1 /*
2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_GC_SHARED_GENERATION_HPP
26 #define SHARE_GC_SHARED_GENERATION_HPP
27 
28 #include "gc/shared/collectorCounters.hpp"
29 #include "gc/shared/referenceProcessor.hpp"
30 #include "logging/log.hpp"
31 #include "memory/allocation.hpp"
32 #include "memory/memRegion.hpp"
33 #include "memory/virtualspace.hpp"
34 #include "runtime/mutex.hpp"
35 #include "runtime/perfData.hpp"
36 
37 // A Generation models a heap area for similarly-aged objects.
38 // It will contain one ore more spaces holding the actual objects.
39 //
40 // The Generation class hierarchy:
41 //
42 // Generation                      - abstract base class
43 // - DefNewGeneration              - allocation area (copy collected)
44 // - CardGeneration                 - abstract class adding offset array behavior
45 //   - TenuredGeneration             - tenured (old object) space (markSweepCompact)
46 //
47 // The system configuration currently allowed is:
48 //
49 //   DefNewGeneration + TenuredGeneration
50 //
51 
52 class DefNewGeneration;
53 class GCMemoryManager;
54 class GenerationSpec;
55 class CompactibleSpace;
56 class ContiguousSpace;
57 class CompactPoint;
58 class OopClosure;
59 class GenCollectedHeap;
60 class GCStats;
61 
62 // A "ScratchBlock" represents a block of memory in one generation usable by
63 // another.  It represents "num_words" free words, starting at and including
64 // the address of "this".
65 struct ScratchBlock {
66   ScratchBlock* next;
67   size_t num_words;
68   HeapWord scratch_space[1];  // Actually, of size "num_words-2" (assuming
69                               // first two fields are word-sized.)
70 };
71 
72 class Generation: public CHeapObj<mtGC> {
73   friend class VMStructs;
74  private:
75   MemRegion _prev_used_region; // for collectors that want to "remember" a value for
76                                // used region at some specific point during collection.
77 
78   GCMemoryManager* _gc_manager;
79 
80  protected:
81   // Minimum and maximum addresses for memory reserved (not necessarily
82   // committed) for generation.
83   // Used by card marking code. Must not overlap with address ranges of
84   // other generations.
85   MemRegion _reserved;
86 
87   // Memory area reserved for generation
88   VirtualSpace _virtual_space;
89 
90   // ("Weak") Reference processing support
91   SpanSubjectToDiscoveryClosure _span_based_discoverer;
92   ReferenceProcessor* _ref_processor;
93 
94   // Performance Counters
95   CollectorCounters* _gc_counters;
96 
97   // Statistics for garbage collection
98   GCStats* _gc_stats;
99 
100   // Initialize the generation.
101   Generation(ReservedSpace rs, size_t initial_byte_size);
102 
103  public:
104   // The set of possible generation kinds.
105   enum Name {
106     DefNew,
107     MarkSweepCompact,
108     Other
109   };
110 
111   enum SomePublicConstants {
112     // Generations are GenGrain-aligned and have size that are multiples of
113     // GenGrain.
114     // Note: on ARM we add 1 bit for card_table_base to be properly aligned
115     // (we expect its low byte to be zero - see implementation of post_barrier)
116     LogOfGenGrain = 16 ARM32_ONLY(+1),
117     GenGrain = 1 << LogOfGenGrain
118   };
119 
120   // allocate and initialize ("weak") refs processing support
121   virtual void ref_processor_init();
set_ref_processor(ReferenceProcessor * rp)122   void set_ref_processor(ReferenceProcessor* rp) {
123     assert(_ref_processor == NULL, "clobbering existing _ref_processor");
124     _ref_processor = rp;
125   }
126 
kind()127   virtual Generation::Name kind() { return Generation::Other; }
128 
129   // This properly belongs in the collector, but for now this
130   // will do.
refs_discovery_is_atomic() const131   virtual bool refs_discovery_is_atomic() const { return true;  }
refs_discovery_is_mt() const132   virtual bool refs_discovery_is_mt()     const { return false; }
133 
134   // Space inquiries (results in bytes)
135   size_t initial_size();
136   virtual size_t capacity() const = 0;  // The maximum number of object bytes the
137                                         // generation can currently hold.
