1 /*
2 * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2021, Azul Systems, Inc. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #include "precompiled.hpp"
27 #include "jvm.h"
28 #include "cds/dynamicArchive.hpp"
29 #include "cds/metaspaceShared.hpp"
30 #include "classfile/classLoader.hpp"
31 #include "classfile/javaClasses.hpp"
32 #include "classfile/javaThreadStatus.hpp"
33 #include "classfile/systemDictionary.hpp"
34 #include "classfile/vmClasses.hpp"
35 #include "classfile/vmSymbols.hpp"
36 #include "code/codeCache.hpp"
37 #include "code/scopeDesc.hpp"
38 #include "compiler/compileBroker.hpp"
39 #include "compiler/compileTask.hpp"
40 #include "compiler/compilerThread.hpp"
41 #include "gc/shared/barrierSet.hpp"
42 #include "gc/shared/collectedHeap.hpp"
43 #include "gc/shared/gcId.hpp"
44 #include "gc/shared/gcLocker.inline.hpp"
45 #include "gc/shared/gcVMOperations.hpp"
46 #include "gc/shared/oopStorage.hpp"
47 #include "gc/shared/oopStorageSet.hpp"
48 #include "gc/shared/stringdedup/stringDedup.hpp"
49 #include "gc/shared/tlab_globals.hpp"
50 #include "interpreter/interpreter.hpp"
51 #include "interpreter/linkResolver.hpp"
52 #include "interpreter/oopMapCache.hpp"
53 #include "jfr/jfrEvents.hpp"
54 #include "jvmtifiles/jvmtiEnv.hpp"
55 #include "logging/log.hpp"
56 #include "logging/logAsyncWriter.hpp"
57 #include "logging/logConfiguration.hpp"
58 #include "logging/logStream.hpp"
59 #include "memory/allocation.inline.hpp"
60 #include "memory/iterator.hpp"
61 #include "memory/oopFactory.hpp"
62 #include "memory/resourceArea.hpp"
63 #include "memory/universe.hpp"
64 #include "oops/access.inline.hpp"
65 #include "oops/instanceKlass.hpp"
66 #include "oops/klass.inline.hpp"
67 #include "oops/objArrayOop.hpp"
68 #include "oops/oop.inline.hpp"
69 #include "oops/oopHandle.inline.hpp"
70 #include "oops/symbol.hpp"
71 #include "oops/typeArrayOop.inline.hpp"
72 #include "oops/verifyOopClosure.hpp"
73 #include "prims/jvm_misc.hpp"
74 #include "prims/jvmtiDeferredUpdates.hpp"
75 #include "prims/jvmtiExport.hpp"
76 #include "prims/jvmtiThreadState.hpp"
77 #include "runtime/arguments.hpp"
78 #include "runtime/atomic.hpp"
79 #include "runtime/biasedLocking.hpp"
80 #include "runtime/fieldDescriptor.inline.hpp"
81 #include "runtime/flags/jvmFlagLimit.hpp"
82 #include "runtime/deoptimization.hpp"
83 #include "runtime/frame.inline.hpp"
84 #include "runtime/handles.inline.hpp"
85 #include "runtime/handshake.hpp"
86 #include "runtime/init.hpp"
87 #include "runtime/interfaceSupport.inline.hpp"
88 #include "runtime/java.hpp"
89 #include "runtime/javaCalls.hpp"
90 #include "runtime/jniHandles.inline.hpp"
91 #include "runtime/jniPeriodicChecker.hpp"
92 #include "runtime/monitorDeflationThread.hpp"
93 #include "runtime/mutexLocker.hpp"
94 #include "runtime/nonJavaThread.hpp"
95 #include "runtime/objectMonitor.hpp"
96 #include "runtime/orderAccess.hpp"
97 #include "runtime/osThread.hpp"
98 #include "runtime/prefetch.inline.hpp"
99 #include "runtime/safepoint.hpp"
100 #include "runtime/safepointMechanism.inline.hpp"
101 #include "runtime/safepointVerifiers.hpp"
102 #include "runtime/serviceThread.hpp"
103 #include "runtime/sharedRuntime.hpp"
104 #include "runtime/stackFrameStream.inline.hpp"
105 #include "runtime/stackWatermarkSet.hpp"
106 #include "runtime/statSampler.hpp"
107 #include "runtime/task.hpp"
108 #include "runtime/thread.inline.hpp"
109 #include "runtime/threadCritical.hpp"
110 #include "runtime/threadSMR.inline.hpp"
111 #include "runtime/threadStatisticalInfo.hpp"
112 #include "runtime/threadWXSetters.inline.hpp"
113 #include "runtime/timer.hpp"
114 #include "runtime/timerTrace.hpp"
115 #include "runtime/vframe.inline.hpp"
116 #include "runtime/vframeArray.hpp"
117 #include "runtime/vframe_hp.hpp"
118 #include "runtime/vmThread.hpp"
119 #include "runtime/vmOperations.hpp"
120 #include "runtime/vm_version.hpp"
121 #include "services/attachListener.hpp"
122 #include "services/management.hpp"
123 #include "services/memTracker.hpp"
124 #include "services/threadService.hpp"
125 #include "utilities/align.hpp"
126 #include "utilities/copy.hpp"
127 #include "utilities/defaultStream.hpp"
128 #include "utilities/dtrace.hpp"
129 #include "utilities/events.hpp"
130 #include "utilities/macros.hpp"
131 #include "utilities/preserveException.hpp"
132 #include "utilities/spinYield.hpp"
133 #include "utilities/vmError.hpp"
134 #if INCLUDE_JVMCI
135 #include "jvmci/jvmci.hpp"
136 #include "jvmci/jvmciEnv.hpp"
137 #endif
138 #ifdef COMPILER1
139 #include "c1/c1_Compiler.hpp"
140 #endif
141 #ifdef COMPILER2
142 #include "opto/c2compiler.hpp"
143 #include "opto/idealGraphPrinter.hpp"
144 #endif
145 #if INCLUDE_RTM_OPT
146 #include "runtime/rtmLocking.hpp"
147 #endif
148 #if INCLUDE_JFR
149 #include "jfr/jfr.hpp"
150 #endif
151
152 // Initialization after module runtime initialization
153 void universe_post_module_init(); // must happen after call_initPhase2
154
155 #ifdef DTRACE_ENABLED
156
157 // Only bother with this argument setup if dtrace is available
158
159 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
160 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
161
162 #define DTRACE_THREAD_PROBE(probe, javathread) \
163 { \
164 ResourceMark rm(this); \
165 int len = 0; \
166 const char* name = (javathread)->get_thread_name(); \
167 len = strlen(name); \
168 HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */ \
169 (char *) name, len, \
170 java_lang_Thread::thread_id((javathread)->threadObj()), \
171 (uintptr_t) (javathread)->osthread()->thread_id(), \
172 java_lang_Thread::is_daemon((javathread)->threadObj())); \
173 }
174
175 #else // ndef DTRACE_ENABLED
176
177 #define DTRACE_THREAD_PROBE(probe, javathread)
178
179 #endif // ndef DTRACE_ENABLED
180
181 #ifndef USE_LIBRARY_BASED_TLS_ONLY
182 // Current thread is maintained as a thread-local variable
183 THREAD_LOCAL Thread* Thread::_thr_current = NULL;
184 #endif
185
186 // ======= Thread ========
187 // Support for forcing alignment of thread objects for biased locking
allocate(size_t size,bool throw_excpt,MEMFLAGS flags)188 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
189 if (UseBiasedLocking) {
190 const size_t alignment = markWord::biased_lock_alignment;
191 size_t aligned_size = size + (alignment - sizeof(intptr_t));
192 void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
193 : AllocateHeap(aligned_size, flags, CURRENT_PC,
194 AllocFailStrategy::RETURN_NULL);
195 void* aligned_addr = align_up(real_malloc_addr, alignment);
196 assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
197 ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
198 "JavaThread alignment code overflowed allocated storage");
199 if (aligned_addr != real_malloc_addr) {
200 log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
201 p2i(real_malloc_addr),
202 p2i(aligned_addr));
203 }
204 ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
205 return aligned_addr;
206 } else {
207 return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
208 : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
209 }
210 }
211
operator delete(void * p)212 void Thread::operator delete(void* p) {
213 if (UseBiasedLocking) {
214 FreeHeap(((Thread*) p)->_real_malloc_address);
215 } else {
216 FreeHeap(p);
217 }
218 }
219
smr_delete()220 void JavaThread::smr_delete() {
221 if (_on_thread_list) {
222 ThreadsSMRSupport::smr_delete(this);
223 } else {
224 delete this;
225 }
226 }
227
228 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
229 // JavaThread
230
DEBUG_ONLY(Thread * Thread::_starting_thread=NULL;)231 DEBUG_ONLY(Thread* Thread::_starting_thread = NULL;)
232
233 Thread::Thread() {
234
235 DEBUG_ONLY(_run_state = PRE_CALL_RUN;)
236
237 // stack and get_thread
238 set_stack_base(NULL);
239 set_stack_size(0);
240 set_lgrp_id(-1);
241 DEBUG_ONLY(clear_suspendible_thread();)
242
243 // allocated data structures
244 set_osthread(NULL);
245 set_resource_area(new (mtThread)ResourceArea());
246 DEBUG_ONLY(_current_resource_mark = NULL;)
247 set_handle_area(new (mtThread) HandleArea(NULL));
248 set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, mtClass));
249 set_active_handles(NULL);
250 set_free_handle_block(NULL);
251 set_last_handle_mark(NULL);
252 DEBUG_ONLY(_missed_ic_stub_refill_verifier = NULL);
253
254 // Initial value of zero ==> never claimed.
255 _threads_do_token = 0;
256 _threads_hazard_ptr = NULL;
257 _threads_list_ptr = NULL;
258 _nested_threads_hazard_ptr_cnt = 0;
259 _rcu_counter = 0;
260
261 // the handle mark links itself to last_handle_mark
262 new HandleMark(this);
263
264 // plain initialization
265 debug_only(_owned_locks = NULL;)
266 NOT_PRODUCT(_skip_gcalot = false;)
267 _jvmti_env_iteration_count = 0;
268 set_allocated_bytes(0);
269 _current_pending_raw_monitor = NULL;
270
271 // thread-specific hashCode stream generator state - Marsaglia shift-xor form
272 _hashStateX = os::random();
273 _hashStateY = 842502087;
274 _hashStateZ = 0x8767; // (int)(3579807591LL & 0xffff) ;
275 _hashStateW = 273326509;
276
277 // Many of the following fields are effectively final - immutable
278 // Note that nascent threads can't use the Native Monitor-Mutex
279 // construct until the _MutexEvent is initialized ...
280 // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
281 // we might instead use a stack of ParkEvents that we could provision on-demand.
282 // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
283 // and ::Release()
284 _ParkEvent = ParkEvent::Allocate(this);
285
286 #ifdef CHECK_UNHANDLED_OOPS
287 if (CheckUnhandledOops) {
288 _unhandled_oops = new UnhandledOops(this);
289 }
290 #endif // CHECK_UNHANDLED_OOPS
291 #ifdef ASSERT
292 if (UseBiasedLocking) {
293 assert(is_aligned(this, markWord::biased_lock_alignment), "forced alignment of thread object failed");
294 assert(this == _real_malloc_address ||
295 this == align_up(_real_malloc_address, markWord::biased_lock_alignment),
296 "bug in forced alignment of thread objects");
297 }
298 #endif // ASSERT
299
300 // Notify the barrier set that a thread is being created. The initial
301 // thread is created before the barrier set is available. The call to
302 // BarrierSet::on_thread_create() for this thread is therefore deferred
303 // to BarrierSet::set_barrier_set().
304 BarrierSet* const barrier_set = BarrierSet::barrier_set();
305 if (barrier_set != NULL) {
306 barrier_set->on_thread_create(this);
307 } else {
308 // Only the main thread should be created before the barrier set
309 // and that happens just before Thread::current is set. No other thread
310 // can attach as the VM is not created yet, so they can't execute this code.
311 // If the main thread creates other threads before the barrier set that is an error.
312 assert(Thread::current_or_null() == NULL, "creating thread before barrier set");
313 }
314
315 MACOS_AARCH64_ONLY(DEBUG_ONLY(_wx_init = false));
316 }
317
initialize_tlab()318 void Thread::initialize_tlab() {
319 if (UseTLAB) {
320 tlab().initialize();
321 }
322 }
323
initialize_thread_current()324 void Thread::initialize_thread_current() {
325 #ifndef USE_LIBRARY_BASED_TLS_ONLY
326 assert(_thr_current == NULL, "Thread::current already initialized");
327 _thr_current = this;
328 #endif
329 assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
330 ThreadLocalStorage::set_thread(this);
331 assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
332 }
333
clear_thread_current()334 void Thread::clear_thread_current() {
335 assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
336 #ifndef USE_LIBRARY_BASED_TLS_ONLY
337 _thr_current = NULL;
338 #endif
339 ThreadLocalStorage::set_thread(NULL);
340 }
341
record_stack_base_and_size()342 void Thread::record_stack_base_and_size() {
343 // Note: at this point, Thread object is not yet initialized. Do not rely on
344 // any members being initialized. Do not rely on Thread::current() being set.
345 // If possible, refrain from doing anything which may crash or assert since
346 // quite probably those crash dumps will be useless.
347 set_stack_base(os::current_stack_base());
348 set_stack_size(os::current_stack_size());
349
350 // Set stack limits after thread is initialized.
351 if (is_Java_thread()) {
352 as_Java_thread()->stack_overflow_state()->initialize(stack_base(), stack_end());
353 }
354 }
355
356 #if INCLUDE_NMT
register_thread_stack_with_NMT()357 void Thread::register_thread_stack_with_NMT() {
358 MemTracker::record_thread_stack(stack_end(), stack_size());
359 }
360
unregister_thread_stack_with_NMT()361 void Thread::unregister_thread_stack_with_NMT() {
362 MemTracker::release_thread_stack(stack_end(), stack_size());
363 }
364 #endif // INCLUDE_NMT
365
call_run()366 void Thread::call_run() {
367 DEBUG_ONLY(_run_state = CALL_RUN;)
368
369 // At this point, Thread object should be fully initialized and
370 // Thread::current() should be set.
371
372 assert(Thread::current_or_null() != NULL, "current thread is unset");
373 assert(Thread::current_or_null() == this, "current thread is wrong");
374
375 // Perform common initialization actions
376
377 register_thread_stack_with_NMT();
378
379 MACOS_AARCH64_ONLY(this->init_wx());
380
381 JFR_ONLY(Jfr::on_thread_start(this);)
382
383 log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
384 PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
385 os::current_thread_id(), p2i(stack_end()),
386 p2i(stack_base()), stack_size()/1024);
387
388 // Perform <ChildClass> initialization actions
389 DEBUG_ONLY(_run_state = PRE_RUN;)
390 this->pre_run();
391
392 // Invoke <ChildClass>::run()
393 DEBUG_ONLY(_run_state = RUN;)
394 this->run();
395 // Returned from <ChildClass>::run(). Thread finished.
396
397 // Perform common tear-down actions
398
399 assert(Thread::current_or_null() != NULL, "current thread is unset");
400 assert(Thread::current_or_null() == this, "current thread is wrong");
401
402 // Perform <ChildClass> tear-down actions
403 DEBUG_ONLY(_run_state = POST_RUN;)
404 this->post_run();
405
406 // Note: at this point the thread object may already have deleted itself,
407 // so from here on do not dereference *this*. Not all thread types currently
408 // delete themselves when they terminate. But no thread should ever be deleted
409 // asynchronously with respect to its termination - that is what _run_state can
410 // be used to check.
411
412 assert(Thread::current_or_null() == NULL, "current thread still present");
413 }
414
~Thread()415 Thread::~Thread() {
416
417 // Attached threads will remain in PRE_CALL_RUN, as will threads that don't actually
418 // get started due to errors etc. Any active thread should at least reach post_run
419 // before it is deleted (usually in post_run()).
420 assert(_run_state == PRE_CALL_RUN ||
421 _run_state == POST_RUN, "Active Thread deleted before post_run(): "
422 "_run_state=%d", (int)_run_state);
423
424 // Notify the barrier set that a thread is being destroyed. Note that a barrier
425 // set might not be available if we encountered errors during bootstrapping.
426 BarrierSet* const barrier_set = BarrierSet::barrier_set();
427 if (barrier_set != NULL) {
428 barrier_set->on_thread_destroy(this);
429 }
430
431 // deallocate data structures
432 delete resource_area();
433 // since the handle marks are using the handle area, we have to deallocated the root
434 // handle mark before deallocating the thread's handle area,
435 assert(last_handle_mark() != NULL, "check we have an element");
436 delete last_handle_mark();
437 assert(last_handle_mark() == NULL, "check we have reached the end");
438
439 ParkEvent::Release(_ParkEvent);
440 // Set to NULL as a termination indicator for has_terminated().
441 Atomic::store(&_ParkEvent, (ParkEvent*)NULL);
442
443 delete handle_area();
444 delete metadata_handles();
445
446 // osthread() can be NULL, if creation of thread failed.
447 if (osthread() != NULL) os::free_thread(osthread());
448
449 // Clear Thread::current if thread is deleting itself and it has not
450 // already been done. This must be done before the memory is deallocated.
451 // Needed to ensure JNI correctly detects non-attached threads.
452 if (this == Thread::current_or_null()) {
453 Thread::clear_thread_current();
454 }
455
456 CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
457 }
458
459 #ifdef ASSERT
460 // A JavaThread is considered dangling if it not handshake-safe with respect to
461 // the current thread, it is not on a ThreadsList, or not at safepoint.
check_for_dangling_thread_pointer(Thread * thread)462 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
463 assert(!thread->is_Java_thread() ||
464 thread->as_Java_thread()->is_handshake_safe_for(Thread::current()) ||
465 !thread->as_Java_thread()->on_thread_list() ||
466 SafepointSynchronize::is_at_safepoint() ||
467 ThreadsSMRSupport::is_a_protected_JavaThread_with_lock(thread->as_Java_thread()),
468 "possibility of dangling Thread pointer");
469 }
470 #endif
471
472 // Is the target JavaThread protected by the calling Thread
473 // or by some other mechanism:
is_JavaThread_protected(const JavaThread * p)474 bool Thread::is_JavaThread_protected(const JavaThread* p) {
475 // Do the simplest check first:
476 if (SafepointSynchronize::is_at_safepoint()) {
477 // The target is protected since JavaThreads cannot exit
478 // while we're at a safepoint.
479 return true;
480 }
481
482 // Now make the simple checks based on who the caller is:
483 Thread* current_thread = Thread::current();
484 if (current_thread == p || Threads_lock->owner() == current_thread) {
485 // Target JavaThread is self or calling thread owns the Threads_lock.
