1 /*
2  * Copyright (c) 2003, 2021, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package javax.net.ssl;
27 
28 import java.nio.ByteBuffer;
29 import java.nio.ReadOnlyBufferException;
30 import java.util.List;
31 import java.util.function.BiFunction;
32 
33 
34 /**
35  * A class which enables secure communications using protocols such as
36  * the Secure Sockets Layer (SSL) or
37  * <A HREF="http://www.ietf.org/rfc/rfc2246.txt"> IETF RFC 2246 "Transport
38  * Layer Security" (TLS) </A> protocols, but is transport independent.
39  * <P>
40  * The secure communications modes include: <UL>
41  *
42  *      <LI> <em>Integrity Protection</em>.  SSL/TLS/DTLS protects against
43  *      modification of messages by an active wiretapper.
44  *
45  *      <LI> <em>Authentication</em>.  In most modes, SSL/TLS/DTLS provides
46  *      peer authentication.  Servers are usually authenticated, and
47  *      clients may be authenticated as requested by servers.
48  *
49  *      <LI> <em>Confidentiality (Privacy Protection)</em>.  In most
50  *      modes, SSL/TLS/DTLS encrypts data being sent between client and
51  *      server.  This protects the confidentiality of data, so that
52  *      passive wiretappers won't see sensitive data such as financial
53  *      information or personal information of many kinds.
54  *
55  *      </UL>
56  *
57  * These kinds of protection are specified by a "cipher suite", which
58  * is a combination of cryptographic algorithms used by a given SSL
59  * connection.  During the negotiation process, the two endpoints must
60  * agree on a cipher suite that is available in both environments.  If
61  * there is no such suite in common, no SSL connection can be
62  * established, and no data can be exchanged.
63  * <P>
64  * The cipher suite used is established by a negotiation process called
65  * "handshaking".  The goal of this process is to create or rejoin a
66  * "session", which may protect many connections over time.  After
67  * handshaking has completed, you can access session attributes by
68  * using the {@link #getSession()} method.
69  * <P>
70  * The {@code SSLSocket} class provides much of the same security
71  * functionality, but all of the inbound and outbound data is
72  * automatically transported using the underlying {@link
73  * java.net.Socket Socket}, which by design uses a blocking model.
74  * While this is appropriate for many applications, this model does not
75  * provide the scalability required by large servers.
76  * <P>
77  * The primary distinction of an {@code SSLEngine} is that it
78  * operates on inbound and outbound byte streams, independent of the
79  * transport mechanism.  It is the responsibility of the
80  * {@code SSLEngine} user to arrange for reliable I/O transport to
81  * the peer.  By separating the SSL/TLS/DTLS abstraction from the I/O
82  * transport mechanism, the {@code SSLEngine} can be used for a
83  * wide variety of I/O types, such as {@link
84  * java.nio.channels.spi.AbstractSelectableChannel#configureBlocking(boolean)
85  * non-blocking I/O (polling)}, {@link java.nio.channels.Selector
86  * selectable non-blocking I/O}, {@link java.net.Socket Socket} and the
87  * traditional Input/OutputStreams, local {@link java.nio.ByteBuffer
88  * ByteBuffers} or byte arrays, <A
89  * HREF="http://www.jcp.org/en/jsr/detail?id=203"> future asynchronous
90  * I/O models </A>, and so on.
91  * <P>
92  * At a high level, the {@code SSLEngine} appears thus:
93  *
94  * <pre>
95  *                   app data
96  *
97  *                |           ^
98  *                |     |     |
99  *                v     |     |
100  *           +----+-----|-----+----+
101  *           |          |          |
102  *           |       SSL|Engine    |
103  *   wrap()  |          |          |  unwrap()
104  *           | OUTBOUND | INBOUND  |
105  *           |          |          |
106  *           +----+-----|-----+----+
107  *                |     |     ^
108  *                |     |     |
109  *                v           |
110  *
111  *                   net data
112  * </pre>
113  * Application data (also known as plaintext or cleartext) is data which
114  * is produced or consumed by an application.  Its counterpart is
115  * network data, which consists of either handshaking and/or ciphertext
116  * (encrypted) data, and destined to be transported via an I/O
117  * mechanism.  Inbound data is data which has been received from the
118  * peer, and outbound data is destined for the peer.
119  * <P>
120  * (In the context of an {@code SSLEngine}, the term "handshake
121  * data" is taken to mean any data exchanged to establish and control a
122  * secure connection.  Handshake data includes the SSL/TLS/DTLS messages
123  * "alert", "change_cipher_spec," and "handshake.")
124  * <P>
125  * There are five distinct phases to an {@code SSLEngine}.
126  *
127  * <OL>
128  *     <li> Creation - The {@code SSLEngine} has been created and
129  *     initialized, but has not yet been used.  During this phase, an
130  *     application may set any {@code SSLEngine}-specific settings
131  *     (enabled cipher suites, whether the {@code SSLEngine} should
132  *     handshake in client or server mode, and so on).  Once
133  *     handshaking has begun, though, any new settings (except
134  *     client/server mode, see below) will be used for
135  *     the next handshake.
136  *
137  *     <li> Initial Handshake - The initial handshake is a procedure by
138  *     which the two peers exchange communication parameters until an
139  *     SSLSession is established.  Application data can not be sent during
140  *     this phase.
141  *
142  *     <li> Application Data - Once the communication parameters have
143  *     been established and the handshake is complete, application data
144  *     may flow through the {@code SSLEngine}.  Outbound
145  *     application messages are encrypted and integrity protected,
146  *     and inbound messages reverse the process.
147  *
148  *     <li> Rehandshaking - Either side may request a renegotiation of
149  *     the session at any time during the Application Data phase.  New
150  *     handshaking data can be intermixed among the application data.
151  *     Before starting the rehandshake phase, the application may
152  *     reset the SSL/TLS/DTLS communication parameters such as the list of
153  *     enabled ciphersuites and whether to use client authentication,
154  *     but can not change between client/server modes.  As before, once
155  *     handshaking has begun, any new {@code SSLEngine}
156  *     configuration settings will not be used until the next
157  *     handshake.
158  *
159  *     <li> Closure - When the connection is no longer needed, the client
160  *     and the server applications should each close both sides of their
161  *     respective connections.  For {@code SSLEngine} objects, an
162  *     application should call {@link SSLEngine#closeOutbound()} and
163  *     send any remaining messages to the peer.  Likewise, an application
164  *     should receive any remaining messages from the peer before calling
165  *     {@link SSLEngine#closeInbound()}.  The underlying transport mechanism
166  *     can then be closed after both sides of the {@code SSLEngine} have
167  *     been closed.  If the connection is not closed in an orderly manner
168  *     (for example {@link SSLEngine#closeInbound()} is called before the
169  *     peer's write closure notification has been received), exceptions
170  *     will be raised to indicate that an error has occurred.  Once an
171  *     engine is closed, it is not reusable: a new {@code SSLEngine}
172  *     must be created.
173  * </OL>
174  * An {@code SSLEngine} is created by calling {@link
175  * SSLContext#createSSLEngine()} from an initialized
176  * {@code SSLContext}.  Any configuration
177  * parameters should be set before making the first call to
178  * {@code wrap()}, {@code unwrap()}, or
179  * {@code beginHandshake()}.  These methods all trigger the
180  * initial handshake.
181  * <P>
182  * Data moves through the engine by calling {@link #wrap(ByteBuffer,
183  * ByteBuffer) wrap()} or {@link #unwrap(ByteBuffer, ByteBuffer)
184  * unwrap()} on outbound or inbound data, respectively.  Depending on
185  * the state of the {@code SSLEngine}, a {@code wrap()} call
186  * may consume application data from the source buffer and may produce
187  * network data in the destination buffer.  The outbound data
188  * may contain application and/or handshake data.  A call to
189  * {@code unwrap()} will examine the source buffer and may
190  * advance the handshake if the data is handshaking information, or
191  * may place application data in the destination buffer if the data
192  * is application.  The state of the underlying SSL/TLS/DTLS algorithm
193  * will determine when data is consumed and produced.