138   virtual size_t used() const = 0;      // The number of used bytes in the gen.
139   virtual size_t free() const = 0;      // The number of free bytes in the gen.
140 
141   // Support for java.lang.Runtime.maxMemory(); see CollectedHeap.
142   // Returns the total number of bytes  available in a generation
143   // for the allocation of objects.
144   virtual size_t max_capacity() const;
145 
146   // If this is a young generation, the maximum number of bytes that can be
147   // allocated in this generation before a GC is triggered.
capacity_before_gc() const148   virtual size_t capacity_before_gc() const { return 0; }
149 
150   // The largest number of contiguous free bytes in the generation,
151   // including expansion  (Assumes called at a safepoint.)
152   virtual size_t contiguous_available() const = 0;
153   // The largest number of contiguous free bytes in this or any higher generation.
154   virtual size_t max_contiguous_available() const;
155 
156   // Returns true if promotions of the specified amount are
157   // likely to succeed without a promotion failure.
158   // Promotion of the full amount is not guaranteed but
159   // might be attempted in the worst case.
160   virtual bool promotion_attempt_is_safe(size_t max_promotion_in_bytes) const;
161 
162   // For a non-young generation, this interface can be used to inform a
163   // generation that a promotion attempt into that generation failed.
164   // Typically used to enable diagnostic output for post-mortem analysis,
165   // but other uses of the interface are not ruled out.
promotion_failure_occurred()166   virtual void promotion_failure_occurred() { /* does nothing */ }
167 
168   // Return an estimate of the maximum allocation that could be performed
169   // in the generation without triggering any collection or expansion
170   // activity.  It is "unsafe" because no locks are taken; the result
171   // should be treated as an approximation, not a guarantee, for use in
172   // heuristic resizing decisions.
173   virtual size_t unsafe_max_alloc_nogc() const = 0;
174 
175   // Returns true if this generation cannot be expanded further
176   // without a GC. Override as appropriate.
is_maximal_no_gc() const177   virtual bool is_maximal_no_gc() const {
178     return _virtual_space.uncommitted_size() == 0;
179   }
180 
reserved() const181   MemRegion reserved() const { return _reserved; }
182 
183   // Returns a region guaranteed to contain all the objects in the
184   // generation.
used_region() const185   virtual MemRegion used_region() const { return _reserved; }
186 
prev_used_region() const187   MemRegion prev_used_region() const { return _prev_used_region; }
save_used_region()188   virtual void  save_used_region()   { _prev_used_region = used_region(); }
189 
190   // Returns "TRUE" iff "p" points into the committed areas in the generation.
191   // For some kinds of generations, this may be an expensive operation.
192   // To avoid performance problems stemming from its inadvertent use in
193   // product jvm's, we restrict its use to assertion checking or
194   // verification only.
195   virtual bool is_in(const void* p) const;
196 
197   /* Returns "TRUE" iff "p" points into the reserved area of the generation. */
is_in_reserved(const void * p) const198   bool is_in_reserved(const void* p) const {
199     return _reserved.contains(p);
200   }
201 
202   // If some space in the generation contains the given "addr", return a
203   // pointer to that space, else return "NULL".
204   virtual Space* space_containing(const void* addr) const;
205 
206   // Iteration - do not use for time critical operations
207   virtual void space_iterate(SpaceClosure* blk, bool usedOnly = false) = 0;
208 
209   // Returns the first space, if any, in the generation that can participate
210   // in compaction, or else "NULL".
211   virtual CompactibleSpace* first_compaction_space() const = 0;
212 
213   // Returns "true" iff this generation should be used to allocate an
214   // object of the given size.  Young generations might
215   // wish to exclude very large objects, for example, since, if allocated
216   // often, they would greatly increase the frequency of young-gen
217   // collection.
should_allocate(size_t word_size,bool is_tlab)218   virtual bool should_allocate(size_t word_size, bool is_tlab) {
219     bool result = false;
220     size_t overflow_limit = (size_t)1 << (BitsPerSize_t - LogHeapWordSize);
221     if (!is_tlab || supports_tlab_allocation()) {
222       result = (word_size > 0) && (word_size < overflow_limit);
223     }
224     return result;
225   }
226 
227   // Allocate and returns a block of the requested size, or returns "NULL".
