1 /* 2 * Copyright (c) 2001, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_GC_G1_G1CONCURRENTMARK_HPP 26 #define SHARE_GC_G1_G1CONCURRENTMARK_HPP 27 28 #include "gc/g1/g1ConcurrentMarkBitMap.hpp" 29 #include "gc/g1/g1ConcurrentMarkObjArrayProcessor.hpp" 30 #include "gc/g1/g1HeapVerifier.hpp" 31 #include "gc/g1/g1RegionMarkStatsCache.hpp" 32 #include "gc/g1/heapRegionSet.hpp" 33 #include "gc/shared/gcCause.hpp" 34 #include "gc/shared/taskTerminator.hpp" 35 #include "gc/shared/taskqueue.hpp" 36 #include "gc/shared/verifyOption.hpp" 37 #include "gc/shared/workgroup.hpp" 38 #include "memory/allocation.hpp" 39 #include "utilities/compilerWarnings.hpp" 40 #include "utilities/numberSeq.hpp" 41 42 class ConcurrentGCTimer; 43 class G1ConcurrentMarkThread; 44 class G1CollectedHeap; 45 class G1CMOopClosure; 46 class G1CMTask; 47 class G1ConcurrentMark; 48 class G1OldTracer; 49 class G1RegionToSpaceMapper; 50 class G1SurvivorRegions; 51 class ThreadClosure; 52 53 // This is a container class for either an oop or a continuation address for 54 // mark stack entries. Both are pushed onto the mark stack. 55 class G1TaskQueueEntry { 56 private: 57 void* _holder; 58 59 static const uintptr_t ArraySliceBit = 1; 60 G1TaskQueueEntry(oop obj)61 G1TaskQueueEntry(oop obj) : _holder(obj) { 62 assert(_holder != NULL, "Not allowed to set NULL task queue element"); 63 } G1TaskQueueEntry(HeapWord * addr)64 G1TaskQueueEntry(HeapWord* addr) : _holder((void*)((uintptr_t)addr | ArraySliceBit)) { } 65 public: 66 G1TaskQueueEntry()67 G1TaskQueueEntry() : _holder(NULL) { } 68 // Trivially copyable, for use in GenericTaskQueue. 69 from_slice(HeapWord * what)70 static G1TaskQueueEntry from_slice(HeapWord* what) { return G1TaskQueueEntry(what); } from_oop(oop obj)71 static G1TaskQueueEntry from_oop(oop obj) { return G1TaskQueueEntry(obj); } 72 obj() const73 oop obj() const { 74 assert(!is_array_slice(), "Trying to read array slice " PTR_FORMAT " as oop", p2i(_holder)); 75 return cast_to_oop(_holder); 76 } 77 slice() const78 HeapWord* slice() const { 79 assert(is_array_slice(), "Trying to read oop " PTR_FORMAT " as array slice", p2i(_holder)); 80 return (HeapWord*)((uintptr_t)_holder & ~ArraySliceBit); 81 } 82 is_oop() const83 bool is_oop() const { return !is_array_slice(); } is_array_slice() const84 bool is_array_slice() const { return ((uintptr_t)_holder & ArraySliceBit) != 0; } is_null() const85 bool is_null() const { return _holder == NULL; } 86 }; 87 88 typedef GenericTaskQueue<G1TaskQueueEntry, mtGC> G1CMTaskQueue; 89 typedef GenericTaskQueueSet<G1CMTaskQueue, mtGC> G1CMTaskQueueSet; 90 91 // Closure used by CM during concurrent reference discovery 92 // and reference processing (during remarking) to determine 93 // if a particular object is alive. It is primarily used 94 // to determine if referents of discovered reference objects 95 // are alive. An instance is also embedded into the 96 // reference processor as the _is_alive_non_header field 97 class G1CMIsAliveClosure : public BoolObjectClosure { 98 G1CollectedHeap* _g1h; 99 public: G1CMIsAliveClosure(G1CollectedHeap * g1h)100 G1CMIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) { } 101 bool do_object_b(oop obj); 102 }; 103 104 class G1CMSubjectToDiscoveryClosure : public BoolObjectClosure { 105 G1CollectedHeap* _g1h; 106 public: G1CMSubjectToDiscoveryClosure(G1CollectedHeap * g1h)107 G1CMSubjectToDiscoveryClosure(G1CollectedHeap* g1h) : _g1h(g1h) { } 108 bool do_object_b(oop obj); 109 }; 110 111 // Represents the overflow mark stack used by concurrent marking. 112 // 113 // Stores oops in a huge buffer in virtual memory that is always fully committed. 114 // Resizing may only happen during a STW pause when the stack is empty. 115 // 116 // Memory is allocated on a "chunk" basis, i.e. a set of oops. For this, the mark 117 // stack memory is split into evenly sized chunks of oops. Users can only 118 // add or remove entries on that basis. 119 // Chunks are filled in increasing address order. Not completely filled chunks 120 // have a NULL element as a terminating element. 121 // 122 // Every chunk has a header containing a single pointer element used for memory 123 // management. This wastes some space, but is negligible (< .1% with current sizing). 124 // 125 // Memory management is done using a mix of tracking a high water-mark indicating 126 // that all chunks at a lower address are valid chunks, and a singly linked free 127 // list connecting all empty chunks. 