486 // Second check is the same as Threads_lock->owner_is_self(),
487 // but we already have the current thread so check directly.
488 return true;
489 }
490
491 // Check the ThreadsLists associated with the calling thread (if any)
492 // to see if one of them protects the target JavaThread:
493 for (SafeThreadsListPtr* stlp = current_thread->_threads_list_ptr;
494 stlp != NULL; stlp = stlp->previous()) {
495 if (stlp->list()->includes(p)) {
496 // The target JavaThread is protected by this ThreadsList:
497 return true;
498 }
499 }
500
501 // Use this debug code with -XX:+UseNewCode to diagnose locations that
502 // are missing a ThreadsListHandle or other protection mechanism:
503 // guarantee(!UseNewCode, "current_thread=" INTPTR_FORMAT " is not protecting p="
504 // INTPTR_FORMAT, p2i(current_thread), p2i(p));
505
506 // Note: Since 'p' isn't protected by a TLH, the call to
507 // p->is_handshake_safe_for() may crash, but we have debug bits so
508 // we'll be able to figure out what protection mechanism is missing.
509 assert(p->is_handshake_safe_for(current_thread), "JavaThread=" INTPTR_FORMAT
510 " is not protected and not handshake safe.", p2i(p));
511
512 // The target JavaThread is not protected so it is not safe to query:
513 return false;
514 }
515
get_priority(const Thread * const thread)516 ThreadPriority Thread::get_priority(const Thread* const thread) {
517 ThreadPriority priority;
518 // Can return an error!
519 (void)os::get_priority(thread, priority);
520 assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
521 return priority;
522 }
523
set_priority(Thread * thread,ThreadPriority priority)524 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
525 debug_only(check_for_dangling_thread_pointer(thread);)
526 // Can return an error!
527 (void)os::set_priority(thread, priority);
528 }
529
530
start(Thread * thread)531 void Thread::start(Thread* thread) {
532 // Start is different from resume in that its safety is guaranteed by context or
533 // being called from a Java method synchronized on the Thread object.
534 if (thread->is_Java_thread()) {
535 // Initialize the thread state to RUNNABLE before starting this thread.
536 // Can not set it after the thread started because we do not know the
537 // exact thread state at that time. It could be in MONITOR_WAIT or
538 // in SLEEPING or some other state.
539 java_lang_Thread::set_thread_status(thread->as_Java_thread()->threadObj(),
540 JavaThreadStatus::RUNNABLE);
541 }
542 os::start_thread(thread);
543 }
544
545 // GC Support
claim_par_threads_do(uintx claim_token)546 bool Thread::claim_par_threads_do(uintx claim_token) {
547 uintx token = _threads_do_token;
548 if (token != claim_token) {
549 uintx res = Atomic::cmpxchg(&_threads_do_token, token, claim_token);
550 if (res == token) {
551 return true;
552 }
553 guarantee(res == claim_token, "invariant");
554 }
555 return false;
556 }
557
oops_do_no_frames(OopClosure * f,CodeBlobClosure * cf)558 void Thread::oops_do_no_frames(OopClosure* f, CodeBlobClosure* cf) {
559 if (active_handles() != NULL) {
560 active_handles()->oops_do(f);
561 }
562 // Do oop for ThreadShadow
563 f->do_oop((oop*)&_pending_exception);
564 handle_area()->oops_do(f);
565 }
566
567 // If the caller is a NamedThread, then remember, in the current scope,
568 // the given JavaThread in its _processed_thread field.
569 class RememberProcessedThread: public StackObj {
570 NamedThread* _cur_thr;
571 public:
RememberProcessedThread(Thread * thread)572 RememberProcessedThread(Thread* thread) {
573 Thread* self = Thread::current();
574 if (self->is_Named_thread()) {
575 _cur_thr = (NamedThread *)self;
576 assert(_cur_thr->processed_thread() == NULL, "nesting not supported");
577 _cur_thr->set_processed_thread(thread);
578 } else {
579 _cur_thr = NULL;
580 }
581 }
582
~RememberProcessedThread()583 ~RememberProcessedThread() {
584 if (_cur_thr) {
585 assert(_cur_thr->processed_thread() != NULL, "nesting not supported");
586 _cur_thr->set_processed_thread(NULL);
587 }
588 }
589 };
590
oops_do(OopClosure * f,CodeBlobClosure * cf)591 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
592 // Record JavaThread to GC thread
593 RememberProcessedThread rpt(this);
594 oops_do_no_frames(f, cf);
595 oops_do_frames(f, cf);
596 }
597
metadata_handles_do(void f (Metadata *))598 void Thread::metadata_handles_do(void f(Metadata*)) {
599 // Only walk the Handles in Thread.
600 if (metadata_handles() != NULL) {
601 for (int i = 0; i< metadata_handles()->length(); i++) {
602 f(metadata_handles()->at(i));
603 }
604 }
605 }
606
print_on(outputStream * st,bool print_extended_info) const607 void Thread::print_on(outputStream* st, bool print_extended_info) const {
608 // get_priority assumes osthread initialized
609 if (osthread() != NULL) {
610 int os_prio;
611 if (os::get_native_priority(this, &os_prio) == OS_OK) {
612 st->print("os_prio=%d ", os_prio);
613 }
614
615 st->print("cpu=%.2fms ",
616 os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
617 );
618 st->print("elapsed=%.2fs ",
619 _statistical_info.getElapsedTime() / 1000.0
620 );
621 if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
622 size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
623 st->print("allocated=" SIZE_FORMAT "%s ",
624 byte_size_in_proper_unit(allocated_bytes),
625 proper_unit_for_byte_size(allocated_bytes)
626 );
627 st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
628 }
629
630 st->print("tid=" INTPTR_FORMAT " ", p2i(this));
631 osthread()->print_on(st);
632 }
633 ThreadsSMRSupport::print_info_on(this, st);
634 st->print(" ");
635 debug_only(if (WizardMode) print_owned_locks_on(st);)
636 }
637
print() const638 void Thread::print() const { print_on(tty); }
639
640 // Thread::print_on_error() is called by fatal error handler. Don't use
641 // any lock or allocate memory.
print_on_error(outputStream * st,char * buf,int buflen) const642 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
643 assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
644
645 if (is_VM_thread()) { st->print("VMThread"); }
646 else if (is_GC_task_thread()) { st->print("GCTaskThread"); }
647 else if (is_Watcher_thread()) { st->print("WatcherThread"); }
648 else if (is_ConcurrentGC_thread()) { st->print("ConcurrentGCThread"); }
649 else { st->print("Thread"); }
650
651 if (is_Named_thread()) {
652 st->print(" \"%s\"", name());
653 }
654
655 OSThread* os_thr = osthread();
656 if (os_thr != NULL) {
657 if (os_thr->get_state() != ZOMBIE) {
658 st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
659 p2i(stack_end()), p2i(stack_base()));
660 st->print(" [id=%d]", osthread()->thread_id());
661 } else {
662 st->print(" terminated");
663 }
664 } else {
665 st->print(" unknown state (no osThread)");
666 }
667 ThreadsSMRSupport::print_info_on(this, st);
668 }
669
print_value_on(outputStream * st) const670 void Thread::print_value_on(outputStream* st) const {
671 if (is_Named_thread()) {
672 st->print(" \"%s\" ", name());
673 }
674 st->print(INTPTR_FORMAT, p2i(this)); // print address
675 }
676
677 #ifdef ASSERT
print_owned_locks_on(outputStream * st) const678 void Thread::print_owned_locks_on(outputStream* st) const {
679 Mutex* cur = _owned_locks;
680 if (cur == NULL) {
681 st->print(" (no locks) ");
682 } else {
683 st->print_cr(" Locks owned:");
684 while (cur) {
685 cur->print_on(st);
686 cur = cur->next();
687 }
688 }
689 }
690 #endif // ASSERT
691
692 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
693 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
694 // used for compilation in the future. If that change is made, the need for these methods
695 // should be revisited, and they should be removed if possible.
696
is_lock_owned(address adr) const697 bool Thread::is_lock_owned(address adr) const {
698 return is_in_full_stack(adr);
699 }
700
set_as_starting_thread()701 bool Thread::set_as_starting_thread() {
702 assert(_starting_thread == NULL, "already initialized: "
703 "_starting_thread=" INTPTR_FORMAT, p2i(_starting_thread));
704 // NOTE: this must be called inside the main thread.
705 DEBUG_ONLY(_starting_thread = this;)
706 return os::create_main_thread(this->as_Java_thread());
707 }
708
initialize_class(Symbol * class_name,TRAPS)709 static void initialize_class(Symbol* class_name, TRAPS) {
710 Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
711 InstanceKlass::cast(klass)->initialize(CHECK);
712 }
713
714
715 // Creates the initial ThreadGroup
create_initial_thread_group(TRAPS)716 static Handle create_initial_thread_group(TRAPS) {
717 Handle system_instance = JavaCalls::construct_new_instance(
718 vmClasses::ThreadGroup_klass(),
719 vmSymbols::void_method_signature(),
720 CHECK_NH);
721 Universe::set_system_thread_group(system_instance());
722
723 Handle string = java_lang_String::create_from_str("main", CHECK_NH);
724 Handle main_instance = JavaCalls::construct_new_instance(
725 vmClasses::ThreadGroup_klass(),
726 vmSymbols::threadgroup_string_void_signature(),
727 system_instance,
728 string,
729 CHECK_NH);
730 return main_instance;
731 }
732
733 // Creates the initial Thread, and sets it to running.
create_initial_thread(Handle thread_group,JavaThread * thread,TRAPS)734 static void create_initial_thread(Handle thread_group, JavaThread* thread,
735 TRAPS) {
736 InstanceKlass* ik = vmClasses::Thread_klass();
737 assert(ik->is_initialized(), "must be");
738 instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
739
740 // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
741 // constructor calls Thread.current(), which must be set here for the
742 // initial thread.
743 java_lang_Thread::set_thread(thread_oop(), thread);
744 java_lang_Thread::set_priority(thread_oop(), NormPriority);
745 thread->set_threadObj(thread_oop());
746
747 Handle string = java_lang_String::create_from_str("main", CHECK);
748
749 JavaValue result(T_VOID);
750 JavaCalls::call_special(&result, thread_oop,
751 ik,
752 vmSymbols::object_initializer_name(),
753 vmSymbols::threadgroup_string_void_signature(),
754 thread_group,
755 string,
756 CHECK);
757
758 // Set thread status to running since main thread has
759 // been started and running.
760 java_lang_Thread::set_thread_status(thread_oop(),
761 JavaThreadStatus::RUNNABLE);
762 }
763
764 // Extract version and vendor specific information from
765 // java.lang.VersionProps fields.
766 // Returned char* is allocated in the thread's resource area
767 // so must be copied for permanency.
get_java_version_info(InstanceKlass * ik,Symbol * field_name)768 static const char* get_java_version_info(InstanceKlass* ik,
769 Symbol* field_name) {
770 fieldDescriptor fd;
771 bool found = ik != NULL &&
772 ik->find_local_field(field_name,
773 vmSymbols::string_signature(), &fd);
774 if (found) {
775 oop name_oop = ik->java_mirror()->obj_field(fd.offset());
776 if (name_oop == NULL) {
777 return NULL;
778 }
779 const char* name = java_lang_String::as_utf8_string(name_oop);
780 return name;
781 } else {
782 return NULL;
783 }
784 }
785
786 // General purpose hook into Java code, run once when the VM is initialized.
787 // The Java library method itself may be changed independently from the VM.
call_postVMInitHook(TRAPS)788 static void call_postVMInitHook(TRAPS) {
789 Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
790 if (klass != NULL) {
791 JavaValue result(T_VOID);
792 JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
793 vmSymbols::void_method_signature(),
794 CHECK);
795 }
796 }
797
798 // Initialized by VMThread at vm_global_init
799 static OopStorage* _thread_oop_storage = NULL;
800
threadObj() const801 oop JavaThread::threadObj() const {
802 return _threadObj.resolve();
803 }
804
set_threadObj(oop p)805 void JavaThread::set_threadObj(oop p) {
806 assert(_thread_oop_storage != NULL, "not yet initialized");
807 _threadObj = OopHandle(_thread_oop_storage, p);
808 }
809
thread_oop_storage()810 OopStorage* JavaThread::thread_oop_storage() {
811 assert(_thread_oop_storage != NULL, "not yet initialized");
812 return _thread_oop_storage;
813 }
814
allocate_threadObj(Handle thread_group,const char * thread_name,bool daemon,TRAPS)815 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
816 bool daemon, TRAPS) {
817 assert(thread_group.not_null(), "thread group should be specified");
818 assert(threadObj() == NULL, "should only create Java thread object once");
819
820 InstanceKlass* ik = vmClasses::Thread_klass();
821 assert(ik->is_initialized(), "must be");
822 instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
823
824 // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
825 // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
826 // constructor calls Thread.current(), which must be set here.
827 java_lang_Thread::set_thread(thread_oop(), this);
828 java_lang_Thread::set_priority(thread_oop(), NormPriority);
829 set_threadObj(thread_oop());
830
831 JavaValue result(T_VOID);
832 if (thread_name != NULL) {
833 Handle name = java_lang_String::create_from_str(thread_name, CHECK);
834 // Thread gets assigned specified name and null target
835 JavaCalls::call_special(&result,
836 thread_oop,
837 ik,
838 vmSymbols::object_initializer_name(),
839 vmSymbols::threadgroup_string_void_signature(),
840 thread_group,
841 name,
842 THREAD);
843 } else {
844 // Thread gets assigned name "Thread-nnn" and null target
845 // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
846 JavaCalls::call_special(&result,
847 thread_oop,
848 ik,
849 vmSymbols::object_initializer_name(),
850 vmSymbols::threadgroup_runnable_void_signature(),
851 thread_group,
852 Handle(),
853 THREAD);
854 }
855
856
857 if (daemon) {
858 java_lang_Thread::set_daemon(thread_oop());
859 }
860
861 if (HAS_PENDING_EXCEPTION) {
862 return;
863 }
864
865 Klass* group = vmClasses::ThreadGroup_klass();
866 Handle threadObj(THREAD, this->threadObj());
867
868 JavaCalls::call_special(&result,
869 thread_group,
870 group,
871 vmSymbols::add_method_name(),
872 vmSymbols::thread_void_signature(),
873 threadObj, // Arg 1
874 THREAD);
875 }
876
877 // ======= JavaThread ========
878
879 #if INCLUDE_JVMCI
880
881 jlong* JavaThread::_jvmci_old_thread_counters;
882
jvmci_counters_include(JavaThread * thread)883 bool jvmci_counters_include(JavaThread* thread) {
884 return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
885 }
886
collect_counters(jlong * array,int length)887 void JavaThread::collect_counters(jlong* array, int length) {
888 assert(length == JVMCICounterSize, "wrong value");
889 for (int i = 0; i < length; i++) {
890 array[i] = _jvmci_old_thread_counters[i];
891 }
892 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
893 if (jvmci_counters_include(tp)) {
894 for (int i = 0; i < length; i++) {
895 array[i] += tp->_jvmci_counters[i];
896 }
897 }
898 }
899 }
900
901 // Attempt to enlarge the array for per thread counters.
resize_counters_array(jlong * old_counters,int current_size,int new_size)902 jlong* resize_counters_array(jlong* old_counters, int current_size, int new_size) {
903 jlong* new_counters = NEW_C_HEAP_ARRAY_RETURN_NULL(jlong, new_size, mtJVMCI);
904 if (new_counters == NULL) {
905 return NULL;
906 }
907 if (old_counters == NULL) {
908 old_counters = new_counters;
909 memset(old_counters, 0, sizeof(jlong) * new_size);
910 } else {
911 for (int i = 0; i < MIN2((int) current_size, new_size); i++) {
912 new_counters[i] = old_counters[i];
913 }
914 if (new_size > current_size) {
915 memset(new_counters + current_size, 0, sizeof(jlong) * (new_size - current_size));
916 }
917 FREE_C_HEAP_ARRAY(jlong, old_counters);
918 }
919 return new_counters;
920 }
921
922 // Attempt to enlarge the array for per thread counters.
resize_counters(int current_size,int new_size)923 bool JavaThread::resize_counters(int current_size, int new_size) {
924 jlong* new_counters = resize_counters_array(_jvmci_counters, current_size, new_size);
925 if (new_counters == NULL) {
926 return false;
927 } else {
928 _jvmci_counters = new_counters;
929 return true;
930 }
931 }
932
933 class VM_JVMCIResizeCounters : public VM_Operation {
934 private:
935 int _new_size;
936 bool _failed;
937
938 public:
VM_JVMCIResizeCounters(int new_size)939 VM_JVMCIResizeCounters(int new_size) : _new_size(new_size), _failed(false) { }
type() const940 VMOp_Type type() const { return VMOp_JVMCIResizeCounters; }
allow_nested_vm_operations() const941 bool allow_nested_vm_operations() const { return true; }
doit()942 void doit() {
943 // Resize the old thread counters array
944 jlong* new_counters = resize_counters_array(JavaThread::_jvmci_old_thread_counters, JVMCICounterSize, _new_size);
945 if (new_counters == NULL) {
946 _failed = true;
947 return;
948 } else {
949 JavaThread::_jvmci_old_thread_counters = new_counters;
950 }
951
952 // Now resize each threads array
953 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
954 if (!tp->resize_counters(JVMCICounterSize, _new_size)) {
955 _failed = true;
956 break;
957 }
958 }
959 if (!_failed) {
960 JVMCICounterSize = _new_size;
961 }
962 }
963
failed()964 bool failed() { return _failed; }
965 };
966
resize_all_jvmci_counters(int new_size)967 bool JavaThread::resize_all_jvmci_counters(int new_size) {
968 VM_JVMCIResizeCounters op(new_size);
969 VMThread::execute(&op);
970 return !op.failed();
971 }
972
973 #endif // INCLUDE_JVMCI
974
975 #ifdef ASSERT
976 // Checks safepoint allowed and clears unhandled oops at potential safepoints.
check_possible_safepoint()977 void JavaThread::check_possible_safepoint() {
978 if (_no_safepoint_count > 0) {
979 print_owned_locks();
980 assert(false, "Possible safepoint reached by thread that does not allow it");
981 }
982 #ifdef CHECK_UNHANDLED_OOPS
983 // Clear unhandled oops in JavaThreads so we get a crash right away.
984 clear_unhandled_oops();
985 #endif // CHECK_UNHANDLED_OOPS
986 }
987
check_for_valid_safepoint_state()988 void JavaThread::check_for_valid_safepoint_state() {
989 // Check NoSafepointVerifier, which is implied by locks taken that can be
990 // shared with the VM thread. This makes sure that no locks with allow_vm_block
991 // are held.
