1 /* 2 * Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_GC_SHARED_CARDTABLE_HPP 26 #define SHARE_GC_SHARED_CARDTABLE_HPP 27 28 #include "memory/allocation.hpp" 29 #include "memory/memRegion.hpp" 30 #include "oops/oopsHierarchy.hpp" 31 #include "utilities/align.hpp" 32 33 class CardTable: public CHeapObj<mtGC> { 34 friend class VMStructs; 35 public: 36 typedef uint8_t CardValue; 37 38 // All code generators assume that the size of a card table entry is one byte. 39 // They need to be updated to reflect any change to this. 40 // This code can typically be found by searching for the byte_map_base() method. 41 STATIC_ASSERT(sizeof(CardValue) == 1); 42 43 protected: 44 // The declaration order of these const fields is important; see the 45 // constructor before changing. 46 const MemRegion _whole_heap; // the region covered by the card table 47 size_t _guard_index; // index of very last element in the card 48 // table; it is set to a guard value 49 // (last_card) and should never be modified 50 size_t _last_valid_index; // index of the last valid element 51 const size_t _page_size; // page size used when mapping _byte_map 52 size_t _byte_map_size; // in bytes 53 CardValue* _byte_map; // the card marking array 54 CardValue* _byte_map_base; 55 56 int _cur_covered_regions; 57 58 // The covered regions should be in address order. 59 MemRegion* _covered; 60 // The committed regions correspond one-to-one to the covered regions. 61 // They represent the card-table memory that has been committed to service 62 // the corresponding covered region. It may be that committed region for 63 // one covered region corresponds to a larger region because of page-size 64 // roundings. Thus, a committed region for one covered region may 65 // actually extend onto the card-table space for the next covered region. 66 MemRegion* _committed; 67 68 // The last card is a guard card, and we commit the page for it so 69 // we can use the card for verification purposes. We make sure we never 70 // uncommit the MemRegion for that page. 71 MemRegion _guard_region; 72 73 inline size_t compute_byte_map_size(); 74 75 // Finds and return the index of the region, if any, to which the given 76 // region would be contiguous. If none exists, assign a new region and 77 // returns its index. Requires that no more than the maximum number of 78 // covered regions defined in the constructor are ever in use. 79 int find_covering_region_by_base(HeapWord* base); 80 81 // Same as above, but finds the region containing the given address 82 // instead of starting at a given base address. 83 int find_covering_region_containing(HeapWord* addr); 84 85 // Returns the leftmost end of a committed region corresponding to a 86 // covered region before covered region "ind", or else "NULL" if "ind" is 87 // the first covered region. 88 HeapWord* largest_prev_committed_end(int ind) const; 89 90 // Returns the part of the region mr that doesn't intersect with 91 // any committed region other than self. Used to prevent uncommitting 92 // regions that are also committed by other regions. Also protects 93 // against uncommitting the guard region. 94 MemRegion committed_unique_to_self(int self, MemRegion mr) const; 95 96 // Some barrier sets create tables whose elements correspond to parts of 97 // the heap; the CardTableBarrierSet is an example. Such barrier sets will 98 // normally reserve space for such tables, and commit parts of the table 99 // "covering" parts of the heap that are committed. At most one covered 100 // region per generation is needed. 101 static const int _max_covered_regions = 2; 102 103 enum CardValues { 104 clean_card = (CardValue)-1, 105 106 dirty_card = 0, 107 last_card = 1, 108 CT_MR_BS_last_reserved = 2 109 }; 110 111 // a word's worth (row) of clean card values 112 static const intptr_t clean_card_row = (intptr_t)(-1); 113 114 public: 115 CardTable(MemRegion whole_heap); 116 virtual ~CardTable(); 117 virtual void initialize(); 118 119 // The kinds of precision a CardTable may offer. 120 enum PrecisionStyle { 121 Precise, 122 ObjHeadPreciseArray 123 }; 124 125 // Tells what style of precision this card table offers. precision()126 PrecisionStyle precision() { 127 return ObjHeadPreciseArray; // Only one supported for now. 128 } 129 130 // *** Barrier set functions. 131 132 // Initialization utilities; covered_words is the size of the covered region 133 // in, um, words. cards_required(size_t covered_words)134 inline size_t cards_required(size_t covered_words) { 135 // Add one for a guard card, used to detect errors. 136 const size_t words = align_up(covered_words, card_size_in_words); 137 return words / card_size_in_words + 1; 138 } 139 140 // Dirty the bytes corresponding to "mr" (not all of which must be 141 // covered.) 142 void dirty_MemRegion(MemRegion mr); 143 144 // Clear (to clean_card) the bytes entirely contained within "mr" (not 145 // all of which must be covered.) 