128 class G1CMMarkStack { 129 public: 130 // Number of TaskQueueEntries that can fit in a single chunk. 131 static const size_t EntriesPerChunk = 1024 - 1 /* One reference for the next pointer */; 132 private: 133 struct TaskQueueEntryChunk { 134 TaskQueueEntryChunk* next; 135 G1TaskQueueEntry data[EntriesPerChunk]; 136 }; 137 138 size_t _max_chunk_capacity; // Maximum number of TaskQueueEntryChunk elements on the stack. 139 140 TaskQueueEntryChunk* _base; // Bottom address of allocated memory area. 141 size_t _chunk_capacity; // Current maximum number of TaskQueueEntryChunk elements. 142 143 char _pad0[DEFAULT_CACHE_LINE_SIZE]; 144 TaskQueueEntryChunk* volatile _free_list; // Linked list of free chunks that can be allocated by users. 145 char _pad1[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*)]; 146 TaskQueueEntryChunk* volatile _chunk_list; // List of chunks currently containing data. 147 volatile size_t _chunks_in_chunk_list; 148 char _pad2[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*) - sizeof(size_t)]; 149 150 volatile size_t _hwm; // High water mark within the reserved space. 151 char _pad4[DEFAULT_CACHE_LINE_SIZE - sizeof(size_t)]; 152 153 // Allocate a new chunk from the reserved memory, using the high water mark. Returns 154 // NULL if out of memory. 155 TaskQueueEntryChunk* allocate_new_chunk(); 156 157 // Atomically add the given chunk to the list. 158 void add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem); 159 // Atomically remove and return a chunk from the given list. Returns NULL if the 160 // list is empty. 161 TaskQueueEntryChunk* remove_chunk_from_list(TaskQueueEntryChunk* volatile* list); 162 163 void add_chunk_to_chunk_list(TaskQueueEntryChunk* elem); 164 void add_chunk_to_free_list(TaskQueueEntryChunk* elem); 165 166 TaskQueueEntryChunk* remove_chunk_from_chunk_list(); 167 TaskQueueEntryChunk* remove_chunk_from_free_list(); 168 169 // Resizes the mark stack to the given new capacity. Releases any previous 170 // memory if successful. 171 bool resize(size_t new_capacity); 172 173 public: 174 G1CMMarkStack(); 175 ~G1CMMarkStack(); 176 177 // Alignment and minimum capacity of this mark stack in number of oops. 178 static size_t capacity_alignment(); 179 180 // Allocate and initialize the mark stack with the given number of oops. 181 bool initialize(size_t initial_capacity, size_t max_capacity); 182 183 // Pushes the given buffer containing at most EntriesPerChunk elements on the mark 184 // stack. If less than EntriesPerChunk elements are to be pushed, the array must 185 // be terminated with a NULL. 186 // Returns whether the buffer contents were successfully pushed to the global mark 187 // stack. 188 bool par_push_chunk(G1TaskQueueEntry* buffer); 189 190 // Pops a chunk from this mark stack, copying them into the given buffer. This 191 // chunk may contain up to EntriesPerChunk elements. If there are less, the last 192 // element in the array is a NULL pointer. 193 bool par_pop_chunk(G1TaskQueueEntry* buffer); 194 195 // Return whether the chunk list is empty. Racy due to unsynchronized access to 196 // _chunk_list. is_empty() const197 bool is_empty() const { return _chunk_list == NULL; } 198 capacity() const199 size_t capacity() const { return _chunk_capacity; } 200 201 // Expand the stack, typically in response to an overflow condition 202 void expand(); 203 204 // Return the approximate number of oops on this mark stack. Racy due to 205 // unsynchronized access to _chunks_in_chunk_list. size() const206 size_t size() const { return _chunks_in_chunk_list * EntriesPerChunk; } 207 208 void set_empty(); 209 210 // Apply Fn to every oop on the mark stack. The mark stack must not 211 // be modified while iterating. 212 template<typename Fn> void iterate(Fn fn) const PRODUCT_RETURN; 213 }; 214 215 // Root MemRegions are memory areas that contain objects which references are 216 // roots wrt to the marking. They must be scanned before marking to maintain the 217 // SATB invariant. 218 // Typically they contain the areas from nTAMS to top of the regions. 219 // We could scan and mark through these objects during the concurrent start pause, 220 // but for pause time reasons we move this work to the concurrent phase. 221 // We need to complete this procedure before the next GC because it might determine 222 // that some of these "root objects" are dead, potentially dropping some required 223 // references. 