992 check_possible_safepoint();
993
994 if (thread_state() != _thread_in_vm) {
995 fatal("LEAF method calling lock?");
996 }
997
998 if (GCALotAtAllSafepoints) {
999 // We could enter a safepoint here and thus have a gc
1000 InterfaceSupport::check_gc_alot();
1001 }
1002 }
1003 #endif // ASSERT
1004
1005 // A JavaThread is a normal Java thread
1006
JavaThread()1007 JavaThread::JavaThread() :
1008 // Initialize fields
1009
1010 _on_thread_list(false),
1011 DEBUG_ONLY(_java_call_counter(0) COMMA)
1012 _entry_point(nullptr),
1013 _deopt_mark(nullptr),
1014 _deopt_nmethod(nullptr),
1015 _vframe_array_head(nullptr),
1016 _vframe_array_last(nullptr),
1017 _jvmti_deferred_updates(nullptr),
1018 _callee_target(nullptr),
1019 _vm_result(nullptr),
1020 _vm_result_2(nullptr),
1021
1022 _current_pending_monitor(NULL),
1023 _current_pending_monitor_is_from_java(true),
1024 _current_waiting_monitor(NULL),
1025 _Stalled(0),
1026
1027 _monitor_chunks(nullptr),
1028
1029 _suspend_flags(0),
1030 _async_exception_condition(_no_async_condition),
1031 _pending_async_exception(nullptr),
1032
1033 _thread_state(_thread_new),
1034 _saved_exception_pc(nullptr),
1035 #ifdef ASSERT
1036 _no_safepoint_count(0),
1037 _visited_for_critical_count(false),
1038 #endif
1039
1040 _terminated(_not_terminated),
1041 _in_deopt_handler(0),
1042 _doing_unsafe_access(false),
1043 _do_not_unlock_if_synchronized(false),
1044 _jni_attach_state(_not_attaching_via_jni),
1045 #if INCLUDE_JVMCI
1046 _pending_deoptimization(-1),
1047 _pending_monitorenter(false),
1048 _pending_transfer_to_interpreter(false),
1049 _in_retryable_allocation(false),
1050 _pending_failed_speculation(0),
1051 _jvmci{nullptr},
1052 _jvmci_counters(nullptr),
1053 _jvmci_reserved0(nullptr),
1054 _jvmci_reserved1(nullptr),
1055 _jvmci_reserved_oop0(nullptr),
1056 #endif // INCLUDE_JVMCI
1057
1058 _exception_oop(oop()),
1059 _exception_pc(0),
1060 _exception_handler_pc(0),
1061 _is_method_handle_return(0),
1062
1063 _jni_active_critical(0),
1064 _pending_jni_exception_check_fn(nullptr),
1065 _depth_first_number(0),
1066
1067 // JVMTI PopFrame support
1068 _popframe_condition(popframe_inactive),
1069 _frames_to_pop_failed_realloc(0),
1070
1071 _handshake(this),
1072
1073 _popframe_preserved_args(nullptr),
1074 _popframe_preserved_args_size(0),
1075
1076 _jvmti_thread_state(nullptr),
1077 _interp_only_mode(0),
1078 _should_post_on_exceptions_flag(JNI_FALSE),
1079 _thread_stat(new ThreadStatistics()),
1080
1081 _parker(),
1082 _cached_monitor_info(nullptr),
1083
1084 _class_to_be_initialized(nullptr),
1085
1086 _SleepEvent(ParkEvent::Allocate(this))
1087 {
1088 set_jni_functions(jni_functions());
1089
1090 #if INCLUDE_JVMCI
1091 assert(_jvmci._implicit_exception_pc == nullptr, "must be");
1092 if (JVMCICounterSize > 0) {
1093 resize_counters(0, (int) JVMCICounterSize);
1094 }
1095 #endif // INCLUDE_JVMCI
1096
1097 // Setup safepoint state info for this thread
1098 ThreadSafepointState::create(this);
1099
1100 SafepointMechanism::initialize_header(this);
1101
1102 set_requires_cross_modify_fence(false);
1103
1104 pd_initialize();
1105 assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1106 }
1107
JavaThread(bool is_attaching_via_jni)1108 JavaThread::JavaThread(bool is_attaching_via_jni) : JavaThread() {
1109 if (is_attaching_via_jni) {
1110 _jni_attach_state = _attaching_via_jni;
1111 }
1112 }
1113
1114
1115 // interrupt support
1116
interrupt()1117 void JavaThread::interrupt() {
1118 // All callers should have 'this' thread protected by a
1119 // ThreadsListHandle so that it cannot terminate and deallocate
1120 // itself.
1121 debug_only(check_for_dangling_thread_pointer(this);)
1122
1123 // For Windows _interrupt_event
1124 osthread()->set_interrupted(true);
1125
1126 // For Thread.sleep
1127 _SleepEvent->unpark();
1128
1129 // For JSR166 LockSupport.park
1130 parker()->unpark();
1131
1132 // For ObjectMonitor and JvmtiRawMonitor
1133 _ParkEvent->unpark();
1134 }
1135
1136
is_interrupted(bool clear_interrupted)1137 bool JavaThread::is_interrupted(bool clear_interrupted) {
1138 debug_only(check_for_dangling_thread_pointer(this);)
1139
1140 if (_threadObj.peek() == NULL) {
1141 // If there is no j.l.Thread then it is impossible to have
1142 // been interrupted. We can find NULL during VM initialization
1143 // or when a JNI thread is still in the process of attaching.
1144 // In such cases this must be the current thread.
1145 assert(this == Thread::current(), "invariant");
1146 return false;
1147 }
1148
1149 bool interrupted = java_lang_Thread::interrupted(threadObj());
1150
1151 // NOTE that since there is no "lock" around the interrupt and
1152 // is_interrupted operations, there is the possibility that the
1153 // interrupted flag will be "false" but that the
1154 // low-level events will be in the signaled state. This is
1155 // intentional. The effect of this is that Object.wait() and
1156 // LockSupport.park() will appear to have a spurious wakeup, which
1157 // is allowed and not harmful, and the possibility is so rare that
1158 // it is not worth the added complexity to add yet another lock.
1159 // For the sleep event an explicit reset is performed on entry
1160 // to JavaThread::sleep, so there is no early return. It has also been
1161 // recommended not to put the interrupted flag into the "event"
1162 // structure because it hides the issue.
1163 // Also, because there is no lock, we must only clear the interrupt
1164 // state if we are going to report that we were interrupted; otherwise
1165 // an interrupt that happens just after we read the field would be lost.
1166 if (interrupted && clear_interrupted) {
1167 assert(this == Thread::current(), "only the current thread can clear");
1168 java_lang_Thread::set_interrupted(threadObj(), false);
1169 osthread()->set_interrupted(false);
1170 }
1171
1172 return interrupted;
1173 }
1174
block_if_vm_exited()1175 void JavaThread::block_if_vm_exited() {
1176 if (_terminated == _vm_exited) {
1177 // _vm_exited is set at safepoint, and Threads_lock is never released
1178 // we will block here forever.
1179 // Here we can be doing a jump from a safe state to an unsafe state without
1180 // proper transition, but it happens after the final safepoint has begun.
1181 set_thread_state(_thread_in_vm);
1182 Threads_lock->lock();
1183 ShouldNotReachHere();
1184 }
1185 }
1186
JavaThread(ThreadFunction entry_point,size_t stack_sz)1187 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) : JavaThread() {
1188 _jni_attach_state = _not_attaching_via_jni;
1189 set_entry_point(entry_point);
1190 // Create the native thread itself.
1191 // %note runtime_23
1192 os::ThreadType thr_type = os::java_thread;
1193 thr_type = entry_point == &CompilerThread::thread_entry ? os::compiler_thread :
1194 os::java_thread;
1195 os::create_thread(this, thr_type, stack_sz);
1196 // The _osthread may be NULL here because we ran out of memory (too many threads active).
1197 // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1198 // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1199 // the exception consists of creating the exception object & initializing it, initialization
1200 // will leave the VM via a JavaCall and then all locks must be unlocked).
1201 //
1202 // The thread is still suspended when we reach here. Thread must be explicit started
1203 // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1204 // by calling Threads:add. The reason why this is not done here, is because the thread
1205 // object must be fully initialized (take a look at JVM_Start)
1206 }
1207
~JavaThread()1208 JavaThread::~JavaThread() {
1209
1210 // Ask ServiceThread to release the threadObj OopHandle
1211 ServiceThread::add_oop_handle_release(_threadObj);
1212
1213 // Return the sleep event to the free list
1214 ParkEvent::Release(_SleepEvent);
1215 _SleepEvent = NULL;
1216
1217 // Free any remaining previous UnrollBlock
1218 vframeArray* old_array = vframe_array_last();
1219
1220 if (old_array != NULL) {
1221 Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1222 old_array->set_unroll_block(NULL);
1223 delete old_info;
1224 delete old_array;
1225 }
1226
1227 JvmtiDeferredUpdates* updates = deferred_updates();
1228 if (updates != NULL) {
1229 // This can only happen if thread is destroyed before deoptimization occurs.
1230 assert(updates->count() > 0, "Updates holder not deleted");
1231 // free deferred updates.
1232 delete updates;
1233 set_deferred_updates(NULL);
1234 }
1235
1236 // All Java related clean up happens in exit
1237 ThreadSafepointState::destroy(this);
1238 if (_thread_stat != NULL) delete _thread_stat;
1239
1240 #if INCLUDE_JVMCI
1241 if (JVMCICounterSize > 0) {
1242 FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1243 }
1244 #endif // INCLUDE_JVMCI
1245 }
1246
1247
1248 // First JavaThread specific code executed by a new Java thread.
pre_run()1249 void JavaThread::pre_run() {
1250 // empty - see comments in run()
1251 }
1252
1253 // The main routine called by a new Java thread. This isn't overridden
1254 // by subclasses, instead different subclasses define a different "entry_point"
1255 // which defines the actual logic for that kind of thread.
run()1256 void JavaThread::run() {
1257 // initialize thread-local alloc buffer related fields
1258 initialize_tlab();
1259
1260 _stack_overflow_state.create_stack_guard_pages();
1261
1262 cache_global_variables();
1263
1264 // Thread is now sufficiently initialized to be handled by the safepoint code as being
1265 // in the VM. Change thread state from _thread_new to _thread_in_vm
1266 ThreadStateTransition::transition(this, _thread_new, _thread_in_vm);
1267 // Before a thread is on the threads list it is always safe, so after leaving the
1268 // _thread_new we should emit a instruction barrier. The distance to modified code
1269 // from here is probably far enough, but this is consistent and safe.
1270 OrderAccess::cross_modify_fence();
1271
1272 assert(JavaThread::current() == this, "sanity check");
1273 assert(!Thread::current()->owns_locks(), "sanity check");
1274
1275 DTRACE_THREAD_PROBE(start, this);
1276
1277 // This operation might block. We call that after all safepoint checks for a new thread has
1278 // been completed.
1279 set_active_handles(JNIHandleBlock::allocate_block());
1280
1281 if (JvmtiExport::should_post_thread_life()) {
1282 JvmtiExport::post_thread_start(this);
1283
1284 }
1285
1286 // We call another function to do the rest so we are sure that the stack addresses used
1287 // from there will be lower than the stack base just computed.
1288 thread_main_inner();
1289 }
1290
thread_main_inner()1291 void JavaThread::thread_main_inner() {
1292 assert(JavaThread::current() == this, "sanity check");
1293 assert(_threadObj.peek() != NULL, "just checking");
1294
1295 // Execute thread entry point unless this thread has a pending exception
1296 // or has been stopped before starting.
1297 // Note: Due to JVM_StopThread we can have pending exceptions already!
1298 if (!this->has_pending_exception() &&
1299 !java_lang_Thread::is_stillborn(this->threadObj())) {
1300 {
1301 ResourceMark rm(this);
1302 this->set_native_thread_name(this->get_thread_name());
1303 }
1304 HandleMark hm(this);
1305 this->entry_point()(this, this);
1306 }
1307
1308 DTRACE_THREAD_PROBE(stop, this);
1309
1310 // Cleanup is handled in post_run()
1311 }
1312
1313 // Shared teardown for all JavaThreads
post_run()1314 void JavaThread::post_run() {
1315 this->exit(false);
1316 this->unregister_thread_stack_with_NMT();
1317 // Defer deletion to here to ensure 'this' is still referenceable in call_run
1318 // for any shared tear-down.
1319 this->smr_delete();
1320 }
1321
ensure_join(JavaThread * thread)1322 static void ensure_join(JavaThread* thread) {
1323 // We do not need to grab the Threads_lock, since we are operating on ourself.
1324 Handle threadObj(thread, thread->threadObj());
1325 assert(threadObj.not_null(), "java thread object must exist");
1326 ObjectLocker lock(threadObj, thread);
1327 // Ignore pending exception (ThreadDeath), since we are exiting anyway
1328 thread->clear_pending_exception();
1329 // Thread is exiting. So set thread_status field in java.lang.Thread class to TERMINATED.
1330 java_lang_Thread::set_thread_status(threadObj(), JavaThreadStatus::TERMINATED);
1331 // Clear the native thread instance - this makes isAlive return false and allows the join()
1332 // to complete once we've done the notify_all below
1333 java_lang_Thread::set_thread(threadObj(), NULL);
1334 lock.notify_all(thread);
1335 // Ignore pending exception (ThreadDeath), since we are exiting anyway
1336 thread->clear_pending_exception();
1337 }
1338
is_daemon(oop threadObj)1339 static bool is_daemon(oop threadObj) {
1340 return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
1341 }
1342
1343 // For any new cleanup additions, please check to see if they need to be applied to
1344 // cleanup_failed_attach_current_thread as well.
exit(bool destroy_vm,ExitType exit_type)1345 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1346 assert(this == JavaThread::current(), "thread consistency check");
1347
1348 elapsedTimer _timer_exit_phase1;
1349 elapsedTimer _timer_exit_phase2;
1350 elapsedTimer _timer_exit_phase3;
1351 elapsedTimer _timer_exit_phase4;
1352
1353 if (log_is_enabled(Debug, os, thread, timer)) {
1354 _timer_exit_phase1.start();
1355 }
1356
1357 HandleMark hm(this);
1358 Handle uncaught_exception(this, this->pending_exception());
1359 this->clear_pending_exception();
1360 Handle threadObj(this, this->threadObj());
1361 assert(threadObj.not_null(), "Java thread object should be created");
1362
1363 if (!destroy_vm) {
1364 if (uncaught_exception.not_null()) {
1365 EXCEPTION_MARK;
1366 // Call method Thread.dispatchUncaughtException().
1367 Klass* thread_klass = vmClasses::Thread_klass();
1368 JavaValue result(T_VOID);
1369 JavaCalls::call_virtual(&result,
1370 threadObj, thread_klass,
1371 vmSymbols::dispatchUncaughtException_name(),
1372 vmSymbols::throwable_void_signature(),
1373 uncaught_exception,
1374 THREAD);
1375 if (HAS_PENDING_EXCEPTION) {
1376 ResourceMark rm(this);
1377 jio_fprintf(defaultStream::error_stream(),
1378 "\nException: %s thrown from the UncaughtExceptionHandler"
1379 " in thread \"%s\"\n",
1380 pending_exception()->klass()->external_name(),
1381 get_thread_name());
1382 CLEAR_PENDING_EXCEPTION;
1383 }
1384 }
1385
1386 // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1387 // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1388 // is deprecated anyhow.
1389 if (!is_Compiler_thread()) {
1390 int count = 3;
1391 while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1392 EXCEPTION_MARK;
1393 JavaValue result(T_VOID);
1394 Klass* thread_klass = vmClasses::Thread_klass();
1395 JavaCalls::call_virtual(&result,
1396 threadObj, thread_klass,
1397 vmSymbols::exit_method_name(),
1398 vmSymbols::void_method_signature(),
1399 THREAD);
1400 CLEAR_PENDING_EXCEPTION;
1401 }
1402 }
1403 // notify JVMTI
1404 if (JvmtiExport::should_post_thread_life()) {
1405 JvmtiExport::post_thread_end(this);
1406 }
1407
1408 // The careful dance between thread suspension and exit is handled here.
1409 // Since we are in thread_in_vm state and suspension is done with handshakes,
1410 // we can just put in the exiting state and it will be correctly handled.
1411 set_terminated(_thread_exiting);
1412
1413 ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
1414 } else {
1415 assert(!is_terminated() && !is_exiting(), "must not be exiting");
1416 // before_exit() has already posted JVMTI THREAD_END events
1417 }
1418
1419 if (log_is_enabled(Debug, os, thread, timer)) {
1420 _timer_exit_phase1.stop();
1421 _timer_exit_phase2.start();
1422 }
1423
1424 // Capture daemon status before the thread is marked as terminated.
1425 bool daemon = is_daemon(threadObj());
1426
1427 // Notify waiters on thread object. This has to be done after exit() is called
1428 // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1429 // group should have the destroyed bit set before waiters are notified).
1430 ensure_join(this);
1431 assert(!this->has_pending_exception(), "ensure_join should have cleared");
1432
1433 if (log_is_enabled(Debug, os, thread, timer)) {
1434 _timer_exit_phase2.stop();
1435 _timer_exit_phase3.start();
1436 }
1437 // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1438 // held by this thread must be released. The spec does not distinguish
1439 // between JNI-acquired and regular Java monitors. We can only see
1440 // regular Java monitors here if monitor enter-exit matching is broken.
1441 //
1442 // ensure_join() ignores IllegalThreadStateExceptions, and so does
1443 // ObjectSynchronizer::release_monitors_owned_by_thread().
1444 if (exit_type == jni_detach) {
1445 // Sanity check even though JNI DetachCurrentThread() would have
1446 // returned JNI_ERR if there was a Java frame. JavaThread exit
1447 // should be done executing Java code by the time we get here.
1448 assert(!this->has_last_Java_frame(),
1449 "should not have a Java frame when detaching or exiting");
1450 ObjectSynchronizer::release_monitors_owned_by_thread(this);
1451 assert(!this->has_pending_exception(), "release_monitors should have cleared");
1452 }
1453
1454 // These things needs to be done while we are still a Java Thread. Make sure that thread
1455 // is in a consistent state, in case GC happens
1456 JFR_ONLY(Jfr::on_thread_exit(this);)
1457
1458 if (active_handles() != NULL) {
1459 JNIHandleBlock* block = active_handles();
1460 set_active_handles(NULL);
1461 JNIHandleBlock::release_block(block);
1462 }
1463
1464 if (free_handle_block() != NULL) {
1465 JNIHandleBlock* block = free_handle_block();
1466 set_free_handle_block(NULL);
1467 JNIHandleBlock::release_block(block);
1468 }
1469
1470 // These have to be removed while this is still a valid thread.
