1 /*
2  * Copyright (c) 2001, 2021, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "gc/g1/g1CollectedHeap.inline.hpp"
27 #include "gc/g1/g1CollectionSetCandidates.hpp"
28 #include "gc/g1/g1CollectionSetChooser.hpp"
29 #include "gc/g1/heapRegionRemSet.hpp"
30 #include "gc/shared/space.inline.hpp"
31 #include "runtime/atomic.hpp"
32 #include "utilities/quickSort.hpp"
33 
34 // Order regions according to GC efficiency. This will cause regions with a lot
35 // of live objects and large remembered sets to end up at the end of the array.
36 // Given that we might skip collecting the last few old regions, if after a few
37 // mixed GCs the remaining have reclaimable bytes under a certain threshold, the
38 // hope is that the ones we'll skip are ones with both large remembered sets and
39 // a lot of live objects, not the ones with just a lot of live objects if we
40 // ordered according to the amount of reclaimable bytes per region.
order_regions(HeapRegion * hr1,HeapRegion * hr2)41 static int order_regions(HeapRegion* hr1, HeapRegion* hr2) {
42   // Make sure that NULL entries are moved to the end.
43   if (hr1 == NULL) {
44     if (hr2 == NULL) {
45       return 0;
46     } else {
47       return 1;
48     }
49   } else if (hr2 == NULL) {
50     return -1;
51   }
52 
53   double gc_eff1 = hr1->gc_efficiency();
54   double gc_eff2 = hr2->gc_efficiency();
55 
56   if (gc_eff1 > gc_eff2) {
57     return -1;
58   } if (gc_eff1 < gc_eff2) {
59     return 1;
60   } else {
61     return 0;
62   }
63 }
64 
65 // Determine collection set candidates: For all regions determine whether they
66 // should be a collection set candidates, calculate their efficiency, sort and
67 // return them as G1CollectionSetCandidates instance.
68 // Threads calculate the GC efficiency of the regions they get to process, and
69 // put them into some work area unsorted. At the end the array is sorted and
70 // copied into the G1CollectionSetCandidates instance; the caller will be the new
71 // owner of this object.
72 class G1BuildCandidateRegionsTask : public AbstractGangTask {
73 
74   // Work area for building the set of collection set candidates. Contains references
75   // to heap regions with their GC efficiencies calculated. To reduce contention
76   // on claiming array elements, worker threads claim parts of this array in chunks;
77   // Array elements may be NULL as threads might not get enough regions to fill
78   // up their chunks completely.
79   // Final sorting will remove them.
80   class G1BuildCandidateArray : public StackObj {
81 
82     uint const _max_size;
83     uint const _chunk_size;
84 
85     HeapRegion** _data;
86 
87     uint volatile _cur_claim_idx;
88 
89     // Calculates the maximum array size that will be used.
required_array_size(uint num_regions,uint chunk_size,uint num_workers)90     static uint required_array_size(uint num_regions, uint chunk_size, uint num_workers) {
91       uint const max_waste = num_workers * chunk_size;
92       // The array should be aligned with respect to chunk_size.
93       uint const aligned_num_regions = ((num_regions + chunk_size - 1) / chunk_size) * chunk_size;
94 
95       return aligned_num_regions + max_waste;
96     }
97 
98   public:
G1BuildCandidateArray(uint max_num_regions,uint chunk_size,uint num_workers)99     G1BuildCandidateArray(uint max_num_regions, uint chunk_size, uint num_workers) :
100       _max_size(required_array_size(max_num_regions, chunk_size, num_workers)),
101       _chunk_size(chunk_size),
102       _data(NEW_C_HEAP_ARRAY(HeapRegion*, _max_size, mtGC)),
103       _cur_claim_idx(0) {
104       for (uint i = 0; i < _max_size; i++) {
105         _data[i] = NULL;
106       }
107     }
108 
~G1BuildCandidateArray()109     ~G1BuildCandidateArray() {
110       FREE_C_HEAP_ARRAY(HeapRegion*, _data);
111     }
112 
113     // Claim a new chunk, returning its bounds [from, to[.
claim_chunk(uint & from,uint & to)114     void claim_chunk(uint& from, uint& to) {
115       uint result = Atomic::add(&_cur_claim_idx, _chunk_size);
116       assert(_max_size > result - 1,
117              "Array too small, is %u should be %u with chunk size %u.",
118              _max_size, result, _chunk_size);
119       from = result - _chunk_size;
120       to = result;
121     }
122 
123     // Set element in array.
