1 /*
2  * Copyright (c) 2003, 2021, Oracle and/or its affiliates. All rights reserved.
3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This code is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 only, as
8  * published by the Free Software Foundation.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  *
24  */
25 
26 #include "precompiled.hpp"
27 #include "asm/macroAssembler.inline.hpp"
28 #include "classfile/javaClasses.hpp"
29 #include "compiler/compiler_globals.hpp"
30 #include "gc/shared/barrierSetAssembler.hpp"
31 #include "interpreter/bytecodeHistogram.hpp"
32 #include "interpreter/interpreter.hpp"
33 #include "interpreter/interpreterRuntime.hpp"
34 #include "interpreter/interp_masm.hpp"
35 #include "interpreter/templateInterpreterGenerator.hpp"
36 #include "interpreter/templateTable.hpp"
37 #include "interpreter/bytecodeTracer.hpp"
38 #include "memory/resourceArea.hpp"
39 #include "oops/arrayOop.hpp"
40 #include "oops/methodData.hpp"
41 #include "oops/method.hpp"
42 #include "oops/oop.inline.hpp"
43 #include "prims/jvmtiExport.hpp"
44 #include "prims/jvmtiThreadState.hpp"
45 #include "runtime/arguments.hpp"
46 #include "runtime/deoptimization.hpp"
47 #include "runtime/frame.inline.hpp"
48 #include "runtime/jniHandles.hpp"
49 #include "runtime/sharedRuntime.hpp"
50 #include "runtime/stubRoutines.hpp"
51 #include "runtime/synchronizer.hpp"
52 #include "runtime/timer.hpp"
53 #include "runtime/vframeArray.hpp"
54 #include "utilities/debug.hpp"
55 #include "utilities/powerOfTwo.hpp"
56 #include <sys/types.h>
57 
58 #ifndef PRODUCT
59 #include "oops/method.hpp"
60 #endif // !PRODUCT
61 
62 // Size of interpreter code.  Increase if too small.  Interpreter will
63 // fail with a guarantee ("not enough space for interpreter generation");
64 // if too small.
65 // Run with +PrintInterpreter to get the VM to print out the size.
66 // Max size with JVMTI
67 int TemplateInterpreter::InterpreterCodeSize = 200 * 1024;
68 
69 #define __ _masm->
70 
71 //-----------------------------------------------------------------------------
72 
73 extern "C" void entry(CodeBuffer*);
74 
75 //-----------------------------------------------------------------------------
76 
generate_slow_signature_handler()77 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
78   address entry = __ pc();
79 
80   __ andr(esp, esp, -16);
81   __ mov(c_rarg3, esp);
82   // rmethod
83   // rlocals
84   // c_rarg3: first stack arg - wordSize
85 
86   // adjust sp
87   __ sub(sp, c_rarg3, 18 * wordSize);
88   __ str(lr, Address(__ pre(sp, -2 * wordSize)));
89   __ call_VM(noreg,
90              CAST_FROM_FN_PTR(address,
91                               InterpreterRuntime::slow_signature_handler),
92              rmethod, rlocals, c_rarg3);
93 
94   // r0: result handler
95 
96   // Stack layout:
97   // rsp: return address           <- sp
98   //      1 garbage
99   //      8 integer args (if static first is unused)
100   //      1 float/double identifiers
101   //      8 double args
102   //        stack args              <- esp
103   //        garbage
104   //        expression stack bottom
105   //        bcp (NULL)
106   //        ...
107 
108   // Restore LR
109   __ ldr(lr, Address(__ post(sp, 2 * wordSize)));
110 
111   // Do FP first so we can use c_rarg3 as temp
112   __ ldrw(c_rarg3, Address(sp, 9 * wordSize)); // float/double identifiers
113 
114   for (int i = 0; i < Argument::n_float_register_parameters_c; i++) {
115     const FloatRegister r = as_FloatRegister(i);
116 
117     Label d, done;
118 
119     __ tbnz(c_rarg3, i, d);
120     __ ldrs(r, Address(sp, (10 + i) * wordSize));
121     __ b(done);
122     __ bind(d);
123     __ ldrd(r, Address(sp, (10 + i) * wordSize));
124     __ bind(done);
125   }
126 
127   // c_rarg0 contains the result from the call of
128   // InterpreterRuntime::slow_signature_handler so we don't touch it
129   // here.  It will be loaded with the JNIEnv* later.
130   __ ldr(c_rarg1, Address(sp, 1 * wordSize));
131   for (int i = c_rarg2->encoding(); i <= c_rarg7->encoding(); i += 2) {
132     Register rm = as_Register(i), rn = as_Register(i+1);
133     __ ldp(rm, rn, Address(sp, i * wordSize));
134   }
135 
136   __ add(sp, sp, 18 * wordSize);
137   __ ret(lr);
138 
139   return entry;
140 }
141 
142 
143 //
144 // Various method entries
145 //
146 
generate_math_entry(AbstractInterpreter::MethodKind kind)147 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
148   // rmethod: Method*
149   // r13: sender sp
150   // esp: args
151 
152   if (!InlineIntrinsics) return NULL; // Generate a vanilla entry
153 
154   // These don't need a safepoint check because they aren't virtually
155   // callable. We won't enter these intrinsics from compiled code.
156   // If in the future we added an intrinsic which was virtually callable
157   // we'd have to worry about how to safepoint so that this code is used.
158 
159   // mathematical functions inlined by compiler
160   // (interpreter must provide identical implementation
161   // in order to avoid monotonicity bugs when switching
162   // from interpreter to compiler in the middle of some
163   // computation)
164   //
165   // stack:
166   //        [ arg ] <-- esp
167   //        [ arg ]
168   // retaddr in lr
169 
170   address entry_point = NULL;
171   Register continuation = lr;
172   switch (kind) {
173   case Interpreter::java_lang_math_abs:
174     entry_point = __ pc();
175     __ ldrd(v0, Address(esp));
176     __ fabsd(v0, v0);
177     __ mov(sp, r13); // Restore caller's SP
178     break;
179   case Interpreter::java_lang_math_sqrt:
180     entry_point = __ pc();
181     __ ldrd(v0, Address(esp));
182     __ fsqrtd(v0, v0);
183     __ mov(sp, r13);
184     break;
185   case Interpreter::java_lang_math_sin :
186   case Interpreter::java_lang_math_cos :
187   case Interpreter::java_lang_math_tan :
188   case Interpreter::java_lang_math_log :
189   case Interpreter::java_lang_math_log10 :
190   case Interpreter::java_lang_math_exp :
191     entry_point = __ pc();
192     __ ldrd(v0, Address(esp));
193     __ mov(sp, r13);
194     __ mov(r19, lr);
195     continuation = r19;  // The first callee-saved register
196     generate_transcendental_entry(kind, 1);
197     break;
198   case Interpreter::java_lang_math_pow :
199     entry_point = __ pc();
200     __ mov(r19, lr);
201     continuation = r19;
202     __ ldrd(v0, Address(esp, 2 * Interpreter::stackElementSize));
203     __ ldrd(v1, Address(esp));
204     __ mov(sp, r13);
205     generate_transcendental_entry(kind, 2);
206     break;
207   case Interpreter::java_lang_math_fmaD :
208     if (UseFMA) {
209       entry_point = __ pc();
210       __ ldrd(v0, Address(esp, 4 * Interpreter::stackElementSize));
211       __ ldrd(v1, Address(esp, 2 * Interpreter::stackElementSize));
212       __ ldrd(v2, Address(esp));
213       __ fmaddd(v0, v0, v1, v2);
214       __ mov(sp, r13); // Restore caller's SP
215     }
216     break;
217   case Interpreter::java_lang_math_fmaF :
218     if (UseFMA) {
219       entry_point = __ pc();
220       __ ldrs(v0, Address(esp, 2 * Interpreter::stackElementSize));
221       __ ldrs(v1, Address(esp, Interpreter::stackElementSize));
222       __ ldrs(v2, Address(esp));
223       __ fmadds(v0, v0, v1, v2);
224       __ mov(sp, r13); // Restore caller's SP
225     }
226     break;
227   default:
228     ;
229   }
230   if (entry_point) {
231     __ br(continuation);
232   }
233 
234   return entry_point;
235 }
236 
237   // double trigonometrics and transcendentals
238   // static jdouble dsin(jdouble x);
239   // static jdouble dcos(jdouble x);
240   // static jdouble dtan(jdouble x);
241   // static jdouble dlog(jdouble x);
242   // static jdouble dlog10(jdouble x);
243   // static jdouble dexp(jdouble x);
244   // static jdouble dpow(jdouble x, jdouble y);
245 
generate_transcendental_entry(AbstractInterpreter::MethodKind kind,int fpargs)246 void TemplateInterpreterGenerator::generate_transcendental_entry(AbstractInterpreter::MethodKind kind, int fpargs) {
247   address fn;
248   switch (kind) {
249   case Interpreter::java_lang_math_sin :
250     if (StubRoutines::dsin() == NULL) {
251       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
252     } else {
253       fn = CAST_FROM_FN_PTR(address, StubRoutines::dsin());
254     }
255     break;
256   case Interpreter::java_lang_math_cos :
257     if (StubRoutines::dcos() == NULL) {
258       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
259     } else {
260       fn = CAST_FROM_FN_PTR(address, StubRoutines::dcos());
261     }
262     break;
263   case Interpreter::java_lang_math_tan :
264     if (StubRoutines::dtan() == NULL) {
265       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
266     } else {
267       fn = CAST_FROM_FN_PTR(address, StubRoutines::dtan());
268     }
269     break;
270   case Interpreter::java_lang_math_log :
271     if (StubRoutines::dlog() == NULL) {
272       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
273     } else {
274       fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog());
275     }
276     break;
277   case Interpreter::java_lang_math_log10 :
278     if (StubRoutines::dlog10() == NULL) {
279       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
280     } else {
281       fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog10());
282     }
283     break;
284   case Interpreter::java_lang_math_exp :
285     if (StubRoutines::dexp() == NULL) {
286       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
287     } else {
288       fn = CAST_FROM_FN_PTR(address, StubRoutines::dexp());
289     }
290     break;
291   case Interpreter::java_lang_math_pow :
292     if (StubRoutines::dpow() == NULL) {
293       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
294     } else {
295       fn = CAST_FROM_FN_PTR(address, StubRoutines::dpow());
296     }
297     break;
298   default:
299     ShouldNotReachHere();
300     fn = NULL;  // unreachable
301   }
302   __ mov(rscratch1, fn);
303   __ blr(rscratch1);
304 }
305 
306 // Abstract method entry
307 // Attempt to execute abstract method. Throw exception
generate_abstract_entry(void)308 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
309   // rmethod: Method*
310   // r13: sender SP
311 
312   address entry_point = __ pc();
313 
314   // abstract method entry
315 
316   //  pop return address, reset last_sp to NULL
317   __ empty_expression_stack();
318   __ restore_bcp();      // bcp must be correct for exception handler   (was destroyed)
319   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
320 
321   // throw exception
322   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
323                                      InterpreterRuntime::throw_AbstractMethodErrorWithMethod),
324                                      rmethod);
325   // the call_VM checks for exception, so we should never return here.