1471 _stack_overflow_state.remove_stack_guard_pages();
1472
1473 if (UseTLAB) {
1474 tlab().retire();
1475 }
1476
1477 if (JvmtiEnv::environments_might_exist()) {
1478 JvmtiExport::cleanup_thread(this);
1479 }
1480
1481 // We need to cache the thread name for logging purposes below as once
1482 // we have called on_thread_detach this thread must not access any oops.
1483 char* thread_name = NULL;
1484 if (log_is_enabled(Debug, os, thread, timer)) {
1485 ResourceMark rm(this);
1486 thread_name = os::strdup(get_thread_name());
1487 }
1488
1489 log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1490 exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1491 os::current_thread_id());
1492
1493 if (log_is_enabled(Debug, os, thread, timer)) {
1494 _timer_exit_phase3.stop();
1495 _timer_exit_phase4.start();
1496 }
1497
1498 #if INCLUDE_JVMCI
1499 if (JVMCICounterSize > 0) {
1500 if (jvmci_counters_include(this)) {
1501 for (int i = 0; i < JVMCICounterSize; i++) {
1502 _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1503 }
1504 }
1505 }
1506 #endif // INCLUDE_JVMCI
1507
1508 // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1509 Threads::remove(this, daemon);
1510
1511 if (log_is_enabled(Debug, os, thread, timer)) {
1512 _timer_exit_phase4.stop();
1513 log_debug(os, thread, timer)("name='%s'"
1514 ", exit-phase1=" JLONG_FORMAT
1515 ", exit-phase2=" JLONG_FORMAT
1516 ", exit-phase3=" JLONG_FORMAT
1517 ", exit-phase4=" JLONG_FORMAT,
1518 thread_name,
1519 _timer_exit_phase1.milliseconds(),
1520 _timer_exit_phase2.milliseconds(),
1521 _timer_exit_phase3.milliseconds(),
1522 _timer_exit_phase4.milliseconds());
1523 os::free(thread_name);
1524 }
1525 }
1526
cleanup_failed_attach_current_thread(bool is_daemon)1527 void JavaThread::cleanup_failed_attach_current_thread(bool is_daemon) {
1528 if (active_handles() != NULL) {
1529 JNIHandleBlock* block = active_handles();
1530 set_active_handles(NULL);
1531 JNIHandleBlock::release_block(block);
1532 }
1533
1534 if (free_handle_block() != NULL) {
1535 JNIHandleBlock* block = free_handle_block();
1536 set_free_handle_block(NULL);
1537 JNIHandleBlock::release_block(block);
1538 }
1539
1540 // These have to be removed while this is still a valid thread.
1541 _stack_overflow_state.remove_stack_guard_pages();
1542
1543 if (UseTLAB) {
1544 tlab().retire();
1545 }
1546
1547 Threads::remove(this, is_daemon);
1548 this->smr_delete();
1549 }
1550
active()1551 JavaThread* JavaThread::active() {
1552 Thread* thread = Thread::current();
1553 if (thread->is_Java_thread()) {
1554 return thread->as_Java_thread();
1555 } else {
1556 assert(thread->is_VM_thread(), "this must be a vm thread");
1557 VM_Operation* op = ((VMThread*) thread)->vm_operation();
1558 JavaThread *ret = op == NULL ? NULL : op->calling_thread()->as_Java_thread();
1559 return ret;
1560 }
1561 }
1562
is_lock_owned(address adr) const1563 bool JavaThread::is_lock_owned(address adr) const {
1564 if (Thread::is_lock_owned(adr)) return true;
1565
1566 for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1567 if (chunk->contains(adr)) return true;
1568 }
1569
1570 return false;
1571 }
1572
exception_oop() const1573 oop JavaThread::exception_oop() const {
1574 return Atomic::load(&_exception_oop);
1575 }
1576
set_exception_oop(oop o)1577 void JavaThread::set_exception_oop(oop o) {
1578 Atomic::store(&_exception_oop, o);
1579 }
1580
add_monitor_chunk(MonitorChunk * chunk)1581 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1582 chunk->set_next(monitor_chunks());
1583 set_monitor_chunks(chunk);
1584 }
1585
remove_monitor_chunk(MonitorChunk * chunk)1586 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1587 guarantee(monitor_chunks() != NULL, "must be non empty");
1588 if (monitor_chunks() == chunk) {
1589 set_monitor_chunks(chunk->next());
1590 } else {
1591 MonitorChunk* prev = monitor_chunks();
1592 while (prev->next() != chunk) prev = prev->next();
1593 prev->set_next(chunk->next());
1594 }
1595 }
1596
1597
1598 // Asynchronous exceptions support
1599 //
1600 // Note: this function shouldn't block if it's called in
1601 // _thread_in_native_trans state (such as from
1602 // check_special_condition_for_native_trans()).
check_and_handle_async_exceptions()1603 void JavaThread::check_and_handle_async_exceptions() {
1604 if (has_last_Java_frame() && has_async_exception_condition()) {
1605 // If we are at a polling page safepoint (not a poll return)
1606 // then we must defer async exception because live registers
1607 // will be clobbered by the exception path. Poll return is
1608 // ok because the call we a returning from already collides
1609 // with exception handling registers and so there is no issue.
1610 // (The exception handling path kills call result registers but
1611 // this is ok since the exception kills the result anyway).
1612
1613 if (is_at_poll_safepoint()) {
1614 // if the code we are returning to has deoptimized we must defer
1615 // the exception otherwise live registers get clobbered on the
1616 // exception path before deoptimization is able to retrieve them.
1617 //
1618 RegisterMap map(this, false);
1619 frame caller_fr = last_frame().sender(&map);
1620 assert(caller_fr.is_compiled_frame(), "what?");
1621 if (caller_fr.is_deoptimized_frame()) {
1622 log_info(exceptions)("deferred async exception at compiled safepoint");
1623 return;
1624 }
1625 }
1626 }
1627
1628 AsyncExceptionCondition condition = clear_async_exception_condition();
1629 if (condition == _no_async_condition) {
1630 // Conditions have changed since has_special_runtime_exit_condition()
1631 // was called:
1632 // - if we were here only because of an external suspend request,
1633 // then that was taken care of above (or cancelled) so we are done
1634 // - if we were here because of another async request, then it has
1635 // been cleared between the has_special_runtime_exit_condition()
1636 // and now so again we are done
1637 return;
1638 }
1639
1640 // Check for pending async. exception
1641 if (_pending_async_exception != NULL) {
1642 // Only overwrite an already pending exception, if it is not a threadDeath.
1643 if (!has_pending_exception() || !pending_exception()->is_a(vmClasses::ThreadDeath_klass())) {
1644
1645 // We cannot call Exceptions::_throw(...) here because we cannot block
1646 set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
1647
1648 LogTarget(Info, exceptions) lt;
1649 if (lt.is_enabled()) {
1650 ResourceMark rm;
1651 LogStream ls(lt);
1652 ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
1653 if (has_last_Java_frame()) {
1654 frame f = last_frame();
1655 ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
1656 }
1657 ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
1658 }
1659 _pending_async_exception = NULL;
1660 // Clear condition from _suspend_flags since we have finished processing it.
1661 clear_suspend_flag(_has_async_exception);
1662 }
1663 }
1664
1665 if (condition == _async_unsafe_access_error && !has_pending_exception()) {
1666 // We may be at method entry which requires we save the do-not-unlock flag.
1667 UnlockFlagSaver fs(this);
1668 switch (thread_state()) {
1669 case _thread_in_vm: {
1670 JavaThread* THREAD = this;
1671 Exceptions::throw_unsafe_access_internal_error(THREAD, __FILE__, __LINE__, "a fault occurred in an unsafe memory access operation");
1672 return;
1673 }
1674 case _thread_in_native: {
1675 ThreadInVMfromNative tiv(this);
1676 JavaThread* THREAD = this;
1677 Exceptions::throw_unsafe_access_internal_error(THREAD, __FILE__, __LINE__, "a fault occurred in an unsafe memory access operation");
1678 return;
1679 }
1680 case _thread_in_Java: {
1681 ThreadInVMfromJava tiv(this);
1682 JavaThread* THREAD = this;
1683 Exceptions::throw_unsafe_access_internal_error(THREAD, __FILE__, __LINE__, "a fault occurred in a recent unsafe memory access operation in compiled Java code");
1684 return;
1685 }
1686 default:
1687 ShouldNotReachHere();
1688 }
1689 }
1690
1691 assert(has_pending_exception(), "must have handled the async condition if no exception");
1692 }
1693
handle_special_runtime_exit_condition(bool check_asyncs)1694 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
1695
1696 if (is_obj_deopt_suspend()) {
1697 frame_anchor()->make_walkable(this);
1698 wait_for_object_deoptimization();
1699 }
1700
1701 // We might be here for reasons in addition to the self-suspend request
1702 // so check for other async requests.
1703 if (check_asyncs) {
1704 check_and_handle_async_exceptions();
1705 }
1706
1707 JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
1708 }
1709
1710 class InstallAsyncExceptionClosure : public HandshakeClosure {
1711 Handle _throwable; // The Throwable thrown at the target Thread
1712 public:
InstallAsyncExceptionClosure(Handle throwable)1713 InstallAsyncExceptionClosure(Handle throwable) : HandshakeClosure("InstallAsyncException"), _throwable(throwable) {}
1714
do_thread(Thread * thr)1715 void do_thread(Thread* thr) {
1716 JavaThread* target = thr->as_Java_thread();
1717 // Note that this now allows multiple ThreadDeath exceptions to be
1718 // thrown at a thread.
1719 // The target thread has run and has not exited yet.
1720 target->send_thread_stop(_throwable());
1721 }
1722 };
1723
send_async_exception(oop java_thread,oop java_throwable)1724 void JavaThread::send_async_exception(oop java_thread, oop java_throwable) {
1725 Handle throwable(Thread::current(), java_throwable);
1726 JavaThread* target = java_lang_Thread::thread(java_thread);
1727 InstallAsyncExceptionClosure vm_stop(throwable);
1728 Handshake::execute(&vm_stop, target);
1729 }
1730
send_thread_stop(oop java_throwable)1731 void JavaThread::send_thread_stop(oop java_throwable) {
1732 ResourceMark rm;
1733 assert(is_handshake_safe_for(Thread::current()),
1734 "should be self or handshakee");
1735
1736 // Do not throw asynchronous exceptions against the compiler thread
1737 // (the compiler thread should not be a Java thread -- fix in 1.4.2)
1738 if (!can_call_java()) return;
1739
1740 {
1741 // Actually throw the Throwable against the target Thread - however
1742 // only if there is no thread death exception installed already.
1743 if (_pending_async_exception == NULL || !_pending_async_exception->is_a(vmClasses::ThreadDeath_klass())) {
1744 // If the topmost frame is a runtime stub, then we are calling into
1745 // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
1746 // must deoptimize the caller before continuing, as the compiled exception handler table
1747 // may not be valid
1748 if (has_last_Java_frame()) {
1749 frame f = last_frame();
1750 if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
1751 RegisterMap reg_map(this, false);
1752 frame compiled_frame = f.sender(®_map);
1753 if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
1754 Deoptimization::deoptimize(this, compiled_frame);
1755 }
1756 }
1757 }
1758
1759 // Set async. pending exception in thread.
1760 set_pending_async_exception(java_throwable);
1761
1762 if (log_is_enabled(Info, exceptions)) {
1763 ResourceMark rm;
1764 log_info(exceptions)("Pending Async. exception installed of type: %s",
1765 InstanceKlass::cast(_pending_async_exception->klass())->external_name());
1766 }
1767 // for AbortVMOnException flag
1768 Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
1769 }
1770 }
1771
1772
1773 // Interrupt thread so it will wake up from a potential wait()/sleep()/park()
1774 java_lang_Thread::set_interrupted(threadObj(), true);
1775 this->interrupt();
1776 }
1777
1778
1779 // External suspension mechanism.
1780 //
1781 // Guarantees on return (for a valid target thread):
1782 // - Target thread will not execute any new bytecode.
1783 // - Target thread will not enter any new monitors.
1784 //
java_suspend()1785 bool JavaThread::java_suspend() {
1786 ThreadsListHandle tlh;
1787 if (!tlh.includes(this)) {
1788 log_trace(thread, suspend)("JavaThread:" INTPTR_FORMAT " not on ThreadsList, no suspension", p2i(this));
1789 return false;
1790 }
1791 return this->handshake_state()->suspend();
1792 }
1793
java_resume()1794 bool JavaThread::java_resume() {
1795 ThreadsListHandle tlh;
1796 if (!tlh.includes(this)) {
1797 log_trace(thread, suspend)("JavaThread:" INTPTR_FORMAT " not on ThreadsList, nothing to resume", p2i(this));
1798 return false;
1799 }
1800 return this->handshake_state()->resume();
1801 }
1802
1803 // Wait for another thread to perform object reallocation and relocking on behalf of
1804 // this thread.
1805 // Raw thread state transition to _thread_blocked and back again to the original
1806 // state before returning are performed. The current thread is required to
1807 // change to _thread_blocked in order to be seen to be safepoint/handshake safe
1808 // whilst suspended and only after becoming handshake safe, the other thread can
1809 // complete the handshake used to synchronize with this thread and then perform
1810 // the reallocation and relocking. We cannot use the thread state transition
1811 // helpers because we arrive here in various states and also because the helpers
1812 // indirectly call this method. After leaving _thread_blocked we have to check
1813 // for safepoint/handshake, except if _thread_in_native. The thread is safe
1814 // without blocking then. Allowed states are enumerated in
1815 // SafepointSynchronize::block(). See also EscapeBarrier::sync_and_suspend_*()
1816
wait_for_object_deoptimization()1817 void JavaThread::wait_for_object_deoptimization() {
1818 assert(!has_last_Java_frame() || frame_anchor()->walkable(), "should have walkable stack");
1819 assert(this == Thread::current(), "invariant");
1820 JavaThreadState state = thread_state();
1821
1822 bool spin_wait = os::is_MP();
1823 do {
1824 set_thread_state(_thread_blocked);
1825 // Wait for object deoptimization if requested.
1826 if (spin_wait) {
1827 // A single deoptimization is typically very short. Microbenchmarks
1828 // showed 5% better performance when spinning.
1829 const uint spin_limit = 10 * SpinYield::default_spin_limit;
1830 SpinYield spin(spin_limit);
1831 for (uint i = 0; is_obj_deopt_suspend() && i < spin_limit; i++) {
1832 spin.wait();
1833 }
1834 // Spin just once
1835 spin_wait = false;
1836 } else {
1837 MonitorLocker ml(this, EscapeBarrier_lock, Monitor::_no_safepoint_check_flag);
1838 if (is_obj_deopt_suspend()) {
1839 ml.wait();
1840 }
1841 }
1842 // The current thread could have been suspended again. We have to check for
1843 // suspend after restoring the saved state. Without this the current thread
1844 // might return to _thread_in_Java and execute bytecode.
1845 set_thread_state_fence(state);
1846
1847 if (state != _thread_in_native) {
1848 SafepointMechanism::process_if_requested(this);
1849 }
1850 // A handshake for obj. deoptimization suspend could have been processed so
1851 // we must check after processing.
1852 } while (is_obj_deopt_suspend());
1853 }
1854
1855 #ifdef ASSERT
1856 // Verify the JavaThread has not yet been published in the Threads::list, and
1857 // hence doesn't need protection from concurrent access at this stage.
verify_not_published()1858 void JavaThread::verify_not_published() {
1859 // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
1860 // since an unpublished JavaThread doesn't participate in the
1861 // Thread-SMR protocol for keeping a ThreadsList alive.
1862 assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
1863 }
1864 #endif
1865
1866 // Slow path when the native==>Java barriers detect a safepoint/handshake is
1867 // pending, when _suspend_flags is non-zero or when we need to process a stack
1868 // watermark. Also check for pending async exceptions (except unsafe access error).
1869 // Note only the native==>Java barriers can call this function when thread state
1870 // is _thread_in_native_trans.
check_special_condition_for_native_trans(JavaThread * thread)1871 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
1872 assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
1873 assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "Unwalkable stack in native->Java transition");
1874
1875 // Enable WXWrite: called directly from interpreter native wrapper.
1876 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, thread));
1877
1878 SafepointMechanism::process_if_requested_with_exit_check(thread, false /* check asyncs */);
1879
1880 // After returning from native, it could be that the stack frames are not
1881 // yet safe to use. We catch such situations in the subsequent stack watermark
1882 // barrier, which will trap unsafe stack frames.
1883 StackWatermarkSet::before_unwind(thread);
1884
1885 if (thread->has_async_exception_condition(false /* check unsafe access error */)) {
1886 // We are in _thread_in_native_trans state, don't handle unsafe
1887 // access error since that may block.
1888 thread->check_and_handle_async_exceptions();
1889 }
1890 }
1891
1892 #ifndef PRODUCT
1893 // Deoptimization
1894 // Function for testing deoptimization
deoptimize()1895 void JavaThread::deoptimize() {
1896 StackFrameStream fst(this, false /* update */, true /* process_frames */);
1897 bool deopt = false; // Dump stack only if a deopt actually happens.
1898 bool only_at = strlen(DeoptimizeOnlyAt) > 0;
1899 // Iterate over all frames in the thread and deoptimize
1900 for (; !fst.is_done(); fst.next()) {
1901 if (fst.current()->can_be_deoptimized()) {
1902
1903 if (only_at) {
1904 // Deoptimize only at particular bcis. DeoptimizeOnlyAt
1905 // consists of comma or carriage return separated numbers so
1906 // search for the current bci in that string.
1907 address pc = fst.current()->pc();
1908 nmethod* nm = (nmethod*) fst.current()->cb();
1909 ScopeDesc* sd = nm->scope_desc_at(pc);
1910 char buffer[8];
1911 jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
1912 size_t len = strlen(buffer);
1913 const char * found = strstr(DeoptimizeOnlyAt, buffer);
1914 while (found != NULL) {
1915 if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
1916 (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
1917 // Check that the bci found is bracketed by terminators.
