1 /*
2  * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "asm/macroAssembler.hpp"
27 #include "interpreter/interpreter.hpp"
28 #include "interpreter/interpreterRuntime.hpp"
29 #include "interpreter/templateTable.hpp"
30 #include "memory/universe.inline.hpp"
31 #include "oops/methodData.hpp"
32 #include "oops/objArrayKlass.hpp"
33 #include "oops/oop.inline.hpp"
34 #include "prims/methodHandles.hpp"
35 #include "runtime/sharedRuntime.hpp"
36 #include "runtime/stubRoutines.hpp"
37 #include "runtime/synchronizer.hpp"
38 #include "utilities/macros.hpp"
39 
40 #ifndef CC_INTERP
41 
42 #define __ _masm->
43 
44 // Platform-dependent initialization
45 
pd_initialize()46 void TemplateTable::pd_initialize() {
47   // No amd64 specific initialization
48 }
49 
50 // Address computation: local variables
51 
iaddress(int n)52 static inline Address iaddress(int n) {
53   return Address(r14, Interpreter::local_offset_in_bytes(n));
54 }
55 
laddress(int n)56 static inline Address laddress(int n) {
57   return iaddress(n + 1);
58 }
59 
faddress(int n)60 static inline Address faddress(int n) {
61   return iaddress(n);
62 }
63 
daddress(int n)64 static inline Address daddress(int n) {
65   return laddress(n);
66 }
67 
aaddress(int n)68 static inline Address aaddress(int n) {
69   return iaddress(n);
70 }
71 
iaddress(Register r)72 static inline Address iaddress(Register r) {
73   return Address(r14, r, Address::times_8);
74 }
75 
laddress(Register r)76 static inline Address laddress(Register r) {
77   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
78 }
79 
faddress(Register r)80 static inline Address faddress(Register r) {
81   return iaddress(r);
82 }
83 
daddress(Register r)84 static inline Address daddress(Register r) {
85   return laddress(r);
86 }
87 
aaddress(Register r)88 static inline Address aaddress(Register r) {
89   return iaddress(r);
90 }
91 
at_rsp()92 static inline Address at_rsp() {
93   return Address(rsp, 0);
94 }
95 
96 // At top of Java expression stack which may be different than esp().  It
97 // isn't for category 1 objects.
at_tos()98 static inline Address at_tos   () {
99   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
100 }
101 
at_tos_p1()102 static inline Address at_tos_p1() {
103   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
104 }
105 
at_tos_p2()106 static inline Address at_tos_p2() {
107   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
108 }
109 
110 // Condition conversion
j_not(TemplateTable::Condition cc)111 static Assembler::Condition j_not(TemplateTable::Condition cc) {
112   switch (cc) {
113   case TemplateTable::equal        : return Assembler::notEqual;
114   case TemplateTable::not_equal    : return Assembler::equal;
115   case TemplateTable::less         : return Assembler::greaterEqual;
116   case TemplateTable::less_equal   : return Assembler::greater;
117   case TemplateTable::greater      : return Assembler::lessEqual;
118   case TemplateTable::greater_equal: return Assembler::less;
119   }
120   ShouldNotReachHere();
121   return Assembler::zero;
122 }
123 
124 
125 // Miscelaneous helper routines
126 // Store an oop (or NULL) at the address described by obj.
127 // If val == noreg this means store a NULL
128 
do_oop_store(InterpreterMacroAssembler * _masm,Address obj,Register val,BarrierSet::Name barrier,bool precise)129 static void do_oop_store(InterpreterMacroAssembler* _masm,
130                          Address obj,
131                          Register val,
132                          BarrierSet::Name barrier,
133                          bool precise) {
134   assert(val == noreg || val == rax, "parameter is just for looks");
135   switch (barrier) {
136 #if INCLUDE_ALL_GCS
137     case BarrierSet::G1SATBCT:
138     case BarrierSet::G1SATBCTLogging:
139       {
140         // flatten object address if needed
141         if (obj.index() == noreg && obj.disp() == 0) {
142           if (obj.base() != rdx) {
143             __ movq(rdx, obj.base());
144           }
145         } else {
146           __ leaq(rdx, obj);
147         }
148         __ g1_write_barrier_pre(rdx /* obj */,
149                                 rbx /* pre_val */,
150                                 r15_thread /* thread */,
151                                 r8  /* tmp */,
152                                 val != noreg /* tosca_live */,
153                                 false /* expand_call */);
154         if (val == noreg) {
155           __ store_heap_oop_null(Address(rdx, 0));
156         } else {
157           // G1 barrier needs uncompressed oop for region cross check.
158           Register new_val = val;
159           if (UseCompressedOops) {
160             new_val = rbx;
161             __ movptr(new_val, val);
162           }
163           __ store_heap_oop(Address(rdx, 0), val);
164           __ g1_write_barrier_post(rdx /* store_adr */,
165                                    new_val /* new_val */,
166                                    r15_thread /* thread */,
167                                    r8 /* tmp */,
168                                    rbx /* tmp2 */);
169         }
170       }
171       break;
172 #endif // INCLUDE_ALL_GCS
173     case BarrierSet::CardTableModRef:
174     case BarrierSet::CardTableExtension:
175       {
176         if (val == noreg) {
177           __ store_heap_oop_null(obj);
178         } else {
179           __ store_heap_oop(obj, val);
180           // flatten object address if needed
181           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
182             __ store_check(obj.base());
183           } else {
184             __ leaq(rdx, obj);
185             __ store_check(rdx);
186           }
187         }
188       }
189       break;
190     case BarrierSet::ModRef:
191     case BarrierSet::Other:
192       if (val == noreg) {
193         __ store_heap_oop_null(obj);
194       } else {
195         __ store_heap_oop(obj, val);
196       }
197       break;
198     default      :
199       ShouldNotReachHere();
200 
201   }
202 }
203 
at_bcp(int offset)204 Address TemplateTable::at_bcp(int offset) {
205   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
206   return Address(r13, offset);
207 }
208 
patch_bytecode(Bytecodes::Code bc,Register bc_reg,Register temp_reg,bool load_bc_into_bc_reg,int byte_no)209 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
210                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
211                                    int byte_no) {
212   if (!RewriteBytecodes)  return;
213   Label L_patch_done;
214 
215   switch (bc) {
216   case Bytecodes::_fast_aputfield:
217   case Bytecodes::_fast_bputfield:
218   case Bytecodes::_fast_zputfield:
219   case Bytecodes::_fast_cputfield:
220   case Bytecodes::_fast_dputfield:
221   case Bytecodes::_fast_fputfield:
222   case Bytecodes::_fast_iputfield:
223   case Bytecodes::_fast_lputfield:
224   case Bytecodes::_fast_sputfield:
225     {
226       // We skip bytecode quickening for putfield instructions when
227       // the put_code written to the constant pool cache is zero.