224 // Root MemRegions comprise of the contents of survivor regions at the end 225 // of the GC, and any objects copied into the old gen during GC. 226 class G1CMRootMemRegions { 227 // The set of root MemRegions. 228 MemRegion* _root_regions; 229 size_t const _max_regions; 230 231 volatile size_t _num_root_regions; // Actual number of root regions. 232 233 volatile size_t _claimed_root_regions; // Number of root regions currently claimed. 234 235 volatile bool _scan_in_progress; 236 volatile bool _should_abort; 237 238 void notify_scan_done(); 239 240 public: 241 G1CMRootMemRegions(uint const max_regions); 242 ~G1CMRootMemRegions(); 243 244 // Reset the data structure to allow addition of new root regions. 245 void reset(); 246 247 void add(HeapWord* start, HeapWord* end); 248 249 // Reset the claiming / scanning of the root regions. 250 void prepare_for_scan(); 251 252 // Forces get_next() to return NULL so that the iteration aborts early. abort()253 void abort() { _should_abort = true; } 254 255 // Return true if the CM thread are actively scanning root regions, 256 // false otherwise. scan_in_progress()257 bool scan_in_progress() { return _scan_in_progress; } 258 259 // Claim the next root MemRegion to scan atomically, or return NULL if 260 // all have been claimed. 261 const MemRegion* claim_next(); 262 263 // The number of root regions to scan. 264 uint num_root_regions() const; 265 266 void cancel_scan(); 267 268 // Flag that we're done with root region scanning and notify anyone 269 // who's waiting on it. If aborted is false, assume that all regions 270 // have been claimed. 271 void scan_finished(); 272 273 // If CM threads are still scanning root regions, wait until they 274 // are done. Return true if we had to wait, false otherwise. 275 bool wait_until_scan_finished(); 276 }; 277 278 // This class manages data structures and methods for doing liveness analysis in 279 // G1's concurrent cycle. 280 class G1ConcurrentMark : public CHeapObj<mtGC> { 281 friend class G1CMBitMapClosure; 282 friend class G1CMConcurrentMarkingTask; 283 friend class G1CMDrainMarkingStackClosure; 284 friend class G1CMKeepAliveAndDrainClosure; 285 friend class G1CMRefProcProxyTask; 286 friend class G1CMRemarkTask; 287 friend class G1CMTask; 288 friend class G1ConcurrentMarkThread; 289 290 G1ConcurrentMarkThread* _cm_thread; // The thread doing the work 291 G1CollectedHeap* _g1h; // The heap 292 293 // Concurrent marking support structures 294 G1CMBitMap _mark_bitmap_1; 295 G1CMBitMap _mark_bitmap_2; 296 G1CMBitMap* _prev_mark_bitmap; // Completed mark bitmap 297 G1CMBitMap* _next_mark_bitmap; // Under-construction mark bitmap 298 299 // Heap bounds 300 MemRegion const _heap; 301 302 // Root region tracking and claiming 303 G1CMRootMemRegions _root_regions; 304 305 // For grey objects 306 G1CMMarkStack _global_mark_stack; // Grey objects behind global finger 307 HeapWord* volatile _finger; // The global finger, region aligned, 308 // always pointing to the end of the 309 // last claimed region 310 311 uint _worker_id_offset; 312 uint _max_num_tasks; // Maximum number of marking tasks 313 uint _num_active_tasks; // Number of tasks currently active 314 G1CMTask** _tasks; // Task queue array (max_worker_id length) 315 316 G1CMTaskQueueSet* _task_queues; // Task queue set 317 TaskTerminator _terminator; // For termination 318 319 // Two sync barriers that are used to synchronize tasks when an 320 // overflow occurs. The algorithm is the following. All tasks enter 321 // the first one to ensure that they have all stopped manipulating 322 // the global data structures. After they exit it, they re-initialize 323 // their data structures and task 0 re-initializes the global data 324 // structures. Then, they enter the second sync barrier. This 325 // ensure, that no task starts doing work before all data 326 // structures (local and global) have been re-initialized. When they 327 // exit it, they are free to start working again. 