1918 break;
1919 }
1920 found = strstr(found + 1, buffer);
1921 }
1922 if (!found) {
1923 continue;
1924 }
1925 }
1926
1927 if (DebugDeoptimization && !deopt) {
1928 deopt = true; // One-time only print before deopt
1929 tty->print_cr("[BEFORE Deoptimization]");
1930 trace_frames();
1931 trace_stack();
1932 }
1933 Deoptimization::deoptimize(this, *fst.current());
1934 }
1935 }
1936
1937 if (DebugDeoptimization && deopt) {
1938 tty->print_cr("[AFTER Deoptimization]");
1939 trace_frames();
1940 }
1941 }
1942
1943
1944 // Make zombies
make_zombies()1945 void JavaThread::make_zombies() {
1946 for (StackFrameStream fst(this, true /* update */, true /* process_frames */); !fst.is_done(); fst.next()) {
1947 if (fst.current()->can_be_deoptimized()) {
1948 // it is a Java nmethod
1949 nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
1950 nm->make_not_entrant();
1951 }
1952 }
1953 }
1954 #endif // PRODUCT
1955
1956
deoptimize_marked_methods()1957 void JavaThread::deoptimize_marked_methods() {
1958 if (!has_last_Java_frame()) return;
1959 StackFrameStream fst(this, false /* update */, true /* process_frames */);
1960 for (; !fst.is_done(); fst.next()) {
1961 if (fst.current()->should_be_deoptimized()) {
1962 Deoptimization::deoptimize(this, *fst.current());
1963 }
1964 }
1965 }
1966
1967 #ifdef ASSERT
verify_frame_info()1968 void JavaThread::verify_frame_info() {
1969 assert((!has_last_Java_frame() && java_call_counter() == 0) ||
1970 (has_last_Java_frame() && java_call_counter() > 0),
1971 "unexpected frame info: has_last_frame=%s, java_call_counter=%d",
1972 has_last_Java_frame() ? "true" : "false", java_call_counter());
1973 }
1974 #endif
1975
oops_do_no_frames(OopClosure * f,CodeBlobClosure * cf)1976 void JavaThread::oops_do_no_frames(OopClosure* f, CodeBlobClosure* cf) {
1977 // Verify that the deferred card marks have been flushed.
1978 assert(deferred_card_mark().is_empty(), "Should be empty during GC");
1979
1980 // Traverse the GCHandles
1981 Thread::oops_do_no_frames(f, cf);
1982
1983 DEBUG_ONLY(verify_frame_info();)
1984
1985 if (has_last_Java_frame()) {
1986 // Traverse the monitor chunks
1987 for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1988 chunk->oops_do(f);
1989 }
1990 }
1991
1992 assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
1993 // If we have deferred set_locals there might be oops waiting to be
1994 // written
1995 GrowableArray<jvmtiDeferredLocalVariableSet*>* list = JvmtiDeferredUpdates::deferred_locals(this);
1996 if (list != NULL) {
1997 for (int i = 0; i < list->length(); i++) {
1998 list->at(i)->oops_do(f);
1999 }
2000 }
2001
2002 // Traverse instance variables at the end since the GC may be moving things
2003 // around using this function
2004 f->do_oop((oop*) &_vm_result);
2005 f->do_oop((oop*) &_exception_oop);
2006 f->do_oop((oop*) &_pending_async_exception);
2007 #if INCLUDE_JVMCI
2008 f->do_oop((oop*) &_jvmci_reserved_oop0);
2009 #endif
2010
2011 if (jvmti_thread_state() != NULL) {
2012 jvmti_thread_state()->oops_do(f, cf);
2013 }
2014 }
2015
oops_do_frames(OopClosure * f,CodeBlobClosure * cf)2016 void JavaThread::oops_do_frames(OopClosure* f, CodeBlobClosure* cf) {
2017 if (!has_last_Java_frame()) {
2018 return;
2019 }
2020 // Finish any pending lazy GC activity for the frames
2021 StackWatermarkSet::finish_processing(this, NULL /* context */, StackWatermarkKind::gc);
2022 // Traverse the execution stack
2023 for (StackFrameStream fst(this, true /* update */, false /* process_frames */); !fst.is_done(); fst.next()) {
2024 fst.current()->oops_do(f, cf, fst.register_map());
2025 }
2026 }
2027
2028 #ifdef ASSERT
verify_states_for_handshake()2029 void JavaThread::verify_states_for_handshake() {
2030 // This checks that the thread has a correct frame state during a handshake.
2031 verify_frame_info();
2032 }
2033 #endif
2034
nmethods_do(CodeBlobClosure * cf)2035 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2036 DEBUG_ONLY(verify_frame_info();)
2037
2038 if (has_last_Java_frame()) {
2039 // Traverse the execution stack
2040 for (StackFrameStream fst(this, true /* update */, true /* process_frames */); !fst.is_done(); fst.next()) {
2041 fst.current()->nmethods_do(cf);
2042 }
2043 }
2044
2045 if (jvmti_thread_state() != NULL) {
2046 jvmti_thread_state()->nmethods_do(cf);
2047 }
2048 }
2049
metadata_do(MetadataClosure * f)2050 void JavaThread::metadata_do(MetadataClosure* f) {
2051 if (has_last_Java_frame()) {
2052 // Traverse the execution stack to call f() on the methods in the stack
2053 for (StackFrameStream fst(this, true /* update */, true /* process_frames */); !fst.is_done(); fst.next()) {
2054 fst.current()->metadata_do(f);
2055 }
2056 } else if (is_Compiler_thread()) {
2057 // need to walk ciMetadata in current compile tasks to keep alive.
2058 CompilerThread* ct = (CompilerThread*)this;
2059 if (ct->env() != NULL) {
2060 ct->env()->metadata_do(f);
2061 }
2062 CompileTask* task = ct->task();
2063 if (task != NULL) {
2064 task->metadata_do(f);
2065 }
2066 }
2067 }
2068
2069 // Printing
_get_thread_state_name(JavaThreadState _thread_state)2070 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2071 switch (_thread_state) {
2072 case _thread_uninitialized: return "_thread_uninitialized";
2073 case _thread_new: return "_thread_new";
2074 case _thread_new_trans: return "_thread_new_trans";
2075 case _thread_in_native: return "_thread_in_native";
2076 case _thread_in_native_trans: return "_thread_in_native_trans";
2077 case _thread_in_vm: return "_thread_in_vm";
2078 case _thread_in_vm_trans: return "_thread_in_vm_trans";
2079 case _thread_in_Java: return "_thread_in_Java";
2080 case _thread_in_Java_trans: return "_thread_in_Java_trans";
2081 case _thread_blocked: return "_thread_blocked";
2082 case _thread_blocked_trans: return "_thread_blocked_trans";
2083 default: return "unknown thread state";
2084 }
2085 }
2086
2087 #ifndef PRODUCT
print_thread_state_on(outputStream * st) const2088 void JavaThread::print_thread_state_on(outputStream *st) const {
2089 st->print_cr(" JavaThread state: %s", _get_thread_state_name(_thread_state));
2090 };
2091 #endif // PRODUCT
2092
2093 // Called by Threads::print() for VM_PrintThreads operation
print_on(outputStream * st,bool print_extended_info) const2094 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
2095 st->print_raw("\"");
2096 st->print_raw(get_thread_name());
2097 st->print_raw("\" ");
2098 oop thread_oop = threadObj();
2099 if (thread_oop != NULL) {
2100 st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
2101 if (java_lang_Thread::is_daemon(thread_oop)) st->print("daemon ");
2102 st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2103 }
2104 Thread::print_on(st, print_extended_info);
2105 // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2106 st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2107 if (thread_oop != NULL) {
2108 st->print_cr(" java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2109 }
2110 #ifndef PRODUCT
2111 _safepoint_state->print_on(st);
2112 #endif // PRODUCT
2113 if (is_Compiler_thread()) {
2114 CompileTask *task = ((CompilerThread*)this)->task();
2115 if (task != NULL) {
2116 st->print(" Compiling: ");
2117 task->print(st, NULL, true, false);
2118 } else {
2119 st->print(" No compile task");
2120 }
2121 st->cr();
2122 }
2123 }
2124
print() const2125 void JavaThread::print() const { print_on(tty); }
2126
print_name_on_error(outputStream * st,char * buf,int buflen) const2127 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2128 st->print("%s", get_thread_name_string(buf, buflen));
2129 }
2130
2131 // Called by fatal error handler. The difference between this and
2132 // JavaThread::print() is that we can't grab lock or allocate memory.
print_on_error(outputStream * st,char * buf,int buflen) const2133 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2134 st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2135 oop thread_obj = threadObj();
2136 if (thread_obj != NULL) {
2137 if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2138 }
2139 st->print(" [");
2140 st->print("%s", _get_thread_state_name(_thread_state));
2141 if (osthread()) {
2142 st->print(", id=%d", osthread()->thread_id());
2143 }
2144 st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2145 p2i(stack_end()), p2i(stack_base()));
2146 st->print("]");
2147
2148 ThreadsSMRSupport::print_info_on(this, st);
2149 return;
2150 }
2151
2152
2153 // Verification
2154
frames_do(void f (frame *,const RegisterMap * map))2155 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2156 // ignore if there is no stack
2157 if (!has_last_Java_frame()) return;
2158 // traverse the stack frames. Starts from top frame.
2159 for (StackFrameStream fst(this, true /* update */, true /* process_frames */); !fst.is_done(); fst.next()) {
2160 frame* fr = fst.current();
2161 f(fr, fst.register_map());
2162 }
2163 }
2164
frame_verify(frame * f,const RegisterMap * map)2165 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2166
verify()2167 void JavaThread::verify() {
2168 // Verify oops in the thread.
2169 oops_do(&VerifyOopClosure::verify_oop, NULL);
2170
2171 // Verify the stack frames.
2172 frames_do(frame_verify);
2173 }
2174
2175 // CR 6300358 (sub-CR 2137150)
2176 // Most callers of this method assume that it can't return NULL but a
2177 // thread may not have a name whilst it is in the process of attaching to
2178 // the VM - see CR 6412693, and there are places where a JavaThread can be
2179 // seen prior to having its threadObj set (e.g., JNI attaching threads and
2180 // if vm exit occurs during initialization). These cases can all be accounted
2181 // for such that this method never returns NULL.
get_thread_name() const2182 const char* JavaThread::get_thread_name() const {
2183 if (Thread::is_JavaThread_protected(this)) {
2184 // The target JavaThread is protected so get_thread_name_string() is safe:
2185 return get_thread_name_string();
2186 }
2187
2188 // The target JavaThread is not protected so we return the default:
2189 return Thread::name();
2190 }
2191
2192 // Returns a non-NULL representation of this thread's name, or a suitable
2193 // descriptive string if there is no set name
get_thread_name_string(char * buf,int buflen) const2194 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2195 const char* name_str;
2196 oop thread_obj = threadObj();
2197 if (thread_obj != NULL) {
2198 oop name = java_lang_Thread::name(thread_obj);
2199 if (name != NULL) {
2200 if (buf == NULL) {
2201 name_str = java_lang_String::as_utf8_string(name);
2202 } else {
2203 name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2204 }
2205 } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2206 name_str = "<no-name - thread is attaching>";
2207 } else {
2208 name_str = Thread::name();
2209 }
2210 } else {
2211 name_str = Thread::name();
2212 }
2213 assert(name_str != NULL, "unexpected NULL thread name");
2214 return name_str;
2215 }
2216
prepare(jobject jni_thread,ThreadPriority prio)2217 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2218
2219 assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2220 assert(NoPriority <= prio && prio <= MaxPriority, "sanity check");
2221 // Link Java Thread object <-> C++ Thread
2222
2223 // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2224 // and put it into a new Handle. The Handle "thread_oop" can then
2225 // be used to pass the C++ thread object to other methods.
2226
2227 // Set the Java level thread object (jthread) field of the
2228 // new thread (a JavaThread *) to C++ thread object using the
2229 // "thread_oop" handle.
2230
2231 // Set the thread field (a JavaThread *) of the
2232 // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2233
2234 Handle thread_oop(Thread::current(),
2235 JNIHandles::resolve_non_null(jni_thread));
2236 assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2237 "must be initialized");
2238 set_threadObj(thread_oop());
2239 java_lang_Thread::set_thread(thread_oop(), this);
2240
2241 if (prio == NoPriority) {
2242 prio = java_lang_Thread::priority(thread_oop());
2243 assert(prio != NoPriority, "A valid priority should be present");
2244 }
2245
2246 // Push the Java priority down to the native thread; needs Threads_lock
2247 Thread::set_priority(this, prio);
2248
2249 // Add the new thread to the Threads list and set it in motion.
2250 // We must have threads lock in order to call Threads::add.
2251 // It is crucial that we do not block before the thread is
2252 // added to the Threads list for if a GC happens, then the java_thread oop
2253 // will not be visited by GC.
2254 Threads::add(this);
2255 }
2256
current_park_blocker()2257 oop JavaThread::current_park_blocker() {
2258 // Support for JSR-166 locks
2259 oop thread_oop = threadObj();
2260 if (thread_oop != NULL) {
2261 return java_lang_Thread::park_blocker(thread_oop);
2262 }
2263 return NULL;
2264 }
2265
2266
print_stack_on(outputStream * st)2267 void JavaThread::print_stack_on(outputStream* st) {
2268 if (!has_last_Java_frame()) return;
2269
2270 Thread* current_thread = Thread::current();
2271 ResourceMark rm(current_thread);
2272 HandleMark hm(current_thread);
2273
2274 RegisterMap reg_map(this);
2275 vframe* start_vf = last_java_vframe(®_map);
2276 int count = 0;
2277 for (vframe* f = start_vf; f != NULL; f = f->sender()) {
2278 if (f->is_java_frame()) {
2279 javaVFrame* jvf = javaVFrame::cast(f);
2280 java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2281
2282 // Print out lock information
2283 if (JavaMonitorsInStackTrace) {
2284 jvf->print_lock_info_on(st, count);
2285 }
2286 } else {
2287 // Ignore non-Java frames
2288 }
2289
2290 // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
2291 count++;
2292 if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
2293 }
2294 }
2295
2296
2297 // JVMTI PopFrame support
popframe_preserve_args(ByteSize size_in_bytes,void * start)2298 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2299 assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2300 if (in_bytes(size_in_bytes) != 0) {
2301 _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
2302 _popframe_preserved_args_size = in_bytes(size_in_bytes);
2303 Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2304 }
2305 }
2306
popframe_preserved_args()2307 void* JavaThread::popframe_preserved_args() {
2308 return _popframe_preserved_args;
2309 }
2310
popframe_preserved_args_size()2311 ByteSize JavaThread::popframe_preserved_args_size() {
2312 return in_ByteSize(_popframe_preserved_args_size);
2313 }
2314
popframe_preserved_args_size_in_words()2315 WordSize JavaThread::popframe_preserved_args_size_in_words() {
2316 int sz = in_bytes(popframe_preserved_args_size());
2317 assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
2318 return in_WordSize(sz / wordSize);
2319 }
2320
popframe_free_preserved_args()2321 void JavaThread::popframe_free_preserved_args() {
2322 assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
2323 FREE_C_HEAP_ARRAY(char, (char*)_popframe_preserved_args);
2324 _popframe_preserved_args = NULL;
2325 _popframe_preserved_args_size = 0;
2326 }
2327
2328 #ifndef PRODUCT
2329
trace_frames()2330 void JavaThread::trace_frames() {
2331 tty->print_cr("[Describe stack]");
2332 int frame_no = 1;
2333 for (StackFrameStream fst(this, true /* update */, true /* process_frames */); !fst.is_done(); fst.next()) {
2334 tty->print(" %d. ", frame_no++);
2335 fst.current()->print_value_on(tty, this);
2336 tty->cr();
2337 }
2338 }
2339
2340 class PrintAndVerifyOopClosure: public OopClosure {
2341 protected:
do_oop_work(T * p)2342 template <class T> inline void do_oop_work(T* p) {
2343 oop obj = RawAccess<>::oop_load(p);
2344 if (obj == NULL) return;
2345 tty->print(INTPTR_FORMAT ": ", p2i(p));
2346 if (oopDesc::is_oop_or_null(obj)) {
2347 if (obj->is_objArray()) {
2348 tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
2349 } else {
2350 obj->print();
2351 }
2352 } else {
2353 tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
2354 }
2355 tty->cr();
2356 }
2357 public:
do_oop(oop * p)2358 virtual void do_oop(oop* p) { do_oop_work(p); }
do_oop(narrowOop * p)2359 virtual void do_oop(narrowOop* p) { do_oop_work(p); }
2360 };
2361
2362 #ifdef ASSERT
2363 // Print or validate the layout of stack frames
print_frame_layout(int depth,bool validate_only)2364 void JavaThread::print_frame_layout(int depth, bool validate_only) {
2365 ResourceMark rm;
2366 PreserveExceptionMark pm(this);
2367 FrameValues values;
2368 int frame_no = 0;
2369 for (StackFrameStream fst(this, false /* update */, true /* process_frames */); !fst.is_done(); fst.next()) {
2370 fst.current()->describe(values, ++frame_no);
2371 if (depth == frame_no) break;
2372 }
2373 if (validate_only) {
2374 values.validate();
2375 } else {
2376 tty->print_cr("[Describe stack layout]");
2377 values.print(this);
2378 }
2379 }
2380 #endif
2381
trace_stack_from(vframe * start_vf)2382 void JavaThread::trace_stack_from(vframe* start_vf) {
2383 ResourceMark rm;
2384 int vframe_no = 1;
2385 for (vframe* f = start_vf; f; f = f->sender()) {
2386 if (f->is_java_frame()) {
2387 javaVFrame::cast(f)->print_activation(vframe_no++);
2388 } else {
2389 f->print();
2390 }
2391 if (vframe_no > StackPrintLimit) {
2392 tty->print_cr("...<more frames>...");
2393 return;
2394 }
2395 }
2396 }
2397
2398
trace_stack()2399 void JavaThread::trace_stack() {
2400 if (!has_last_Java_frame()) return;
2401 Thread* current_thread = Thread::current();
2402 ResourceMark rm(current_thread);
2403 HandleMark hm(current_thread);
2404 RegisterMap reg_map(this);
2405 trace_stack_from(last_java_vframe(®_map));
2406 }
2407
2408
2409 #endif // PRODUCT
2410
2411
last_java_vframe(RegisterMap * reg_map)2412 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
2413 assert(reg_map != NULL, "a map must be given");
2414 frame f = last_frame();
2415 for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
2416 if (vf->is_java_frame()) return javaVFrame::cast(vf);
2417 }
2418 return NULL;
2419 }
2420
2421
security_get_caller_class(int depth)2422 Klass* JavaThread::security_get_caller_class(int depth) {
2423 vframeStream vfst(this);
2424 vfst.security_get_caller_frame(depth);
2425 if (!vfst.at_end()) {
2426 return vfst.method()->method_holder();
2427 }
2428 return NULL;
2429 }
2430
2431 // java.lang.Thread.sleep support
2432 // Returns true if sleep time elapsed as expected, and false
2433 // if the thread was interrupted.
sleep(jlong millis)2434 bool JavaThread::sleep(jlong millis) {
2435 assert(this == Thread::current(), "thread consistency check");
2436
2437 ParkEvent * const slp = this->_SleepEvent;
2438 // Because there can be races with thread interruption sending an unpark()
2439 // to the event, we explicitly reset it here to avoid an immediate return.