228   // Assumes the caller has done any necessary locking.
229   virtual HeapWord* allocate(size_t word_size, bool is_tlab) = 0;
230 
231   // Like "allocate", but performs any necessary locking internally.
232   virtual HeapWord* par_allocate(size_t word_size, bool is_tlab) = 0;
233 
234   // Some generation may offer a region for shared, contiguous allocation,
235   // via inlined code (by exporting the address of the top and end fields
236   // defining the extent of the contiguous allocation region.)
237 
238   // This function returns "true" iff the heap supports this kind of
239   // allocation.  (More precisely, this means the style of allocation that
240   // increments *top_addr()" with a CAS.) (Default is "no".)
241   // A generation that supports this allocation style must use lock-free
242   // allocation for *all* allocation, since there are times when lock free
243   // allocation will be concurrent with plain "allocate" calls.
supports_inline_contig_alloc() const244   virtual bool supports_inline_contig_alloc() const { return false; }
245 
246   // These functions return the addresses of the fields that define the
247   // boundaries of the contiguous allocation area.  (These fields should be
248   // physically near to one another.)
top_addr() const249   virtual HeapWord* volatile* top_addr() const { return NULL; }
end_addr() const250   virtual HeapWord** end_addr() const { return NULL; }
251 
252   // Thread-local allocation buffers
supports_tlab_allocation() const253   virtual bool supports_tlab_allocation() const { return false; }
tlab_capacity() const254   virtual size_t tlab_capacity() const {
255     guarantee(false, "Generation doesn't support thread local allocation buffers");
256     return 0;
257   }
tlab_used() const258   virtual size_t tlab_used() const {
259     guarantee(false, "Generation doesn't support thread local allocation buffers");
260     return 0;
261   }
unsafe_max_tlab_alloc() const262   virtual size_t unsafe_max_tlab_alloc() const {
263     guarantee(false, "Generation doesn't support thread local allocation buffers");
264     return 0;
265   }
266 
267   // "obj" is the address of an object in a younger generation.  Allocate space
268   // for "obj" in the current (or some higher) generation, and copy "obj" into
269   // the newly allocated space, if possible, returning the result (or NULL if
270   // the allocation failed).
271   //
272   // The "obj_size" argument is just obj->size(), passed along so the caller can
273   // avoid repeating the virtual call to retrieve it.
274   virtual oop promote(oop obj, size_t obj_size);
275 
276   // Thread "thread_num" (0 <= i < ParalleGCThreads) wants to promote
277   // object "obj", whose original mark word was "m", and whose size is
278   // "word_sz".  If possible, allocate space for "obj", copy obj into it
279   // (taking care to copy "m" into the mark word when done, since the mark
280   // word of "obj" may have been overwritten with a forwarding pointer, and
281   // also taking care to copy the klass pointer *last*.  Returns the new
282   // object if successful, or else NULL.
283   virtual oop par_promote(int thread_num, oop obj, markWord m, size_t word_sz);
284 
285   // Informs the current generation that all par_promote_alloc's in the
286   // collection have been completed; any supporting data structures can be
287   // reset.  Default is to do nothing.
par_promote_alloc_done(int thread_num)288   virtual void par_promote_alloc_done(int thread_num) {}
289 
290   // Informs the current generation that all oop_since_save_marks_iterates
291   // performed by "thread_num" in the current collection, if any, have been
292   // completed; any supporting data structures can be reset.  Default is to
293   // do nothing.
par_oop_since_save_marks_iterate_done(int thread_num)294   virtual void par_oop_since_save_marks_iterate_done(int thread_num) {}
295 
296   // Returns "true" iff collect() should subsequently be called on this
297   // this generation. See comment below.
298   // This is a generic implementation which can be overridden.