228       // This is required so that every execution of this instruction
229       // calls out to InterpreterRuntime::resolve_get_put to do
230       // additional, required work.
231       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
232       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
233       __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
234       __ movl(bc_reg, bc);
235       __ cmpl(temp_reg, (int) 0);
236       __ jcc(Assembler::zero, L_patch_done);  // don't patch
237     }
238     break;
239   default:
240     assert(byte_no == -1, "sanity");
241     // the pair bytecodes have already done the load.
242     if (load_bc_into_bc_reg) {
243       __ movl(bc_reg, bc);
244     }
245   }
246 
247   if (JvmtiExport::can_post_breakpoint()) {
248     Label L_fast_patch;
249     // if a breakpoint is present we can't rewrite the stream directly
250     __ movzbl(temp_reg, at_bcp(0));
251     __ cmpl(temp_reg, Bytecodes::_breakpoint);
252     __ jcc(Assembler::notEqual, L_fast_patch);
253     __ get_method(temp_reg);
254     // Let breakpoint table handling rewrite to quicker bytecode
255     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, r13, bc_reg);
256 #ifndef ASSERT
257     __ jmpb(L_patch_done);
258 #else
259     __ jmp(L_patch_done);
260 #endif
261     __ bind(L_fast_patch);
262   }
263 
264 #ifdef ASSERT
265   Label L_okay;
266   __ load_unsigned_byte(temp_reg, at_bcp(0));
267   __ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
268   __ jcc(Assembler::equal, L_okay);
269   __ cmpl(temp_reg, bc_reg);
270   __ jcc(Assembler::equal, L_okay);
271   __ stop("patching the wrong bytecode");
272   __ bind(L_okay);
273 #endif
274 
275   // patch bytecode
276   __ movb(at_bcp(0), bc_reg);
277   __ bind(L_patch_done);
278 }
279 
280 
281 // Individual instructions
282 
nop()283 void TemplateTable::nop() {
284   transition(vtos, vtos);
285   // nothing to do
286 }
287 
shouldnotreachhere()288 void TemplateTable::shouldnotreachhere() {
289   transition(vtos, vtos);
290   __ stop("shouldnotreachhere bytecode");
291 }
292 
aconst_null()293 void TemplateTable::aconst_null() {
294   transition(vtos, atos);
295   __ xorl(rax, rax);
296 }
297 
iconst(int value)298 void TemplateTable::iconst(int value) {
299   transition(vtos, itos);
300   if (value == 0) {
301     __ xorl(rax, rax);
302   } else {
303     __ movl(rax, value);
304   }
305 }
306 
lconst(int value)307 void TemplateTable::lconst(int value) {
308   transition(vtos, ltos);
309   if (value == 0) {
310     __ xorl(rax, rax);
311   } else {
312     __ movl(rax, value);
313   }
314 }
315 
fconst(int value)316 void TemplateTable::fconst(int value) {
317   transition(vtos, ftos);
318   static float one = 1.0f, two = 2.0f;
319   switch (value) {
320   case 0:
321     __ xorps(xmm0, xmm0);
322     break;
323   case 1:
324     __ movflt(xmm0, ExternalAddress((address) &one));
325     break;
326   case 2:
327     __ movflt(xmm0, ExternalAddress((address) &two));
328     break;
329   default:
330     ShouldNotReachHere();
331     break;
332   }
333 }
334 
dconst(int value)335 void TemplateTable::dconst(int value) {
336   transition(vtos, dtos);
337   static double one = 1.0;
338   switch (value) {
339   case 0:
340     __ xorpd(xmm0, xmm0);
341     break;
342   case 1:
343     __ movdbl(xmm0, ExternalAddress((address) &one));
344     break;
345   default:
346     ShouldNotReachHere();
347     break;
348   }
349 }
350 
bipush()351 void TemplateTable::bipush() {
352   transition(vtos, itos);
353   __ load_signed_byte(rax, at_bcp(1));
354 }
355 
sipush()356 void TemplateTable::sipush() {
357   transition(vtos, itos);
358   __ load_unsigned_short(rax, at_bcp(1));
359   __ bswapl(rax);
360   __ sarl(rax, 16);
361 }
362 
ldc(bool wide)363 void TemplateTable::ldc(bool wide) {
364   transition(vtos, vtos);
365   Label call_ldc, notFloat, notClass, Done;
366 
367   if (wide) {
368     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
369   } else {
370     __ load_unsigned_byte(rbx, at_bcp(1));
371   }
372 
373   __ get_cpool_and_tags(rcx, rax);
374   const int base_offset = ConstantPool::header_size() * wordSize;
375   const int tags_offset = Array<u1>::base_offset_in_bytes();
376 
377   // get type
378   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
379 
380   // unresolved class - get the resolved class
381   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
382   __ jccb(Assembler::equal, call_ldc);
383 
384   // unresolved class in error state - call into runtime to throw the error
385   // from the first resolution attempt
386   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
387   __ jccb(Assembler::equal, call_ldc);
388 
389   // resolved class - need to call vm to get java mirror of the class
390   __ cmpl(rdx, JVM_CONSTANT_Class);
391   __ jcc(Assembler::notEqual, notClass);
392 
393   __ bind(call_ldc);
394   __ movl(c_rarg1, wide);
395   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
396   __ push_ptr(rax);
397   __ verify_oop(rax);
398   __ jmp(Done);
399 
400   __ bind(notClass);
401   __ cmpl(rdx, JVM_CONSTANT_Float);
402   __ jccb(Assembler::notEqual, notFloat);
403   // ftos
404   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
405   __ push_f();
406   __ jmp(Done);
407 
408   __ bind(notFloat);
409 #ifdef ASSERT
410   {
411     Label L;
412     __ cmpl(rdx, JVM_CONSTANT_Integer);
413     __ jcc(Assembler::equal, L);
414     // String and Object are rewritten to fast_aldc
415     __ stop("unexpected tag type in ldc");
416     __ bind(L);
417   }
418 #endif
419   // itos JVM_CONSTANT_Integer only
420   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
421   __ push_i(rax);
422   __ bind(Done);
423 }
424 
425 // Fast path for caching oop constants.
fast_aldc(bool wide)426 void TemplateTable::fast_aldc(bool wide) {
427   transition(vtos, atos);
428 
429   Register result = rax;
430   Register tmp = rdx;
431   int index_size = wide ? sizeof(u2) : sizeof(u1);
432 
433   Label resolved;
434 
435   // We are resolved if the resolved reference cache entry contains a
436   // non-null object (String, MethodType, etc.)