194  * <P>
195  * Calls to {@code wrap()} and {@code unwrap()} return an
196  * {@code SSLEngineResult} which indicates the status of the
197  * operation, and (optionally) how to interact with the engine to make
198  * progress.
199  * <P>
200  * The {@code SSLEngine} produces/consumes complete SSL/TLS/DTLS
201  * packets only, and does not store application data internally between
202  * calls to {@code wrap()/unwrap()}.  Thus input and output
203  * {@code ByteBuffer}s must be sized appropriately to hold the
204  * maximum record that can be produced.  Calls to {@link
205  * SSLSession#getPacketBufferSize()} and {@link
206  * SSLSession#getApplicationBufferSize()} should be used to determine
207  * the appropriate buffer sizes.  The size of the outbound application
208  * data buffer generally does not matter.  If buffer conditions do not
209  * allow for the proper consumption/production of data, the application
210  * must determine (via {@link SSLEngineResult}) and correct the
211  * problem, and then try the call again.
212  * <P>
213  * For example, {@code unwrap()} will return a {@link
214  * SSLEngineResult.Status#BUFFER_OVERFLOW} result if the engine
215  * determines that there is not enough destination buffer space available.
216  * Applications should call {@link SSLSession#getApplicationBufferSize()}
217  * and compare that value with the space available in the destination buffer,
218  * enlarging the buffer if necessary.  Similarly, if {@code unwrap()}
219  * were to return a {@link SSLEngineResult.Status#BUFFER_UNDERFLOW}, the
220  * application should call {@link SSLSession#getPacketBufferSize()} to ensure
221  * that the source buffer has enough room to hold a record (enlarging if
222  * necessary), and then obtain more inbound data.
223  *
224  * <pre>{@code
225  *   SSLEngineResult r = engine.unwrap(src, dst);
226  *   switch (r.getStatus()) {
227  *   case BUFFER_OVERFLOW:
228  *       // Could attempt to drain the dst buffer of any already obtained
229  *       // data, but we'll just increase it to the size needed.
230  *       int appSize = engine.getSession().getApplicationBufferSize();
231  *       ByteBuffer b = ByteBuffer.allocate(appSize + dst.position());
232  *       dst.flip();
233  *       b.put(dst);
234  *       dst = b;
235  *       // retry the operation.
236  *       break;
237  *   case BUFFER_UNDERFLOW:
238  *       int netSize = engine.getSession().getPacketBufferSize();
239  *       // Resize buffer if needed.
240  *       if (netSize > src.capacity()) {
241  *           ByteBuffer b = ByteBuffer.allocate(netSize);
242  *           src.flip();
243  *           b.put(src);
244  *           src = b;
245  *       }
246  *       // Obtain more inbound network data for src,
247  *       // then retry the operation.
248  *       break;
249  *   // other cases: CLOSED, OK.
250  *   }
251  * }</pre>
252  *
253  * <P>
254  * Unlike {@code SSLSocket}, all methods of SSLEngine are
255  * non-blocking.  {@code SSLEngine} implementations may
256  * require the results of tasks that may take an extended period of
257  * time to complete, or may even block.  For example, a TrustManager
258  * may need to connect to a remote certificate validation service,
259  * or a KeyManager might need to prompt a user to determine which
260  * certificate to use as part of client authentication.  Additionally,
261  * creating cryptographic signatures and verifying them can be slow,
262  * seemingly blocking.
263  * <P>
264  * For any operation which may potentially block, the
265  * {@code SSLEngine} will create a {@link java.lang.Runnable}
266  * delegated task.  When {@code SSLEngineResult} indicates that a
267  * delegated task result is needed, the application must call {@link
268  * #getDelegatedTask()} to obtain an outstanding delegated task and
269  * call its {@link java.lang.Runnable#run() run()} method (possibly using
270  * a different thread depending on the compute strategy).  The
271  * application should continue obtaining delegated tasks until no more
272  * exist, and try the original operation again.
273  * <P>
274  * At the end of a communication session, applications should properly
275  * close the SSL/TLS/DTLS link.  The SSL/TLS/DTLS protocols have closure
276  * handshake messages, and these messages should be communicated to the
277  * peer before releasing the {@code SSLEngine} and closing the
278  * underlying transport mechanism.  A close can be initiated by one of:
279  * an SSLException, an inbound closure handshake message, or one of the
280  * close methods.  In all cases, closure handshake messages are
281  * generated by the engine, and {@code wrap()} should be repeatedly
282  * called until the resulting {@code SSLEngineResult}'s status
283  * returns "CLOSED", or {@link #isOutboundDone()} returns true.  All
284  * data obtained from the {@code wrap()} method should be sent to the
285  * peer.
286  * <P>
287  * {@link #closeOutbound()} is used to signal the engine that the
288  * application will not be sending any more data.
289  * <P>
290  * A peer will signal its intent to close by sending its own closure
291  * handshake message.  After this message has been received and
292  * processed by the local {@code SSLEngine}'s {@code unwrap()}
293  * call, the application can detect the close by calling
294  * {@code unwrap()} and looking for a {@code SSLEngineResult}
295  * with status "CLOSED", or if {@link #isInboundDone()} returns true.
296  * If for some reason the peer closes the communication link without
297  * sending the proper SSL/TLS/DTLS closure message, the application can
298  * detect the end-of-stream and can signal the engine via {@link
299  * #closeInbound()} that there will no more inbound messages to
300  * process.  Some applications might choose to require orderly shutdown
301  * messages from a peer, in which case they can check that the closure
302  * was generated by a handshake message and not by an end-of-stream
303  * condition.
304  * <P>
305  * There are two groups of cipher suites which you will need to know
306  * about when managing cipher suites:
307  *
308  * <UL>
309  *      <LI> <em>Supported</em> cipher suites:  all the suites which are
310  *      supported by the SSL implementation.  This list is reported
311  *      using {@link #getSupportedCipherSuites()}.
312  *
313  *      <LI> <em>Enabled</em> cipher suites, which may be fewer than
314  *      the full set of supported suites.  This group is set using the
315  *      {@link #setEnabledCipherSuites(String [])} method, and
316  *      queried using the {@link #getEnabledCipherSuites()} method.
317  *      Initially, a default set of cipher suites will be enabled on a
318  *      new engine that represents the minimum suggested
319  *      configuration.
320  * </UL>
321  *
322  * Implementation defaults require that only cipher suites which
323  * authenticate servers and provide confidentiality be enabled by
324  * default.  Only if both sides explicitly agree to unauthenticated
325  * and/or non-private (unencrypted) communications will such a
326  * cipher suite be selected.
327  * <P>
328  * Each SSL/TLS/DTLS connection must have one client and one server, thus
329  * each endpoint must decide which role to assume.  This choice determines
330  * who begins the handshaking process as well as which type of messages
331  * should be sent by each party.  The method {@link
332  * #setUseClientMode(boolean)} configures the mode.  Note that the
333  * default mode for a new {@code SSLEngine} is provider-specific.
334  * Applications should set the mode explicitly before invoking other
335  * methods of the {@code SSLEngine}.  Once the initial handshaking has
336  * started, an {@code SSLEngine} can not switch between client and server
337  * modes, even when performing renegotiations.
338  * <P>
339  * The ApplicationProtocol {@code String} values returned by the methods
340  * in this class are in the network byte representation sent by the peer.
341  * The bytes could be directly compared, or converted to its Unicode
342  * {code String} format for comparison.