299   //
300   // Note: in the current (1.4) implementation, when genCollectedHeap's
301   // incremental_collection_will_fail flag is set, all allocations are
302   // slow path (the only fast-path place to allocate is DefNew, which
303   // will be full if the flag is set).
304   // Thus, older generations which collect younger generations should
305   // test this flag and collect if it is set.
should_collect(bool full,size_t word_size,bool is_tlab)306   virtual bool should_collect(bool   full,
307                               size_t word_size,
308                               bool   is_tlab) {
309     return (full || should_allocate(word_size, is_tlab));
310   }
311 
312   // Returns true if the collection is likely to be safely
313   // completed. Even if this method returns true, a collection
314   // may not be guaranteed to succeed, and the system should be
315   // able to safely unwind and recover from that failure, albeit
316   // at some additional cost.
collection_attempt_is_safe()317   virtual bool collection_attempt_is_safe() {
318     guarantee(false, "Are you sure you want to call this method?");
319     return true;
320   }
321 
322   // Perform a garbage collection.
323   // If full is true attempt a full garbage collection of this generation.
324   // Otherwise, attempting to (at least) free enough space to support an
325   // allocation of the given "word_size".
326   virtual void collect(bool   full,
327                        bool   clear_all_soft_refs,
328                        size_t word_size,
329                        bool   is_tlab) = 0;
330 
331   // Perform a heap collection, attempting to create (at least) enough
332   // space to support an allocation of the given "word_size".  If
333   // successful, perform the allocation and return the resulting
334   // "oop" (initializing the allocated block). If the allocation is
335   // still unsuccessful, return "NULL".
336   virtual HeapWord* expand_and_allocate(size_t word_size,
337                                         bool is_tlab,
338                                         bool parallel = false) = 0;
339 
340   // Some generations may require some cleanup or preparation actions before
341   // allowing a collection.  The default is to do nothing.
gc_prologue(bool full)342   virtual void gc_prologue(bool full) {}
343 
344   // Some generations may require some cleanup actions after a collection.
345   // The default is to do nothing.
gc_epilogue(bool full)346   virtual void gc_epilogue(bool full) {}
347 
348   // Save the high water marks for the used space in a generation.
record_spaces_top()349   virtual void record_spaces_top() {}
350 
351   // Some generations may need to be "fixed-up" after some allocation
352   // activity to make them parsable again. The default is to do nothing.
ensure_parsability()353   virtual void ensure_parsability() {}
354 
355   // Generations may keep statistics about collection. This method
356   // updates those statistics. current_generation is the generation
357   // that was most recently collected. This allows the generation to
358   // decide what statistics are valid to collect. For example, the
359   // generation can decide to gather the amount of promoted data if
360   // the collection of the young generation has completed.
gc_stats() const361   GCStats* gc_stats() const { return _gc_stats; }
update_gc_stats(Generation * current_generation,bool full)362   virtual void update_gc_stats(Generation* current_generation, bool full) {}
363 
364 #if INCLUDE_SERIALGC
365   // Mark sweep support phase2
366   virtual void prepare_for_compaction(CompactPoint* cp);
367   // Mark sweep support phase3
368   virtual void adjust_pointers();
369   // Mark sweep support phase4
370   virtual void compact();
post_compact()371   virtual void post_compact() { ShouldNotReachHere(); }
372 #endif
373 
374   // Some generations may require some cleanup actions before allowing
375   // a verification.
prepare_for_verify()376   virtual void prepare_for_verify() {}
377 
378   // Accessing "marks".
379 
380   // This function gives a generation a chance to note a point between
381   // collections.  For example, a contiguous generation might note the
382   // beginning allocation point post-collection, which might allow some later
383   // operations to be optimized.
save_marks()384   virtual void save_marks() {}
385 
386   // This function allows generations to initialize any "saved marks".  That
387   // is, should only be called when the generation is empty.
reset_saved_marks()388   virtual void reset_saved_marks() {}
389 
390   // This function is "true" iff any no allocations have occurred in the
391   // generation since the last call to "save_marks".