328 WorkGangBarrierSync _first_overflow_barrier_sync; 329 WorkGangBarrierSync _second_overflow_barrier_sync; 330 331 // This is set by any task, when an overflow on the global data 332 // structures is detected 333 volatile bool _has_overflown; 334 // True: marking is concurrent, false: we're in remark 335 volatile bool _concurrent; 336 // Set at the end of a Full GC so that marking aborts 337 volatile bool _has_aborted; 338 339 // Used when remark aborts due to an overflow to indicate that 340 // another concurrent marking phase should start 341 volatile bool _restart_for_overflow; 342 343 ConcurrentGCTimer* _gc_timer_cm; 344 345 G1OldTracer* _gc_tracer_cm; 346 347 // Timing statistics. All of them are in ms 348 NumberSeq _init_times; 349 NumberSeq _remark_times; 350 NumberSeq _remark_mark_times; 351 NumberSeq _remark_weak_ref_times; 352 NumberSeq _cleanup_times; 353 double _total_cleanup_time; 354 355 double* _accum_task_vtime; // Accumulated task vtime 356 357 WorkGang* _concurrent_workers; 358 uint _num_concurrent_workers; // The number of marking worker threads we're using 359 uint _max_concurrent_workers; // Maximum number of marking worker threads 360 361 void verify_during_pause(G1HeapVerifier::G1VerifyType type, VerifyOption vo, const char* caller); 362 363 void finalize_marking(); 364 365 void weak_refs_work_parallel_part(BoolObjectClosure* is_alive, bool purged_classes); 366 void weak_refs_work(bool clear_all_soft_refs); 367 368 void report_object_count(bool mark_completed); 369 370 void reclaim_empty_regions(); 371 372 // After reclaiming empty regions, update heap sizes. 373 void compute_new_sizes(); 374 375 // Clear statistics gathered during the concurrent cycle for the given region after 376 // it has been reclaimed. 377 void clear_statistics(HeapRegion* r); 378 379 // Resets the global marking data structures, as well as the 380 // task local ones; should be called during concurrent start. 381 void reset(); 382 383 // Resets all the marking data structures. Called when we have to restart 384 // marking or when marking completes (via set_non_marking_state below). 385 void reset_marking_for_restart(); 386 387 // We do this after we're done with marking so that the marking data 388 // structures are initialized to a sensible and predictable state. 389 void reset_at_marking_complete(); 390 391 // Called to indicate how many threads are currently active. 392 void set_concurrency(uint active_tasks); 393 394 // Should be called to indicate which phase we're in (concurrent 395 // mark or remark) and how many threads are currently active. 396 void set_concurrency_and_phase(uint active_tasks, bool concurrent); 397 398 // Prints all gathered CM-related statistics 399 void print_stats(); 400 finger()401 HeapWord* finger() { return _finger; } concurrent()402 bool concurrent() { return _concurrent; } active_tasks()403 uint active_tasks() { return _num_active_tasks; } terminator()404 TaskTerminator* terminator() { return &_terminator; } 405 406 // Claims the next available region to be scanned by a marking 407 // task/thread. It might return NULL if the next region is empty or 408 // we have run out of regions. In the latter case, out_of_regions() 409 // determines whether we've really run out of regions or the task 410 // should call claim_region() again. This might seem a bit 411 // awkward. Originally, the code was written so that claim_region() 412 // either successfully returned with a non-empty region or there 413 // were no more regions to be claimed. The problem with this was 414 // that, in certain circumstances, it iterated over large chunks of 415 // the heap finding only empty regions and, while it was working, it 416 // was preventing the calling task to call its regular clock 417 // method. So, this way, each task will spend very little time in 418 // claim_region() and is allowed to call the regular clock method 419 // frequently. 420 HeapRegion* claim_region(uint worker_id); 421 422 // Determines whether we've run out of regions to scan. Note that 423 // the finger can point past the heap end in case the heap was expanded 424 // to satisfy an allocation without doing a GC. This is fine, because all 425 // objects in those regions will be considered live anyway because of 426 // SATB guarantees (i.e. their TAMS will be equal to bottom). out_of_regions()427 bool out_of_regions() { return _finger >= _heap.end(); } 428 429 // Returns the task with the given id task(uint id)430 G1CMTask* task(uint id) { 431 // During concurrent start we use the parallel gc threads to do some work, so 432 // we can only compare against _max_num_tasks. 