2440 // The actual interrupt state will be checked before we park().
2441 slp->reset();
2442 // Thread interruption establishes a happens-before ordering in the
2443 // Java Memory Model, so we need to ensure we synchronize with the
2444 // interrupt state.
2445 OrderAccess::fence();
2446
2447 jlong prevtime = os::javaTimeNanos();
2448
2449 for (;;) {
2450 // interruption has precedence over timing out
2451 if (this->is_interrupted(true)) {
2452 return false;
2453 }
2454
2455 if (millis <= 0) {
2456 return true;
2457 }
2458
2459 {
2460 ThreadBlockInVM tbivm(this);
2461 OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
2462 slp->park(millis);
2463 }
2464
2465 // Update elapsed time tracking
2466 jlong newtime = os::javaTimeNanos();
2467 if (newtime - prevtime < 0) {
2468 // time moving backwards, should only happen if no monotonic clock
2469 // not a guarantee() because JVM should not abort on kernel/glibc bugs
2470 assert(false,
2471 "unexpected time moving backwards detected in JavaThread::sleep()");
2472 } else {
2473 millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2474 }
2475 prevtime = newtime;
2476 }
2477 }
2478
2479
2480 // ======= Threads ========
2481
2482 // The Threads class links together all active threads, and provides
2483 // operations over all threads. It is protected by the Threads_lock,
2484 // which is also used in other global contexts like safepointing.
2485 // ThreadsListHandles are used to safely perform operations on one
2486 // or more threads without the risk of the thread exiting during the
2487 // operation.
2488 //
2489 // Note: The Threads_lock is currently more widely used than we
2490 // would like. We are actively migrating Threads_lock uses to other
2491 // mechanisms in order to reduce Threads_lock contention.
2492
2493 int Threads::_number_of_threads = 0;
2494 int Threads::_number_of_non_daemon_threads = 0;
2495 int Threads::_return_code = 0;
2496 uintx Threads::_thread_claim_token = 1; // Never zero.
2497 size_t JavaThread::_stack_size_at_create = 0;
2498
2499 #ifdef ASSERT
2500 bool Threads::_vm_complete = false;
2501 #endif
2502
prefetch_and_load_ptr(void ** addr,intx prefetch_interval)2503 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
2504 Prefetch::read((void*)addr, prefetch_interval);
2505 return *addr;
2506 }
2507
2508 // Possibly the ugliest for loop the world has seen. C++ does not allow
2509 // multiple types in the declaration section of the for loop. In this case
2510 // we are only dealing with pointers and hence can cast them. It looks ugly
2511 // but macros are ugly and therefore it's fine to make things absurdly ugly.
2512 #define DO_JAVA_THREADS(LIST, X) \
2513 for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes, \
2514 *MACRO_list = (JavaThread*)(LIST), \
2515 **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(), \
2516 **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(), \
2517 *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval); \
2518 MACRO_current_p != MACRO_end; \
2519 MACRO_current_p++, \
2520 X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
2521
2522 // All JavaThreads
2523 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
2524
2525 // All NonJavaThreads (i.e., every non-JavaThread in the system).
non_java_threads_do(ThreadClosure * tc)2526 void Threads::non_java_threads_do(ThreadClosure* tc) {
2527 NoSafepointVerifier nsv;
2528 for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
2529 tc->do_thread(njti.current());
2530 }
2531 }
2532
2533 // All JavaThreads
java_threads_do(ThreadClosure * tc)2534 void Threads::java_threads_do(ThreadClosure* tc) {
2535 assert_locked_or_safepoint(Threads_lock);
2536 // ALL_JAVA_THREADS iterates through all JavaThreads.
2537 ALL_JAVA_THREADS(p) {
2538 tc->do_thread(p);
2539 }
2540 }
2541
java_threads_and_vm_thread_do(ThreadClosure * tc)2542 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
2543 assert_locked_or_safepoint(Threads_lock);
2544 java_threads_do(tc);
2545 tc->do_thread(VMThread::vm_thread());
2546 }
2547
2548 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
threads_do(ThreadClosure * tc)2549 void Threads::threads_do(ThreadClosure* tc) {
2550 assert_locked_or_safepoint(Threads_lock);
2551 java_threads_do(tc);
2552 non_java_threads_do(tc);
2553 }
2554
possibly_parallel_threads_do(bool is_par,ThreadClosure * tc)2555 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
2556 uintx claim_token = Threads::thread_claim_token();
2557 ALL_JAVA_THREADS(p) {
2558 if (p->claim_threads_do(is_par, claim_token)) {
2559 tc->do_thread(p);
2560 }
2561 }
2562 VMThread* vmt = VMThread::vm_thread();
2563 if (vmt->claim_threads_do(is_par, claim_token)) {
2564 tc->do_thread(vmt);
2565 }
2566 }
2567
2568 // The system initialization in the library has three phases.
2569 //
2570 // Phase 1: java.lang.System class initialization
2571 // java.lang.System is a primordial class loaded and initialized
2572 // by the VM early during startup. java.lang.System.<clinit>
2573 // only does registerNatives and keeps the rest of the class
2574 // initialization work later until thread initialization completes.
2575 //
2576 // System.initPhase1 initializes the system properties, the static
2577 // fields in, out, and err. Set up java signal handlers, OS-specific
2578 // system settings, and thread group of the main thread.
call_initPhase1(TRAPS)2579 static void call_initPhase1(TRAPS) {
2580 Klass* klass = vmClasses::System_klass();
2581 JavaValue result(T_VOID);
2582 JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
2583 vmSymbols::void_method_signature(), CHECK);
2584 }
2585
2586 // Phase 2. Module system initialization
2587 // This will initialize the module system. Only java.base classes
2588 // can be loaded until phase 2 completes.
2589 //
2590 // Call System.initPhase2 after the compiler initialization and jsr292
2591 // classes get initialized because module initialization runs a lot of java
2592 // code, that for performance reasons, should be compiled. Also, this will
2593 // enable the startup code to use lambda and other language features in this
2594 // phase and onward.
2595 //
2596 // After phase 2, The VM will begin search classes from -Xbootclasspath/a.
call_initPhase2(TRAPS)2597 static void call_initPhase2(TRAPS) {
2598 TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
2599
2600 Klass* klass = vmClasses::System_klass();
2601
2602 JavaValue result(T_INT);
2603 JavaCallArguments args;
2604 args.push_int(DisplayVMOutputToStderr);
2605 args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
2606 JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
2607 vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
2608 if (result.get_jint() != JNI_OK) {
2609 vm_exit_during_initialization(); // no message or exception
2610 }
2611
2612 universe_post_module_init();
2613 }
2614
2615 // Phase 3. final setup - set security manager, system class loader and TCCL
2616 //
2617 // This will instantiate and set the security manager, set the system class
2618 // loader as well as the thread context class loader. The security manager
2619 // and system class loader may be a custom class loaded from -Xbootclasspath/a,
2620 // other modules or the application's classpath.
call_initPhase3(TRAPS)2621 static void call_initPhase3(TRAPS) {
2622 Klass* klass = vmClasses::System_klass();
2623 JavaValue result(T_VOID);
2624 JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
2625 vmSymbols::void_method_signature(), CHECK);
2626 }
2627
initialize_java_lang_classes(JavaThread * main_thread,TRAPS)2628 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
2629 TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
2630
2631 if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
2632 create_vm_init_libraries();
2633 }
2634
2635 initialize_class(vmSymbols::java_lang_String(), CHECK);
2636
2637 // Inject CompactStrings value after the static initializers for String ran.
2638 java_lang_String::set_compact_strings(CompactStrings);
2639
2640 // Initialize java_lang.System (needed before creating the thread)
2641 initialize_class(vmSymbols::java_lang_System(), CHECK);
2642 // The VM creates & returns objects of this class. Make sure it's initialized.
2643 initialize_class(vmSymbols::java_lang_Class(), CHECK);
2644 initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
2645 Handle thread_group = create_initial_thread_group(CHECK);
2646 Universe::set_main_thread_group(thread_group());
2647 initialize_class(vmSymbols::java_lang_Thread(), CHECK);
2648 create_initial_thread(thread_group, main_thread, CHECK);
2649
2650 // The VM creates objects of this class.
2651 initialize_class(vmSymbols::java_lang_Module(), CHECK);
2652
2653 #ifdef ASSERT
2654 InstanceKlass *k = vmClasses::UnsafeConstants_klass();
2655 assert(k->is_not_initialized(), "UnsafeConstants should not already be initialized");
2656 #endif
2657
2658 // initialize the hardware-specific constants needed by Unsafe
2659 initialize_class(vmSymbols::jdk_internal_misc_UnsafeConstants(), CHECK);
2660 jdk_internal_misc_UnsafeConstants::set_unsafe_constants();
2661
2662 // The VM preresolves methods to these classes. Make sure that they get initialized
2663 initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
2664 initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
2665
2666 // Phase 1 of the system initialization in the library, java.lang.System class initialization
2667 call_initPhase1(CHECK);
2668
2669 // Get the Java runtime name, version, and vendor info after java.lang.System is initialized.
2670 // Some values are actually configure-time constants but some can be set via the jlink tool and
2671 // so must be read dynamically. We treat them all the same.
2672 InstanceKlass* ik = SystemDictionary::find_instance_klass(vmSymbols::java_lang_VersionProps(),
2673 Handle(), Handle());
2674 {
2675 ResourceMark rm(main_thread);
2676 JDK_Version::set_java_version(get_java_version_info(ik, vmSymbols::java_version_name()));
2677
2678 JDK_Version::set_runtime_name(get_java_version_info(ik, vmSymbols::java_runtime_name_name()));
2679
2680 JDK_Version::set_runtime_version(get_java_version_info(ik, vmSymbols::java_runtime_version_name()));
2681
2682 JDK_Version::set_runtime_vendor_version(get_java_version_info(ik, vmSymbols::java_runtime_vendor_version_name()));
2683
2684 JDK_Version::set_runtime_vendor_vm_bug_url(get_java_version_info(ik, vmSymbols::java_runtime_vendor_vm_bug_url_name()));
2685 }
2686
2687 // an instance of OutOfMemory exception has been allocated earlier
2688 initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
2689 initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
2690 initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
2691 initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
2692 initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
2693 initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
2694 initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
2695 initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
2696 }
2697
initialize_jsr292_core_classes(TRAPS)2698 void Threads::initialize_jsr292_core_classes(TRAPS) {
2699 TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
2700
2701 initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
2702 initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
2703 initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
2704 initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
2705 }
2706
create_vm(JavaVMInitArgs * args,bool * canTryAgain)2707 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
2708 extern void JDK_Version_init();
2709
2710 // Preinitialize version info.
2711 VM_Version::early_initialize();
2712
2713 // Check version
2714 if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
2715
2716 // Initialize library-based TLS
2717 ThreadLocalStorage::init();
2718
2719 // Initialize the output stream module
2720 ostream_init();
2721
2722 // Process java launcher properties.
2723 Arguments::process_sun_java_launcher_properties(args);
2724
2725 // Initialize the os module
2726 os::init();
2727
2728 MACOS_AARCH64_ONLY(os::current_thread_enable_wx(WXWrite));
2729
2730 // Record VM creation timing statistics
2731 TraceVmCreationTime create_vm_timer;
2732 create_vm_timer.start();
2733
2734 // Initialize system properties.
2735 Arguments::init_system_properties();
2736
2737 // So that JDK version can be used as a discriminator when parsing arguments
2738 JDK_Version_init();
2739
2740 // Update/Initialize System properties after JDK version number is known
2741 Arguments::init_version_specific_system_properties();
2742
2743 // Make sure to initialize log configuration *before* parsing arguments
2744 LogConfiguration::initialize(create_vm_timer.begin_time());
2745
2746 // Parse arguments
2747 // Note: this internally calls os::init_container_support()
2748 jint parse_result = Arguments::parse(args);
2749 if (parse_result != JNI_OK) return parse_result;
2750
2751 os::init_before_ergo();
2752
2753 jint ergo_result = Arguments::apply_ergo();
2754 if (ergo_result != JNI_OK) return ergo_result;
2755
2756 // Final check of all ranges after ergonomics which may change values.
2757 if (!JVMFlagLimit::check_all_ranges()) {
2758 return JNI_EINVAL;
2759 }
2760
2761 // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
2762 bool constraint_result = JVMFlagLimit::check_all_constraints(JVMFlagConstraintPhase::AfterErgo);
2763 if (!constraint_result) {
2764 return JNI_EINVAL;
2765 }
2766
2767 if (PauseAtStartup) {
2768 os::pause();
2769 }
2770
2771 HOTSPOT_VM_INIT_BEGIN();
2772
2773 // Timing (must come after argument parsing)
2774 TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
2775
2776 // Initialize the os module after parsing the args
2777 jint os_init_2_result = os::init_2();
2778 if (os_init_2_result != JNI_OK) return os_init_2_result;
2779
2780 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
2781 // Initialize assert poison page mechanism.
2782 if (ShowRegistersOnAssert) {
2783 initialize_assert_poison();
2784 }
2785 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
2786
2787 SafepointMechanism::initialize();
2788
2789 jint adjust_after_os_result = Arguments::adjust_after_os();
2790 if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
2791
2792 // Initialize output stream logging
2793 ostream_init_log();
2794
2795 // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
2796 // Must be before create_vm_init_agents()
2797 if (Arguments::init_libraries_at_startup()) {
2798 convert_vm_init_libraries_to_agents();
2799 }
2800
2801 // Launch -agentlib/-agentpath and converted -Xrun agents
2802 if (Arguments::init_agents_at_startup()) {
2803 create_vm_init_agents();
2804 }
2805
2806 // Initialize Threads state
2807 _number_of_threads = 0;
2808 _number_of_non_daemon_threads = 0;
2809
2810 // Initialize global data structures and create system classes in heap
2811 vm_init_globals();
2812
2813 #if INCLUDE_JVMCI
2814 if (JVMCICounterSize > 0) {
2815 JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtJVMCI);
2816 memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
2817 } else {
2818 JavaThread::_jvmci_old_thread_counters = NULL;
2819 }
2820 #endif // INCLUDE_JVMCI
2821
2822 // Initialize OopStorage for threadObj
2823 _thread_oop_storage = OopStorageSet::create_strong("Thread OopStorage", mtThread);
2824
2825 // Attach the main thread to this os thread
2826 JavaThread* main_thread = new JavaThread();
2827 main_thread->set_thread_state(_thread_in_vm);
2828 main_thread->initialize_thread_current();
2829 // must do this before set_active_handles
2830 main_thread->record_stack_base_and_size();
2831 main_thread->register_thread_stack_with_NMT();
2832 main_thread->set_active_handles(JNIHandleBlock::allocate_block());
2833 MACOS_AARCH64_ONLY(main_thread->init_wx());
2834
2835 if (!main_thread->set_as_starting_thread()) {
2836 vm_shutdown_during_initialization(
2837 "Failed necessary internal allocation. Out of swap space");
2838 main_thread->smr_delete();
2839 *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
2840 return JNI_ENOMEM;
2841 }
2842
2843 // Enable guard page *after* os::create_main_thread(), otherwise it would
2844 // crash Linux VM, see notes in os_linux.cpp.
2845 main_thread->stack_overflow_state()->create_stack_guard_pages();
2846
2847 // Initialize Java-Level synchronization subsystem
2848 ObjectMonitor::Initialize();
2849 ObjectSynchronizer::initialize();
2850
2851 // Initialize global modules
2852 jint status = init_globals();
2853 if (status != JNI_OK) {
2854 main_thread->smr_delete();
2855 *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
2856 return status;
2857 }
2858
2859 JFR_ONLY(Jfr::on_create_vm_1();)
2860
2861 // Should be done after the heap is fully created
2862 main_thread->cache_global_variables();
2863
2864 { MutexLocker mu(Threads_lock);
2865 Threads::add(main_thread);
2866 }
2867
2868 // Any JVMTI raw monitors entered in onload will transition into
2869 // real raw monitor. VM is setup enough here for raw monitor enter.
2870 JvmtiExport::transition_pending_onload_raw_monitors();
2871
2872 // Create the VMThread
2873 { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
2874
2875 VMThread::create();
2876 Thread* vmthread = VMThread::vm_thread();
2877
2878 if (!os::create_thread(vmthread, os::vm_thread)) {
2879 vm_exit_during_initialization("Cannot create VM thread. "
2880 "Out of system resources.");
2881 }
2882
2883 // Wait for the VM thread to become ready, and VMThread::run to initialize
2884 // Monitors can have spurious returns, must always check another state flag
2885 {
2886 MonitorLocker ml(Notify_lock);
2887 os::start_thread(vmthread);
2888 while (vmthread->active_handles() == NULL) {
2889 ml.wait();
2890 }
2891 }
2892 }
2893
2894 assert(Universe::is_fully_initialized(), "not initialized");
2895 if (VerifyDuringStartup) {
2896 // Make sure we're starting with a clean slate.
2897 VM_Verify verify_op;
2898 VMThread::execute(&verify_op);
2899 }
2900
2901 // We need this to update the java.vm.info property in case any flags used
2902 // to initially define it have been changed. This is needed for both CDS
2903 // since UseSharedSpaces may be changed after java.vm.info
2904 // is initially computed. See Abstract_VM_Version::vm_info_string().
2905 // This update must happen before we initialize the java classes, but
2906 // after any initialization logic that might modify the flags.
2907 Arguments::update_vm_info_property(VM_Version::vm_info_string());
2908
2909 JavaThread* THREAD = JavaThread::current(); // For exception macros.
2910 HandleMark hm(THREAD);
2911
2912 // Always call even when there are not JVMTI environments yet, since environments
2913 // may be attached late and JVMTI must track phases of VM execution
2914 JvmtiExport::enter_early_start_phase();
2915
2916 // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
2917 JvmtiExport::post_early_vm_start();
2918
2919 initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
2920
2921 quicken_jni_functions();
2922
2923 // No more stub generation allowed after that point.
2924 StubCodeDesc::freeze();
2925
2926 // Set flag that basic initialization has completed. Used by exceptions and various
2927 // debug stuff, that does not work until all basic classes have been initialized.