437   assert_different_registers(result, tmp);
438   __ get_cache_index_at_bcp(tmp, 1, index_size);
439   __ load_resolved_reference_at_index(result, tmp);
440   __ testl(result, result);
441   __ jcc(Assembler::notZero, resolved);
442 
443   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
444 
445   // first time invocation - must resolve first
446   __ movl(tmp, (int)bytecode());
447   __ call_VM(result, entry, tmp);
448 
449   __ bind(resolved);
450 
451   if (VerifyOops) {
452     __ verify_oop(result);
453   }
454 }
455 
ldc2_w()456 void TemplateTable::ldc2_w() {
457   transition(vtos, vtos);
458   Label Long, Done;
459   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
460 
461   __ get_cpool_and_tags(rcx, rax);
462   const int base_offset = ConstantPool::header_size() * wordSize;
463   const int tags_offset = Array<u1>::base_offset_in_bytes();
464 
465   // get type
466   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
467           JVM_CONSTANT_Double);
468   __ jccb(Assembler::notEqual, Long);
469   // dtos
470   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
471   __ push_d();
472   __ jmpb(Done);
473 
474   __ bind(Long);
475   // ltos
476   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
477   __ push_l();
478 
479   __ bind(Done);
480 }
481 
locals_index(Register reg,int offset)482 void TemplateTable::locals_index(Register reg, int offset) {
483   __ load_unsigned_byte(reg, at_bcp(offset));
484   __ negptr(reg);
485 }
486 
iload()487 void TemplateTable::iload() {
488   transition(vtos, itos);
489   if (RewriteFrequentPairs) {
490     Label rewrite, done;
491     const Register bc = c_rarg3;
492     assert(rbx != bc, "register damaged");
493 
494     // get next byte
495     __ load_unsigned_byte(rbx,
496                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
497     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
498     // last two iloads in a pair.  Comparing against fast_iload means that
499     // the next bytecode is neither an iload or a caload, and therefore
500     // an iload pair.
501     __ cmpl(rbx, Bytecodes::_iload);
502     __ jcc(Assembler::equal, done);
503 
504     __ cmpl(rbx, Bytecodes::_fast_iload);
505     __ movl(bc, Bytecodes::_fast_iload2);
506     __ jccb(Assembler::equal, rewrite);
507 
508     // if _caload, rewrite to fast_icaload
509     __ cmpl(rbx, Bytecodes::_caload);
510     __ movl(bc, Bytecodes::_fast_icaload);
511     __ jccb(Assembler::equal, rewrite);
512 
513     // rewrite so iload doesn't check again.
514     __ movl(bc, Bytecodes::_fast_iload);
515 
516     // rewrite
517     // bc: fast bytecode
518     __ bind(rewrite);
519     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
520     __ bind(done);
521   }
522 
523   // Get the local value into tos
524   locals_index(rbx);
525   __ movl(rax, iaddress(rbx));
526 }
527 
fast_iload2()528 void TemplateTable::fast_iload2() {
529   transition(vtos, itos);
530   locals_index(rbx);
531   __ movl(rax, iaddress(rbx));
532   __ push(itos);
533   locals_index(rbx, 3);
534   __ movl(rax, iaddress(rbx));
535 }
536 
fast_iload()537 void TemplateTable::fast_iload() {
538   transition(vtos, itos);
539   locals_index(rbx);
540   __ movl(rax, iaddress(rbx));
541 }
542 
lload()543 void TemplateTable::lload() {
544   transition(vtos, ltos);
545   locals_index(rbx);
546   __ movq(rax, laddress(rbx));
547 }
548 
fload()549 void TemplateTable::fload() {
550   transition(vtos, ftos);
551   locals_index(rbx);
552   __ movflt(xmm0, faddress(rbx));
553 }
554 
dload()555 void TemplateTable::dload() {
556   transition(vtos, dtos);
557   locals_index(rbx);
558   __ movdbl(xmm0, daddress(rbx));
559 }
560 
aload()561 void TemplateTable::aload() {
562   transition(vtos, atos);
563   locals_index(rbx);
564   __ movptr(rax, aaddress(rbx));
565 }
566 
locals_index_wide(Register reg)567 void TemplateTable::locals_index_wide(Register reg) {
568   __ load_unsigned_short(reg, at_bcp(2));
569   __ bswapl(reg);
570   __ shrl(reg, 16);
571   __ negptr(reg);
572 }
573 
wide_iload()574 void TemplateTable::wide_iload() {
575   transition(vtos, itos);
576   locals_index_wide(rbx);
577   __ movl(rax, iaddress(rbx));
578 }
579 
wide_lload()580 void TemplateTable::wide_lload() {
581   transition(vtos, ltos);
582   locals_index_wide(rbx);
583   __ movq(rax, laddress(rbx));
584 }
585 
wide_fload()586 void TemplateTable::wide_fload() {
587   transition(vtos, ftos);
588   locals_index_wide(rbx);
589   __ movflt(xmm0, faddress(rbx));
590 }
591 
wide_dload()592 void TemplateTable::wide_dload() {
593   transition(vtos, dtos);
594   locals_index_wide(rbx);
595   __ movdbl(xmm0, daddress(rbx));
596 }
597 
wide_aload()598 void TemplateTable::wide_aload() {
599   transition(vtos, atos);
600   locals_index_wide(rbx);
601   __ movptr(rax, aaddress(rbx));
602 }
603 
index_check(Register array,Register index)604 void TemplateTable::index_check(Register array, Register index) {
605   // destroys rbx
606   // check array
607   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
608   // sign extend index for use by indexed load
609   __ movl2ptr(index, index);
610   // check index
611   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