343  *
344  * <blockquote><pre>
345  *     String networkString = sslEngine.getHandshakeApplicationProtocol();
346  *     byte[] bytes = networkString.getBytes(StandardCharsets.ISO_8859_1);
347  *
348  *     //
349  *     // Match using bytes:
350  *     //
351  *     //   "http/1.1"                       (7-bit ASCII values same in UTF-8)
352  *     //   MEETEI MAYEK LETTERS "HUK UN I"  (Unicode 0xabcd->0xabcf)
353  *     //
354  *     String HTTP1_1 = "http/1.1";
355  *     byte[] HTTP1_1_BYTES = HTTP1_1.getBytes(StandardCharsets.UTF_8);
356  *
357  *     byte[] HUK_UN_I_BYTES = new byte[] {
358  *         (byte) 0xab, (byte) 0xcd,
359  *         (byte) 0xab, (byte) 0xce,
360  *         (byte) 0xab, (byte) 0xcf};
361  *
362  *     if ((Arrays.compare(bytes, HTTP1_1_BYTES) == 0 )
363  *             || Arrays.compare(bytes, HUK_UN_I_BYTES) == 0) {
364  *        ...
365  *     }
366  *
367  *     //
368  *     // Alternatively match using string.equals() if we know the ALPN value
369  *     // was encoded from a {@code String} using a certain character set,
370  *     // for example {@code UTF-8}.  The ALPN value must first be properly
371  *     // decoded to a Unicode {@code String} before use.
372  *     //
373  *     String unicodeString = new String(bytes, StandardCharsets.UTF_8);
374  *     if (unicodeString.equals(HTTP1_1)
375  *             || unicodeString.equals("\u005cuabcd\u005cuabce\u005cuabcf")) {
376  *         ...
377  *     }
378  * </pre></blockquote>
379  *
380  * <P>
381  * Applications might choose to process delegated tasks in different
382  * threads.  When an {@code SSLEngine}
383  * is created, the current {@link java.security.AccessControlContext}
384  * is saved.  All future delegated tasks will be processed using this
385  * context:  that is, all access control decisions will be made using the
386  * context captured at engine creation.
387  *
388  * <HR>
389  *
390  * <B>Concurrency Notes</B>:
391  * There are two concurrency issues to be aware of:
392  *
393  * <OL>
394  *      <li>The {@code wrap()} and {@code unwrap()} methods
395  *      may execute concurrently of each other.
396  *
397  *      <li> The SSL/TLS/DTLS protocols employ ordered packets.
398  *      Applications must take care to ensure that generated packets
399  *      are delivered in sequence.  If packets arrive
400  *      out-of-order, unexpected or fatal results may occur.
401  * <P>
402  *      For example:
403  *
404  *      <pre>
405  *              synchronized (outboundLock) {
406  *                  sslEngine.wrap(src, dst);
407  *                  outboundQueue.put(dst);
408  *              }
409  *      </pre>
410  *
411  *      As a corollary, two threads must not attempt to call the same method
412  *      (either {@code wrap()} or {@code unwrap()}) concurrently,
413  *      because there is no way to guarantee the eventual packet ordering.
414  * </OL>
415  *
416  * @see SSLContext
417  * @see SSLSocket
418  * @see SSLServerSocket
419  * @see SSLSession
420  * @see java.net.Socket
421  *
422  * @since 1.5
423  * @author Brad R. Wetmore
424  */
425 
426 public abstract class SSLEngine {
427 
428     private String peerHost = null;
429     private int peerPort = -1;
430 
431     /**
432      * Constructor for an {@code SSLEngine} providing no hints
433      * for an internal session reuse strategy.
434      *
435      * @see     SSLContext#createSSLEngine()
436      * @see     SSLSessionContext
437      */
SSLEngine()438     protected SSLEngine() {
439     }
440 
441     /**
442      * Constructor for an {@code SSLEngine}.
443      * <P>
444      * {@code SSLEngine} implementations may use the
445      * {@code peerHost} and {@code peerPort} parameters as hints
446      * for their internal session reuse strategy.
447      * <P>
448      * Some cipher suites (such as Kerberos) require remote hostname
449      * information. Implementations of this class should use this
450      * constructor to use Kerberos.
451      * <P>
452      * The parameters are not authenticated by the
453      * {@code SSLEngine}.
454      *
455      * @param   peerHost the name of the peer host
456      * @param   peerPort the port number of the peer
457      * @see     SSLContext#createSSLEngine(String, int)
458      * @see     SSLSessionContext
459      */
SSLEngine(String peerHost, int peerPort)460     protected SSLEngine(String peerHost, int peerPort) {
461         this.peerHost = peerHost;
462         this.peerPort = peerPort;
463     }
464 
465     /**
466      * Returns the host name of the peer.
467      * <P>
468      * Note that the value is not authenticated, and should not be
469      * relied upon.
470      *
471      * @return  the host name of the peer, or null if nothing is
472      *          available.
473      */
getPeerHost()474     public String getPeerHost() {
475         return peerHost;
476     }
477 
478     /**
479      * Returns the port number of the peer.
480      * <P>
481      * Note that the value is not authenticated, and should not be
482      * relied upon.
483      *
484      * @return  the port number of the peer, or -1 if nothing is
485      *          available.
486      */
getPeerPort()487     public int getPeerPort() {
488         return peerPort;
489     }
490 
491     /**
492      * Attempts to encode a buffer of plaintext application data into
493      * SSL/TLS/DTLS network data.
494      * <P>
495      * An invocation of this method behaves in exactly the same manner
496      * as the invocation:
497      * <blockquote><pre>
498      * {@link #wrap(ByteBuffer [], int, int, ByteBuffer)
499      *     engine.wrap(new ByteBuffer [] { src }, 0, 1, dst);}
500      * </pre></blockquote>
501      *
502      * @param   src
503      *          a {@code ByteBuffer} containing outbound application data
504      * @param   dst
505      *          a {@code ByteBuffer} to hold outbound network data
506      * @return  an {@code SSLEngineResult} describing the result
507      *          of this operation.
508      * @throws  SSLException
509      *          A problem was encountered while processing the
510      *          data that caused the {@code SSLEngine} to abort.
511      *          See the class description for more information on
512      *          engine closure.
513      * @throws  ReadOnlyBufferException
514      *          if the {@code dst} buffer is read-only.
515      * @throws  IllegalArgumentException
516      *          if either {@code src} or {@code dst}
517      *          is null.
518      * @throws  IllegalStateException if the client/server mode
519      *          has not yet been set.
520      * @see     #wrap(ByteBuffer [], int, int, ByteBuffer)
521      */
wrap(ByteBuffer src, ByteBuffer dst)522     public SSLEngineResult wrap(ByteBuffer src,
523             ByteBuffer dst) throws SSLException {
524         return wrap(new ByteBuffer [] { src }, 0, 1, dst);
525     }
526 
527     /**
528      * Attempts to encode plaintext bytes from a sequence of data
529      * buffers into SSL/TLS/DTLS network data.
530      * <P>
531      * An invocation of this method behaves in exactly the same manner
532      * as the invocation:
533      * <blockquote><pre>
534      * {@link #wrap(ByteBuffer [], int, int, ByteBuffer)
535      *     engine.wrap(srcs, 0, srcs.length, dst);}
536      * </pre></blockquote>
537      *
538      * @param   srcs
539      *          an array of {@code ByteBuffers} containing the
540      *          outbound application data
541      * @param   dst
542      *          a {@code ByteBuffer} to hold outbound network data
543      * @return  an {@code SSLEngineResult} describing the result
544      *          of this operation.
545      * @throws  SSLException
546      *          A problem was encountered while processing the
547      *          data that caused the {@code SSLEngine} to abort.
548      *          See the class description for more information on
549      *          engine closure.