2928 set_init_completed();
2929
2930 LogConfiguration::post_initialize();
2931 Metaspace::post_initialize();
2932
2933 HOTSPOT_VM_INIT_END();
2934
2935 // record VM initialization completion time
2936 #if INCLUDE_MANAGEMENT
2937 Management::record_vm_init_completed();
2938 #endif // INCLUDE_MANAGEMENT
2939
2940 // Signal Dispatcher needs to be started before VMInit event is posted
2941 os::initialize_jdk_signal_support(CHECK_JNI_ERR);
2942
2943 // Start Attach Listener if +StartAttachListener or it can't be started lazily
2944 if (!DisableAttachMechanism) {
2945 AttachListener::vm_start();
2946 if (StartAttachListener || AttachListener::init_at_startup()) {
2947 AttachListener::init();
2948 }
2949 }
2950
2951 // Launch -Xrun agents
2952 // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
2953 // back-end can launch with -Xdebug -Xrunjdwp.
2954 if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
2955 create_vm_init_libraries();
2956 }
2957
2958 Chunk::start_chunk_pool_cleaner_task();
2959
2960 // Start the service thread
2961 // The service thread enqueues JVMTI deferred events and does various hashtable
2962 // and other cleanups. Needs to start before the compilers start posting events.
2963 ServiceThread::initialize();
2964
2965 // Start the monitor deflation thread:
2966 MonitorDeflationThread::initialize();
2967
2968 // initialize compiler(s)
2969 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
2970 #if INCLUDE_JVMCI
2971 bool force_JVMCI_intialization = false;
2972 if (EnableJVMCI) {
2973 // Initialize JVMCI eagerly when it is explicitly requested.
2974 // Or when JVMCILibDumpJNIConfig or JVMCIPrintProperties is enabled.
2975 force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties || JVMCILibDumpJNIConfig;
2976
2977 if (!force_JVMCI_intialization) {
2978 // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
2979 // compilations via JVMCI will not actually block until JVMCI is initialized.
2980 force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
2981 }
2982 }
2983 #endif
2984 CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
2985 // Postpone completion of compiler initialization to after JVMCI
2986 // is initialized to avoid timeouts of blocking compilations.
2987 if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
2988 CompileBroker::compilation_init_phase2();
2989 }
2990 #endif
2991
2992 // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
2993 // It is done after compilers are initialized, because otherwise compilations of
2994 // signature polymorphic MH intrinsics can be missed
2995 // (see SystemDictionary::find_method_handle_intrinsic).
2996 initialize_jsr292_core_classes(CHECK_JNI_ERR);
2997
2998 // This will initialize the module system. Only java.base classes can be
2999 // loaded until phase 2 completes
3000 call_initPhase2(CHECK_JNI_ERR);
3001
3002 JFR_ONLY(Jfr::on_create_vm_2();)
3003
3004 // Always call even when there are not JVMTI environments yet, since environments
3005 // may be attached late and JVMTI must track phases of VM execution
3006 JvmtiExport::enter_start_phase();
3007
3008 // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3009 JvmtiExport::post_vm_start();
3010
3011 // Final system initialization including security manager and system class loader
3012 call_initPhase3(CHECK_JNI_ERR);
3013
3014 // cache the system and platform class loaders
3015 SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
3016
3017 #if INCLUDE_CDS
3018 // capture the module path info from the ModuleEntryTable
3019 ClassLoader::initialize_module_path(THREAD);
3020 if (HAS_PENDING_EXCEPTION) {
3021 java_lang_Throwable::print(PENDING_EXCEPTION, tty);
3022 vm_exit_during_initialization("ClassLoader::initialize_module_path() failed unexpectedly");
3023 }
3024 #endif
3025
3026 #if INCLUDE_JVMCI
3027 if (force_JVMCI_intialization) {
3028 JVMCI::initialize_compiler(CHECK_JNI_ERR);
3029 CompileBroker::compilation_init_phase2();
3030 }
3031 #endif
3032
3033 // Always call even when there are not JVMTI environments yet, since environments
3034 // may be attached late and JVMTI must track phases of VM execution
3035 JvmtiExport::enter_live_phase();
3036
3037 // Make perfmemory accessible
3038 PerfMemory::set_accessible(true);
3039
3040 // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3041 JvmtiExport::post_vm_initialized();
3042
3043 JFR_ONLY(Jfr::on_create_vm_3();)
3044
3045 #if INCLUDE_MANAGEMENT
3046 Management::initialize(THREAD);
3047
3048 if (HAS_PENDING_EXCEPTION) {
3049 // management agent fails to start possibly due to
3050 // configuration problem and is responsible for printing
3051 // stack trace if appropriate. Simply exit VM.
3052 vm_exit(1);
3053 }
3054 #endif // INCLUDE_MANAGEMENT
3055
3056 StatSampler::engage();
3057 if (CheckJNICalls) JniPeriodicChecker::engage();
3058
3059 BiasedLocking::init();
3060
3061 #if INCLUDE_RTM_OPT
3062 RTMLockingCounters::init();
3063 #endif
3064
3065 call_postVMInitHook(THREAD);
3066 // The Java side of PostVMInitHook.run must deal with all
3067 // exceptions and provide means of diagnosis.
3068 if (HAS_PENDING_EXCEPTION) {
3069 CLEAR_PENDING_EXCEPTION;
3070 }
3071
3072 {
3073 MutexLocker ml(PeriodicTask_lock);
3074 // Make sure the WatcherThread can be started by WatcherThread::start()
3075 // or by dynamic enrollment.
3076 WatcherThread::make_startable();
3077 // Start up the WatcherThread if there are any periodic tasks
3078 // NOTE: All PeriodicTasks should be registered by now. If they
3079 // aren't, late joiners might appear to start slowly (we might
3080 // take a while to process their first tick).
3081 if (PeriodicTask::num_tasks() > 0) {
3082 WatcherThread::start();
3083 }
3084 }
3085
3086 create_vm_timer.end();
3087 #ifdef ASSERT
3088 _vm_complete = true;
3089 #endif
3090
3091 if (DumpSharedSpaces) {
3092 MetaspaceShared::preload_and_dump();
3093 ShouldNotReachHere();
3094 }
3095
3096 return JNI_OK;
3097 }
3098
3099 // type for the Agent_OnLoad and JVM_OnLoad entry points
3100 extern "C" {
3101 typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3102 }
3103 // Find a command line agent library and return its entry point for
3104 // -agentlib: -agentpath: -Xrun
3105 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
lookup_on_load(AgentLibrary * agent,const char * on_load_symbols[],size_t num_symbol_entries)3106 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3107 const char *on_load_symbols[],
3108 size_t num_symbol_entries) {
3109 OnLoadEntry_t on_load_entry = NULL;
3110 void *library = NULL;
3111
3112 if (!agent->valid()) {
3113 char buffer[JVM_MAXPATHLEN];
3114 char ebuf[1024] = "";
3115 const char *name = agent->name();
3116 const char *msg = "Could not find agent library ";
3117
3118 // First check to see if agent is statically linked into executable
3119 if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3120 library = agent->os_lib();
3121 } else if (agent->is_absolute_path()) {
3122 library = os::dll_load(name, ebuf, sizeof ebuf);
3123 if (library == NULL) {
3124 const char *sub_msg = " in absolute path, with error: ";
3125 size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3126 char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3127 jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3128 // If we can't find the agent, exit.
3129 vm_exit_during_initialization(buf, NULL);
3130 FREE_C_HEAP_ARRAY(char, buf);
3131 }
3132 } else {
3133 // Try to load the agent from the standard dll directory
3134 if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3135 name)) {
3136 library = os::dll_load(buffer, ebuf, sizeof ebuf);
3137 }
3138 if (library == NULL) { // Try the library path directory.
3139 if (os::dll_build_name(buffer, sizeof(buffer), name)) {
3140 library = os::dll_load(buffer, ebuf, sizeof ebuf);
3141 }
3142 if (library == NULL) {
3143 const char *sub_msg = " on the library path, with error: ";
3144 const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
3145
3146 size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
3147 strlen(ebuf) + strlen(sub_msg2) + 1;
3148 char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3149 if (!agent->is_instrument_lib()) {
3150 jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3151 } else {
3152 jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
3153 }
3154 // If we can't find the agent, exit.
3155 vm_exit_during_initialization(buf, NULL);
3156 FREE_C_HEAP_ARRAY(char, buf);
3157 }
3158 }
3159 }
3160 agent->set_os_lib(library);
3161 agent->set_valid();
3162 }
3163
3164 // Find the OnLoad function.
3165 on_load_entry =
3166 CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3167 false,
3168 on_load_symbols,
3169 num_symbol_entries));
3170 return on_load_entry;
3171 }
3172
3173 // Find the JVM_OnLoad entry point
lookup_jvm_on_load(AgentLibrary * agent)3174 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3175 const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3176 return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3177 }
3178
3179 // Find the Agent_OnLoad entry point
lookup_agent_on_load(AgentLibrary * agent)3180 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3181 const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3182 return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3183 }
3184
3185 // For backwards compatibility with -Xrun
3186 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3187 // treated like -agentpath:
3188 // Must be called before agent libraries are created
convert_vm_init_libraries_to_agents()3189 void Threads::convert_vm_init_libraries_to_agents() {
3190 AgentLibrary* agent;
3191 AgentLibrary* next;
3192
3193 for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3194 next = agent->next(); // cache the next agent now as this agent may get moved off this list
3195 OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3196
3197 // If there is an JVM_OnLoad function it will get called later,
3198 // otherwise see if there is an Agent_OnLoad
3199 if (on_load_entry == NULL) {
3200 on_load_entry = lookup_agent_on_load(agent);
3201 if (on_load_entry != NULL) {
3202 // switch it to the agent list -- so that Agent_OnLoad will be called,
3203 // JVM_OnLoad won't be attempted and Agent_OnUnload will
3204 Arguments::convert_library_to_agent(agent);
3205 } else {
3206 vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3207 }
3208 }
3209 }
3210 }
3211
3212 // Create agents for -agentlib: -agentpath: and converted -Xrun
3213 // Invokes Agent_OnLoad
3214 // Called very early -- before JavaThreads exist
create_vm_init_agents()3215 void Threads::create_vm_init_agents() {
3216 extern struct JavaVM_ main_vm;
3217 AgentLibrary* agent;
3218
3219 JvmtiExport::enter_onload_phase();
3220
3221 for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3222 // CDS dumping does not support native JVMTI agent.
3223 // CDS dumping supports Java agent if the AllowArchivingWithJavaAgent diagnostic option is specified.
3224 if (Arguments::is_dumping_archive()) {
3225 if(!agent->is_instrument_lib()) {
3226 vm_exit_during_cds_dumping("CDS dumping does not support native JVMTI agent, name", agent->name());
3227 } else if (!AllowArchivingWithJavaAgent) {
3228 vm_exit_during_cds_dumping(
3229 "Must enable AllowArchivingWithJavaAgent in order to run Java agent during CDS dumping");
3230 }
3231 }
3232
3233 OnLoadEntry_t on_load_entry = lookup_agent_on_load(agent);
3234
3235 if (on_load_entry != NULL) {
3236 // Invoke the Agent_OnLoad function
3237 jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3238 if (err != JNI_OK) {
3239 vm_exit_during_initialization("agent library failed to init", agent->name());
3240 }
3241 } else {
3242 vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3243 }
3244 }
3245
3246 JvmtiExport::enter_primordial_phase();
3247 }
3248
3249 extern "C" {
3250 typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3251 }
3252
shutdown_vm_agents()3253 void Threads::shutdown_vm_agents() {
3254 // Send any Agent_OnUnload notifications
3255 const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3256 size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3257 extern struct JavaVM_ main_vm;
3258 for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3259
3260 // Find the Agent_OnUnload function.
3261 Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3262 os::find_agent_function(agent,
3263 false,
3264 on_unload_symbols,
3265 num_symbol_entries));
3266
3267 // Invoke the Agent_OnUnload function
3268 if (unload_entry != NULL) {
3269 JavaThread* thread = JavaThread::current();
3270 ThreadToNativeFromVM ttn(thread);
3271 HandleMark hm(thread);
3272 (*unload_entry)(&main_vm);
3273 }
3274 }
3275 }
3276
3277 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3278 // Invokes JVM_OnLoad
create_vm_init_libraries()3279 void Threads::create_vm_init_libraries() {
3280 extern struct JavaVM_ main_vm;
3281 AgentLibrary* agent;
3282
3283 for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3284 OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3285
3286 if (on_load_entry != NULL) {
3287 // Invoke the JVM_OnLoad function
3288 JavaThread* thread = JavaThread::current();
3289 ThreadToNativeFromVM ttn(thread);
3290 HandleMark hm(thread);
3291 jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3292 if (err != JNI_OK) {
3293 vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3294 }
3295 } else {
3296 vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3297 }
3298 }
3299 }
3300
3301
3302 // Last thread running calls java.lang.Shutdown.shutdown()
invoke_shutdown_hooks()3303 void JavaThread::invoke_shutdown_hooks() {
3304 HandleMark hm(this);
3305
3306 // We could get here with a pending exception, if so clear it now or
3307 // it will cause MetaspaceShared::link_and_cleanup_shared_classes to
3308 // fail for dynamic dump.
3309 if (this->has_pending_exception()) {
3310 this->clear_pending_exception();
3311 }
3312
3313 #if INCLUDE_CDS
3314 // Link all classes for dynamic CDS dumping before vm exit.
3315 // Same operation is being done in JVM_BeforeHalt for handling the
3316 // case where the application calls System.exit().
3317 if (DynamicDumpSharedSpaces) {
3318 DynamicArchive::prepare_for_dynamic_dumping_at_exit();
3319 }
3320 #endif
3321
3322 EXCEPTION_MARK;
3323 Klass* shutdown_klass =
3324 SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3325 THREAD);
3326 if (shutdown_klass != NULL) {
3327 // SystemDictionary::resolve_or_null will return null if there was
3328 // an exception. If we cannot load the Shutdown class, just don't
3329 // call Shutdown.shutdown() at all. This will mean the shutdown hooks
3330 // won't be run. Note that if a shutdown hook was registered,
3331 // the Shutdown class would have already been loaded
3332 // (Runtime.addShutdownHook will load it).
3333 JavaValue result(T_VOID);
3334 JavaCalls::call_static(&result,
3335 shutdown_klass,
3336 vmSymbols::shutdown_name(),
3337 vmSymbols::void_method_signature(),
3338 THREAD);
3339 }
3340 CLEAR_PENDING_EXCEPTION;
3341 }
3342
3343 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3344 // the program falls off the end of main(). Another VM exit path is through
3345 // vm_exit() when the program calls System.exit() to return a value or when
3346 // there is a serious error in VM. The two shutdown paths are not exactly
3347 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3348 // and VM_Exit op at VM level.
3349 //
3350 // Shutdown sequence:
3351 // + Shutdown native memory tracking if it is on
3352 // + Wait until we are the last non-daemon thread to execute
3353 // <-- every thing is still working at this moment -->
3354 // + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3355 // shutdown hooks
3356 // + Call before_exit(), prepare for VM exit
3357 // > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3358 // currently the only user of this mechanism is File.deleteOnExit())
3359 // > stop StatSampler, watcher thread,
3360 // post thread end and vm death events to JVMTI,
3361 // stop signal thread
3362 // + Call JavaThread::exit(), it will:
3363 // > release JNI handle blocks, remove stack guard pages
3364 // > remove this thread from Threads list
3365 // <-- no more Java code from this thread after this point -->
3366 // + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3367 // the compiler threads at safepoint
3368 // <-- do not use anything that could get blocked by Safepoint -->
3369 // + Disable tracing at JNI/JVM barriers
3370 // + Set _vm_exited flag for threads that are still running native code
3371 // + Call exit_globals()
3372 // > deletes tty
3373 // > deletes PerfMemory resources
3374 // + Delete this thread
3375 // + Return to caller
3376
destroy_vm()3377 void Threads::destroy_vm() {
3378 JavaThread* thread = JavaThread::current();
3379
3380 #ifdef ASSERT
3381 _vm_complete = false;
3382 #endif
3383 // Wait until we are the last non-daemon thread to execute
3384 {
3385 MonitorLocker nu(Threads_lock);
3386 while (Threads::number_of_non_daemon_threads() > 1)
3387 // This wait should make safepoint checks, wait without a timeout.
3388 nu.wait(0);
3389 }
3390
3391 EventShutdown e;
3392 if (e.should_commit()) {
3393 e.set_reason("No remaining non-daemon Java threads");
3394 e.commit();
3395 }
3396
3397 // Hang forever on exit if we are reporting an error.
3398 if (ShowMessageBoxOnError && VMError::is_error_reported()) {
3399 os::infinite_sleep();
3400 }
3401 os::wait_for_keypress_at_exit();
3402
3403 // run Java level shutdown hooks
3404 thread->invoke_shutdown_hooks();
3405
3406 before_exit(thread);
3407
3408 thread->exit(true);
3409
3410 // We are no longer on the main thread list but could still be in a
3411 // secondary list where another thread may try to interact with us.
3412 // So wait until all such interactions are complete before we bring
3413 // the VM to the termination safepoint. Normally this would be done
3414 // using thread->smr_delete() below where we delete the thread, but
3415 // we can't call that after the termination safepoint is active as
3416 // we will deadlock on the Threads_lock. Once all interactions are
3417 // complete it is safe to directly delete the thread at any time.
3418 ThreadsSMRSupport::wait_until_not_protected(thread);
3419
3420 // Stop VM thread.
3421 {
3422 // 4945125 The vm thread comes to a safepoint during exit.
3423 // GC vm_operations can get caught at the safepoint, and the
3424 // heap is unparseable if they are caught. Grab the Heap_lock
3425 // to prevent this. The GC vm_operations will not be able to
3426 // queue until after the vm thread is dead. After this point,
3427 // we'll never emerge out of the safepoint before the VM exits.
3428 // Assert that the thread is terminated so that acquiring the
3429 // Heap_lock doesn't cause the terminated thread to participate in
3430 // the safepoint protocol.
3431
3432 assert(thread->is_terminated(), "must be terminated here");
3433 MutexLocker ml(Heap_lock);
3434
3435 VMThread::wait_for_vm_thread_exit();
3436 assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3437 VMThread::destroy();
3438 }
3439
3440 // Now, all Java threads are gone except daemon threads. Daemon threads
3441 // running Java code or in VM are stopped by the Safepoint. However,
3442 // daemon threads executing native code are still running. But they
3443 // will be stopped at native=>Java/VM barriers. Note that we can't
3444 // simply kill or suspend them, as it is inherently deadlock-prone.
3445
3446 VM_Exit::set_vm_exited();
3447
3448 // Clean up ideal graph printers after the VMThread has started
3449 // the final safepoint which will block all the Compiler threads.
3450 // Note that this Thread has already logically exited so the
3451 // clean_up() function's use of a JavaThreadIteratorWithHandle
3452 // would be a problem except set_vm_exited() has remembered the
3453 // shutdown thread which is granted a policy exception.