326   __ should_not_reach_here();
327 
328   return entry_point;
329 }
330 
generate_StackOverflowError_handler()331 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
332   address entry = __ pc();
333 
334 #ifdef ASSERT
335   {
336     Label L;
337     __ ldr(rscratch1, Address(rfp,
338                        frame::interpreter_frame_monitor_block_top_offset *
339                        wordSize));
340     __ mov(rscratch2, sp);
341     __ cmp(rscratch1, rscratch2); // maximal rsp for current rfp (stack
342                            // grows negative)
343     __ br(Assembler::HS, L); // check if frame is complete
344     __ stop ("interpreter frame not set up");
345     __ bind(L);
346   }
347 #endif // ASSERT
348   // Restore bcp under the assumption that the current frame is still
349   // interpreted
350   __ restore_bcp();
351 
352   // expression stack must be empty before entering the VM if an
353   // exception happened
354   __ empty_expression_stack();
355   // throw exception
356   __ call_VM(noreg,
357              CAST_FROM_FN_PTR(address,
358                               InterpreterRuntime::throw_StackOverflowError));
359   return entry;
360 }
361 
generate_ArrayIndexOutOfBounds_handler()362 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() {
363   address entry = __ pc();
364   // expression stack must be empty before entering the VM if an
365   // exception happened
366   __ empty_expression_stack();
367   // setup parameters
368 
369   // ??? convention: expect aberrant index in register r1
370   __ movw(c_rarg2, r1);
371   // ??? convention: expect array in register r3
372   __ mov(c_rarg1, r3);
373   __ call_VM(noreg,
374              CAST_FROM_FN_PTR(address,
375                               InterpreterRuntime::
376                               throw_ArrayIndexOutOfBoundsException),
377              c_rarg1, c_rarg2);
378   return entry;
379 }
380 
generate_ClassCastException_handler()381 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
382   address entry = __ pc();
383 
384   // object is at TOS
385   __ pop(c_rarg1);
386 
387   // expression stack must be empty before entering the VM if an
388   // exception happened
389   __ empty_expression_stack();
390 
391   __ call_VM(noreg,
392              CAST_FROM_FN_PTR(address,
393                               InterpreterRuntime::
394                               throw_ClassCastException),
395              c_rarg1);
396   return entry;
397 }
398 
generate_exception_handler_common(const char * name,const char * message,bool pass_oop)399 address TemplateInterpreterGenerator::generate_exception_handler_common(
400         const char* name, const char* message, bool pass_oop) {
401   assert(!pass_oop || message == NULL, "either oop or message but not both");
402   address entry = __ pc();
403   if (pass_oop) {
404     // object is at TOS
405     __ pop(c_rarg2);
406   }
407   // expression stack must be empty before entering the VM if an
408   // exception happened
409   __ empty_expression_stack();
410   // setup parameters
411   __ lea(c_rarg1, Address((address)name));
412   if (pass_oop) {
413     __ call_VM(r0, CAST_FROM_FN_PTR(address,
414                                     InterpreterRuntime::
415                                     create_klass_exception),
416                c_rarg1, c_rarg2);
417   } else {
418     // kind of lame ExternalAddress can't take NULL because
419     // external_word_Relocation will assert.
420     if (message != NULL) {
421       __ lea(c_rarg2, Address((address)message));
422     } else {
423       __ mov(c_rarg2, NULL_WORD);
424     }
425     __ call_VM(r0,
426                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
427                c_rarg1, c_rarg2);
428   }
429   // throw exception
430   __ b(address(Interpreter::throw_exception_entry()));
431   return entry;
432 }
433 
generate_return_entry_for(TosState state,int step,size_t index_size)434 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
435   address entry = __ pc();
436 
437   // Restore stack bottom in case i2c adjusted stack
438   __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
439   // and NULL it as marker that esp is now tos until next java call
440   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
441   __ restore_bcp();
442   __ restore_locals();
443   __ restore_constant_pool_cache();
444   __ get_method(rmethod);
445 
446   if (state == atos) {
447     Register obj = r0;
448     Register mdp = r1;
449     Register tmp = r2;
450     __ profile_return_type(mdp, obj, tmp);
451   }
452 
453   // Pop N words from the stack
454   __ get_cache_and_index_at_bcp(r1, r2, 1, index_size);
455   __ ldr(r1, Address(r1, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
456   __ andr(r1, r1, ConstantPoolCacheEntry::parameter_size_mask);
457 
458   __ add(esp, esp, r1, Assembler::LSL, 3);
459 
460   // Restore machine SP
461   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
462   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
463   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2);
464   __ ldr(rscratch2,
465          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
466   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtw, 3);
467   __ andr(sp, rscratch1, -16);
468 
469  __ check_and_handle_popframe(rthread);
470  __ check_and_handle_earlyret(rthread);
471 
472   __ get_dispatch();
473   __ dispatch_next(state, step);
474 
475   return entry;
476 }
477 
generate_deopt_entry_for(TosState state,int step,address continuation)478 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
479                                                                int step,
480                                                                address continuation) {
481   address entry = __ pc();
482   __ restore_bcp();
483   __ restore_locals();
484   __ restore_constant_pool_cache();
485   __ get_method(rmethod);
486   __ get_dispatch();
487 
488   // Calculate stack limit
489   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
490   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
491   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2);
492   __ ldr(rscratch2,
493          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
494   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtx, 3);
495   __ andr(sp, rscratch1, -16);
496 
497   // Restore expression stack pointer
498   __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
499   // NULL last_sp until next java call
500   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
501 
502 #if INCLUDE_JVMCI
503   // Check if we need to take lock at entry of synchronized method.  This can
504   // only occur on method entry so emit it only for vtos with step 0.
505   if (EnableJVMCI && state == vtos && step == 0) {
506     Label L;
507     __ ldrb(rscratch1, Address(rthread, JavaThread::pending_monitorenter_offset()));
508     __ cbz(rscratch1, L);
509     // Clear flag.
510     __ strb(zr, Address(rthread, JavaThread::pending_monitorenter_offset()));
511     // Take lock.