612   if (index != rbx) {
613     // ??? convention: move aberrant index into ebx for exception message
614     assert(rbx != array, "different registers");
615     __ movl(rbx, index);
616   }
617   __ jump_cc(Assembler::aboveEqual,
618              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
619 }
620 
iaload()621 void TemplateTable::iaload() {
622   transition(itos, itos);
623   __ pop_ptr(rdx);
624   // eax: index
625   // rdx: array
626   index_check(rdx, rax); // kills rbx
627   __ movl(rax, Address(rdx, rax,
628                        Address::times_4,
629                        arrayOopDesc::base_offset_in_bytes(T_INT)));
630 }
631 
laload()632 void TemplateTable::laload() {
633   transition(itos, ltos);
634   __ pop_ptr(rdx);
635   // eax: index
636   // rdx: array
637   index_check(rdx, rax); // kills rbx
638   __ movq(rax, Address(rdx, rbx,
639                        Address::times_8,
640                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
641 }
642 
faload()643 void TemplateTable::faload() {
644   transition(itos, ftos);
645   __ pop_ptr(rdx);
646   // eax: index
647   // rdx: array
648   index_check(rdx, rax); // kills rbx
649   __ movflt(xmm0, Address(rdx, rax,
650                          Address::times_4,
651                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
652 }
653 
daload()654 void TemplateTable::daload() {
655   transition(itos, dtos);
656   __ pop_ptr(rdx);
657   // eax: index
658   // rdx: array
659   index_check(rdx, rax); // kills rbx
660   __ movdbl(xmm0, Address(rdx, rax,
661                           Address::times_8,
662                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
663 }
664 
aaload()665 void TemplateTable::aaload() {
666   transition(itos, atos);
667   __ pop_ptr(rdx);
668   // eax: index
669   // rdx: array
670   index_check(rdx, rax); // kills rbx
671   __ load_heap_oop(rax, Address(rdx, rax,
672                                 UseCompressedOops ? Address::times_4 : Address::times_8,
673                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
674 }
675 
baload()676 void TemplateTable::baload() {
677   transition(itos, itos);
678   __ pop_ptr(rdx);
679   // eax: index
680   // rdx: array
681   index_check(rdx, rax); // kills rbx
682   __ load_signed_byte(rax,
683                       Address(rdx, rax,
684                               Address::times_1,
685                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
686 }
687 
caload()688 void TemplateTable::caload() {
689   transition(itos, itos);
690   __ pop_ptr(rdx);
691   // eax: index
692   // rdx: array
693   index_check(rdx, rax); // kills rbx
694   __ load_unsigned_short(rax,
695                          Address(rdx, rax,
696                                  Address::times_2,
697                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
698 }
699 
700 // iload followed by caload frequent pair
fast_icaload()701 void TemplateTable::fast_icaload() {
702   transition(vtos, itos);
703   // load index out of locals
704   locals_index(rbx);
705   __ movl(rax, iaddress(rbx));
706 
707   // eax: index
708   // rdx: array
709   __ pop_ptr(rdx);
710   index_check(rdx, rax); // kills rbx
711   __ load_unsigned_short(rax,
712                          Address(rdx, rax,
713                                  Address::times_2,
714                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
715 }
716 
saload()717 void TemplateTable::saload() {
718   transition(itos, itos);
719   __ pop_ptr(rdx);
720   // eax: index
721   // rdx: array
722   index_check(rdx, rax); // kills rbx
723   __ load_signed_short(rax,
724                        Address(rdx, rax,
725                                Address::times_2,
726                                arrayOopDesc::base_offset_in_bytes(T_SHORT)));
727 }
728 
iload(int n)729 void TemplateTable::iload(int n) {
730   transition(vtos, itos);
731   __ movl(rax, iaddress(n));
732 }
733 
lload(int n)734 void TemplateTable::lload(int n) {
735   transition(vtos, ltos);
736   __ movq(rax, laddress(n));
737 }
738 
fload(int n)739 void TemplateTable::fload(int n) {
740   transition(vtos, ftos);
741   __ movflt(xmm0, faddress(n));
742 }
743 
dload(int n)744 void TemplateTable::dload(int n) {
745   transition(vtos, dtos);
746   __ movdbl(xmm0, daddress(n));
747 }
748 
aload(int n)749 void TemplateTable::aload(int n) {
750   transition(vtos, atos);
751   __ movptr(rax, aaddress(n));
752 }
753 
aload_0()754 void TemplateTable::aload_0() {
755   transition(vtos, atos);
756   // According to bytecode histograms, the pairs:
757   //
758   // _aload_0, _fast_igetfield
759   // _aload_0, _fast_agetfield
760   // _aload_0, _fast_fgetfield
761   //
762   // occur frequently. If RewriteFrequentPairs is set, the (slow)
763   // _aload_0 bytecode checks if the next bytecode is either
764   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
765   // rewrites the current bytecode into a pair bytecode; otherwise it
766   // rewrites the current bytecode into _fast_aload_0 that doesn't do
767   // the pair check anymore.
768   //
769   // Note: If the next bytecode is _getfield, the rewrite must be
770   //       delayed, otherwise we may miss an opportunity for a pair.