550      * @throws  ReadOnlyBufferException
551      *          if the {@code dst} buffer is read-only.
552      * @throws  IllegalArgumentException
553      *          if either {@code srcs} or {@code dst}
554      *          is null, or if any element in {@code srcs} is null.
555      * @throws  IllegalStateException if the client/server mode
556      *          has not yet been set.
557      * @see     #wrap(ByteBuffer [], int, int, ByteBuffer)
558      */
wrap(ByteBuffer [] srcs, ByteBuffer dst)559     public SSLEngineResult wrap(ByteBuffer [] srcs,
560             ByteBuffer dst) throws SSLException {
561         if (srcs == null) {
562             throw new IllegalArgumentException("src == null");
563         }
564         return wrap(srcs, 0, srcs.length, dst);
565     }
566 
567 
568     /**
569      * Attempts to encode plaintext bytes from a subsequence of data
570      * buffers into SSL/TLS/DTLS network data.  This <i>"gathering"</i>
571      * operation encodes, in a single invocation, a sequence of bytes
572      * from one or more of a given sequence of buffers.  Gathering
573      * wraps are often useful when implementing network protocols or
574      * file formats that, for example, group data into segments
575      * consisting of one or more fixed-length headers followed by a
576      * variable-length body.  See
577      * {@link java.nio.channels.GatheringByteChannel} for more
578      * information on gathering, and {@link
579      * java.nio.channels.GatheringByteChannel#write(ByteBuffer[],
580      * int, int)} for more information on the subsequence
581      * behavior.
582      * <P>
583      * Depending on the state of the SSLEngine, this method may produce
584      * network data without consuming any application data (for example,
585      * it may generate handshake data.)
586      * <P>
587      * The application is responsible for reliably transporting the
588      * network data to the peer, and for ensuring that data created by
589      * multiple calls to wrap() is transported in the same order in which
590      * it was generated.  The application must properly synchronize
591      * multiple calls to this method.
592      * <P>
593      * If this {@code SSLEngine} has not yet started its initial
594      * handshake, this method will automatically start the handshake.
595      * <P>
596      * This method will attempt to produce SSL/TLS/DTLS records, and will
597      * consume as much source data as possible, but will never consume
598      * more than the sum of the bytes remaining in each buffer.  Each
599      * {@code ByteBuffer}'s position is updated to reflect the
600      * amount of data consumed or produced.  The limits remain the
601      * same.
602      * <P>
603      * The underlying memory used by the {@code srcs} and
604      * {@code dst ByteBuffer}s must not be the same.
605      * <P>
606      * See the class description for more information on engine closure.
607      *
608      * @param   srcs
609      *          an array of {@code ByteBuffers} containing the
610      *          outbound application data
611      * @param   offset
612      *          The offset within the buffer array of the first buffer from
613      *          which bytes are to be retrieved; it must be non-negative
614      *          and no larger than {@code srcs.length}
615      * @param   length
616      *          The maximum number of buffers to be accessed; it must be
617      *          non-negative and no larger than
618      *          {@code srcs.length}&nbsp;-&nbsp;{@code offset}
619      * @param   dst
620      *          a {@code ByteBuffer} to hold outbound network data
621      * @return  an {@code SSLEngineResult} describing the result
622      *          of this operation.
623      * @throws  SSLException
624      *          A problem was encountered while processing the
625      *          data that caused the {@code SSLEngine} to abort.
626      *          See the class description for more information on
627      *          engine closure.
628      * @throws  IndexOutOfBoundsException
629      *          if the preconditions on the {@code offset} and
630      *          {@code length} parameters do not hold.
631      * @throws  ReadOnlyBufferException
632      *          if the {@code dst} buffer is read-only.
633      * @throws  IllegalArgumentException
634      *          if either {@code srcs} or {@code dst}
635      *          is null, or if any element in the {@code srcs}
636      *          subsequence specified is null.
637      * @throws  IllegalStateException if the client/server mode
638      *          has not yet been set.
639      * @see     java.nio.channels.GatheringByteChannel
640      * @see     java.nio.channels.GatheringByteChannel#write(
641      *              ByteBuffer[], int, int)
642      */
wrap(ByteBuffer [] srcs, int offset, int length, ByteBuffer dst)643     public abstract SSLEngineResult wrap(ByteBuffer [] srcs, int offset,
644             int length, ByteBuffer dst) throws SSLException;
645 
646     /**
647      * Attempts to decode SSL/TLS/DTLS network data into a plaintext
648      * application data buffer.
649      * <P>
650      * An invocation of this method behaves in exactly the same manner
651      * as the invocation:
652      * <blockquote><pre>
653      * {@link #unwrap(ByteBuffer, ByteBuffer [], int, int)
654      *     engine.unwrap(src, new ByteBuffer [] { dst }, 0, 1);}
655      * </pre></blockquote>
656      *
657      * @param   src
658      *          a {@code ByteBuffer} containing inbound network data.
659      * @param   dst
660      *          a {@code ByteBuffer} to hold inbound application data.
661      * @return  an {@code SSLEngineResult} describing the result
662      *          of this operation.
663      * @throws  SSLException
664      *          A problem was encountered while processing the
665      *          data that caused the {@code SSLEngine} to abort.
666      *          See the class description for more information on
667      *          engine closure.
668      * @throws  ReadOnlyBufferException
669      *          if the {@code dst} buffer is read-only.
670      * @throws  IllegalArgumentException
671      *          if either {@code src} or {@code dst}
672      *          is null.
673      * @throws  IllegalStateException if the client/server mode
674      *          has not yet been set.
675      * @see     #unwrap(ByteBuffer, ByteBuffer [], int, int)
676      */
unwrap(ByteBuffer src, ByteBuffer dst)677     public SSLEngineResult unwrap(ByteBuffer src,
678             ByteBuffer dst) throws SSLException {
679         return unwrap(src, new ByteBuffer [] { dst }, 0, 1);
680     }
681 
682     /**
683      * Attempts to decode SSL/TLS/DTLS network data into a sequence of plaintext
684      * application data buffers.
685      * <P>
686      * An invocation of this method behaves in exactly the same manner
687      * as the invocation:
688      * <blockquote><pre>
689      * {@link #unwrap(ByteBuffer, ByteBuffer [], int, int)
690      *     engine.unwrap(src, dsts, 0, dsts.length);}
691      * </pre></blockquote>
692      *
693      * @param   src
694      *          a {@code ByteBuffer} containing inbound network data.
695      * @param   dsts
696      *          an array of {@code ByteBuffer}s to hold inbound
697      *          application data.
698      * @return  an {@code SSLEngineResult} describing the result
699      *          of this operation.
700      * @throws  SSLException
701      *          A problem was encountered while processing the
702      *          data that caused the {@code SSLEngine} to abort.
703      *          See the class description for more information on
704      *          engine closure.
705      * @throws  ReadOnlyBufferException
706      *          if any of the {@code dst} buffers are read-only.
707      * @throws  IllegalArgumentException
708      *          if either {@code src} or {@code dsts}
709      *          is null, or if any element in {@code dsts} is null.
710      * @throws  IllegalStateException if the client/server mode
711      *          has not yet been set.
712      * @see     #unwrap(ByteBuffer, ByteBuffer [], int, int)
713      */
unwrap(ByteBuffer src, ByteBuffer [] dsts)714     public SSLEngineResult unwrap(ByteBuffer src,
715             ByteBuffer [] dsts) throws SSLException {
716         if (dsts == null) {
717             throw new IllegalArgumentException("dsts == null");
718         }
719         return unwrap(src, dsts, 0, dsts.length);
720     }
721 
722     /**
723      * Attempts to decode SSL/TLS/DTLS network data into a subsequence of
724      * plaintext application data buffers.  This <i>"scattering"</i>
725      * operation decodes, in a single invocation, a sequence of bytes
726      * into one or more of a given sequence of buffers.  Scattering
727      * unwraps are often useful when implementing network protocols or
728      * file formats that, for example, group data into segments
729      * consisting of one or more fixed-length headers followed by a
730      * variable-length body.  See
731      * {@link java.nio.channels.ScatteringByteChannel} for more
732      * information on scattering, and {@link
733      * java.nio.channels.ScatteringByteChannel#read(ByteBuffer[],
734      * int, int)} for more information on the subsequence
735      * behavior.