512     lock_method();
513     __ bind(L);
514   } else {
515 #ifdef ASSERT
516     if (EnableJVMCI) {
517       Label L;
518       __ ldrb(rscratch1, Address(rthread, JavaThread::pending_monitorenter_offset()));
519       __ cbz(rscratch1, L);
520       __ stop("unexpected pending monitor in deopt entry");
521       __ bind(L);
522     }
523 #endif
524   }
525 #endif
526   // handle exceptions
527   {
528     Label L;
529     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
530     __ cbz(rscratch1, L);
531     __ call_VM(noreg,
532                CAST_FROM_FN_PTR(address,
533                                 InterpreterRuntime::throw_pending_exception));
534     __ should_not_reach_here();
535     __ bind(L);
536   }
537 
538   if (continuation == NULL) {
539     __ dispatch_next(state, step);
540   } else {
541     __ jump_to_entry(continuation);
542   }
543   return entry;
544 }
545 
generate_result_handler_for(BasicType type)546 address TemplateInterpreterGenerator::generate_result_handler_for(
547         BasicType type) {
548     address entry = __ pc();
549   switch (type) {
550   case T_BOOLEAN: __ c2bool(r0);         break;
551   case T_CHAR   : __ uxth(r0, r0);       break;
552   case T_BYTE   : __ sxtb(r0, r0);        break;
553   case T_SHORT  : __ sxth(r0, r0);        break;
554   case T_INT    : __ uxtw(r0, r0);        break;  // FIXME: We almost certainly don't need this
555   case T_LONG   : /* nothing to do */        break;
556   case T_VOID   : /* nothing to do */        break;
557   case T_FLOAT  : /* nothing to do */        break;
558   case T_DOUBLE : /* nothing to do */        break;
559   case T_OBJECT :
560     // retrieve result from frame
561     __ ldr(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize));
562     // and verify it
563     __ verify_oop(r0);
564     break;
565   default       : ShouldNotReachHere();
566   }
567   __ ret(lr);                                  // return from result handler
568   return entry;
569 }
570 
generate_safept_entry_for(TosState state,address runtime_entry)571 address TemplateInterpreterGenerator::generate_safept_entry_for(
572         TosState state,
573         address runtime_entry) {
574   address entry = __ pc();
575   __ push(state);
576   __ call_VM(noreg, runtime_entry);
577   __ membar(Assembler::AnyAny);
578   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
579   return entry;
580 }
581 
582 // Helpers for commoning out cases in the various type of method entries.
583 //
584 
585 
586 // increment invocation count & check for overflow
587 //
588 // Note: checking for negative value instead of overflow
589 //       so we have a 'sticky' overflow test
590 //
591 // rmethod: method
592 //
generate_counter_incr(Label * overflow)593 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) {
594   Label done;
595   // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
596   int increment = InvocationCounter::count_increment;
597   Label no_mdo;
598   if (ProfileInterpreter) {
599     // Are we profiling?
600     __ ldr(r0, Address(rmethod, Method::method_data_offset()));
601     __ cbz(r0, no_mdo);
602     // Increment counter in the MDO
603     const Address mdo_invocation_counter(r0, in_bytes(MethodData::invocation_counter_offset()) +
604                                               in_bytes(InvocationCounter::counter_offset()));
605     const Address mask(r0, in_bytes(MethodData::invoke_mask_offset()));
606     __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rscratch1, rscratch2, false, Assembler::EQ, overflow);
607     __ b(done);
608   }
609   __ bind(no_mdo);
610   // Increment counter in MethodCounters
611   const Address invocation_counter(rscratch2,
612                 MethodCounters::invocation_counter_offset() +
613                 InvocationCounter::counter_offset());
614   __ get_method_counters(rmethod, rscratch2, done);
615   const Address mask(rscratch2, in_bytes(MethodCounters::invoke_mask_offset()));
616   __ increment_mask_and_jump(invocation_counter, increment, mask, rscratch1, r1, false, Assembler::EQ, overflow);
617   __ bind(done);
618 }
619 
generate_counter_overflow(Label & do_continue)620 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) {
621 
622   // Asm interpreter on entry
623   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
624   // Everything as it was on entry
625 
626   // InterpreterRuntime::frequency_counter_overflow takes two
627   // arguments, the first (thread) is passed by call_VM, the second
628   // indicates if the counter overflow occurs at a backwards branch
629   // (NULL bcp).  We pass zero for it.  The call returns the address
630   // of the verified entry point for the method or NULL if the
631   // compilation did not complete (either went background or bailed
632   // out).
633   __ mov(c_rarg1, 0);
634   __ call_VM(noreg,
635              CAST_FROM_FN_PTR(address,
636                               InterpreterRuntime::frequency_counter_overflow),
637              c_rarg1);
638 
639   __ b(do_continue);
640 }
641 
642 // See if we've got enough room on the stack for locals plus overhead
643 // below JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
644 // without going through the signal handler, i.e., reserved and yellow zones
645 // will not be made usable. The shadow zone must suffice to handle the
646 // overflow.
647 // The expression stack grows down incrementally, so the normal guard
648 // page mechanism will work for that.
649 //
650 // NOTE: Since the additional locals are also always pushed (wasn't
651 // obvious in generate_method_entry) so the guard should work for them
652 // too.
653 //
654 // Args:
655 //      r3: number of additional locals this frame needs (what we must check)
656 //      rmethod: Method*
657 //
658 // Kills:
659 //      r0
generate_stack_overflow_check(void)660 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) {
661 
662   // monitor entry size: see picture of stack set
663   // (generate_method_entry) and frame_amd64.hpp
664   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
665 
666   // total overhead size: entry_size + (saved rbp through expr stack
667   // bottom).  be sure to change this if you add/subtract anything
668   // to/from the overhead area
669   const int overhead_size =
670     -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;
671 
672   const int page_size = os::vm_page_size();
673 
674   Label after_frame_check;
675 
676   // see if the frame is greater than one page in size. If so,
677   // then we need to verify there is enough stack space remaining
678   // for the additional locals.
679   //
680   // Note that we use SUBS rather than CMP here because the immediate
681   // field of this instruction may overflow.  SUBS can cope with this
682   // because it is a macro that will expand to some number of MOV
683   // instructions and a register operation.
684   __ subs(rscratch1, r3, (page_size - overhead_size) / Interpreter::stackElementSize);
685   __ br(Assembler::LS, after_frame_check);
686 
687   // compute rsp as if this were going to be the last frame on
688   // the stack before the red zone
689 
690   // locals + overhead, in bytes
691   __ mov(r0, overhead_size);
692   __ add(r0, r0, r3, Assembler::LSL, Interpreter::logStackElementSize);  // 2 slots per parameter.
693 
694   const Address stack_limit(rthread, JavaThread::stack_overflow_limit_offset());
695   __ ldr(rscratch1, stack_limit);
696 
697 #ifdef ASSERT
698   Label limit_okay;
699   // Verify that thread stack limit is non-zero.
700   __ cbnz(rscratch1, limit_okay);
701   __ stop("stack overflow limit is zero");
702   __ bind(limit_okay);
703 #endif
704 
705   // Add stack limit to locals.
706   __ add(r0, r0, rscratch1);
707 
708   // Check against the current stack bottom.
709   __ cmp(sp, r0);
710   __ br(Assembler::HI, after_frame_check);
711 
712   // Remove the incoming args, peeling the machine SP back to where it
713   // was in the caller.  This is not strictly necessary, but unless we
714   // do so the stack frame may have a garbage FP; this ensures a
715   // correct call stack that we can always unwind.  The ANDR should be
716   // unnecessary because the sender SP in r13 is always aligned, but
717   // it doesn't hurt.
718   __ andr(sp, r13, -16);
719 
720   // Note: the restored frame is not necessarily interpreted.
721   // Use the shared runtime version of the StackOverflowError.
722   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
723   __ far_jump(RuntimeAddress(StubRoutines::throw_StackOverflowError_entry()));
724 
725   // all done with frame size check
726   __ bind(after_frame_check);
727 }
728 
729 // Allocate monitor and lock method (asm interpreter)
730 //
731 // Args:
732 //      rmethod: Method*
733 //      rlocals: locals
734 //
735 // Kills:
736 //      r0
737 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
738 //      rscratch1, rscratch2 (scratch regs)
lock_method()739 void TemplateInterpreterGenerator::lock_method() {
740   // synchronize method
741   const Address access_flags(rmethod, Method::access_flags_offset());
742   const Address monitor_block_top(
743         rfp,
744         frame::interpreter_frame_monitor_block_top_offset * wordSize);
745   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
746 
747 #ifdef ASSERT
748   {
749     Label L;
750     __ ldrw(r0, access_flags);
751     __ tst(r0, JVM_ACC_SYNCHRONIZED);
752     __ br(Assembler::NE, L);
753     __ stop("method doesn't need synchronization");
754     __ bind(L);
755   }
756 #endif // ASSERT
757 
758   // get synchronization object
759   {
760     Label done;
761     __ ldrw(r0, access_flags);
762     __ tst(r0, JVM_ACC_STATIC);
763     // get receiver (assume this is frequent case)
764     __ ldr(r0, Address(rlocals, Interpreter::local_offset_in_bytes(0)));
765     __ br(Assembler::EQ, done);
766     __ load_mirror(r0, rmethod);
767 
768 #ifdef ASSERT
769     {
770       Label L;
771       __ cbnz(r0, L);
772       __ stop("synchronization object is NULL");
773       __ bind(L);
774     }
775 #endif // ASSERT
776 
777     __ bind(done);
778   }
779 
780   // add space for monitor & lock
781   __ sub(sp, sp, entry_size); // add space for a monitor entry
782   __ sub(esp, esp, entry_size);
783   __ mov(rscratch1, esp);
784   __ str(rscratch1, monitor_block_top);  // set new monitor block top
785   // store object
786   __ str(r0, Address(esp, BasicObjectLock::obj_offset_in_bytes()));
787   __ mov(c_rarg1, esp); // object address
788   __ lock_object(c_rarg1);
789 }
790 
791 // Generate a fixed interpreter frame. This is identical setup for
792 // interpreted methods and for native methods hence the shared code.