set(uint idx,HeapRegion * hr)124     void set(uint idx, HeapRegion* hr) {
125       assert(idx < _max_size, "Index %u out of bounds %u", idx, _max_size);
126       assert(_data[idx] == NULL, "Value must not have been set.");
127       _data[idx] = hr;
128     }
129 
sort_and_copy_into(HeapRegion ** dest,uint num_regions)130     void sort_and_copy_into(HeapRegion** dest, uint num_regions) {
131       if (_cur_claim_idx == 0) {
132         return;
133       }
134       for (uint i = _cur_claim_idx; i < _max_size; i++) {
135         assert(_data[i] == NULL, "must be");
136       }
137       QuickSort::sort(_data, _cur_claim_idx, order_regions, true);
138       for (uint i = num_regions; i < _max_size; i++) {
139         assert(_data[i] == NULL, "must be");
140       }
141       for (uint i = 0; i < num_regions; i++) {
142         dest[i] = _data[i];
143       }
144     }
145   };
146 
147   // Per-region closure. In addition to determining whether a region should be
148   // added to the candidates, and calculating those regions' gc efficiencies, also
149   // gather additional statistics.
150   class G1BuildCandidateRegionsClosure : public HeapRegionClosure {
151     G1BuildCandidateArray* _array;
152 
153     uint _cur_chunk_idx;
154     uint _cur_chunk_end;
155 
156     uint _regions_added;
157     size_t _reclaimable_bytes_added;
158 
add_region(HeapRegion * hr)159     void add_region(HeapRegion* hr) {
160       if (_cur_chunk_idx == _cur_chunk_end) {
161         _array->claim_chunk(_cur_chunk_idx, _cur_chunk_end);
162       }
163       assert(_cur_chunk_idx < _cur_chunk_end, "Must be");
164 
165       hr->calc_gc_efficiency();
166       _array->set(_cur_chunk_idx, hr);
167 
168       _cur_chunk_idx++;
169 
170       _regions_added++;
171       _reclaimable_bytes_added += hr->reclaimable_bytes();
172     }
173 
should_add(HeapRegion * hr)174     bool should_add(HeapRegion* hr) { return G1CollectionSetChooser::should_add(hr); }
175 
176   public:
G1BuildCandidateRegionsClosure(G1BuildCandidateArray * array)177     G1BuildCandidateRegionsClosure(G1BuildCandidateArray* array) :
178       _array(array),
179       _cur_chunk_idx(0),
180       _cur_chunk_end(0),
181       _regions_added(0),
182       _reclaimable_bytes_added(0) { }
183 
do_heap_region(HeapRegion * r)184     bool do_heap_region(HeapRegion* r) {
185       // We will skip any region that's currently used as an old GC
186       // alloc region (we should not consider those for collection
187       // before we fill them up).
188       if (should_add(r) && !G1CollectedHeap::heap()->is_old_gc_alloc_region(r)) {
189         add_region(r);
190       } else if (r->is_old()) {
191         // Keep remembered sets for humongous regions, otherwise clean out remembered
192         // sets for old regions.
193         r->rem_set()->clear(true /* only_cardset */);
194       } else {
195         assert(r->is_archive() || !r->is_old() || !r->rem_set()->is_tracked(),
196                "Missed to clear unused remembered set of region %u (%s) that is %s",
197                r->hrm_index(), r->get_type_str(), r->rem_set()->get_state_str());
198       }
199       return false;
200     }
201 
regions_added() const202     uint regions_added() const { return _regions_added; }
reclaimable_bytes_added() const203     size_t reclaimable_bytes_added() const { return _reclaimable_bytes_added; }
204   };
205 
206   G1CollectedHeap* _g1h;
207   HeapRegionClaimer _hrclaimer;
208 
209   uint volatile _num_regions_added;
210   size_t volatile _reclaimable_bytes_added;
211 
212   G1BuildCandidateArray _result;
213 
update_totals(uint num_regions,size_t reclaimable_bytes)214   void update_totals(uint num_regions, size_t reclaimable_bytes) {
215     if (num_regions > 0) {
216       assert(reclaimable_bytes > 0, "invariant");
217       Atomic::add(&_num_regions_added, num_regions);
218       Atomic::add(&_reclaimable_bytes_added, reclaimable_bytes);
219     } else {
220       assert(reclaimable_bytes == 0, "invariant");
221     }
222   }
223 
224 public:
G1BuildCandidateRegionsTask(uint max_num_regions,uint chunk_size,uint num_workers)225   G1BuildCandidateRegionsTask(uint max_num_regions, uint chunk_size, uint num_workers) :
226     AbstractGangTask("G1 Build Candidate Regions"),
227     _g1h(G1CollectedHeap::heap()),
228     _hrclaimer(num_workers),