736      * <P>
737      * Depending on the state of the SSLEngine, this method may consume
738      * network data without producing any application data (for example,
739      * it may consume handshake data.)
740      * <P>
741      * The application is responsible for reliably obtaining the network
742      * data from the peer, and for invoking unwrap() on the data in the
743      * order it was received.  The application must properly synchronize
744      * multiple calls to this method.
745      * <P>
746      * If this {@code SSLEngine} has not yet started its initial
747      * handshake, this method will automatically start the handshake.
748      * <P>
749      * This method will attempt to consume one complete SSL/TLS/DTLS network
750      * packet, but will never consume more than the sum of the bytes
751      * remaining in the buffers.  Each {@code ByteBuffer}'s
752      * position is updated to reflect the amount of data consumed or
753      * produced.  The limits remain the same.
754      * <P>
755      * The underlying memory used by the {@code src} and
756      * {@code dsts ByteBuffer}s must not be the same.
757      * <P>
758      * The inbound network buffer may be modified as a result of this
759      * call:  therefore if the network data packet is required for some
760      * secondary purpose, the data should be duplicated before calling this
761      * method.  Note:  the network data will not be useful to a second
762      * SSLEngine, as each SSLEngine contains unique random state which
763      * influences the SSL/TLS/DTLS messages.
764      * <P>
765      * See the class description for more information on engine closure.
766      *
767      * @param   src
768      *          a {@code ByteBuffer} containing inbound network data.
769      * @param   dsts
770      *          an array of {@code ByteBuffer}s to hold inbound
771      *          application data.
772      * @param   offset
773      *          The offset within the buffer array of the first buffer from
774      *          which bytes are to be transferred; it must be non-negative
775      *          and no larger than {@code dsts.length}.
776      * @param   length
777      *          The maximum number of buffers to be accessed; it must be
778      *          non-negative and no larger than
779      *          {@code dsts.length}&nbsp;-&nbsp;{@code offset}.
780      * @return  an {@code SSLEngineResult} describing the result
781      *          of this operation.
782      * @throws  SSLException
783      *          A problem was encountered while processing the
784      *          data that caused the {@code SSLEngine} to abort.
785      *          See the class description for more information on
786      *          engine closure.
787      * @throws  IndexOutOfBoundsException
788      *          If the preconditions on the {@code offset} and
789      *          {@code length} parameters do not hold.
790      * @throws  ReadOnlyBufferException
791      *          if any of the {@code dst} buffers are read-only.
792      * @throws  IllegalArgumentException
793      *          if either {@code src} or {@code dsts}
794      *          is null, or if any element in the {@code dsts}
795      *          subsequence specified is null.
796      * @throws  IllegalStateException if the client/server mode
797      *          has not yet been set.
798      * @see     java.nio.channels.ScatteringByteChannel
799      * @see     java.nio.channels.ScatteringByteChannel#read(
800      *              ByteBuffer[], int, int)
801      */
unwrap(ByteBuffer src, ByteBuffer [] dsts, int offset, int length)802     public abstract SSLEngineResult unwrap(ByteBuffer src,
803             ByteBuffer [] dsts, int offset, int length) throws SSLException;
804 
805 
806     /**
807      * Returns a delegated {@code Runnable} task for
808      * this {@code SSLEngine}.
809      * <P>
810      * {@code SSLEngine} operations may require the results of
811      * operations that block, or may take an extended period of time to
812      * complete.  This method is used to obtain an outstanding {@link
813      * java.lang.Runnable} operation (task).  Each task must be assigned
814      * a thread (possibly the current) to perform the {@link
815      * java.lang.Runnable#run() run} operation.  Once the
816      * {@code run} method returns, the {@code Runnable} object
817      * is no longer needed and may be discarded.
818      * <P>
819      * Delegated tasks run in the {@code AccessControlContext}
820      * in place when this object was created.
821      * <P>
822      * A call to this method will return each outstanding task
823      * exactly once.
824      * <P>
825      * Multiple delegated tasks can be run in parallel.
826      *
827      * @return  a delegated {@code Runnable} task, or null
828      *          if none are available.
829      */
getDelegatedTask()830     public abstract Runnable getDelegatedTask();
831 
832 
833     /**
834      * Signals that no more inbound network data will be sent
835      * to this {@code SSLEngine}.
836      * <P>
837      * If the application initiated the closing process by calling
838      * {@link #closeOutbound()}, under some circumstances it is not
839      * required that the initiator wait for the peer's corresponding
840      * close message.  (See section 7.2.1 of the TLS specification (<A
841      * HREF="http://www.ietf.org/rfc/rfc2246.txt">RFC 2246</A>) for more
842      * information on waiting for closure alerts.)  In such cases, this
843      * method need not be called.
844      * <P>
845      * But if the application did not initiate the closure process, or
846      * if the circumstances above do not apply, this method should be
847      * called whenever the end of the SSL/TLS/DTLS data stream is reached.
848      * This ensures closure of the inbound side, and checks that the
849      * peer followed the SSL/TLS/DTLS close procedure properly, thus
850      * detecting possible truncation attacks.
851      * <P>
852      * This method is idempotent:  if the inbound side has already
853      * been closed, this method does not do anything.
854      * <P>
855      * {@link #wrap(ByteBuffer, ByteBuffer) wrap()} should be
856      * called to flush any remaining handshake data.
857      *
858      * @throws  SSLException
859      *          if this engine has not received the proper SSL/TLS/DTLS close
860      *          notification message from the peer.
861      *
862      * @see     #isInboundDone()
863      * @see     #isOutboundDone()
864      */
closeInbound()865     public abstract void closeInbound() throws SSLException;
866 
867 
868     /**
869      * Returns whether {@link #unwrap(ByteBuffer, ByteBuffer)} will
870      * accept any more inbound data messages.
871      *
872      * @return  true if the {@code SSLEngine} will not
873      *          consume anymore network data (and by implication,
874      *          will not produce any more application data.)
875      * @see     #closeInbound()
876      */
isInboundDone()877     public abstract boolean isInboundDone();
878 
879 
880     /**
881      * Signals that no more outbound application data will be sent
882      * on this {@code SSLEngine}.
883      * <P>
884      * This method is idempotent:  if the outbound side has already
885      * been closed, this method does not do anything.
886      * <P>
887      * {@link #wrap(ByteBuffer, ByteBuffer)} should be
888      * called to flush any remaining handshake data.
889      *
890      * @see     #isOutboundDone()
891      */
closeOutbound()892     public abstract void closeOutbound();
893 
894 
895     /**
896      * Returns whether {@link #wrap(ByteBuffer, ByteBuffer)} will
897      * produce any more outbound data messages.
898      * <P>
899      * Note that during the closure phase, a {@code SSLEngine} may
900      * generate handshake closure data that must be sent to the peer.
901      * {@code wrap()} must be called to generate this data.  When
902      * this method returns true, no more outbound data will be created.
903      *
904      * @return  true if the {@code SSLEngine} will not produce
905      *          any more network data
906      *
907      * @see     #closeOutbound()
908      * @see     #closeInbound()
909      */
isOutboundDone()910     public abstract boolean isOutboundDone();
911 
912 
913     /**
914      * Returns the names of the cipher suites which could be enabled for use
915      * on this engine.  Normally, only a subset of these will actually
916      * be enabled by default, since this list may include cipher suites which
917      * do not meet quality of service requirements for those defaults.  Such
918      * cipher suites might be useful in specialized applications.