433 assert(id < _max_num_tasks, "Task id %u not within bounds up to %u", id, _max_num_tasks); 434 return _tasks[id]; 435 } 436 437 // Access / manipulation of the overflow flag which is set to 438 // indicate that the global stack has overflown has_overflown()439 bool has_overflown() { return _has_overflown; } set_has_overflown()440 void set_has_overflown() { _has_overflown = true; } clear_has_overflown()441 void clear_has_overflown() { _has_overflown = false; } restart_for_overflow()442 bool restart_for_overflow() { return _restart_for_overflow; } 443 444 // Methods to enter the two overflow sync barriers 445 void enter_first_sync_barrier(uint worker_id); 446 void enter_second_sync_barrier(uint worker_id); 447 448 // Clear the given bitmap in parallel using the given WorkGang. If may_yield is 449 // true, periodically insert checks to see if this method should exit prematurely. 450 void clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield); 451 452 // Region statistics gathered during marking. 453 G1RegionMarkStats* _region_mark_stats; 454 // Top pointer for each region at the start of the rebuild remembered set process 455 // for regions which remembered sets need to be rebuilt. A NULL for a given region 456 // means that this region does not be scanned during the rebuilding remembered 457 // set phase at all. 458 HeapWord* volatile* _top_at_rebuild_starts; 459 // True when Remark pause selected regions for rebuilding. 460 bool _needs_remembered_set_rebuild; 461 public: 462 void add_to_liveness(uint worker_id, oop const obj, size_t size); 463 // Live words in the given region as determined by concurrent marking, i.e. the amount of 464 // live words between bottom and nTAMS. live_words(uint region) const465 size_t live_words(uint region) const { return _region_mark_stats[region]._live_words; } 466 // Returns the liveness value in bytes. live_bytes(uint region) const467 size_t live_bytes(uint region) const { return live_words(region) * HeapWordSize; } 468 469 // Sets the internal top_at_region_start for the given region to current top of the region. 470 inline void update_top_at_rebuild_start(HeapRegion* r); 471 // TARS for the given region during remembered set rebuilding. 472 inline HeapWord* top_at_rebuild_start(uint region) const; 473 474 // Clear statistics gathered during the concurrent cycle for the given region after 475 // it has been reclaimed. 476 void clear_statistics_in_region(uint region_idx); 477 // Notification for eagerly reclaimed regions to clean up. 478 void humongous_object_eagerly_reclaimed(HeapRegion* r); 479 // Manipulation of the global mark stack. 480 // The push and pop operations are used by tasks for transfers 481 // between task-local queues and the global mark stack. mark_stack_push(G1TaskQueueEntry * arr)482 bool mark_stack_push(G1TaskQueueEntry* arr) { 483 if (!_global_mark_stack.par_push_chunk(arr)) { 484 set_has_overflown(); 485 return false; 486 } 487 return true; 488 } mark_stack_pop(G1TaskQueueEntry * arr)489 bool mark_stack_pop(G1TaskQueueEntry* arr) { 490 return _global_mark_stack.par_pop_chunk(arr); 491 } mark_stack_size() const492 size_t mark_stack_size() const { return _global_mark_stack.size(); } partial_mark_stack_size_target() const493 size_t partial_mark_stack_size_target() const { return _global_mark_stack.capacity() / 3; } mark_stack_empty() const494 bool mark_stack_empty() const { return _global_mark_stack.is_empty(); } 495 root_regions()496 G1CMRootMemRegions* root_regions() { return &_root_regions; } 497 498 void concurrent_cycle_start(); 499 // Abandon current marking iteration due to a Full GC. 500 void concurrent_cycle_abort(); 501 void concurrent_cycle_end(); 502 update_accum_task_vtime(int i,double vtime)503 void update_accum_task_vtime(int i, double vtime) { 504 _accum_task_vtime[i] += vtime; 505 } 506 all_task_accum_vtime()507 double all_task_accum_vtime() { 508 double ret = 0.0; 509 for (uint i = 0; i < _max_num_tasks; ++i) 510 ret += _accum_task_vtime[i]; 511 return ret; 512 } 513 514 // Attempts to steal an object from the task queues of other tasks 515 bool try_stealing(uint worker_id, G1TaskQueueEntry& task_entry); 516 517 G1ConcurrentMark(G1CollectedHeap* g1h, 518 G1RegionToSpaceMapper* prev_bitmap_storage, 519 G1RegionToSpaceMapper* next_bitmap_storage); 520 ~G1ConcurrentMark(); 521 cm_thread()522 G1ConcurrentMarkThread* cm_thread() { return _cm_thread; } 523 prev_mark_bitmap() const524 const G1CMBitMap* const prev_mark_bitmap() const { return _prev_mark_bitmap; } next_mark_bitmap() const525 G1CMBitMap* next_mark_bitmap() const { return _next_mark_bitmap; } 526 527 // Calculates the number of concurrent GC threads to be used in the marking phase. 