_bytes;
3101 
3102   const GrowableArray<VMReg>& _input_registers;
3103   const GrowableArray<VMReg>& _output_registers;
3104 
3105   int _frame_complete;
3106   int _framesize;
3107   OopMapSet* _oop_maps;
3108 public:
NativeInvokerGenerator(CodeBuffer * buffer,address call_target,int shadow_space_bytes,const GrowableArray<VMReg> & input_registers,const GrowableArray<VMReg> & output_registers)3109   NativeInvokerGenerator(CodeBuffer* buffer,
3110                          address call_target,
3111                          int shadow_space_bytes,
3112                          const GrowableArray<VMReg>& input_registers,
3113                          const GrowableArray<VMReg>& output_registers)
3114    : StubCodeGenerator(buffer, PrintMethodHandleStubs),
3115      _call_target(call_target),
3116      _shadow_space_bytes(shadow_space_bytes),
3117      _input_registers(input_registers),
3118      _output_registers(output_registers),
3119      _frame_complete(0),
3120      _framesize(0),
3121      _oop_maps(NULL) {
3122     assert(_output_registers.length() <= 1
3123            || (_output_registers.length() == 2 && !_output_registers.at(1)->is_valid()), "no multi-reg returns");
3124   }
3125 
3126   void generate();
3127 
spill_size_in_bytes() const3128   int spill_size_in_bytes() const {
3129     if (_output_registers.length() == 0) {
3130       return 0;
3131     }
3132     VMReg reg = _output_registers.at(0);
3133     assert(reg->is_reg(), "must be a register");
3134     if (reg->is_Register()) {
3135       return 8;
3136     } else if (reg->is_FloatRegister()) {
3137       bool use_sve = Matcher::supports_scalable_vector();
3138       if (use_sve) {
3139         return Matcher::scalable_vector_reg_size(T_BYTE);
3140       }
3141       return 16;
3142     } else {
3143       ShouldNotReachHere();
3144     }
3145     return 0;
3146   }
3147 
spill_output_registers()3148   void spill_output_registers() {
3149     if (_output_registers.length() == 0) {
3150       return;
3151     }
3152     VMReg reg = _output_registers.at(0);
3153     assert(reg->is_reg(), "must be a register");
3154     MacroAssembler* masm = _masm;
3155     if (reg->is_Register()) {
3156       __ spill(reg->as_Register(), true, 0);
3157     } else if (reg->is_FloatRegister()) {
3158       bool use_sve = Matcher::supports_scalable_vector();
3159       if (use_sve) {
3160         __ spill_sve_vector(reg->as_FloatRegister(), 0, Matcher::scalable_vector_reg_size(T_BYTE));
3161       } else {
3162         __ spill(reg->as_FloatRegister(), __ Q, 0);
3163       }
3164     } else {
3165       ShouldNotReachHere();
3166     }
3167   }
3168 
fill_output_registers()3169   void fill_output_registers() {
3170     if (_output_registers.length() == 0) {
3171       return;
3172     }
3173     VMReg reg = _output_registers.at(0);
3174     assert(reg->is_reg(), "must be a register");
3175     MacroAssembler* masm = _masm;
3176     if (reg->is_Register()) {
3177       __ unspill(reg->as_Register(), true, 0);
3178     } else if (reg->is_FloatRegister()) {
3179       bool use_sve = Matcher::supports_scalable_vector();
3180       if (use_sve) {
3181         __ unspill_sve_vector(reg->as_FloatRegister(), 0, Matcher::scalable_vector_reg_size(T_BYTE));
3182       } else {
3183         __ unspill(reg->as_FloatRegister(), __ Q, 0);
3184       }
3185     } else {
3186       ShouldNotReachHere();
3187     }
3188   }
3189 
frame_complete() const3190   int frame_complete() const {
3191     return _frame_complete;
3192   }
3193 
framesize() const3194   int framesize() const {
3195     return (_framesize >> (LogBytesPerWord - LogBytesPerInt));
3196   }
3197 
oop_maps() const3198   OopMapSet* oop_maps() const {
3199     return _oop_maps;
3200   }
3201 
3202 private:
3203 #ifdef ASSERT
target_uses_register(VMReg reg)3204   bool target_uses_register(VMReg reg) {
3205     return _input_registers.contains(reg) || _output_registers.contains(reg);
3206   }
3207 #endif
3208 };
3209 
3210 static const int native_invoker_code_size = 1024;
3211 
make_native_invoker(address call_target,int shadow_space_bytes,const GrowableArray<VMReg> & input_registers,const GrowableArray<VMReg> & output_registers)3212 RuntimeStub* SharedRuntime::make_native_invoker(address call_target,
3213                                                 int shadow_space_bytes,
3214                                                 const GrowableArray<VMReg>& input_registers,
3215                                                 const GrowableArray<VMReg>& output_registers) {
3216   int locs_size  = 64;
3217   CodeBuffer code("nep_invoker_blob", native_invoker_code_size, locs_size);