771   //
772   // Also rewrite frequent pairs
773   //   aload_0, aload_1
774   //   aload_0, iload_1
775   // These bytecodes with a small amount of code are most profitable
776   // to rewrite
777   if (RewriteFrequentPairs) {
778     Label rewrite, done;
779     const Register bc = c_rarg3;
780     assert(rbx != bc, "register damaged");
781     // get next byte
782     __ load_unsigned_byte(rbx,
783                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
784 
785     // do actual aload_0
786     aload(0);
787 
788     // if _getfield then wait with rewrite
789     __ cmpl(rbx, Bytecodes::_getfield);
790     __ jcc(Assembler::equal, done);
791 
792     // if _igetfield then reqrite to _fast_iaccess_0
793     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
794            Bytecodes::_aload_0,
795            "fix bytecode definition");
796     __ cmpl(rbx, Bytecodes::_fast_igetfield);
797     __ movl(bc, Bytecodes::_fast_iaccess_0);
798     __ jccb(Assembler::equal, rewrite);
799 
800     // if _agetfield then reqrite to _fast_aaccess_0
801     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
802            Bytecodes::_aload_0,
803            "fix bytecode definition");
804     __ cmpl(rbx, Bytecodes::_fast_agetfield);
805     __ movl(bc, Bytecodes::_fast_aaccess_0);
806     __ jccb(Assembler::equal, rewrite);
807 
808     // if _fgetfield then reqrite to _fast_faccess_0
809     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
810            Bytecodes::_aload_0,
811            "fix bytecode definition");
812     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
813     __ movl(bc, Bytecodes::_fast_faccess_0);
814     __ jccb(Assembler::equal, rewrite);
815 
816     // else rewrite to _fast_aload0
817     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
818            Bytecodes::_aload_0,
819            "fix bytecode definition");
820     __ movl(bc, Bytecodes::_fast_aload_0);
821 
822     // rewrite
823     // bc: fast bytecode
824     __ bind(rewrite);
825     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
826 
827     __ bind(done);
828   } else {
829     aload(0);
830   }
831 }
832 
istore()833 void TemplateTable::istore() {
834   transition(itos, vtos);
835   locals_index(rbx);
836   __ movl(iaddress(rbx), rax);
837 }
838 
lstore()839 void TemplateTable::lstore() {
840   transition(ltos, vtos);
841   locals_index(rbx);
842   __ movq(laddress(rbx), rax);
843 }
844 
fstore()845 void TemplateTable::fstore() {
846   transition(ftos, vtos);
847   locals_index(rbx);
848   __ movflt(faddress(rbx), xmm0);
849 }
850 
dstore()851 void TemplateTable::dstore() {
852   transition(dtos, vtos);
853   locals_index(rbx);
854   __ movdbl(daddress(rbx), xmm0);
855 }
856 
astore()857 void TemplateTable::astore() {
858   transition(vtos, vtos);
859   __ pop_ptr(rax);
860   locals_index(rbx);
861   __ movptr(aaddress(rbx), rax);
862 }
863 
wide_istore()864 void TemplateTable::wide_istore() {
865   transition(vtos, vtos);
866   __ pop_i();
867   locals_index_wide(rbx);
868   __ movl(iaddress(rbx), rax);
869 }
870 
wide_lstore()871 void TemplateTable::wide_lstore() {
872   transition(vtos, vtos);
873   __ pop_l();
874   locals_index_wide(rbx);
875   __ movq(laddress(rbx), rax);
876 }
877 
wide_fstore()878 void TemplateTable::wide_fstore() {
879   transition(vtos, vtos);
880   __ pop_f();
881   locals_index_wide(rbx);
882   __ movflt(faddress(rbx), xmm0);
883 }
884 
wide_dstore()885 void TemplateTable::wide_dstore() {
886   transition(vtos, vtos);
887   __ pop_d();
888   locals_index_wide(rbx);
889   __ movdbl(daddress(rbx), xmm0);
890 }
891 
wide_astore()892 void TemplateTable::wide_astore() {
893   transition(vtos, vtos);
894   __ pop_ptr(rax);
895   locals_index_wide(rbx);
896   __ movptr(aaddress(rbx), rax);
897 }
898 
iastore()899 void TemplateTable::iastore() {
900   transition(itos, vtos);
901   __ pop_i(rbx);
902   __ pop_ptr(rdx);
903   // eax: value
904   // ebx: index
905   // rdx: array
906   index_check(rdx, rbx); // prefer index in ebx
907   __ movl(Address(rdx, rbx,
908                   Address::times_4,
909                   arrayOopDesc::base_offset_in_bytes(T_INT)),
910           rax);
911 }
912 
lastore()913 void TemplateTable::lastore() {
914   transition(ltos, vtos);
915   __ pop_i(rbx);
916   __ pop_ptr(rdx);
917   // rax: value
918   // ebx: index
919   // rdx: array
920   index_check(rdx, rbx); // prefer index in ebx
921   __ movq(Address(rdx, rbx,
922                   Address::times_8,
923                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
924           rax);
925 }
926 
fastore()927 void TemplateTable::fastore() {
928   transition(ftos, vtos);
929   __ pop_i(rbx);
930   __ pop_ptr(rdx);
931   // xmm0: value
932   // ebx:  index
933   // rdx:  array
934   index_check(rdx, rbx); // prefer index in ebx
935   __ movflt(Address(rdx, rbx,
936                    Address::times_4,
937                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
938            xmm0);
939 }
940 
dastore()941 void TemplateTable::dastore() {
942   transition(dtos, vtos);
943   __ pop_i(rbx);
944   __ pop_ptr(rdx);
945   // xmm0: value
946   // ebx:  index
947   // rdx:  array
948   index_check(rdx, rbx); // prefer index in ebx
949   __ movdbl(Address(rdx, rbx,
950                    Address::times_8,
951                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
952            xmm0);
953 }
954 
aastore()955 void TemplateTable::aastore() {
956   Label is_null, ok_is_subtype, done;
957   transition(vtos, vtos);
958   // stack: ..., array, index, value
959   __ movptr(rax, at_tos());    // value
960   __ movl(rcx, at_tos_p1()); // index
961   __ movptr(rdx, at_tos_p2()); // array
962 
963   Address element_address(rdx, rcx,
964                           UseCompressedOops? Address::times_4 : Address::times_8,
965                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
966 
967   index_check(rdx, rcx);     // kills rbx
968   // do array store check - check for NULL value first
969   __ testptr(rax, rax);
970   __ jcc(Assembler::zero, is_null);
971 
972   // Move subklass into rbx
973   __ load_klass(rbx, rax);
974   // Move superklass into rax
975   __ load_klass(rax, rdx);
976   __ movptr(rax, Address(rax,
977                          ObjArrayKlass::element_klass_offset()));
978   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
979   __ lea(rdx, element_address);
980 
981   // Generate subtype check.  Blows rcx, rdi
982   // Superklass in rax.  Subklass in rbx.