3454 #if defined(COMPILER2) && !defined(PRODUCT)
3455 IdealGraphPrinter::clean_up();
3456 #endif
3457
3458 notify_vm_shutdown();
3459
3460 // exit_globals() will delete tty
3461 exit_globals();
3462
3463 // Deleting the shutdown thread here is safe. See comment on
3464 // wait_until_not_protected() above.
3465 delete thread;
3466
3467 #if INCLUDE_JVMCI
3468 if (JVMCICounterSize > 0) {
3469 FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
3470 }
3471 #endif
3472
3473 LogConfiguration::finalize();
3474 }
3475
3476
is_supported_jni_version_including_1_1(jint version)3477 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3478 if (version == JNI_VERSION_1_1) return JNI_TRUE;
3479 return is_supported_jni_version(version);
3480 }
3481
3482
is_supported_jni_version(jint version)3483 jboolean Threads::is_supported_jni_version(jint version) {
3484 if (version == JNI_VERSION_1_2) return JNI_TRUE;
3485 if (version == JNI_VERSION_1_4) return JNI_TRUE;
3486 if (version == JNI_VERSION_1_6) return JNI_TRUE;
3487 if (version == JNI_VERSION_1_8) return JNI_TRUE;
3488 if (version == JNI_VERSION_9) return JNI_TRUE;
3489 if (version == JNI_VERSION_10) return JNI_TRUE;
3490 return JNI_FALSE;
3491 }
3492
3493
add(JavaThread * p,bool force_daemon)3494 void Threads::add(JavaThread* p, bool force_daemon) {
3495 // The threads lock must be owned at this point
3496 assert(Threads_lock->owned_by_self(), "must have threads lock");
3497
3498 BarrierSet::barrier_set()->on_thread_attach(p);
3499
3500 // Once a JavaThread is added to the Threads list, smr_delete() has
3501 // to be used to delete it. Otherwise we can just delete it directly.
3502 p->set_on_thread_list();
3503
3504 _number_of_threads++;
3505 oop threadObj = p->threadObj();
3506 bool daemon = true;
3507 // Bootstrapping problem: threadObj can be null for initial
3508 // JavaThread (or for threads attached via JNI)
3509 if ((!force_daemon) && !is_daemon((threadObj))) {
3510 _number_of_non_daemon_threads++;
3511 daemon = false;
3512 }
3513
3514 ThreadService::add_thread(p, daemon);
3515
3516 // Maintain fast thread list
3517 ThreadsSMRSupport::add_thread(p);
3518
3519 // Increase the ObjectMonitor ceiling for the new thread.
3520 ObjectSynchronizer::inc_in_use_list_ceiling();
3521
3522 // Possible GC point.
3523 Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
3524
3525 // Make new thread known to active EscapeBarrier
3526 EscapeBarrier::thread_added(p);
3527 }
3528
remove(JavaThread * p,bool is_daemon)3529 void Threads::remove(JavaThread* p, bool is_daemon) {
3530 // Extra scope needed for Thread_lock, so we can check
3531 // that we do not remove thread without safepoint code notice
3532 { MonitorLocker ml(Threads_lock);
3533
3534 // BarrierSet state must be destroyed after the last thread transition
3535 // before the thread terminates. Thread transitions result in calls to
3536 // StackWatermarkSet::on_safepoint(), which performs GC processing,
3537 // requiring the GC state to be alive.
3538 BarrierSet::barrier_set()->on_thread_detach(p);
3539
3540 assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
3541
3542 // Maintain fast thread list
3543 ThreadsSMRSupport::remove_thread(p);
3544
3545 _number_of_threads--;
3546 if (!is_daemon) {
3547 _number_of_non_daemon_threads--;
3548
3549 // Only one thread left, do a notify on the Threads_lock so a thread waiting
3550 // on destroy_vm will wake up.
3551 if (number_of_non_daemon_threads() == 1) {
3552 ml.notify_all();
3553 }
3554 }
3555 ThreadService::remove_thread(p, is_daemon);
3556
3557 // Make sure that safepoint code disregard this thread. This is needed since
3558 // the thread might mess around with locks after this point. This can cause it
3559 // to do callbacks into the safepoint code. However, the safepoint code is not aware
3560 // of this thread since it is removed from the queue.
3561 p->set_terminated(JavaThread::_thread_terminated);
3562
3563 // Notify threads waiting in EscapeBarriers
3564 EscapeBarrier::thread_removed(p);
3565 } // unlock Threads_lock
3566
3567 // Reduce the ObjectMonitor ceiling for the exiting thread.
3568 ObjectSynchronizer::dec_in_use_list_ceiling();
3569
3570 // Since Events::log uses a lock, we grab it outside the Threads_lock
3571 Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
3572 }
3573
3574 // Operations on the Threads list for GC. These are not explicitly locked,
3575 // but the garbage collector must provide a safe context for them to run.
3576 // In particular, these things should never be called when the Threads_lock
3577 // is held by some other thread. (Note: the Safepoint abstraction also
3578 // uses the Threads_lock to guarantee this property. It also makes sure that
3579 // all threads gets blocked when exiting or starting).
3580
oops_do(OopClosure * f,CodeBlobClosure * cf)3581 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3582 ALL_JAVA_THREADS(p) {
3583 p->oops_do(f, cf);
3584 }
3585 VMThread::vm_thread()->oops_do(f, cf);
3586 }
3587
change_thread_claim_token()3588 void Threads::change_thread_claim_token() {
3589 if (++_thread_claim_token == 0) {
3590 // On overflow of the token counter, there is a risk of future
3591 // collisions between a new global token value and a stale token
3592 // for a thread, because not all iterations visit all threads.
3593 // (Though it's pretty much a theoretical concern for non-trivial
3594 // token counter sizes.) To deal with the possibility, reset all
3595 // the thread tokens to zero on global token overflow.
3596 struct ResetClaims : public ThreadClosure {
3597 virtual void do_thread(Thread* t) {
3598 t->claim_threads_do(false, 0);
3599 }
3600 } reset_claims;
3601 Threads::threads_do(&reset_claims);
3602 // On overflow, update the global token to non-zero, to
3603 // avoid the special "never claimed" initial thread value.
3604 _thread_claim_token = 1;
3605 }
3606 }
3607
3608 #ifdef ASSERT
assert_thread_claimed(const char * kind,Thread * t,uintx expected)3609 void assert_thread_claimed(const char* kind, Thread* t, uintx expected) {
3610 const uintx token = t->threads_do_token();
3611 assert(token == expected,
3612 "%s " PTR_FORMAT " has incorrect value " UINTX_FORMAT " != "
3613 UINTX_FORMAT, kind, p2i(t), token, expected);
3614 }
3615
assert_all_threads_claimed()3616 void Threads::assert_all_threads_claimed() {
3617 ALL_JAVA_THREADS(p) {
3618 assert_thread_claimed("Thread", p, _thread_claim_token);
3619 }
3620 assert_thread_claimed("VMThread", VMThread::vm_thread(), _thread_claim_token);
3621 }
3622 #endif // ASSERT
3623
3624 class ParallelOopsDoThreadClosure : public ThreadClosure {
3625 private:
3626 OopClosure* _f;
3627 CodeBlobClosure* _cf;
3628 public:
ParallelOopsDoThreadClosure(OopClosure * f,CodeBlobClosure * cf)3629 ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
do_thread(Thread * t)3630 void do_thread(Thread* t) {
3631 t->oops_do(_f, _cf);
3632 }
3633 };
3634
possibly_parallel_oops_do(bool is_par,OopClosure * f,CodeBlobClosure * cf)3635 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
3636 ParallelOopsDoThreadClosure tc(f, cf);
3637 possibly_parallel_threads_do(is_par, &tc);
3638 }
3639
metadata_do(MetadataClosure * f)3640 void Threads::metadata_do(MetadataClosure* f) {
3641 ALL_JAVA_THREADS(p) {
3642 p->metadata_do(f);
3643 }
3644 }
3645
3646 class ThreadHandlesClosure : public ThreadClosure {
3647 void (*_f)(Metadata*);
3648 public:
ThreadHandlesClosure(void f (Metadata *))3649 ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
do_thread(Thread * thread)3650 virtual void do_thread(Thread* thread) {
3651 thread->metadata_handles_do(_f);
3652 }
3653 };
3654
metadata_handles_do(void f (Metadata *))3655 void Threads::metadata_handles_do(void f(Metadata*)) {
3656 // Only walk the Handles in Thread.
3657 ThreadHandlesClosure handles_closure(f);
3658 threads_do(&handles_closure);
3659 }
3660
3661 // Get count Java threads that are waiting to enter the specified monitor.
get_pending_threads(ThreadsList * t_list,int count,address monitor)3662 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
3663 int count,
3664 address monitor) {
3665 GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
3666
3667 int i = 0;
3668 DO_JAVA_THREADS(t_list, p) {
3669 if (!p->can_call_java()) continue;
3670
3671 // The first stage of async deflation does not affect any field
3672 // used by this comparison so the ObjectMonitor* is usable here.
3673 address pending = (address)p->current_pending_monitor();
3674 if (pending == monitor) { // found a match
3675 if (i < count) result->append(p); // save the first count matches
3676 i++;
3677 }
3678 }
3679
3680 return result;
3681 }
3682
3683
owning_thread_from_monitor_owner(ThreadsList * t_list,address owner)3684 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
3685 address owner) {
3686 // NULL owner means not locked so we can skip the search
3687 if (owner == NULL) return NULL;
3688
3689 DO_JAVA_THREADS(t_list, p) {
3690 // first, see if owner is the address of a Java thread
3691 if (owner == (address)p) return p;
3692 }
3693
3694 // Cannot assert on lack of success here since this function may be
3695 // used by code that is trying to report useful problem information
3696 // like deadlock detection.
3697 if (UseHeavyMonitors) return NULL;
3698
3699 // If we didn't find a matching Java thread and we didn't force use of
3700 // heavyweight monitors, then the owner is the stack address of the
3701 // Lock Word in the owning Java thread's stack.
3702 //
3703 JavaThread* the_owner = NULL;
3704 DO_JAVA_THREADS(t_list, q) {
3705 if (q->is_lock_owned(owner)) {
3706 the_owner = q;
3707 break;
3708 }
3709 }
3710
3711 // cannot assert on lack of success here; see above comment
3712 return the_owner;
3713 }
3714
3715 class PrintOnClosure : public ThreadClosure {
3716 private:
3717 outputStream* _st;
3718
3719 public:
PrintOnClosure(outputStream * st)3720 PrintOnClosure(outputStream* st) :
3721 _st(st) {}
3722
do_thread(Thread * thread)3723 virtual void do_thread(Thread* thread) {
3724 if (thread != NULL) {
3725 thread->print_on(_st);
3726 _st->cr();
3727 }
3728 }
3729 };
3730
3731 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
print_on(outputStream * st,bool print_stacks,bool internal_format,bool print_concurrent_locks,bool print_extended_info)3732 void Threads::print_on(outputStream* st, bool print_stacks,
3733 bool internal_format, bool print_concurrent_locks,
3734 bool print_extended_info) {
3735 char buf[32];
3736 st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
3737
3738 st->print_cr("Full thread dump %s (%s %s):",
3739 VM_Version::vm_name(),
3740 VM_Version::vm_release(),
3741 VM_Version::vm_info_string());
3742 st->cr();
3743
3744 #if INCLUDE_SERVICES
3745 // Dump concurrent locks
3746 ConcurrentLocksDump concurrent_locks;
3747 if (print_concurrent_locks) {
3748 concurrent_locks.dump_at_safepoint();
3749 }
3750 #endif // INCLUDE_SERVICES
3751
3752 ThreadsSMRSupport::print_info_on(st);
3753 st->cr();
3754
3755 ALL_JAVA_THREADS(p) {
3756 ResourceMark rm;
3757 p->print_on(st, print_extended_info);
3758 if (print_stacks) {
3759 if (internal_format) {
3760 p->trace_stack();
3761 } else {
3762 p->print_stack_on(st);
3763 }
3764 }
3765 st->cr();
3766 #if INCLUDE_SERVICES
3767 if (print_concurrent_locks) {
3768 concurrent_locks.print_locks_on(p, st);
3769 }
3770 #endif // INCLUDE_SERVICES
3771 }
3772
3773 PrintOnClosure cl(st);
3774 cl.do_thread(VMThread::vm_thread());
3775 Universe::heap()->gc_threads_do(&cl);
3776 if (StringDedup::is_enabled()) {
3777 StringDedup::threads_do(&cl);
3778 }
3779 cl.do_thread(WatcherThread::watcher_thread());
3780 cl.do_thread(AsyncLogWriter::instance());
3781
3782 st->flush();
3783 }
3784
print_on_error(Thread * this_thread,outputStream * st,Thread * current,char * buf,int buflen,bool * found_current)3785 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
3786 int buflen, bool* found_current) {
3787 if (this_thread != NULL) {
3788 bool is_current = (current == this_thread);
3789 *found_current = *found_current || is_current;
3790 st->print("%s", is_current ? "=>" : " ");
3791
3792 st->print(PTR_FORMAT, p2i(this_thread));
3793 st->print(" ");
3794 this_thread->print_on_error(st, buf, buflen);
3795 st->cr();
3796 }
3797 }
3798
3799 class PrintOnErrorClosure : public ThreadClosure {
3800 outputStream* _st;
3801 Thread* _current;
3802 char* _buf;
3803 int _buflen;
3804 bool* _found_current;
3805 public:
PrintOnErrorClosure(outputStream * st,Thread * current,char * buf,int buflen,bool * found_current)3806 PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
3807 int buflen, bool* found_current) :
3808 _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
3809
do_thread(Thread * thread)3810 virtual void do_thread(Thread* thread) {
3811 Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
3812 }
3813 };
3814
3815 // Threads::print_on_error() is called by fatal error handler. It's possible
3816 // that VM is not at safepoint and/or current thread is inside signal handler.
3817 // Don't print stack trace, as the stack may not be walkable. Don't allocate
3818 // memory (even in resource area), it might deadlock the error handler.
print_on_error(outputStream * st,Thread * current,char * buf,int buflen)3819 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
3820 int buflen) {
3821 ThreadsSMRSupport::print_info_on(st);
3822 st->cr();
3823
3824 bool found_current = false;
3825 st->print_cr("Java Threads: ( => current thread )");
3826 ALL_JAVA_THREADS(thread) {
3827 print_on_error(thread, st, current, buf, buflen, &found_current);
3828 }
3829 st->cr();
3830
3831 st->print_cr("Other Threads:");
3832 print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
3833 print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
3834 print_on_error(AsyncLogWriter::instance(), st, current, buf, buflen, &found_current);
3835
3836 if (Universe::heap() != NULL) {
3837 PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
3838 Universe::heap()->gc_threads_do(&print_closure);
3839 }
3840
3841 if (StringDedup::is_enabled()) {
3842 PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
3843 StringDedup::threads_do(&print_closure);
3844 }
3845
3846 if (!found_current) {
3847 st->cr();
3848 st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
3849 current->print_on_error(st, buf, buflen);
3850 st->cr();
3851 }
3852 st->cr();
3853
3854 st->print_cr("Threads with active compile tasks:");
3855 print_threads_compiling(st, buf, buflen);
3856 }
3857
print_threads_compiling(outputStream * st,char * buf,int buflen,bool short_form)3858 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen, bool short_form) {
3859 ALL_JAVA_THREADS(thread) {
3860 if (thread->is_Compiler_thread()) {
3861 CompilerThread* ct = (CompilerThread*) thread;
3862
3863 // Keep task in local variable for NULL check.
3864 // ct->_task might be set to NULL by concurring compiler thread
3865 // because it completed the compilation. The task is never freed,
3866 // though, just returned to a free list.
3867 CompileTask* task = ct->task();
3868 if (task != NULL) {
3869 thread->print_name_on_error(st, buf, buflen);
3870 st->print(" ");
3871 task->print(st, NULL, short_form, true);
3872 }
3873 }
3874 }
3875 }
3876
3877
3878 // Ad-hoc mutual exclusion primitives: SpinLock
3879 //
3880 // We employ SpinLocks _only for low-contention, fixed-length
3881 // short-duration critical sections where we're concerned
3882 // about native mutex_t or HotSpot Mutex:: latency.
3883 //
3884 // TODO-FIXME: ListLock should be of type SpinLock.
3885 // We should make this a 1st-class type, integrated into the lock
3886 // hierarchy as leaf-locks. Critically, the SpinLock structure
3887 // should have sufficient padding to avoid false-sharing and excessive
3888 // cache-coherency traffic.
3889
3890
3891 typedef volatile int SpinLockT;
3892
SpinAcquire(volatile int * adr,const char * LockName)3893 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
3894 if (Atomic::cmpxchg(adr, 0, 1) == 0) {
3895 return; // normal fast-path return
3896 }
3897
3898 // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
3899 int ctr = 0;
3900 int Yields = 0;
3901 for (;;) {
3902 while (*adr != 0) {
3903 ++ctr;
3904 if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
3905 if (Yields > 5) {
3906 os::naked_short_sleep(1);
3907 } else {
3908 os::naked_yield();
3909 ++Yields;
3910 }
3911 } else {
3912 SpinPause();
3913 }
3914 }
3915 if (Atomic::cmpxchg(adr, 0, 1) == 0) return;
3916 }
3917 }
3918
SpinRelease(volatile int * adr)3919 void Thread::SpinRelease(volatile int * adr) {
3920 assert(*adr != 0, "invariant");
3921 OrderAccess::fence(); // guarantee at least release consistency.
3922 // Roach-motel semantics.
3923 // It's safe if subsequent LDs and STs float "up" into the critical section,
3924 // but prior LDs and STs within the critical section can't be allowed
3925 // to reorder or float past the ST that releases the lock.
3926 // Loads and stores in the critical section - which appear in program
3927 // order before the store that releases the lock - must also appear
3928 // before the store that releases the lock in memory visibility order.
3929 // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
3930 // the ST of 0 into the lock-word which releases the lock, so fence
3931 // more than covers this on all platforms.
3932 *adr = 0;
3933 }
3934
3935
verify()3936 void Threads::verify() {
3937 ALL_JAVA_THREADS(p) {
3938 p->verify();
3939 }
3940 VMThread* thread = VMThread::vm_thread();
3941 if (thread != NULL) thread->verify();
3942 }
3943
3944 #ifndef PRODUCT
verify_cross_modify_fence_failure(JavaThread * thread)3945 void JavaThread::verify_cross_modify_fence_failure(JavaThread *thread) {
3946 report_vm_error(__FILE__, __LINE__, "Cross modify fence failure", "%p", thread);
3947 }
3948 #endif
3949