793 //
794 // Args:
795 //      lr: return address
796 //      rmethod: Method*
797 //      rlocals: pointer to locals
798 //      rcpool: cp cache
799 //      stack_pointer: previous sp
generate_fixed_frame(bool native_call)800 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
801   // initialize fixed part of activation frame
802   if (native_call) {
803     __ sub(esp, sp, 14 *  wordSize);
804     __ mov(rbcp, zr);
805     __ stp(esp, zr, Address(__ pre(sp, -14 * wordSize)));
806     // add 2 zero-initialized slots for native calls
807     __ stp(zr, zr, Address(sp, 12 * wordSize));
808   } else {
809     __ sub(esp, sp, 12 *  wordSize);
810     __ ldr(rscratch1, Address(rmethod, Method::const_offset()));      // get ConstMethod
811     __ add(rbcp, rscratch1, in_bytes(ConstMethod::codes_offset())); // get codebase
812     __ stp(esp, rbcp, Address(__ pre(sp, -12 * wordSize)));
813   }
814 
815   if (ProfileInterpreter) {
816     Label method_data_continue;
817     __ ldr(rscratch1, Address(rmethod, Method::method_data_offset()));
818     __ cbz(rscratch1, method_data_continue);
819     __ lea(rscratch1, Address(rscratch1, in_bytes(MethodData::data_offset())));
820     __ bind(method_data_continue);
821     __ stp(rscratch1, rmethod, Address(sp, 6 * wordSize));  // save Method* and mdp (method data pointer)
822   } else {
823     __ stp(zr, rmethod, Address(sp, 6 * wordSize));        // save Method* (no mdp)
824   }
825 
826   // Get mirror and store it in the frame as GC root for this Method*
827   __ load_mirror(r10, rmethod);
828   __ stp(r10, zr, Address(sp, 4 * wordSize));
829 
830   __ ldr(rcpool, Address(rmethod, Method::const_offset()));
831   __ ldr(rcpool, Address(rcpool, ConstMethod::constants_offset()));
832   __ ldr(rcpool, Address(rcpool, ConstantPool::cache_offset_in_bytes()));
833   __ stp(rlocals, rcpool, Address(sp, 2 * wordSize));
834 
835   __ stp(rfp, lr, Address(sp, 10 * wordSize));
836   __ lea(rfp, Address(sp, 10 * wordSize));
837 
838   // set sender sp
839   // leave last_sp as null
840   __ stp(zr, r13, Address(sp, 8 * wordSize));
841 
842   // Move SP out of the way
843   if (! native_call) {
844     __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
845     __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
846     __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2);
847     __ sub(rscratch1, sp, rscratch1, ext::uxtw, 3);
848     __ andr(sp, rscratch1, -16);
849   }
850 }
851 
852 // End of helpers
853 
854 // Various method entries
855 //------------------------------------------------------------------------------------------------------------------------
856 //
857 //
858 
859 // Method entry for java.lang.ref.Reference.get.
generate_Reference_get_entry(void)860 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
861   // Code: _aload_0, _getfield, _areturn
862   // parameter size = 1
863   //
864   // The code that gets generated by this routine is split into 2 parts:
865   //    1. The "intrinsified" code for G1 (or any SATB based GC),
866   //    2. The slow path - which is an expansion of the regular method entry.
867   //
868   // Notes:-
869   // * In the G1 code we do not check whether we need to block for
870   //   a safepoint. If G1 is enabled then we must execute the specialized
871   //   code for Reference.get (except when the Reference object is null)
872   //   so that we can log the value in the referent field with an SATB
873   //   update buffer.
874   //   If the code for the getfield template is modified so that the
875   //   G1 pre-barrier code is executed when the current method is
876   //   Reference.get() then going through the normal method entry
877   //   will be fine.
878   // * The G1 code can, however, check the receiver object (the instance
879   //   of java.lang.Reference) and jump to the slow path if null. If the
880   //   Reference object is null then we obviously cannot fetch the referent
881   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
882   //   regular method entry code to generate the NPE.
883   //
884   // This code is based on generate_accessor_entry.
885   //
886   // rmethod: Method*
887   // r13: senderSP must preserve for slow path, set SP to it on fast path
888 
889   // LR is live.  It must be saved around calls.
890 
891   address entry = __ pc();
892 
893   const int referent_offset = java_lang_ref_Reference::referent_offset();
894 
895   Label slow_path;
896   const Register local_0 = c_rarg0;
897   // Check if local 0 != NULL
898   // If the receiver is null then it is OK to jump to the slow path.
899   __ ldr(local_0, Address(esp, 0));
900   __ cbz(local_0, slow_path);
901 
902   __ mov(r19, r13);   // Move senderSP to a callee-saved register
903 
904   // Load the value of the referent field.
905   const Address field_address(local_0, referent_offset);
906   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
907   bs->load_at(_masm, IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, local_0, field_address, /*tmp1*/ rscratch2, /*tmp2*/ rscratch1);
908 
909   // areturn
910   __ andr(sp, r19, -16);  // done with stack
911   __ ret(lr);
912 
913   // generate a vanilla interpreter entry as the slow path
914   __ bind(slow_path);
915   __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
916   return entry;
917 
918 }
919 
920 /**
921  * Method entry for static native methods:
922  *   int java.util.zip.CRC32.update(int crc, int b)
923  */
generate_CRC32_update_entry()924 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
925   if (UseCRC32Intrinsics) {
926     address entry = __ pc();
927 
928     // rmethod: Method*
929     // r13: senderSP must preserved for slow path
930     // esp: args
931 
932     Label slow_path;
933     // If we need a safepoint check, generate full interpreter entry.
934     __ safepoint_poll(slow_path, false /* at_return */, false /* acquire */, false /* in_nmethod */);
935 
936     // We don't generate local frame and don't align stack because
937     // we call stub code and there is no safepoint on this path.
938 
939     // Load parameters
940     const Register crc = c_rarg0;  // crc
941     const Register val = c_rarg1;  // source java byte value
942     const Register tbl = c_rarg2;  // scratch
943 
944     // Arguments are reversed on java expression stack
945     __ ldrw(val, Address(esp, 0));              // byte value
946     __ ldrw(crc, Address(esp, wordSize));       // Initial CRC
947 
948     uint64_t offset;
949     __ adrp(tbl, ExternalAddress(StubRoutines::crc_table_addr()), offset);
950     __ add(tbl, tbl, offset);
951 
952     __ mvnw(crc, crc); // ~crc
953     __ update_byte_crc32(crc, val, tbl);
954     __ mvnw(crc, crc); // ~crc
955 
956     // result in c_rarg0
957 
958     __ andr(sp, r13, -16);
959     __ ret(lr);
960 
961     // generate a vanilla native entry as the slow path
962     __ bind(slow_path);
963     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
964     return entry;
965   }
966   return NULL;
967 }
968 
969 /**
970  * Method entry for static native methods:
971  *   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
972  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
973  */
generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind)974 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
975   if (UseCRC32Intrinsics) {
976     address entry = __ pc();
977 
978     // rmethod,: Method*
979     // r13: senderSP must preserved for slow path
980 
981     Label slow_path;
982     // If we need a safepoint check, generate full interpreter entry.
983     __ safepoint_poll(slow_path, false /* at_return */, false /* acquire */, false /* in_nmethod */);
984 
985     // We don't generate local frame and don't align stack because
986     // we call stub code and there is no safepoint on this path.
987 
988     // Load parameters
989     const Register crc = c_rarg0;  // crc
990     const Register buf = c_rarg1;  // source java byte array address
991     const Register len = c_rarg2;  // length
992     const Register off = len;      // offset (never overlaps with 'len')
993 
994     // Arguments are reversed on java expression stack
995     // Calculate address of start element
996     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
997       __ ldr(buf, Address(esp, 2*wordSize)); // long buf
998       __ ldrw(off, Address(esp, wordSize)); // offset
999       __ add(buf, buf, off); // + offset
1000       __ ldrw(crc,   Address(esp, 4*wordSize)); // Initial CRC
1001     } else {
1002       __ ldr(buf, Address(esp, 2*wordSize)); // byte[] array
1003       __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
1004       __ ldrw(off, Address(esp, wordSize)); // offset
1005       __ add(buf, buf, off); // + offset
1006       __ ldrw(crc,   Address(esp, 3*wordSize)); // Initial CRC
1007     }
1008     // Can now load 'len' since we're finished with 'off'
1009     __ ldrw(len, Address(esp, 0x0)); // Length
1010 
1011     __ andr(sp, r13, -16); // Restore the caller's SP
1012 
1013     // We are frameless so we can just jump to the stub.