229     _num_regions_added(0),
230     _reclaimable_bytes_added(0),
231     _result(max_num_regions, chunk_size, num_workers) { }
232 
work(uint worker_id)233   void work(uint worker_id) {
234     G1BuildCandidateRegionsClosure cl(&_result);
235     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hrclaimer, worker_id);
236     update_totals(cl.regions_added(), cl.reclaimable_bytes_added());
237   }
238 
get_sorted_candidates()239   G1CollectionSetCandidates* get_sorted_candidates() {
240     HeapRegion** regions = NEW_C_HEAP_ARRAY(HeapRegion*, _num_regions_added, mtGC);
241     _result.sort_and_copy_into(regions, _num_regions_added);
242     return new G1CollectionSetCandidates(regions,
243                                          _num_regions_added,
244                                          _reclaimable_bytes_added);
245   }
246 };
247 
calculate_work_chunk_size(uint num_workers,uint num_regions)248 uint G1CollectionSetChooser::calculate_work_chunk_size(uint num_workers, uint num_regions) {
249   assert(num_workers > 0, "Active gc workers should be greater than 0");
250   return MAX2(num_regions / num_workers, 1U);
251 }
252 
should_add(HeapRegion * hr)253 bool G1CollectionSetChooser::should_add(HeapRegion* hr) {
254   return !hr->is_young() &&
255          !hr->is_pinned() &&
256          region_occupancy_low_enough_for_evac(hr->live_bytes()) &&
257          hr->rem_set()->is_complete();
258 }
259 
260 // Closure implementing early pruning (removal) of regions meeting the
261 // G1HeapWastePercent criteria. That is, either until _max_pruned regions were
262 // removed (for forward progress in evacuation) or the waste accumulated by the
263 // removed regions is above max_wasted.
264 class G1PruneRegionClosure : public HeapRegionClosure {
265   uint _num_pruned;
266   size_t _cur_wasted;
267 
268   uint const _max_pruned;
269   size_t const _max_wasted;
270 
271 public:
G1PruneRegionClosure(uint max_pruned,size_t max_wasted)272   G1PruneRegionClosure(uint max_pruned, size_t max_wasted) :
273     _num_pruned(0), _cur_wasted(0), _max_pruned(max_pruned), _max_wasted(max_wasted) { }
274 
do_heap_region(HeapRegion * r)275   virtual bool do_heap_region(HeapRegion* r) {
276     size_t const reclaimable = r->reclaimable_bytes();
277     if (_num_pruned > _max_pruned ||
278         _cur_wasted + reclaimable > _max_wasted) {
279       return true;
280     }
281     r->rem_set()->clear(true /* cardset_only */);
282     _cur_wasted += reclaimable;
283     _num_pruned++;
284     return false;
285   }
286 
num_pruned() const287   uint num_pruned() const { return _num_pruned; }
wasted() const288   size_t wasted() const { return _cur_wasted; }
289 };
290 
prune(G1CollectionSetCandidates * candidates)291 void G1CollectionSetChooser::prune(G1CollectionSetCandidates* candidates) {
292   G1Policy* p = G1CollectedHeap::heap()->policy();
293 
294   uint min_old_cset_length = p->calc_min_old_cset_length(candidates);
295   uint num_candidates = candidates->num_regions();
296 
297   if (min_old_cset_length < num_candidates) {
298     size_t allowed_waste = p->allowed_waste_in_collection_set();
299 
300     G1PruneRegionClosure prune_cl(num_candidates - min_old_cset_length,
301                                   allowed_waste);
302     candidates->iterate_backwards(&prune_cl);
303 
304     log_debug(gc, ergo, cset)("Pruned %u regions out of %u, leaving " SIZE_FORMAT " bytes waste (allowed " SIZE_FORMAT ")",
305                               prune_cl.num_pruned(),
306                               candidates->num_regions(),
307                               prune_cl.wasted(),
308                               allowed_waste);
309 
310     candidates->remove_from_end(prune_cl.num_pruned(), prune_cl.wasted());
311   }
312 }
313 
build(WorkGang * workers,uint max_num_regions)314 G1CollectionSetCandidates* G1CollectionSetChooser::build(WorkGang* workers, uint max_num_regions) {
315   uint num_workers = workers->active_workers();
316   uint chunk_size = calculate_work_chunk_size(num_workers, max_num_regions);
317 
318   G1BuildCandidateRegionsTask cl(max_num_regions, chunk_size, num_workers);
319   workers->run_task(&cl, num_workers);
320 
321   G1CollectionSetCandidates* result = cl.get_sorted_candidates();
322   prune(result);
323   result->verify();
324   return result;
325 }
326