146 void clear_MemRegion(MemRegion mr); 147 148 // Return true if "p" is at the start of a card. is_card_aligned(HeapWord * p)149 bool is_card_aligned(HeapWord* p) { 150 CardValue* pcard = byte_for(p); 151 return (addr_for(pcard) == p); 152 } 153 154 // Mapping from address to card marking array entry byte_for(const void * p) const155 CardValue* byte_for(const void* p) const { 156 assert(_whole_heap.contains(p), 157 "Attempt to access p = " PTR_FORMAT " out of bounds of " 158 " card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")", 159 p2i(p), p2i(_whole_heap.start()), p2i(_whole_heap.end())); 160 CardValue* result = &_byte_map_base[uintptr_t(p) >> card_shift]; 161 assert(result >= _byte_map && result < _byte_map + _byte_map_size, 162 "out of bounds accessor for card marking array"); 163 return result; 164 } 165 166 // The card table byte one after the card marking array 167 // entry for argument address. Typically used for higher bounds 168 // for loops iterating through the card table. byte_after(const void * p) const169 CardValue* byte_after(const void* p) const { 170 return byte_for(p) + 1; 171 } 172 173 virtual void invalidate(MemRegion mr); 174 void clear(MemRegion mr); 175 void dirty(MemRegion mr); 176 177 // Provide read-only access to the card table array. byte_for_const(const void * p) const178 const CardValue* byte_for_const(const void* p) const { 179 return byte_for(p); 180 } byte_after_const(const void * p) const181 const CardValue* byte_after_const(const void* p) const { 182 return byte_after(p); 183 } 184 185 // Mapping from card marking array entry to address of first word addr_for(const CardValue * p) const186 HeapWord* addr_for(const CardValue* p) const { 187 assert(p >= _byte_map && p < _byte_map + _byte_map_size, 188 "out of bounds access to card marking array. p: " PTR_FORMAT 189 " _byte_map: " PTR_FORMAT " _byte_map + _byte_map_size: " PTR_FORMAT, 190 p2i(p), p2i(_byte_map), p2i(_byte_map + _byte_map_size)); 191 size_t delta = pointer_delta(p, _byte_map_base, sizeof(CardValue)); 192 HeapWord* result = (HeapWord*) (delta << card_shift); 193 assert(_whole_heap.contains(result), 194 "Returning result = " PTR_FORMAT " out of bounds of " 195 " card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")", 196 p2i(result), p2i(_whole_heap.start()), p2i(_whole_heap.end())); 197 return result; 198 } 199 200 // Mapping from address to card marking array index. index_for(void * p)201 size_t index_for(void* p) { 202 assert(_whole_heap.contains(p), 203 "Attempt to access p = " PTR_FORMAT " out of bounds of " 204 " card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")", 205 p2i(p), p2i(_whole_heap.start()), p2i(_whole_heap.end())); 206 return byte_for(p) - _byte_map; 207 } 208 byte_for_index(const size_t card_index) const209 CardValue* byte_for_index(const size_t card_index) const { 210 return _byte_map + card_index; 211 } 212 213 // Resize one of the regions covered by the remembered set. 214 virtual void resize_covered_region(MemRegion new_region); 215 216 // *** Card-table-RemSet-specific things. 217 218 static uintx ct_max_alignment_constraint(); 219 220 // Apply closure "cl" to the dirty cards containing some part of 221 // MemRegion "mr". 222 void dirty_card_iterate(MemRegion mr, MemRegionClosure* cl); 223 224 // Return the MemRegion corresponding to the first maximal run 225 // of dirty cards lying completely within MemRegion mr. 226 // If reset is "true", then sets those card table entries to the given 227 // value. 228 MemRegion dirty_card_range_after_reset(MemRegion mr, bool reset, 229 int reset_val); 230 231 // Constants 232 enum SomePublicConstants { 233 card_shift = 9, 234 card_size = 1 << card_shift, 235 card_size_in_words = card_size / sizeof(HeapWord) 236 }; 237 clean_card_val()238 static CardValue clean_card_val() { return clean_card; } dirty_card_val()239 static CardValue dirty_card_val() { return dirty_card; } clean_card_row_val()240 static intptr_t clean_card_row_val() { return clean_card_row; } 241 242 // Card marking array base (adjusted for heap low boundary) 243 // This would be the 0th element of _byte_map, if the heap started at 0x0. 244 // But since the heap starts at some higher address, this points to somewhere 245 // before the beginning of the actual _byte_map. byte_map_base() const246 CardValue* byte_map_base() const { return _byte_map_base; } 247 248 virtual bool is_in_young(oop obj) const = 0; 249 250 // Print a description of the memory for the card table 251 virtual void print_on(outputStream* st) const; 252 253 void verify(); 254 void verify_guard(); 255 256 // val_equals -> it will check that all cards covered by mr equal val 257 // !val_equals -> it will check that all cards covered by mr do not equal val 258 void verify_region(MemRegion mr, CardValue val, bool val_equals) PRODUCT_RETURN; 259 void verify_not_dirty_region(MemRegion mr) PRODUCT_RETURN; 260 void verify_dirty_region(MemRegion mr) PRODUCT_RETURN; 261 }; 262 263 #endif // SHARE_GC_SHARED_CARDTABLE_HPP 264