1014     __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32()));
1015 
1016     // generate a vanilla native entry as the slow path
1017     __ bind(slow_path);
1018     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
1019     return entry;
1020   }
1021   return NULL;
1022 }
1023 
1024 /**
1025  * Method entry for intrinsic-candidate (non-native) methods:
1026  *   int java.util.zip.CRC32C.updateBytes(int crc, byte[] b, int off, int end)
1027  *   int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
1028  * Unlike CRC32, CRC32C does not have any methods marked as native
1029  * CRC32C also uses an "end" variable instead of the length variable CRC32 uses
1030  */
generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind)1031 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1032   if (UseCRC32CIntrinsics) {
1033     address entry = __ pc();
1034 
1035     // Prepare jump to stub using parameters from the stack
1036     const Register crc = c_rarg0; // initial crc
1037     const Register buf = c_rarg1; // source java byte array address
1038     const Register len = c_rarg2; // len argument to the kernel
1039 
1040     const Register end = len; // index of last element to process
1041     const Register off = crc; // offset
1042 
1043     __ ldrw(end, Address(esp)); // int end
1044     __ ldrw(off, Address(esp, wordSize)); // int offset
1045     __ sub(len, end, off);
1046     __ ldr(buf, Address(esp, 2*wordSize)); // byte[] buf | long buf
1047     __ add(buf, buf, off); // + offset
1048     if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) {
1049       __ ldrw(crc, Address(esp, 4*wordSize)); // long crc
1050     } else {
1051       __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
1052       __ ldrw(crc, Address(esp, 3*wordSize)); // long crc
1053     }
1054 
1055     __ andr(sp, r13, -16); // Restore the caller's SP
1056 
1057     // Jump to the stub.
1058     __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32C()));
1059 
1060     return entry;
1061   }
1062   return NULL;
1063 }
1064 
bang_stack_shadow_pages(bool native_call)1065 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
1066   // Bang each page in the shadow zone. We can't assume it's been done for
1067   // an interpreter frame with greater than a page of locals, so each page
1068   // needs to be checked.  Only true for non-native.
1069   const int n_shadow_pages = (int)(StackOverflow::stack_shadow_zone_size() / os::vm_page_size());
1070   const int start_page = native_call ? n_shadow_pages : 1;
1071   const int page_size = os::vm_page_size();
1072   for (int pages = start_page; pages <= n_shadow_pages ; pages++) {
1073     __ sub(rscratch2, sp, pages*page_size);
1074     __ str(zr, Address(rscratch2));
1075   }
1076 }
1077 
1078 
1079 // Interpreter stub for calling a native method. (asm interpreter)
1080 // This sets up a somewhat different looking stack for calling the
1081 // native method than the typical interpreter frame setup.
generate_native_entry(bool synchronized)1082 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1083   // determine code generation flags
1084   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1085 
1086   // r1: Method*
1087   // rscratch1: sender sp
1088 
1089   address entry_point = __ pc();
1090 
1091   const Address constMethod       (rmethod, Method::const_offset());
1092   const Address access_flags      (rmethod, Method::access_flags_offset());
1093   const Address size_of_parameters(r2, ConstMethod::
1094                                        size_of_parameters_offset());
1095 
1096   // get parameter size (always needed)
1097   __ ldr(r2, constMethod);
1098   __ load_unsigned_short(r2, size_of_parameters);
1099 
1100   // Native calls don't need the stack size check since they have no
1101   // expression stack and the arguments are already on the stack and
1102   // we only add a handful of words to the stack.
1103 
1104   // rmethod: Method*
1105   // r2: size of parameters
1106   // rscratch1: sender sp
1107 
1108   // for natives the size of locals is zero
1109 
1110   // compute beginning of parameters (rlocals)
1111   __ add(rlocals, esp, r2, ext::uxtx, 3);
1112   __ add(rlocals, rlocals, -wordSize);
1113 
1114   // Pull SP back to minimum size: this avoids holes in the stack
1115   __ andr(sp, esp, -16);
1116 
1117   // initialize fixed part of activation frame
1118   generate_fixed_frame(true);
1119 
1120   // make sure method is native & not abstract
1121 #ifdef ASSERT
1122   __ ldrw(r0, access_flags);
1123   {
1124     Label L;
1125     __ tst(r0, JVM_ACC_NATIVE);
1126     __ br(Assembler::NE, L);
1127     __ stop("tried to execute non-native method as native");
1128     __ bind(L);
1129   }
1130   {
1131     Label L;
1132     __ tst(r0, JVM_ACC_ABSTRACT);
1133     __ br(Assembler::EQ, L);
1134     __ stop("tried to execute abstract method in interpreter");
1135     __ bind(L);
1136   }
1137 #endif
1138 
1139   // Since at this point in the method invocation the exception
1140   // handler would try to exit the monitor of synchronized methods
1141   // which hasn't been entered yet, we set the thread local variable
1142   // _do_not_unlock_if_synchronized to true. The remove_activation
1143   // will check this flag.
1144 
1145    const Address do_not_unlock_if_synchronized(rthread,
1146         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1147   __ mov(rscratch2, true);
1148   __ strb(rscratch2, do_not_unlock_if_synchronized);
1149 
1150   // increment invocation count & check for overflow
1151   Label invocation_counter_overflow;
1152   if (inc_counter) {
1153     generate_counter_incr(&invocation_counter_overflow);
1154   }
1155 
1156   Label continue_after_compile;
1157   __ bind(continue_after_compile);
1158 
1159   bang_stack_shadow_pages(true);
1160 
1161   // reset the _do_not_unlock_if_synchronized flag
1162   __ strb(zr, do_not_unlock_if_synchronized);
1163 
1164   // check for synchronized methods
1165   // Must happen AFTER invocation_counter check and stack overflow check,
1166   // so method is not locked if overflows.
1167   if (synchronized) {
1168     lock_method();
1169   } else {
1170     // no synchronization necessary
1171 #ifdef ASSERT
1172     {
1173       Label L;
1174       __ ldrw(r0, access_flags);
1175       __ tst(r0, JVM_ACC_SYNCHRONIZED);
1176       __ br(Assembler::EQ, L);
1177       __ stop("method needs synchronization");
1178       __ bind(L);
1179     }
1180 #endif
1181   }
1182 
1183   // start execution
1184 #ifdef ASSERT
1185   {
1186     Label L;
1187     const Address monitor_block_top(rfp,
1188                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1189     __ ldr(rscratch1, monitor_block_top);
1190     __ cmp(esp, rscratch1);
1191     __ br(Assembler::EQ, L);
1192     __ stop("broken stack frame setup in interpreter");
1193     __ bind(L);
1194   }
1195 #endif
1196 
1197   // jvmti support
1198   __ notify_method_entry();
1199 
1200   // work registers
1201   const Register t = r17;
1202   const Register result_handler = r19;
1203 
1204   // allocate space for parameters
1205   __ ldr(t, Address(rmethod, Method::const_offset()));
1206   __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
1207 
1208   __ sub(rscratch1, esp, t, ext::uxtx, Interpreter::logStackElementSize);
1209   __ andr(sp, rscratch1, -16);
1210   __ mov(esp, rscratch1);
1211 
1212   // get signature handler
1213   {
1214     Label L;
1215     __ ldr(t, Address(rmethod, Method::signature_handler_offset()));
1216     __ cbnz(t, L);
1217     __ call_VM(noreg,
1218                CAST_FROM_FN_PTR(address,
1219                                 InterpreterRuntime::prepare_native_call),
1220                rmethod);
1221     __ ldr(t, Address(rmethod, Method::signature_handler_offset()));
1222     __ bind(L);
1223   }
1224 
1225   // call signature handler
1226   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rlocals,
1227          "adjust this code");
1228   assert(InterpreterRuntime::SignatureHandlerGenerator::to() == sp,
1229          "adjust this code");
1230   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1,
1231           "adjust this code");
1232 
1233   // The generated handlers do not touch rmethod (the method).
1234   // However, large signatures cannot be cached and are generated
1235   // each time here.  The slow-path generator can do a GC on return,
1236   // so we must reload it after the call.
1237   __ blr(t);
1238   __ get_method(rmethod);        // slow path can do a GC, reload rmethod
1239 
1240 
1241   // result handler is in r0
1242   // set result handler
1243   __ mov(result_handler, r0);
1244   // pass mirror handle if static call
1245   {
1246     Label L;
1247     __ ldrw(t, Address(rmethod, Method::access_flags_offset()));
1248     __ tbz(t, exact_log2(JVM_ACC_STATIC), L);
1249     // get mirror
1250     __ load_mirror(t, rmethod);
1251     // copy mirror into activation frame
1252     __ str(t, Address(rfp, frame::interpreter_frame_oop_temp_offset * wordSize));
1253     // pass handle to mirror
1254     __ add(c_rarg1, rfp, frame::interpreter_frame_oop_temp_offset * wordSize);
1255     __ bind(L);
1256   }
1257 
1258   // get native function entry point in r10
1259   {
1260     Label L;
1261     __ ldr(r10, Address(rmethod, Method::native_function_offset()));
1262     address unsatisfied = (SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
1263     __ mov(rscratch2, unsatisfied);
1264     __ ldr(rscratch2, rscratch2);
1265     __ cmp(r10, rscratch2);
1266     __ br(Assembler::NE, L);
1267     __ call_VM(noreg,
1268                CAST_FROM_FN_PTR(address,
1269                                 InterpreterRuntime::prepare_native_call),
1270                rmethod);
1271     __ get_method(rmethod);
1272     __ ldr(r10, Address(rmethod, Method::native_function_offset()));
1273     __ bind(L);
1274   }
1275 
1276   // pass JNIEnv
1277   __ add(c_rarg0, rthread, in_bytes(JavaThread::jni_environment_offset()));
1278 
1279   // Set the last Java PC in the frame anchor to be the return address from
1280   // the call to the native method: this will allow the debugger to
1281   // generate an accurate stack trace.