983   __ gen_subtype_check(rbx, ok_is_subtype);
984 
985   // Come here on failure
986   // object is at TOS
987   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
988 
989   // Come here on success
990   __ bind(ok_is_subtype);
991 
992   // Get the value we will store
993   __ movptr(rax, at_tos());
994   // Now store using the appropriate barrier
995   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
996   __ jmp(done);
997 
998   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
999   __ bind(is_null);
1000   __ profile_null_seen(rbx);
1001 
1002   // Store a NULL
1003   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
1004 
1005   // Pop stack arguments
1006   __ bind(done);
1007   __ addptr(rsp, 3 * Interpreter::stackElementSize);
1008 }
1009 
bastore()1010 void TemplateTable::bastore() {
1011   transition(itos, vtos);
1012   __ pop_i(rbx);
1013   __ pop_ptr(rdx);
1014   // eax: value
1015   // ebx: index
1016   // rdx: array
1017   index_check(rdx, rbx); // prefer index in ebx
1018   // Need to check whether array is boolean or byte
1019   // since both types share the bastore bytecode.
1020   __ load_klass(rcx, rdx);
1021   __ movl(rcx, Address(rcx, Klass::layout_helper_offset()));
1022   int diffbit = Klass::layout_helper_boolean_diffbit();
1023   __ testl(rcx, diffbit);
1024   Label L_skip;
1025   __ jccb(Assembler::zero, L_skip);
1026   __ andl(rax, 1);  // if it is a T_BOOLEAN array, mask the stored value to 0/1
1027   __ bind(L_skip);
1028   __ movb(Address(rdx, rbx,
1029                   Address::times_1,
1030                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
1031           rax);
1032 }
1033 
castore()1034 void TemplateTable::castore() {
1035   transition(itos, vtos);
1036   __ pop_i(rbx);
1037   __ pop_ptr(rdx);
1038   // eax: value
1039   // ebx: index
1040   // rdx: array
1041   index_check(rdx, rbx);  // prefer index in ebx
1042   __ movw(Address(rdx, rbx,
1043                   Address::times_2,
1044                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
1045           rax);
1046 }
1047 
sastore()1048 void TemplateTable::sastore() {
1049   castore();
1050 }
1051 
istore(int n)1052 void TemplateTable::istore(int n) {
1053   transition(itos, vtos);
1054   __ movl(iaddress(n), rax);
1055 }
1056 
lstore(int n)1057 void TemplateTable::lstore(int n) {
1058   transition(ltos, vtos);
1059   __ movq(laddress(n), rax);
1060 }
1061 
fstore(int n)1062 void TemplateTable::fstore(int n) {
1063   transition(ftos, vtos);
1064   __ movflt(faddress(n), xmm0);
1065 }
1066 
dstore(int n)1067 void TemplateTable::dstore(int n) {
1068   transition(dtos, vtos);
1069   __ movdbl(daddress(n), xmm0);
1070 }
1071 
astore(int n)1072 void TemplateTable::astore(int n) {
1073   transition(vtos, vtos);
1074   __ pop_ptr(rax);
1075   __ movptr(aaddress(n), rax);
1076 }
1077 
pop()1078 void TemplateTable::pop() {
1079   transition(vtos, vtos);
1080   __ addptr(rsp, Interpreter::stackElementSize);
1081 }
1082 
pop2()1083 void TemplateTable::pop2() {
1084   transition(vtos, vtos);
1085   __ addptr(rsp, 2 * Interpreter::stackElementSize);
1086 }
1087 
dup()1088 void TemplateTable::dup() {
1089   transition(vtos, vtos);
1090   __ load_ptr(0, rax);
1091   __ push_ptr(rax);
1092   // stack: ..., a, a
1093 }
1094 
dup_x1()1095 void TemplateTable::dup_x1() {
1096   transition(vtos, vtos);
1097   // stack: ..., a, b
1098   __ load_ptr( 0, rax);  // load b
1099   __ load_ptr( 1, rcx);  // load a
1100   __ store_ptr(1, rax);  // store b
1101   __ store_ptr(0, rcx);  // store a
1102   __ push_ptr(rax);      // push b
1103   // stack: ..., b, a, b
1104 }
1105 
dup_x2()1106 void TemplateTable::dup_x2() {
1107   transition(vtos, vtos);
1108   // stack: ..., a, b, c
1109   __ load_ptr( 0, rax);  // load c
1110   __ load_ptr( 2, rcx);  // load a
1111   __ store_ptr(2, rax);  // store c in a
1112   __ push_ptr(rax);      // push c
1113   // stack: ..., c, b, c, c
1114   __ load_ptr( 2, rax);  // load b
1115   __ store_ptr(2, rcx);  // store a in b
1116   // stack: ..., c, a, c, c
1117   __ store_ptr(1, rax);  // store b in c
1118   // stack: ..., c, a, b, c
1119 }
1120 
dup2()1121 void TemplateTable::dup2() {
1122   transition(vtos, vtos);
1123   // stack: ..., a, b
1124   __ load_ptr(1, rax);  // load a
1125   __ push_ptr(rax);     // push a
1126   __ load_ptr(1, rax);  // load b
1127   __ push_ptr(rax);     // push b
1128   // stack: ..., a, b, a, b
1129 }
1130 
dup2_x1()1131 void TemplateTable::dup2_x1() {
1132   transition(vtos, vtos);
1133   // stack: ..., a, b, c
1134   __ load_ptr( 0, rcx);  // load c
1135   __ load_ptr( 1, rax);  // load b
1136   __ push_ptr(rax);      // push b
1137   __ push_ptr(rcx);      // push c
1138   // stack: ..., a, b, c, b, c
1139   __ store_ptr(3, rcx);  // store c in b
1140   // stack: ..., a, c, c, b, c
1141   __ load_ptr( 4, rcx);  // load a
1142   __ store_ptr(2, rcx);  // store a in 2nd c
1143   // stack: ..., a, c, a, b, c
1144   __ store_ptr(4, rax);  // store b in a
1145   // stack: ..., b, c, a, b, c
1146 }
1147 
dup2_x2()1148 void TemplateTable::dup2_x2() {
1149   transition(vtos, vtos);
1150   // stack: ..., a, b, c, d
1151   __ load_ptr( 0, rcx);  // load d
1152   __ load_ptr( 1, rax);  // load c
1153   __ push_ptr(rax);      // push c
1154   __ push_ptr(rcx);      // push d
1155   // stack: ..., a, b, c, d, c, d
1156   __ load_ptr( 4, rax);  // load b
1157   __ store_ptr(2, rax);  // store b in d
1158   __ store_ptr(4, rcx);  // store d in b
1159   // stack: ..., a, d, c, b, c, d
1160   __ load_ptr( 5, rcx);  // load a
1161   __ load_ptr( 3, rax);  // load c
1162   __ store_ptr(3, rcx);  // store a in c
1163   __ store_ptr(5, rax);  // store c in a
1164   // stack: ..., c, d, a, b, c, d
1165 }
1166 
swap()1167 void TemplateTable::swap() {
1168   transition(vtos, vtos);
1169   // stack: ..., a, b
1170   __ load_ptr( 1, rcx);  // load a
1171   __ load_ptr( 0, rax);  // load b
1172   __ store_ptr(0, rcx);  // store a in b
1173   __ store_ptr(1, rax);  // store b in a
1174   // stack: ..., b, a
1175 }
1176 
iop2(Operation op)1177 void TemplateTable::iop2(Operation op) {
1178   transition(itos, itos);
1179   switch (op) {
1180   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
1181   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1182   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
1183   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
1184   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
1185   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
1186   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
1187   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
1188   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
1189   default   : ShouldNotReachHere();
1190   }
1191 }
1192 
lop2(Operation op)1193 void TemplateTable::lop2(Operation op) {
1194   transition(ltos, ltos);
1195   switch (op) {
1196   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
1197   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
1198   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
1199   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
1200   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
1201   default   : ShouldNotReachHere();
1202   }
1203 }
1204 
idiv()1205 void TemplateTable::idiv() {
1206   transition(itos, itos);
1207   __ movl(rcx, rax);
1208   __ pop_i(rax);
1209   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
1210   //       they are not equal, one could do a normal division (no correction
1211   //       needed), which may speed up this implementation for the common case.