392   virtual bool no_allocs_since_save_marks() = 0;
393 
394   // The "requestor" generation is performing some garbage collection
395   // action for which it would be useful to have scratch space.  If
396   // the target is not the requestor, no gc actions will be required
397   // of the target.  The requestor promises to allocate no more than
398   // "max_alloc_words" in the target generation (via promotion say,
399   // if the requestor is a young generation and the target is older).
400   // If the target generation can provide any scratch space, it adds
401   // it to "list", leaving "list" pointing to the head of the
402   // augmented list.  The default is to offer no space.
contribute_scratch(ScratchBlock * & list,Generation * requestor,size_t max_alloc_words)403   virtual void contribute_scratch(ScratchBlock*& list, Generation* requestor,
404                                   size_t max_alloc_words) {}
405 
406   // Give each generation an opportunity to do clean up for any
407   // contributed scratch.
reset_scratch()408   virtual void reset_scratch() {}
409 
410   // When an older generation has been collected, and perhaps resized,
411   // this method will be invoked on all younger generations (from older to
412   // younger), allowing them to resize themselves as appropriate.
413   virtual void compute_new_size() = 0;
414 
415   // Printing
416   virtual const char* name() const = 0;
417   virtual const char* short_name() const = 0;
418 
419   // Reference Processing accessor
ref_processor()420   ReferenceProcessor* const ref_processor() { return _ref_processor; }
421 
422   // Iteration.
423 
424   // Iterate over all the ref-containing fields of all objects in the
425   // generation, calling "cl.do_oop" on each.
426   virtual void oop_iterate(OopIterateClosure* cl);
427 
428   // Iterate over all objects in the generation, calling "cl.do_object" on
429   // each.
430   virtual void object_iterate(ObjectClosure* cl);
431 
432   // Inform a generation that it longer contains references to objects
433   // in any younger generation.    [e.g. Because younger gens are empty,
434   // clear the card table.]
clear_remembered_set()435   virtual void clear_remembered_set() { }
436 
437   // Inform a generation that some of its objects have moved.  [e.g. The
438   // generation's spaces were compacted, invalidating the card table.]
invalidate_remembered_set()439   virtual void invalidate_remembered_set() { }
440 
441   // Block abstraction.
442 
443   // Returns the address of the start of the "block" that contains the
444   // address "addr".  We say "blocks" instead of "object" since some heaps
445   // may not pack objects densely; a chunk may either be an object or a
446   // non-object.
447   virtual HeapWord* block_start(const void* addr) const;
448 
449   // Requires "addr" to be the start of a chunk, and returns its size.
450   // "addr + size" is required to be the start of a new chunk, or the end
451   // of the active area of the heap.
452   virtual size_t block_size(const HeapWord* addr) const ;
453 
454   // Requires "addr" to be the start of a block, and returns "TRUE" iff
455   // the block is an object.
456   virtual bool block_is_obj(const HeapWord* addr) const;
457 
458   void print_heap_change(size_t prev_used) const;
459 
460   virtual void print() const;
461   virtual void print_on(outputStream* st) const;
462 
463   virtual void verify() = 0;
464 
465   struct StatRecord {
466     int invocations;
467     elapsedTimer accumulated_time;
StatRecordGeneration::StatRecord468     StatRecord() :
469       invocations(0),
470       accumulated_time(elapsedTimer()) {}
471   };
472 private:
473   StatRecord _stat_record;
474 public:
stat_record()475   StatRecord* stat_record() { return &_stat_record; }
476 
477   virtual void print_summary_info_on(outputStream* st);
478 
479   // Performance Counter support
480   virtual void update_counters() = 0;
counters()481   virtual CollectorCounters* counters() { return _gc_counters; }
482 
gc_manager() const483   GCMemoryManager* gc_manager() const {
484     assert(_gc_manager != NULL, "not initialized yet");
485     return _gc_manager;
486   }
487 
set_gc_manager(GCMemoryManager * gc_manager)488   void set_gc_manager(GCMemoryManager* gc_manager) {
489     _gc_manager = gc_manager;
490   }
491 
492 };
493 
494 #endif // SHARE_GC_SHARED_GENERATION_HPP
495