1282   Label native_return;
1283   __ set_last_Java_frame(esp, rfp, native_return, rscratch1);
1284 
1285   // change thread state
1286 #ifdef ASSERT
1287   {
1288     Label L;
1289     __ ldrw(t, Address(rthread, JavaThread::thread_state_offset()));
1290     __ cmp(t, (u1)_thread_in_Java);
1291     __ br(Assembler::EQ, L);
1292     __ stop("Wrong thread state in native stub");
1293     __ bind(L);
1294   }
1295 #endif
1296 
1297   // Change state to native
1298   __ mov(rscratch1, _thread_in_native);
1299   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1300   __ stlrw(rscratch1, rscratch2);
1301 
1302   // Call the native method.
1303   __ blr(r10);
1304   __ bind(native_return);
1305   __ get_method(rmethod);
1306   // result potentially in r0 or v0
1307 
1308   // make room for the pushes we're about to do
1309   __ sub(rscratch1, esp, 4 * wordSize);
1310   __ andr(sp, rscratch1, -16);
1311 
1312   // NOTE: The order of these pushes is known to frame::interpreter_frame_result
1313   // in order to extract the result of a method call. If the order of these
1314   // pushes change or anything else is added to the stack then the code in
1315   // interpreter_frame_result must also change.
1316   __ push(dtos);
1317   __ push(ltos);
1318 
1319   __ verify_sve_vector_length();
1320 
1321   // change thread state
1322   __ mov(rscratch1, _thread_in_native_trans);
1323   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1324   __ stlrw(rscratch1, rscratch2);
1325 
1326   // Force this write out before the read below
1327   __ dmb(Assembler::ISH);
1328 
1329   // check for safepoint operation in progress and/or pending suspend requests
1330   {
1331     Label L, Continue;
1332 
1333     // We need an acquire here to ensure that any subsequent load of the
1334     // global SafepointSynchronize::_state flag is ordered after this load
1335     // of the thread-local polling word.  We don't want this poll to
1336     // return false (i.e. not safepointing) and a later poll of the global
1337     // SafepointSynchronize::_state spuriously to return true.
1338     //
1339     // This is to avoid a race when we're in a native->Java transition
1340     // racing the code which wakes up from a safepoint.
1341     __ safepoint_poll(L, true /* at_return */, true /* acquire */, false /* in_nmethod */);
1342     __ ldrw(rscratch2, Address(rthread, JavaThread::suspend_flags_offset()));
1343     __ cbz(rscratch2, Continue);
1344     __ bind(L);
1345 
1346     // Don't use call_VM as it will see a possible pending exception
1347     // and forward it and never return here preventing us from
1348     // clearing _last_native_pc down below. So we do a runtime call by
1349     // hand.
1350     //
1351     __ mov(c_rarg0, rthread);
1352     __ mov(rscratch2, CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans));
1353     __ blr(rscratch2);
1354     __ get_method(rmethod);
1355     __ reinit_heapbase();
1356     __ bind(Continue);
1357   }
1358 
1359   // change thread state
1360   __ mov(rscratch1, _thread_in_Java);
1361   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1362   __ stlrw(rscratch1, rscratch2);
1363 
1364   // reset_last_Java_frame
1365   __ reset_last_Java_frame(true);
1366 
1367   if (CheckJNICalls) {
1368     // clear_pending_jni_exception_check
1369     __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset()));
1370   }
1371 
1372   // reset handle block
1373   __ ldr(t, Address(rthread, JavaThread::active_handles_offset()));
1374   __ str(zr, Address(t, JNIHandleBlock::top_offset_in_bytes()));
1375 
1376   // If result is an oop unbox and store it in frame where gc will see it
1377   // and result handler will pick it up
1378 
1379   {
1380     Label no_oop;
1381     __ adr(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
1382     __ cmp(t, result_handler);
1383     __ br(Assembler::NE, no_oop);
1384     // Unbox oop result, e.g. JNIHandles::resolve result.
1385     __ pop(ltos);
1386     __ resolve_jobject(r0, rthread, t);
1387     __ str(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize));
1388     // keep stack depth as expected by pushing oop which will eventually be discarded
1389     __ push(ltos);
1390     __ bind(no_oop);
1391   }
1392 
1393   {
1394     Label no_reguard;
1395     __ lea(rscratch1, Address(rthread, in_bytes(JavaThread::stack_guard_state_offset())));
1396     __ ldrw(rscratch1, Address(rscratch1));
1397     __ cmp(rscratch1, (u1)StackOverflow::stack_guard_yellow_reserved_disabled);
1398     __ br(Assembler::NE, no_reguard);
1399 
1400     __ pusha(); // XXX only save smashed registers
1401     __ mov(c_rarg0, rthread);
1402     __ mov(rscratch2, CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
1403     __ blr(rscratch2);
1404     __ popa(); // XXX only restore smashed registers
1405     __ bind(no_reguard);
1406   }
1407 
1408   // The method register is junk from after the thread_in_native transition
1409   // until here.  Also can't call_VM until the bcp has been
1410   // restored.  Need bcp for throwing exception below so get it now.
1411   __ get_method(rmethod);
1412 
1413   // restore bcp to have legal interpreter frame, i.e., bci == 0 <=>
1414   // rbcp == code_base()
1415   __ ldr(rbcp, Address(rmethod, Method::const_offset()));   // get ConstMethod*
1416   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));          // get codebase
1417   // handle exceptions (exception handling will handle unlocking!)
1418   {
1419     Label L;
1420     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
1421     __ cbz(rscratch1, L);
1422     // Note: At some point we may want to unify this with the code
1423     // used in call_VM_base(); i.e., we should use the
1424     // StubRoutines::forward_exception code. For now this doesn't work
1425     // here because the rsp is not correctly set at this point.
1426     __ MacroAssembler::call_VM(noreg,
1427                                CAST_FROM_FN_PTR(address,
1428                                InterpreterRuntime::throw_pending_exception));
1429     __ should_not_reach_here();
1430     __ bind(L);
1431   }
1432 
1433   // do unlocking if necessary
1434   {
1435     Label L;
1436     __ ldrw(t, Address(rmethod, Method::access_flags_offset()));
1437     __ tbz(t, exact_log2(JVM_ACC_SYNCHRONIZED), L);
1438     // the code below should be shared with interpreter macro
1439     // assembler implementation
1440     {
1441       Label unlock;
1442       // BasicObjectLock will be first in list, since this is a
1443       // synchronized method. However, need to check that the object
1444       // has not been unlocked by an explicit monitorexit bytecode.
1445 
1446       // monitor expect in c_rarg1 for slow unlock path
1447       __ lea (c_rarg1, Address(rfp,   // address of first monitor
1448                                (intptr_t)(frame::interpreter_frame_initial_sp_offset *
1449                                           wordSize - sizeof(BasicObjectLock))));
1450 
1451       __ ldr(t, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
1452       __ cbnz(t, unlock);
1453 
1454       // Entry already unlocked, need to throw exception
1455       __ MacroAssembler::call_VM(noreg,
1456                                  CAST_FROM_FN_PTR(address,
1457                    InterpreterRuntime::throw_illegal_monitor_state_exception));
1458       __ should_not_reach_here();
1459 
1460       __ bind(unlock);
1461       __ unlock_object(c_rarg1);
1462     }
1463     __ bind(L);
1464   }
1465 
1466   // jvmti support
1467   // Note: This must happen _after_ handling/throwing any exceptions since
1468   //       the exception handler code notifies the runtime of method exits
1469   //       too. If this happens before, method entry/exit notifications are
1470   //       not properly paired (was bug - gri 11/22/99).
1471   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1472 
1473   // restore potential result in r0:d0, call result handler to
1474   // restore potential result in ST0 & handle result
1475 
1476   __ pop(ltos);
1477   __ pop(dtos);
1478 
1479   __ blr(result_handler);
1480 
1481   // remove activation
1482   __ ldr(esp, Address(rfp,
1483                     frame::interpreter_frame_sender_sp_offset *
1484                     wordSize)); // get sender sp
1485   // remove frame anchor
1486   __ leave();
1487 
1488   // resture sender sp
1489   __ mov(sp, esp);
1490 
1491   __ ret(lr);
1492 
1493   if (inc_counter) {
1494     // Handle overflow of counter and compile method
1495     __ bind(invocation_counter_overflow);
1496     generate_counter_overflow(continue_after_compile);
1497   }
1498 
1499   return entry_point;
1500 }
1501 
1502 //
1503 // Generic interpreted method entry to (asm) interpreter
1504 //
generate_normal_entry(bool synchronized)1505 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1506   // determine code generation flags
1507   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1508 
1509   // rscratch1: sender sp
1510   address entry_point = __ pc();
1511 
1512   const Address constMethod(rmethod, Method::const_offset());
1513   const Address access_flags(rmethod, Method::access_flags_offset());
1514   const Address size_of_parameters(r3,
1515                                    ConstMethod::size_of_parameters_offset());
1516   const Address size_of_locals(r3, ConstMethod::size_of_locals_offset());
1517 
1518   // get parameter size (always needed)
1519   // need to load the const method first
1520   __ ldr(r3, constMethod);
1521   __ load_unsigned_short(r2, size_of_parameters);
1522 
1523   // r2: size of parameters
1524 
1525   __ load_unsigned_short(r3, size_of_locals); // get size of locals in words
1526   __ sub(r3, r3, r2); // r3 = no. of additional locals
1527 
1528   // see if we've got enough room on the stack for locals plus overhead.