919      * <P>
920      * The returned array includes cipher suites from the list of standard
921      * cipher suite names in the <a href=
922      * "{@docRoot}/../specs/security/standard-names.html#jsse-cipher-suite-names">
923      * JSSE Cipher Suite Names</a> section of the Java Cryptography
924      * Architecture Standard Algorithm Name Documentation, and may also
925      * include other cipher suites that the provider supports.
926      *
927      * @return  an array of cipher suite names
928      * @see     #getEnabledCipherSuites()
929      * @see     #setEnabledCipherSuites(String [])
930      */
getSupportedCipherSuites()931     public abstract String [] getSupportedCipherSuites();
932 
933 
934     /**
935      * Returns the names of the SSL cipher suites which are currently
936      * enabled for use on this engine.  When an SSLEngine is first
937      * created, all enabled cipher suites support a minimum quality of
938      * service.  Thus, in some environments this value might be empty.
939      * <P>
940      * Note that even if a suite is enabled, it may never be used. This
941      * can occur if the peer does not support it, or its use is restricted,
942      * or the requisite certificates (and private keys) for the suite are
943      * not available, or an anonymous suite is enabled but authentication
944      * is required.
945      * <P>
946      * The returned array includes cipher suites from the list of standard
947      * cipher suite names in the <a href=
948      * "{@docRoot}/../specs/security/standard-names.html#jsse-cipher-suite-names">
949      * JSSE Cipher Suite Names</a> section of the Java Cryptography
950      * Architecture Standard Algorithm Name Documentation, and may also
951      * include other cipher suites that the provider supports.
952      *
953      * @return  an array of cipher suite names
954      * @see     #getSupportedCipherSuites()
955      * @see     #setEnabledCipherSuites(String [])
956      */
getEnabledCipherSuites()957     public abstract String [] getEnabledCipherSuites();
958 
959 
960     /**
961      * Sets the cipher suites enabled for use on this engine.
962      * <P>
963      * Each cipher suite in the {@code suites} parameter must have
964      * been listed by getSupportedCipherSuites(), or the method will
965      * fail.  Following a successful call to this method, only suites
966      * listed in the {@code suites} parameter are enabled for use.
967      * <P>
968      * Note that the standard list of cipher suite names may be found in the
969      * <a href=
970      * "{@docRoot}/../specs/security/standard-names.html#jsse-cipher-suite-names">
971      * JSSE Cipher Suite Names</a> section of the Java Cryptography
972      * Architecture Standard Algorithm Name Documentation.  Providers
973      * may support cipher suite names not found in this list or might not
974      * use the recommended name for a certain cipher suite.
975      * <P>
976      * See {@link #getEnabledCipherSuites()} for more information
977      * on why a specific cipher suite may never be used on a engine.
978      *
979      * @param   suites Names of all the cipher suites to enable
980      * @throws  IllegalArgumentException when one or more of the ciphers
981      *          named by the parameter is not supported, or when the
982      *          parameter is null.
983      * @see     #getSupportedCipherSuites()
984      * @see     #getEnabledCipherSuites()
985      */
setEnabledCipherSuites(String suites [])986     public abstract void setEnabledCipherSuites(String suites []);
987 
988 
989     /**
990      * Returns the names of the protocols which could be enabled for use
991      * with this {@code SSLEngine}.
992      *
993      * @return  an array of protocols supported
994      */
getSupportedProtocols()995     public abstract String [] getSupportedProtocols();
996 
997 
998     /**
999      * Returns the names of the protocol versions which are currently
1000      * enabled for use with this {@code SSLEngine}.
1001      * <P>
1002      * Note that even if a protocol is enabled, it may never be used.
1003      * This can occur if the peer does not support the protocol, or its
1004      * use is restricted, or there are no enabled cipher suites supported
1005      * by the protocol.
1006      *
1007      * @return  an array of protocols
1008      * @see     #setEnabledProtocols(String [])
1009      */
getEnabledProtocols()1010     public abstract String [] getEnabledProtocols();
1011 
1012 
1013     /**
1014      * Set the protocol versions enabled for use on this engine.
1015      * <P>
1016      * The protocols must have been listed by getSupportedProtocols()
1017      * as being supported.  Following a successful call to this method,
1018      * only protocols listed in the {@code protocols} parameter
1019      * are enabled for use.
1020      *
1021      * @param   protocols Names of all the protocols to enable.
1022      * @throws  IllegalArgumentException when one or more of
1023      *          the protocols named by the parameter is not supported or
1024      *          when the protocols parameter is null.
1025      * @see     #getEnabledProtocols()
1026      */
setEnabledProtocols(String protocols[])1027     public abstract void setEnabledProtocols(String protocols[]);
1028 
1029 
1030     /**
1031      * Returns the {@code SSLSession} in use in this
1032      * {@code SSLEngine}.
1033      * <P>
1034      * These can be long lived, and frequently correspond to an entire
1035      * login session for some user.  The session specifies a particular
1036      * cipher suite which is being actively used by all connections in
1037      * that session, as well as the identities of the session's client
1038      * and server.
1039      * <P>
1040      * Unlike {@link SSLSocket#getSession()}
1041      * this method does not block until handshaking is complete.
1042      * <P>
1043      * Until the initial handshake has completed, this method returns
1044      * a session object which reports an invalid cipher suite of
1045      * "SSL_NULL_WITH_NULL_NULL".
1046      *
1047      * @return  the {@code SSLSession} for this {@code SSLEngine}
1048      * @see     SSLSession
1049      */
getSession()1050     public abstract SSLSession getSession();
1051 
1052 
1053     /**
1054      * Returns the {@code SSLSession} being constructed during a SSL/TLS/DTLS
1055      * handshake.
1056      * <p>
1057      * TLS/DTLS protocols may negotiate parameters that are needed when using
1058      * an instance of this class, but before the {@code SSLSession} has
1059      * been completely initialized and made available via {@code getSession}.
1060      * For example, the list of valid signature algorithms may restrict
1061      * the type of certificates that can be used during TrustManager
1062      * decisions, or the maximum TLS/DTLS fragment packet sizes can be
1063      * resized to better support the network environment.
1064      * <p>
1065      * This method provides early access to the {@code SSLSession} being
1066      * constructed.  Depending on how far the handshake has progressed,
1067      * some data may not yet be available for use.  For example, if a
1068      * remote server will be sending a Certificate chain, but that chain
1069      * has yet not been processed, the {@code getPeerCertificates}
1070      * method of {@code SSLSession} will throw a
1071      * SSLPeerUnverifiedException.  Once that chain has been processed,
1072      * {@code getPeerCertificates} will return the proper value.
1073      *
1074      * @see SSLSocket
1075      * @see SSLSession
1076      * @see ExtendedSSLSession
1077      * @see X509ExtendedKeyManager
1078      * @see X509ExtendedTrustManager
1079      *
1080      * @return null if this instance is not currently handshaking, or
1081      *         if the current handshake has not progressed far enough to
1082      *         create a basic SSLSession.  Otherwise, this method returns the
1083      *         {@code SSLSession} currently being negotiated.
1084      * @throws UnsupportedOperationException if the underlying provider
1085      *         does not implement the operation.
1086      *
1087      * @since 1.7
1088      */
getHandshakeSession()1089     public SSLSession getHandshakeSession() {
1090         throw new UnsupportedOperationException();
1091     }
1092 
1093 
1094     /**
1095      * Initiates handshaking (initial or renegotiation) on this SSLEngine.
1096      * <P>
1097      * This method is not needed for the initial handshake, as the
1098      * {@code wrap()} and {@code unwrap()} methods will
1099      * implicitly call this method if handshaking has not already begun.