528 uint calc_active_marking_workers(); 529 530 // Moves all per-task cached data into global state. 531 void flush_all_task_caches(); 532 // Prepare internal data structures for the next mark cycle. This includes clearing 533 // the next mark bitmap and some internal data structures. This method is intended 534 // to be called concurrently to the mutator. It will yield to safepoint requests. 535 void cleanup_for_next_mark(); 536 537 // Clear the next marking bitmap during safepoint. 538 void clear_next_bitmap(WorkGang* workers); 539 540 // These two methods do the work that needs to be done at the start and end of the 541 // concurrent start pause. 542 void pre_concurrent_start(GCCause::Cause cause); 543 void post_concurrent_mark_start(); 544 void post_concurrent_undo_start(); 545 546 // Scan all the root regions and mark everything reachable from 547 // them. 548 void scan_root_regions(); 549 550 // Scan a single root MemRegion to mark everything reachable from it. 551 void scan_root_region(const MemRegion* region, uint worker_id); 552 553 // Do concurrent phase of marking, to a tentative transitive closure. 554 void mark_from_roots(); 555 556 // Do concurrent preclean work. 557 void preclean(); 558 559 void remark(); 560 561 void swap_mark_bitmaps(); 562 563 void cleanup(); 564 // Mark in the previous bitmap. Caution: the prev bitmap is usually read-only, so use 565 // this carefully. 566 inline void mark_in_prev_bitmap(oop p); 567 568 // Clears marks for all objects in the given range, for the prev or 569 // next bitmaps. Caution: the previous bitmap is usually 570 // read-only, so use this carefully! 571 void clear_range_in_prev_bitmap(MemRegion mr); 572 573 inline bool is_marked_in_prev_bitmap(oop p) const; 574 575 // Verify that there are no collection set oops on the stacks (taskqueues / 576 // global mark stack) and fingers (global / per-task). 577 // If marking is not in progress, it's a no-op. 578 void verify_no_collection_set_oops() PRODUCT_RETURN; 579 580 inline bool do_yield_check(); 581 has_aborted()582 bool has_aborted() { return _has_aborted; } 583 584 void print_summary_info(); 585 586 void threads_do(ThreadClosure* tc) const; 587 588 void print_on_error(outputStream* st) const; 589 590 // Mark the given object on the next bitmap if it is below nTAMS. 591 inline bool mark_in_next_bitmap(uint worker_id, HeapRegion* const hr, oop const obj); 592 inline bool mark_in_next_bitmap(uint worker_id, oop const obj); 593 594 inline bool is_marked_in_next_bitmap(oop p) const; 595 gc_timer_cm() const596 ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; } 597 598 private: 599 // Rebuilds the remembered sets for chosen regions in parallel and concurrently to the application. 600 void rebuild_rem_set_concurrently(); 601 needs_remembered_set_rebuild() const602 uint needs_remembered_set_rebuild() const { return _needs_remembered_set_rebuild; } 603 604 }; 605 606 // A class representing a marking task. 607 class G1CMTask : public TerminatorTerminator { 608 private: 609 enum PrivateConstants { 610 // The regular clock call is called once the scanned words reaches 611 // this limit 612 words_scanned_period = 12*1024, 613 // The regular clock call is called once the number of visited 614 // references reaches this limit 615 refs_reached_period = 1024, 616 // Initial value for the hash seed, used in the work stealing code 617 init_hash_seed = 17 618 }; 619 620 G1CMObjArrayProcessor _objArray_processor; 621 622 uint _worker_id; 623 G1CollectedHeap* _g1h; 624 G1ConcurrentMark* _cm; 625 G1CMBitMap* _next_mark_bitmap; 626 // the task queue of this task 627 G1CMTaskQueue* _task_queue; 628 629 G1RegionMarkStatsCache _mark_stats_cache; 630 // Number of calls to this task 631 uint _calls; 632 633 // When the virtual timer reaches this time, the marking step should exit 634 double _time_target_ms; 635 // Start time of the current marking step 636 double _start_time_ms; 637 638 // Oop closure used for iterations over oops 639 G1CMOopClosure* _cm_oop_closure; 640 641 // Region this task is scanning, NULL if we're not scanning any 642 HeapRegion* _curr_region; 643 // Local finger of this task, NULL if we're not scanning a region 644 HeapWord* _finger; 645 // Limit of the region this task is scanning, NULL if we're not scanning one 646 HeapWord* _region_limit; 647 648 // Number of words this task has scanned 649 size_t _words_scanned; 650 // When _words_scanned reaches this limit, the regular clock is 651 // called. Notice that this might be decreased under certain 652 // circumstances (i.e. when we believe that we did an expensive 653 // operation). 