3218   NativeInvokerGenerator g(&code, call_target, shadow_space_bytes, input_registers, output_registers);
3219   g.generate();
3220   code.log_section_sizes("nep_invoker_blob");
3221 
3222   RuntimeStub* stub =
3223     RuntimeStub::new_runtime_stub("nep_invoker_blob",
3224                                   &code,
3225                                   g.frame_complete(),
3226                                   g.framesize(),
3227                                   g.oop_maps(), false);
3228   return stub;
3229 }
3230 
generate()3231 void NativeInvokerGenerator::generate() {
3232   assert(!(target_uses_register(rscratch1->as_VMReg())
3233            || target_uses_register(rscratch2->as_VMReg())
3234            || target_uses_register(rthread->as_VMReg())),
3235          "Register conflict");
3236 
3237   enum layout {
3238     rbp_off,
3239     rbp_off2,
3240     return_off,
3241     return_off2,
3242     framesize // inclusive of return address
3243   };
3244 
3245   assert(_shadow_space_bytes == 0, "not expecting shadow space on AArch64");
3246   _framesize = align_up(framesize + (spill_size_in_bytes() >> LogBytesPerInt), 4);
3247   assert(is_even(_framesize/2), "sp not 16-byte aligned");
3248 
3249   _oop_maps  = new OopMapSet();
3250   MacroAssembler* masm = _masm;
3251 
3252   address start = __ pc();
3253 
3254   __ enter();
3255 
3256   // lr and fp are already in place
3257   __ sub(sp, rfp, ((unsigned)_framesize-4) << LogBytesPerInt); // prolog
3258 
3259   _frame_complete = __ pc() - start;
3260 
3261   address the_pc = __ pc();
3262   __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
3263   OopMap* map = new OopMap(_framesize, 0);
3264   _oop_maps->add_gc_map(the_pc - start, map);
3265 
3266   // State transition
3267   __ mov(rscratch1, _thread_in_native);
3268   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
3269   __ stlrw(rscratch1, rscratch2);
3270 
3271   rt_call(masm, _call_target);
3272 
3273   __ mov(rscratch1, _thread_in_native_trans);
3274   __ strw(rscratch1, Address(rthread, JavaThread::thread_state_offset()));
3275 
3276   // Force this write out before the read below
3277   __ membar(Assembler::LoadLoad | Assembler::LoadStore |
3278             Assembler::StoreLoad | Assembler::StoreStore);
3279 
3280   __ verify_sve_vector_length();
3281 
3282   Label L_after_safepoint_poll;
3283   Label L_safepoint_poll_slow_path;
3284 
3285   __ safepoint_poll(L_safepoint_poll_slow_path, true /* at_return */, true /* acquire */, false /* in_nmethod */);
3286 
3287   __ ldrw(rscratch1, Address(rthread, JavaThread::suspend_flags_offset()));
3288   __ cbnzw(rscratch1, L_safepoint_poll_slow_path);
3289 
3290   __ bind(L_after_safepoint_poll);
3291 
3292   // change thread state
3293   __ mov(rscratch1, _thread_in_Java);
3294   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
3295   __ stlrw(rscratch1, rscratch2);
3296 
3297   __ block_comment("reguard stack check");
3298   Label L_reguard;
3299   Label L_after_reguard;
3300   __ ldrb(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset()));
3301   __ cmpw(rscratch1, StackOverflow::stack_guard_yellow_reserved_disabled);
3302   __ br(Assembler::EQ, L_reguard);
3303   __ bind(L_after_reguard);
3304 
3305   __ reset_last_Java_frame(true);
3306 
3307   __ leave(); // required for proper stackwalking of RuntimeStub frame
3308   __ ret(lr);
3309 
3310   //////////////////////////////////////////////////////////////////////////////
3311 
3312   __ block_comment("{ L_safepoint_poll_slow_path");
3313   __ bind(L_safepoint_poll_slow_path);
3314 
3315   // Need to save the native result registers around any runtime calls.
3316   spill_output_registers();
3317 
3318   __ mov(c_rarg0, rthread);
3319   assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
3320   __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
3321   __ blr(rscratch1);
3322 
3323   fill_output_registers();
3324 
3325   __ b(L_after_safepoint_poll);
3326   __ block_comment("} L_safepoint_poll_slow_path");
3327 
3328   //////////////////////////////////////////////////////////////////////////////
3329 
3330   __ block_comment("{ L_reguard");
3331   __ bind(L_reguard);
3332 
3333   spill_output_registers();
3334 
3335   rt_call(masm, CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
3336 
3337   fill_output_registers();
3338 
3339   __ b(L_after_reguard);
3340 
3341   __ block_comment("} L_reguard");
3342 
3343   //////////////////////////////////////////////////////////////////////////////
3344 
3345   __ flush();
3346 }
3347 #endif // COMPILER2
3348