1212   //       (see also JVM spec., p.243 & p.271)
1213   __ corrected_idivl(rcx);
1214 }
1215 
irem()1216 void TemplateTable::irem() {
1217   transition(itos, itos);
1218   __ movl(rcx, rax);
1219   __ pop_i(rax);
1220   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
1221   //       they are not equal, one could do a normal division (no correction
1222   //       needed), which may speed up this implementation for the common case.
1223   //       (see also JVM spec., p.243 & p.271)
1224   __ corrected_idivl(rcx);
1225   __ movl(rax, rdx);
1226 }
1227 
lmul()1228 void TemplateTable::lmul() {
1229   transition(ltos, ltos);
1230   __ pop_l(rdx);
1231   __ imulq(rax, rdx);
1232 }
1233 
ldiv()1234 void TemplateTable::ldiv() {
1235   transition(ltos, ltos);
1236   __ mov(rcx, rax);
1237   __ pop_l(rax);
1238   // generate explicit div0 check
1239   __ testq(rcx, rcx);
1240   __ jump_cc(Assembler::zero,
1241              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1242   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1243   //       they are not equal, one could do a normal division (no correction
1244   //       needed), which may speed up this implementation for the common case.
1245   //       (see also JVM spec., p.243 & p.271)
1246   __ corrected_idivq(rcx); // kills rbx
1247 }
1248 
lrem()1249 void TemplateTable::lrem() {
1250   transition(ltos, ltos);
1251   __ mov(rcx, rax);
1252   __ pop_l(rax);
1253   __ testq(rcx, rcx);
1254   __ jump_cc(Assembler::zero,
1255              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1256   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1257   //       they are not equal, one could do a normal division (no correction
1258   //       needed), which may speed up this implementation for the common case.
1259   //       (see also JVM spec., p.243 & p.271)
1260   __ corrected_idivq(rcx); // kills rbx
1261   __ mov(rax, rdx);
1262 }
1263 
lshl()1264 void TemplateTable::lshl() {
1265   transition(itos, ltos);
1266   __ movl(rcx, rax);                             // get shift count
1267   __ pop_l(rax);                                 // get shift value
1268   __ shlq(rax);
1269 }
1270 
lshr()1271 void TemplateTable::lshr() {
1272   transition(itos, ltos);
1273   __ movl(rcx, rax);                             // get shift count
1274   __ pop_l(rax);                                 // get shift value
1275   __ sarq(rax);
1276 }
1277 
lushr()1278 void TemplateTable::lushr() {
1279   transition(itos, ltos);
1280   __ movl(rcx, rax);                             // get shift count
1281   __ pop_l(rax);                                 // get shift value
1282   __ shrq(rax);
1283 }
1284 
fop2(Operation op)1285 void TemplateTable::fop2(Operation op) {
1286   transition(ftos, ftos);
1287   switch (op) {
1288   case add:
1289     __ addss(xmm0, at_rsp());
1290     __ addptr(rsp, Interpreter::stackElementSize);
1291     break;
1292   case sub:
1293     __ movflt(xmm1, xmm0);
1294     __ pop_f(xmm0);
1295     __ subss(xmm0, xmm1);
1296     break;
1297   case mul:
1298     __ mulss(xmm0, at_rsp());
1299     __ addptr(rsp, Interpreter::stackElementSize);
1300     break;
1301   case div:
1302     __ movflt(xmm1, xmm0);
1303     __ pop_f(xmm0);
1304     __ divss(xmm0, xmm1);
1305     break;
1306   case rem:
1307     __ movflt(xmm1, xmm0);
1308     __ pop_f(xmm0);
1309     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
1310     break;
1311   default:
1312     ShouldNotReachHere();
1313     break;
1314   }
1315 }
1316 
dop2(Operation op)1317 void TemplateTable::dop2(Operation op) {
1318   transition(dtos, dtos);
1319   switch (op) {
1320   case add:
1321     __ addsd(xmm0, at_rsp());
1322     __ addptr(rsp, 2 * Interpreter::stackElementSize);
1323     break;
1324   case sub:
1325     __ movdbl(xmm1, xmm0);
1326     __ pop_d(xmm0);
1327     __ subsd(xmm0, xmm1);
1328     break;
1329   case mul:
1330     __ mulsd(xmm0, at_rsp());
1331     __ addptr(rsp, 2 * Interpreter::stackElementSize);
1332     break;
1333   case div:
1334     __ movdbl(xmm1, xmm0);
1335     __ pop_d(xmm0);
1336     __ divsd(xmm0, xmm1);
1337     break;
1338   case rem:
1339     __ movdbl(xmm1, xmm0);
1340     __ pop_d(xmm0);
1341     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
1342     break;
1343   default:
1344     ShouldNotReachHere();
1345     break;
1346   }
1347 }
1348 
ineg()1349 void TemplateTable::ineg() {
1350   transition(itos, itos);
1351   __ negl(rax);
1352 }
1353 
lneg()1354 void TemplateTable::lneg() {
1355   transition(ltos, ltos);
1356   __ negq(rax);
1357 }
1358 
1359 // Note: 'double' and 'long long' have 32-bits alignment on x86.
double_quadword(jlong * adr,jlong lo,jlong hi)1360 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
1361   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
1362   // of 128-bits operands for SSE instructions.