1529   generate_stack_overflow_check();
1530 
1531   // compute beginning of parameters (rlocals)
1532   __ add(rlocals, esp, r2, ext::uxtx, 3);
1533   __ sub(rlocals, rlocals, wordSize);
1534 
1535   __ mov(rscratch1, esp);
1536 
1537   // r3 - # of additional locals
1538   // allocate space for locals
1539   // explicitly initialize locals
1540   // Initializing memory allocated for locals in the same direction as
1541   // the stack grows to ensure page initialization order according
1542   // to windows-aarch64 stack page growth requirement (see
1543   // https://docs.microsoft.com/en-us/cpp/build/arm64-windows-abi-conventions?view=msvc-160#stack)
1544   {
1545     Label exit, loop;
1546     __ ands(zr, r3, r3);
1547     __ br(Assembler::LE, exit); // do nothing if r3 <= 0
1548     __ bind(loop);
1549     __ str(zr, Address(__ pre(rscratch1, -wordSize)));
1550     __ sub(r3, r3, 1); // until everything initialized
1551     __ cbnz(r3, loop);
1552     __ bind(exit);
1553   }
1554 
1555   // Padding between locals and fixed part of activation frame to ensure
1556   // SP is always 16-byte aligned.
1557   __ andr(sp, rscratch1, -16);
1558 
1559   // And the base dispatch table
1560   __ get_dispatch();
1561 
1562   // initialize fixed part of activation frame
1563   generate_fixed_frame(false);
1564 
1565   // make sure method is not native & not abstract
1566 #ifdef ASSERT
1567   __ ldrw(r0, access_flags);
1568   {
1569     Label L;
1570     __ tst(r0, JVM_ACC_NATIVE);
1571     __ br(Assembler::EQ, L);
1572     __ stop("tried to execute native method as non-native");
1573     __ bind(L);
1574   }
1575  {
1576     Label L;
1577     __ tst(r0, JVM_ACC_ABSTRACT);
1578     __ br(Assembler::EQ, L);
1579     __ stop("tried to execute abstract method in interpreter");
1580     __ bind(L);
1581   }
1582 #endif
1583 
1584   // Since at this point in the method invocation the exception
1585   // handler would try to exit the monitor of synchronized methods
1586   // which hasn't been entered yet, we set the thread local variable
1587   // _do_not_unlock_if_synchronized to true. The remove_activation
1588   // will check this flag.
1589 
1590    const Address do_not_unlock_if_synchronized(rthread,
1591         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1592   __ mov(rscratch2, true);
1593   __ strb(rscratch2, do_not_unlock_if_synchronized);
1594 
1595   Register mdp = r3;
1596   __ profile_parameters_type(mdp, r1, r2);
1597 
1598   // increment invocation count & check for overflow
1599   Label invocation_counter_overflow;
1600   if (inc_counter) {
1601     generate_counter_incr(&invocation_counter_overflow);
1602   }
1603 
1604   Label continue_after_compile;
1605   __ bind(continue_after_compile);
1606 
1607   bang_stack_shadow_pages(false);
1608 
1609   // reset the _do_not_unlock_if_synchronized flag
1610   __ strb(zr, do_not_unlock_if_synchronized);
1611 
1612   // check for synchronized methods
1613   // Must happen AFTER invocation_counter check and stack overflow check,
1614   // so method is not locked if overflows.
1615   if (synchronized) {
1616     // Allocate monitor and lock method
1617     lock_method();
1618   } else {
1619     // no synchronization necessary
1620 #ifdef ASSERT
1621     {
1622       Label L;
1623       __ ldrw(r0, access_flags);
1624       __ tst(r0, JVM_ACC_SYNCHRONIZED);
1625       __ br(Assembler::EQ, L);
1626       __ stop("method needs synchronization");
1627       __ bind(L);
1628     }
1629 #endif
1630   }
1631 
1632   // start execution
1633 #ifdef ASSERT
1634   {
1635     Label L;
1636      const Address monitor_block_top (rfp,
1637                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1638     __ ldr(rscratch1, monitor_block_top);
1639     __ cmp(esp, rscratch1);
1640     __ br(Assembler::EQ, L);
1641     __ stop("broken stack frame setup in interpreter");
1642     __ bind(L);
1643   }
1644 #endif
1645 
1646   // jvmti support
1647   __ notify_method_entry();
1648 
1649   __ dispatch_next(vtos);
1650 
1651   // invocation counter overflow
1652   if (inc_counter) {
1653     // Handle overflow of counter and compile method
1654     __ bind(invocation_counter_overflow);
1655     generate_counter_overflow(continue_after_compile);
1656   }
1657 
1658   return entry_point;
1659 }
1660 
1661 //-----------------------------------------------------------------------------
1662 // Exceptions
1663 
generate_throw_exception()1664 void TemplateInterpreterGenerator::generate_throw_exception() {
1665   // Entry point in previous activation (i.e., if the caller was
1666   // interpreted)
1667   Interpreter::_rethrow_exception_entry = __ pc();
1668   // Restore sp to interpreter_frame_last_sp even though we are going
1669   // to empty the expression stack for the exception processing.
1670   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1671   // r0: exception
1672   // r3: return address/pc that threw exception
1673   __ restore_bcp();    // rbcp points to call/send
1674   __ restore_locals();
1675   __ restore_constant_pool_cache();
1676   __ reinit_heapbase();  // restore rheapbase as heapbase.
1677   __ get_dispatch();
1678 
1679   // Entry point for exceptions thrown within interpreter code
1680   Interpreter::_throw_exception_entry = __ pc();
1681   // If we came here via a NullPointerException on the receiver of a
1682   // method, rmethod may be corrupt.
1683   __ get_method(rmethod);
1684   // expression stack is undefined here
1685   // r0: exception
1686   // rbcp: exception bcp
1687   __ verify_oop(r0);
1688   __ mov(c_rarg1, r0);
1689 
1690   // expression stack must be empty before entering the VM in case of
1691   // an exception
1692   __ empty_expression_stack();
1693   // find exception handler address and preserve exception oop
1694   __ call_VM(r3,
1695              CAST_FROM_FN_PTR(address,
1696                           InterpreterRuntime::exception_handler_for_exception),
1697              c_rarg1);
1698 
1699   // Calculate stack limit
1700   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
1701   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
1702   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 4);
1703   __ ldr(rscratch2,
1704          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
1705   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtx, 3);
1706   __ andr(sp, rscratch1, -16);
1707 
1708   // r0: exception handler entry point
1709   // r3: preserved exception oop
1710   // rbcp: bcp for exception handler
1711   __ push_ptr(r3); // push exception which is now the only value on the stack
1712   __ br(r0); // jump to exception handler (may be _remove_activation_entry!)
1713 
1714   // If the exception is not handled in the current frame the frame is
1715   // removed and the exception is rethrown (i.e. exception
1716   // continuation is _rethrow_exception).
1717   //
1718   // Note: At this point the bci is still the bxi for the instruction
1719   // which caused the exception and the expression stack is
1720   // empty. Thus, for any VM calls at this point, GC will find a legal
1721   // oop map (with empty expression stack).
1722 
1723   //
1724   // JVMTI PopFrame support
1725   //
1726 
1727   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1728   __ empty_expression_stack();
1729   // Set the popframe_processing bit in pending_popframe_condition
1730   // indicating that we are currently handling popframe, so that
1731   // call_VMs that may happen later do not trigger new popframe
1732   // handling cycles.
1733   __ ldrw(r3, Address(rthread, JavaThread::popframe_condition_offset()));
1734   __ orr(r3, r3, JavaThread::popframe_processing_bit);
1735   __ strw(r3, Address(rthread, JavaThread::popframe_condition_offset()));
1736 
1737   {
1738     // Check to see whether we are returning to a deoptimized frame.
1739     // (The PopFrame call ensures that the caller of the popped frame is
1740     // either interpreted or compiled and deoptimizes it if compiled.)
1741     // In this case, we can't call dispatch_next() after the frame is
1742     // popped, but instead must save the incoming arguments and restore
1743     // them after deoptimization has occurred.
1744     //
1745     // Note that we don't compare the return PC against the
1746     // deoptimization blob's unpack entry because of the presence of
1747     // adapter frames in C2.