654 size_t _words_scanned_limit; 655 // Initial value of _words_scanned_limit (i.e. what it was 656 // before it was decreased). 657 size_t _real_words_scanned_limit; 658 659 // Number of references this task has visited 660 size_t _refs_reached; 661 // When _refs_reached reaches this limit, the regular clock is 662 // called. Notice this this might be decreased under certain 663 // circumstances (i.e. when we believe that we did an expensive 664 // operation). 665 size_t _refs_reached_limit; 666 // Initial value of _refs_reached_limit (i.e. what it was before 667 // it was decreased). 668 size_t _real_refs_reached_limit; 669 670 // If true, then the task has aborted for some reason 671 bool _has_aborted; 672 // Set when the task aborts because it has met its time quota 673 bool _has_timed_out; 674 // True when we're draining SATB buffers; this avoids the task 675 // aborting due to SATB buffers being available (as we're already 676 // dealing with them) 677 bool _draining_satb_buffers; 678 679 // Number sequence of past step times 680 NumberSeq _step_times_ms; 681 // Elapsed time of this task 682 double _elapsed_time_ms; 683 // Termination time of this task 684 double _termination_time_ms; 685 // When this task got into the termination protocol 686 double _termination_start_time_ms; 687 688 TruncatedSeq _marking_step_diff_ms; 689 690 // Updates the local fields after this task has claimed 691 // a new region to scan 692 void setup_for_region(HeapRegion* hr); 693 // Makes the limit of the region up-to-date 694 void update_region_limit(); 695 696 // Called when either the words scanned or the refs visited limit 697 // has been reached 698 void reached_limit(); 699 // Recalculates the words scanned and refs visited limits 700 void recalculate_limits(); 701 // Decreases the words scanned and refs visited limits when we reach 702 // an expensive operation 703 void decrease_limits(); 704 // Checks whether the words scanned or refs visited reached their 705 // respective limit and calls reached_limit() if they have check_limits()706 void check_limits() { 707 if (_words_scanned >= _words_scanned_limit || 708 _refs_reached >= _refs_reached_limit) { 709 reached_limit(); 710 } 711 } 712 // Supposed to be called regularly during a marking step as 713 // it checks a bunch of conditions that might cause the marking step 714 // to abort 715 // Return true if the marking step should continue. Otherwise, return false to abort 716 bool regular_clock_call(); 717 718 // Set abort flag if regular_clock_call() check fails 719 inline void abort_marking_if_regular_check_fail(); 720 721 // Test whether obj might have already been passed over by the 722 // mark bitmap scan, and so needs to be pushed onto the mark stack. 723 bool is_below_finger(oop obj, HeapWord* global_finger) const; 724 725 template<bool scan> void process_grey_task_entry(G1TaskQueueEntry task_entry); 726 public: 727 // Apply the closure on the given area of the objArray. Return the number of words 728 // scanned. 729 inline size_t scan_objArray(objArrayOop obj, MemRegion mr); 730 // Resets the task; should be called right at the beginning of a marking phase. 731 void reset(G1CMBitMap* next_mark_bitmap); 732 // Clears all the fields that correspond to a claimed region. 733 void clear_region_fields(); 734 735 // The main method of this class which performs a marking step 736 // trying not to exceed the given duration. However, it might exit 737 // prematurely, according to some conditions (i.e. SATB buffers are 738 // available for processing). 739 void do_marking_step(double target_ms, 740 bool do_termination, 741 bool is_serial); 742 743 // These two calls start and stop the timer record_start_time()744 void record_start_time() { 745 _elapsed_time_ms = os::elapsedTime() * 1000.0; 746 } record_end_time()747 void record_end_time() { 748 _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms; 749 } 750 751 // Returns the worker ID associated with this task. worker_id()752 uint worker_id() { return _worker_id; } 753 754 // From TerminatorTerminator. It determines whether this task should 755 // exit the termination protocol after it's entered it. 756 virtual bool should_exit_termination(); 757 758 // Resets the local region fields after a task has finished scanning a 759 // region; or when they have become stale as a result of the region 760 // being evacuated. 