1100      * <P>
1101      * Note that the peer may also request a session renegotiation with
1102      * this {@code SSLEngine} by sending the appropriate
1103      * session renegotiate handshake message.
1104      * <P>
1105      * Unlike the {@link SSLSocket#startHandshake()
1106      * SSLSocket#startHandshake()} method, this method does not block
1107      * until handshaking is completed.
1108      * <P>
1109      * To force a complete SSL/TLS/DTLS session renegotiation, the current
1110      * session should be invalidated prior to calling this method.
1111      * <P>
1112      * Some protocols may not support multiple handshakes on an existing
1113      * engine and may throw an {@code SSLException}.
1114      *
1115      * @throws  SSLException
1116      *          if a problem was encountered while signaling the
1117      *          {@code SSLEngine} to begin a new handshake.
1118      *          See the class description for more information on
1119      *          engine closure.
1120      * @throws  IllegalStateException if the client/server mode
1121      *          has not yet been set.
1122      * @see     SSLSession#invalidate()
1123      */
beginHandshake()1124     public abstract void beginHandshake() throws SSLException;
1125 
1126 
1127     /**
1128      * Returns the current handshake status for this {@code SSLEngine}.
1129      *
1130      * @return  the current {@code SSLEngineResult.HandshakeStatus}.
1131      */
getHandshakeStatus()1132     public abstract SSLEngineResult.HandshakeStatus getHandshakeStatus();
1133 
1134 
1135     /**
1136      * Configures the engine to use client (or server) mode when
1137      * handshaking.
1138      * <P>
1139      * This method must be called before any handshaking occurs.
1140      * Once handshaking has begun, the mode can not be reset for the
1141      * life of this engine.
1142      * <P>
1143      * Servers normally authenticate themselves, and clients
1144      * are not required to do so.
1145      *
1146      * @implNote
1147      * The JDK SunJSSE provider implementation default for this mode is false.
1148      *
1149      * @param   mode true if the engine should start its handshaking
1150      *          in "client" mode
1151      * @throws  IllegalArgumentException if a mode change is attempted
1152      *          after the initial handshake has begun.
1153      * @see     #getUseClientMode()
1154      */
setUseClientMode(boolean mode)1155     public abstract void setUseClientMode(boolean mode);
1156 
1157 
1158     /**
1159      * Returns true if the engine is set to use client mode when
1160      * handshaking.
1161      *
1162      * @implNote
1163      * The JDK SunJSSE provider implementation returns false unless
1164      * {@link setUseClientMode(boolean)} is used to change the mode to true.
1165      *
1166      * @return  true if the engine should do handshaking
1167      *          in "client" mode
1168      * @see     #setUseClientMode(boolean)
1169      */
getUseClientMode()1170     public abstract boolean getUseClientMode();
1171 
1172 
1173     /**
1174      * Configures the engine to <i>require</i> client authentication.  This
1175      * option is only useful for engines in the server mode.
1176      * <P>
1177      * An engine's client authentication setting is one of the following:
1178      * <ul>
1179      * <li> client authentication required
1180      * <li> client authentication requested
1181      * <li> no client authentication desired
1182      * </ul>
1183      * <P>
1184      * Unlike {@link #setWantClientAuth(boolean)}, if this option is set and
1185      * the client chooses not to provide authentication information
1186      * about itself, <i>the negotiations will stop and the engine will
1187      * begin its closure procedure</i>.
1188      * <P>
1189      * Calling this method overrides any previous setting made by
1190      * this method or {@link #setWantClientAuth(boolean)}.
1191      *
1192      * @param   need set to true if client authentication is required,
1193      *          or false if no client authentication is desired.
1194      * @see     #getNeedClientAuth()
1195      * @see     #setWantClientAuth(boolean)
1196      * @see     #getWantClientAuth()
1197      * @see     #setUseClientMode(boolean)
1198      */
setNeedClientAuth(boolean need)1199     public abstract void setNeedClientAuth(boolean need);
1200 
1201 
1202     /**
1203      * Returns true if the engine will <i>require</i> client authentication.
1204      * This option is only useful to engines in the server mode.
1205      *
1206      * @return  true if client authentication is required,
1207      *          or false if no client authentication is desired.
1208      * @see     #setNeedClientAuth(boolean)
1209      * @see     #setWantClientAuth(boolean)
1210      * @see     #getWantClientAuth()
1211      * @see     #setUseClientMode(boolean)
1212      */
getNeedClientAuth()1213     public abstract boolean getNeedClientAuth();
1214 
1215 
1216     /**
1217      * Configures the engine to <i>request</i> client authentication.
1218      * This option is only useful for engines in the server mode.
1219      * <P>
1220      * An engine's client authentication setting is one of the following:
1221      * <ul>
1222      * <li> client authentication required
1223      * <li> client authentication requested
1224      * <li> no client authentication desired
1225      * </ul>
1226      * <P>
1227      * Unlike {@link #setNeedClientAuth(boolean)}, if this option is set and
1228      * the client chooses not to provide authentication information
1229      * about itself, <i>the negotiations will continue</i>.
1230      * <P>
1231      * Calling this method overrides any previous setting made by
1232      * this method or {@link #setNeedClientAuth(boolean)}.
1233      *
1234      * @param   want set to true if client authentication is requested,
1235      *          or false if no client authentication is desired.
1236      * @see     #getWantClientAuth()
1237      * @see     #setNeedClientAuth(boolean)
1238      * @see     #getNeedClientAuth()
1239      * @see     #setUseClientMode(boolean)
1240      */
setWantClientAuth(boolean want)1241     public abstract void setWantClientAuth(boolean want);
1242 
1243 
1244     /**
1245      * Returns true if the engine will <i>request</i> client authentication.
1246      * This option is only useful for engines in the server mode.
1247      *
1248      * @return  true if client authentication is requested,
1249      *          or false if no client authentication is desired.
1250      * @see     #setNeedClientAuth(boolean)
1251      * @see     #getNeedClientAuth()
1252      * @see     #setWantClientAuth(boolean)
1253      * @see     #setUseClientMode(boolean)
1254      */
getWantClientAuth()1255     public abstract boolean getWantClientAuth();
1256 
1257 
1258     /**
1259      * Controls whether new SSL sessions may be established by this engine.
1260      * If session creations are not allowed, and there are no
1261      * existing sessions to resume, there will be no successful
1262      * handshaking.
1263      *
1264      * @param   flag true indicates that sessions may be created; this
1265      *          is the default.  false indicates that an existing session
1266      *          must be resumed
1267      * @see     #getEnableSessionCreation()
1268      */
setEnableSessionCreation(boolean flag)1269     public abstract void setEnableSessionCreation(boolean flag);
1270 
1271 
1272     /**
1273      * Returns true if new SSL sessions may be established by this engine.
1274      *
1275      * @return  true indicates that sessions may be created; this
1276      *          is the default.  false indicates that an existing session
1277      *          must be resumed
1278      * @see     #setEnableSessionCreation(boolean)
1279      */
getEnableSessionCreation()1280     public abstract boolean getEnableSessionCreation();
1281 
1282     /**
1283      * Returns the SSLParameters in effect for this SSLEngine.
1284      * The ciphersuites and protocols of the returned SSLParameters
1285      * are always non-null.
1286      *
1287      * @return the SSLParameters in effect for this SSLEngine.
1288      * @since 1.6
1289      */
getSSLParameters()1290     public SSLParameters getSSLParameters() {
1291         SSLParameters params = new SSLParameters();
1292         params.setCipherSuites(getEnabledCipherSuites());
1293         params.setProtocols(getEnabledProtocols());
1294         if (getNeedClientAuth()) {
1295             params.setNeedClientAuth(true);
1296         } else if (getWantClientAuth()) {
1297             params.setWantClientAuth(true);
1298         }
1299         return params;
1300     }
1301 
1302     /**
1303      * Applies SSLParameters to this engine.