1748     Label caller_not_deoptimized;
1749     __ ldr(c_rarg1, Address(rfp, frame::return_addr_offset * wordSize));
1750     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1751                                InterpreterRuntime::interpreter_contains), c_rarg1);
1752     __ cbnz(r0, caller_not_deoptimized);
1753 
1754     // Compute size of arguments for saving when returning to
1755     // deoptimized caller
1756     __ get_method(r0);
1757     __ ldr(r0, Address(r0, Method::const_offset()));
1758     __ load_unsigned_short(r0, Address(r0, in_bytes(ConstMethod::
1759                                                     size_of_parameters_offset())));
1760     __ lsl(r0, r0, Interpreter::logStackElementSize);
1761     __ restore_locals(); // XXX do we need this?
1762     __ sub(rlocals, rlocals, r0);
1763     __ add(rlocals, rlocals, wordSize);
1764     // Save these arguments
1765     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1766                                            Deoptimization::
1767                                            popframe_preserve_args),
1768                           rthread, r0, rlocals);
1769 
1770     __ remove_activation(vtos,
1771                          /* throw_monitor_exception */ false,
1772                          /* install_monitor_exception */ false,
1773                          /* notify_jvmdi */ false);
1774 
1775     // Inform deoptimization that it is responsible for restoring
1776     // these arguments
1777     __ mov(rscratch1, JavaThread::popframe_force_deopt_reexecution_bit);
1778     __ strw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
1779 
1780     // Continue in deoptimization handler
1781     __ ret(lr);
1782 
1783     __ bind(caller_not_deoptimized);
1784   }
1785 
1786   __ remove_activation(vtos,
1787                        /* throw_monitor_exception */ false,
1788                        /* install_monitor_exception */ false,
1789                        /* notify_jvmdi */ false);
1790 
1791   // Restore the last_sp and null it out
1792   __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1793   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1794 
1795   __ restore_bcp();
1796   __ restore_locals();
1797   __ restore_constant_pool_cache();
1798   __ get_method(rmethod);
1799   __ get_dispatch();
1800 
1801   // The method data pointer was incremented already during
1802   // call profiling. We have to restore the mdp for the current bcp.
1803   if (ProfileInterpreter) {
1804     __ set_method_data_pointer_for_bcp();
1805   }
1806 
1807   // Clear the popframe condition flag
1808   __ strw(zr, Address(rthread, JavaThread::popframe_condition_offset()));
1809   assert(JavaThread::popframe_inactive == 0, "fix popframe_inactive");
1810 
1811 #if INCLUDE_JVMTI
1812   {
1813     Label L_done;
1814 
1815     __ ldrb(rscratch1, Address(rbcp, 0));
1816     __ cmpw(rscratch1, Bytecodes::_invokestatic);
1817     __ br(Assembler::NE, L_done);
1818 
1819     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1820     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
1821 
1822     __ ldr(c_rarg0, Address(rlocals, 0));
1823     __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), c_rarg0, rmethod, rbcp);
1824 
1825     __ cbz(r0, L_done);
1826 
1827     __ str(r0, Address(esp, 0));
1828     __ bind(L_done);
1829   }
1830 #endif // INCLUDE_JVMTI
1831 
1832   // Restore machine SP
1833   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
1834   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
1835   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 4);
1836   __ ldr(rscratch2,
1837          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
1838   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtw, 3);
1839   __ andr(sp, rscratch1, -16);
1840 
1841   __ dispatch_next(vtos);
1842   // end of PopFrame support
1843 
1844   Interpreter::_remove_activation_entry = __ pc();
1845 
1846   // preserve exception over this code sequence
1847   __ pop_ptr(r0);
1848   __ str(r0, Address(rthread, JavaThread::vm_result_offset()));
1849   // remove the activation (without doing throws on illegalMonitorExceptions)
1850   __ remove_activation(vtos, false, true, false);
1851   // restore exception
1852   __ get_vm_result(r0, rthread);
1853 
1854   // In between activations - previous activation type unknown yet
1855   // compute continuation point - the continuation point expects the
1856   // following registers set up:
1857   //
1858   // r0: exception
1859   // lr: return address/pc that threw exception
1860   // esp: expression stack of caller
1861   // rfp: fp of caller
1862   __ stp(r0, lr, Address(__ pre(sp, -2 * wordSize)));  // save exception & return address
1863   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1864                           SharedRuntime::exception_handler_for_return_address),
1865                         rthread, lr);
1866   __ mov(r1, r0);                               // save exception handler
1867   __ ldp(r0, lr, Address(__ post(sp, 2 * wordSize)));  // restore exception & return address
1868   // We might be returning to a deopt handler that expects r3 to
1869   // contain the exception pc
1870   __ mov(r3, lr);
1871   // Note that an "issuing PC" is actually the next PC after the call
1872   __ br(r1);                                    // jump to exception
1873                                                 // handler of caller
1874 }
1875 
1876 
1877 //
1878 // JVMTI ForceEarlyReturn support
1879 //
generate_earlyret_entry_for(TosState state)1880 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1881   address entry = __ pc();
1882 
1883   __ restore_bcp();
1884   __ restore_locals();
1885   __ empty_expression_stack();
1886   __ load_earlyret_value(state);
1887 
1888   __ ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
1889   Address cond_addr(rscratch1, JvmtiThreadState::earlyret_state_offset());
1890 
1891   // Clear the earlyret state
1892   assert(JvmtiThreadState::earlyret_inactive == 0, "should be");
1893   __ str(zr, cond_addr);
1894 
1895   __ remove_activation(state,
1896                        false, /* throw_monitor_exception */
1897                        false, /* install_monitor_exception */
1898                        true); /* notify_jvmdi */
1899   __ ret(lr);
1900 
1901   return entry;
1902 } // end of ForceEarlyReturn support
1903 
1904 
1905 
1906 //-----------------------------------------------------------------------------
1907 // Helper for vtos entry point generation
1908 
set_vtos_entry_points(Template * t,address & bep,address & cep,address & sep,address & aep,address & iep,address & lep,address & fep,address & dep,address & vep)1909 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
1910                                                          address& bep,
1911                                                          address& cep,
1912                                                          address& sep,
1913                                                          address& aep,
1914                                                          address& iep,
1915                                                          address& lep,
1916                                                          address& fep,
1917                                                          address& dep,
1918                                                          address& vep) {
1919   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1920   Label L;
1921   aep = __ pc();  __ push_ptr();  __ b(L);
1922   fep = __ pc();  __ push_f();    __ b(L);
1923   dep = __ pc();  __ push_d();    __ b(L);
1924   lep = __ pc();  __ push_l();    __ b(L);
1925   bep = cep = sep =
1926   iep = __ pc();  __ push_i();
1927   vep = __ pc();
1928   __ bind(L);
1929   generate_and_dispatch(t);
1930 }
1931 
1932 //-----------------------------------------------------------------------------
1933 
1934 // Non-product code
1935 #ifndef PRODUCT
generate_trace_code(TosState state)1936 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
1937   address entry = __ pc();
1938 
1939   __ push(lr);
1940   __ push(state);
1941   __ push(RegSet::range(r0, r15), sp);
1942   __ mov(c_rarg2, r0);  // Pass itos
1943   __ call_VM(noreg,
1944              CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode),
1945              c_rarg1, c_rarg2, c_rarg3);
1946   __ pop(RegSet::range(r0, r15), sp);
1947   __ pop(state);
1948   __ pop(lr);
1949   __ ret(lr);                                   // return from result handler
1950 
1951   return entry;
1952 }
1953 
count_bytecode()1954 void TemplateInterpreterGenerator::count_bytecode() {
1955   Register rscratch3 = r0;
1956   __ push(rscratch1);
1957   __ push(rscratch2);
1958   __ push(rscratch3);
1959   __ mov(rscratch3, (address) &BytecodeCounter::_counter_value);
1960   __ atomic_add(noreg, 1, rscratch3);
1961   __ pop(rscratch3);
1962   __ pop(rscratch2);
1963   __ pop(rscratch1);
1964 }
1965 
histogram_bytecode(Template * t)1966 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { ; }
1967 
histogram_bytecode_pair(Template * t)1968 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { ; }
1969 
1970 
trace_bytecode(Template * t)1971 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
1972   // Call a little run-time stub to avoid blow-up for each bytecode.
1973   // The run-time runtime saves the right registers, depending on
1974   // the tosca in-state for the given template.
1975 
1976   assert(Interpreter::trace_code(t->tos_in()) != NULL,
1977          "entry must have been generated");
1978   __ bl(Interpreter::trace_code(t->tos_in()));
1979   __ reinit_heapbase();
1980 }
1981 
1982 
stop_interpreter_at()1983 void TemplateInterpreterGenerator::stop_interpreter_at() {
1984   Label L;
1985   __ push(rscratch1);
1986   __ mov(rscratch1, (address) &BytecodeCounter::_counter_value);
1987   __ ldr(rscratch1, Address(rscratch1));
1988   __ mov(rscratch2, StopInterpreterAt);
1989   __ cmpw(rscratch1, rscratch2);
1990   __ br(Assembler::NE, L);
1991   __ brk(0);
1992   __ bind(L);
1993   __ pop(rscratch1);
1994 }
1995 
1996 #endif // !PRODUCT
1997