761 void giveup_current_region(); 762 finger()763 HeapWord* finger() { return _finger; } 764 has_aborted()765 bool has_aborted() { return _has_aborted; } set_has_aborted()766 void set_has_aborted() { _has_aborted = true; } clear_has_aborted()767 void clear_has_aborted() { _has_aborted = false; } 768 769 void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure); 770 771 // Increment the number of references this task has visited. increment_refs_reached()772 void increment_refs_reached() { ++_refs_reached; } 773 774 // Grey the object by marking it. If not already marked, push it on 775 // the local queue if below the finger. obj is required to be below its region's NTAMS. 776 // Returns whether there has been a mark to the bitmap. 777 inline bool make_reference_grey(oop obj); 778 779 // Grey the object (by calling make_grey_reference) if required, 780 // e.g. obj is below its containing region's NTAMS. 781 // Precondition: obj is a valid heap object. 782 // Returns true if the reference caused a mark to be set in the next bitmap. 783 template <class T> 784 inline bool deal_with_reference(T* p); 785 786 // Scans an object and visits its children. 787 inline void scan_task_entry(G1TaskQueueEntry task_entry); 788 789 // Pushes an object on the local queue. 790 inline void push(G1TaskQueueEntry task_entry); 791 792 // Move entries to the global stack. 793 void move_entries_to_global_stack(); 794 // Move entries from the global stack, return true if we were successful to do so. 795 bool get_entries_from_global_stack(); 796 797 // Pops and scans objects from the local queue. If partially is 798 // true, then it stops when the queue size is of a given limit. If 799 // partially is false, then it stops when the queue is empty. 800 void drain_local_queue(bool partially); 801 // Moves entries from the global stack to the local queue and 802 // drains the local queue. If partially is true, then it stops when 803 // both the global stack and the local queue reach a given size. If 804 // partially if false, it tries to empty them totally. 805 void drain_global_stack(bool partially); 806 // Keeps picking SATB buffers and processing them until no SATB 807 // buffers are available. 808 void drain_satb_buffers(); 809 810 // Moves the local finger to a new location move_finger_to(HeapWord * new_finger)811 inline void move_finger_to(HeapWord* new_finger) { 812 assert(new_finger >= _finger && new_finger < _region_limit, "invariant"); 813 _finger = new_finger; 814 } 815 816 G1CMTask(uint worker_id, 817 G1ConcurrentMark *cm, 818 G1CMTaskQueue* task_queue, 819 G1RegionMarkStats* mark_stats); 820 821 inline void update_liveness(oop const obj, size_t const obj_size); 822 823 // Clear (without flushing) the mark cache entry for the given region. 824 void clear_mark_stats_cache(uint region_idx); 825 // Evict the whole statistics cache into the global statistics. Returns the 826 // number of cache hits and misses so far. 827 Pair<size_t, size_t> flush_mark_stats_cache(); 828 // Prints statistics associated with this task 829 void print_stats(); 830 }; 831 832 // Class that's used to to print out per-region liveness 833 // information. It's currently used at the end of marking and also 834 // after we sort the old regions at the end of the cleanup operation. 835 class G1PrintRegionLivenessInfoClosure : public HeapRegionClosure { 836 // Accumulators for these values. 837 size_t _total_used_bytes; 838 size_t _total_capacity_bytes; 839 size_t _total_prev_live_bytes; 840 size_t _total_next_live_bytes; 841 842 // Accumulator for the remembered set size 843 size_t _total_remset_bytes; 844 845 // Accumulator for strong code roots memory size 846 size_t _total_strong_code_roots_bytes; 847 bytes_to_mb(size_t val)848 static double bytes_to_mb(size_t val) { 849 return (double) val / (double) M; 850 } 851 852 public: 853 // The header and footer are printed in the constructor and 854 // destructor respectively. 855 G1PrintRegionLivenessInfoClosure(const char* phase_name); 856 virtual bool do_heap_region(HeapRegion* r); 857 ~G1PrintRegionLivenessInfoClosure(); 858 }; 859 860 #endif // SHARE_GC_G1_G1CONCURRENTMARK_HPP 861