1304      *
1305      * <p>This means:
1306      * <ul>
1307      * <li>If {@code params.getCipherSuites()} is non-null,
1308      *   {@code setEnabledCipherSuites()} is called with that value.</li>
1309      * <li>If {@code params.getProtocols()} is non-null,
1310      *   {@code setEnabledProtocols()} is called with that value.</li>
1311      * <li>If {@code params.getNeedClientAuth()} or
1312      *   {@code params.getWantClientAuth()} return {@code true},
1313      *   {@code setNeedClientAuth(true)} and
1314      *   {@code setWantClientAuth(true)} are called, respectively;
1315      *   otherwise {@code setWantClientAuth(false)} is called.</li>
1316      * <li>If {@code params.getServerNames()} is non-null, the engine will
1317      *   configure its server names with that value.</li>
1318      * <li>If {@code params.getSNIMatchers()} is non-null, the engine will
1319      *   configure its SNI matchers with that value.</li>
1320      * </ul>
1321      *
1322      * @param params the parameters
1323      * @throws IllegalArgumentException if the setEnabledCipherSuites() or
1324      *    the setEnabledProtocols() call fails
1325      * @since 1.6
1326      */
setSSLParameters(SSLParameters params)1327     public void setSSLParameters(SSLParameters params) {
1328         String[] s;
1329         s = params.getCipherSuites();
1330         if (s != null) {
1331             setEnabledCipherSuites(s);
1332         }
1333         s = params.getProtocols();
1334         if (s != null) {
1335             setEnabledProtocols(s);
1336         }
1337         if (params.getNeedClientAuth()) {
1338             setNeedClientAuth(true);
1339         } else if (params.getWantClientAuth()) {
1340             setWantClientAuth(true);
1341         } else {
1342             setWantClientAuth(false);
1343         }
1344     }
1345 
1346     /**
1347      * Returns the most recent application protocol value negotiated for this
1348      * connection.
1349      * <p>
1350      * If supported by the underlying SSL/TLS/DTLS implementation,
1351      * application name negotiation mechanisms such as <a
1352      * href="http://www.ietf.org/rfc/rfc7301.txt"> RFC 7301 </a>, the
1353      * Application-Layer Protocol Negotiation (ALPN), can negotiate
1354      * application-level values between peers.
1355      *
1356      * @implSpec
1357      * The implementation in this class throws
1358      * {@code UnsupportedOperationException} and performs no other action.
1359      *
1360      * @return null if it has not yet been determined if application
1361      *         protocols might be used for this connection, an empty
1362      *         {@code String} if application protocols values will not
1363      *         be used, or a non-empty application protocol {@code String}
1364      *         if a value was successfully negotiated.
1365      * @throws UnsupportedOperationException if the underlying provider
1366      *         does not implement the operation.
1367      * @since 9
1368      */
getApplicationProtocol()1369     public String getApplicationProtocol() {
1370         throw new UnsupportedOperationException();
1371     }
1372 
1373     /**
1374      * Returns the application protocol value negotiated on a SSL/TLS
1375      * handshake currently in progress.
1376      * <p>
1377      * Like {@link #getHandshakeSession()},
1378      * a connection may be in the middle of a handshake. The
1379      * application protocol may or may not yet be available.
1380      *
1381      * @implSpec
1382      * The implementation in this class throws
1383      * {@code UnsupportedOperationException} and performs no other action.
1384      *
1385      * @return null if it has not yet been determined if application
1386      *         protocols might be used for this handshake, an empty
1387      *         {@code String} if application protocols values will not
1388      *         be used, or a non-empty application protocol {@code String}
1389      *         if a value was successfully negotiated.
1390      * @throws UnsupportedOperationException if the underlying provider
1391      *         does not implement the operation.
1392      * @since 9
1393      */
getHandshakeApplicationProtocol()1394     public String getHandshakeApplicationProtocol() {
1395         throw new UnsupportedOperationException();
1396     }
1397 
1398     /**
1399      * Registers a callback function that selects an application protocol
1400      * value for a SSL/TLS/DTLS handshake.
1401      * The function overrides any values supplied using
1402      * {@link SSLParameters#setApplicationProtocols
1403      * SSLParameters.setApplicationProtocols} and it supports the following
1404      * type parameters:
1405      * <blockquote>
1406      * <dl>
1407      * <dt> {@code SSLEngine}
1408      * <dd> The function's first argument allows the current {@code SSLEngine}
1409      *      to be inspected, including the handshake session and configuration
1410      *      settings.
1411      * <dt> {@code List<String>}
1412      * <dd> The function's second argument lists the application protocol names
1413      *      advertised by the TLS peer.
1414      * <dt> {@code String}
1415      * <dd> The function's result is an application protocol name, or null to
1416      *      indicate that none of the advertised names are acceptable.
1417      *      If the return value is an empty {@code String} then application
1418      *      protocol indications will not be used.
1419      *      If the return value is null (no value chosen) or is a value that
1420      *      was not advertised by the peer, the underlying protocol will
1421      *      determine what action to take. (For example, ALPN will send a
1422      *      "no_application_protocol" alert and terminate the connection.)
1423      * </dl>
1424      * </blockquote>
1425      *
1426      * For example, the following call registers a callback function that
1427      * examines the TLS handshake parameters and selects an application protocol
1428      * name:
1429      * <pre>{@code
1430      *     serverEngine.setHandshakeApplicationProtocolSelector(
1431      *         (serverEngine, clientProtocols) -> {
1432      *             SSLSession session = serverEngine.getHandshakeSession();
1433      *             return chooseApplicationProtocol(
1434      *                 serverEngine,
1435      *                 clientProtocols,
1436      *                 session.getProtocol(),
1437      *                 session.getCipherSuite());
1438      *         });
1439      * }</pre>
1440      *
1441      * @apiNote
1442      * This method should be called by TLS server applications before the TLS
1443      * handshake begins. Also, this {@code SSLEngine} should be configured with
1444      * parameters that are compatible with the application protocol selected by
1445      * the callback function. For example, enabling a poor choice of cipher
1446      * suites could result in no suitable application protocol.
1447      * See {@link SSLParameters}.
1448      *
1449      * @implSpec
1450      * The implementation in this class throws
1451      * {@code UnsupportedOperationException} and performs no other action.
1452      *
1453      * @param selector the callback function, or null to disable the callback
1454      *         functionality.
1455      * @throws UnsupportedOperationException if the underlying provider
1456      *         does not implement the operation.
1457      * @since 9
1458      */
setHandshakeApplicationProtocolSelector( BiFunction<SSLEngine, List<String>, String> selector)1459     public void setHandshakeApplicationProtocolSelector(
1460             BiFunction<SSLEngine, List<String>, String> selector) {
1461         throw new UnsupportedOperationException();
1462     }
1463 
1464     /**
1465      * Retrieves the callback function that selects an application protocol
1466      * value during a SSL/TLS/DTLS handshake.
1467      * See {@link #setHandshakeApplicationProtocolSelector
1468      * setHandshakeApplicationProtocolSelector}
1469      * for the function's type parameters.
1470      *
1471      * @implSpec
1472      * The implementation in this class throws
1473      * {@code UnsupportedOperationException} and performs no other action.
1474      *
1475      * @return the callback function, or null if none has been set.
1476      * @throws UnsupportedOperationException if the underlying provider
1477      *         does not implement the operation.
1478      * @since 9
1479      */
1480     public BiFunction<SSLEngine, List<String>, String>
getHandshakeApplicationProtocolSelector()1481             getHandshakeApplicationProtocolSelector() {
1482         throw new UnsupportedOperationException();
1483     }
1484 }
1485