1363   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
1364   // Store the value to a 128-bits operand.
1365   operand[0] = lo;
1366   operand[1] = hi;
1367   return operand;
1368 }
1369 
1370 // Buffer for 128-bits masks used by SSE instructions.
1371 static jlong float_signflip_pool[2*2];
1372 static jlong double_signflip_pool[2*2];
1373 
fneg()1374 void TemplateTable::fneg() {
1375   transition(ftos, ftos);
1376   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
1377   __ xorps(xmm0, ExternalAddress((address) float_signflip));
1378 }
1379 
dneg()1380 void TemplateTable::dneg() {
1381   transition(dtos, dtos);
1382   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
1383   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
1384 }
1385 
iinc()1386 void TemplateTable::iinc() {
1387   transition(vtos, vtos);
1388   __ load_signed_byte(rdx, at_bcp(2)); // get constant
1389   locals_index(rbx);
1390   __ addl(iaddress(rbx), rdx);
1391 }
1392 
wide_iinc()1393 void TemplateTable::wide_iinc() {
1394   transition(vtos, vtos);
1395   __ movl(rdx, at_bcp(4)); // get constant
1396   locals_index_wide(rbx);
1397   __ bswapl(rdx); // swap bytes & sign-extend constant
1398   __ sarl(rdx, 16);
1399   __ addl(iaddress(rbx), rdx);
1400   // Note: should probably use only one movl to get both
1401   //       the index and the constant -> fix this
1402 }
1403 
convert()1404 void TemplateTable::convert() {
1405   // Checking
1406 #ifdef ASSERT
1407   {
1408     TosState tos_in  = ilgl;
1409     TosState tos_out = ilgl;
1410     switch (bytecode()) {
1411     case Bytecodes::_i2l: // fall through
1412     case Bytecodes::_i2f: // fall through
1413     case Bytecodes::_i2d: // fall through
1414     case Bytecodes::_i2b: // fall through
1415     case Bytecodes::_i2c: // fall through
1416     case Bytecodes::_i2s: tos_in = itos; break;
1417     case Bytecodes::_l2i: // fall through
1418     case Bytecodes::_l2f: // fall through
1419     case Bytecodes::_l2d: tos_in = ltos; break;
1420     case Bytecodes::_f2i: // fall through
1421     case Bytecodes::_f2l: // fall through
1422     case Bytecodes::_f2d: tos_in = ftos; break;
1423     case Bytecodes::_d2i: // fall through
1424     case Bytecodes::_d2l: // fall through
1425     case Bytecodes::_d2f: tos_in = dtos; break;
1426     default             : ShouldNotReachHere();
1427     }
1428     switch (bytecode()) {
1429     case Bytecodes::_l2i: // fall through
1430     case Bytecodes::_f2i: // fall through
1431     case Bytecodes::_d2i: // fall through
1432     case Bytecodes::_i2b: // fall through
1433     case Bytecodes::_i2c: // fall through
1434     case Bytecodes::_i2s: tos_out = itos; break;
1435     case Bytecodes::_i2l: // fall through
1436     case Bytecodes::_f2l: // fall through
1437     case Bytecodes::_d2l: tos_out = ltos; break;
1438     case Bytecodes::_i2f: // fall through
1439     case Bytecodes::_l2f: // fall through
1440     case Bytecodes::_d2f: tos_out = ftos; break;
1441     case Bytecodes::_i2d: // fall through
1442     case Bytecodes::_l2d: // fall through
1443     case Bytecodes::_f2d: tos_out = dtos; break;
1444     default             : ShouldNotReachHere();
1445     }
1446     transition(tos_in, tos_out);
1447   }
1448 #endif // ASSERT
1449 
1450   static const int64_t is_nan = 0x8000000000000000L;
1451 
1452   // Conversion
1453   switch (bytecode()) {
1454   case Bytecodes::_i2l:
1455     __ movslq(rax, rax);
1456     break;
1457   case Bytecodes::_i2f:
1458     __ cvtsi2ssl(xmm0, rax);
1459     break;
1460   case Bytecodes::_i2d:
1461     __ cvtsi2sdl(xmm0, rax);
1462     break;
1463   case Bytecodes::_i2b:
1464     __ movsbl(rax, rax);
1465     break;
1466   case Bytecodes::_i2c:
1467     __ movzwl(rax, rax);
1468     break;
1469   case Bytecodes::_i2s:
1470     __ movswl(rax, rax);
1471     break;
1472   case Bytecodes::_l2i:
1473     __ movl(rax, rax);
1474     break;
1475   case Bytecodes::_l2f:
1476     __ cvtsi2ssq(xmm0, rax);
1477     break;
1478   case Bytecodes::_l2d:
1479     __ cvtsi2sdq(xmm0, rax);
1480     break;
1481   case Bytecodes::_f2i:
1482   {
1483     Label L;
1484     __ cvttss2sil(rax, xmm0);
1485     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1486     __ jcc(Assembler::notEqual, L);
1487     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1488     __ bind(L);
1489   }
1490     break;
1491   case Bytecodes::_f2l:
1492   {
1493     Label L;
1494     __ cvttss2siq(rax, xmm0);
1495     // NaN or overflow/underflow?
1496     __ cmp64(rax, ExternalAddress((address) &is_nan));
1497     __ jcc(Assembler::notEqual, L);
1498     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1499     __ bind(L);
1500   }
1501     break;
1502   case Bytecodes::_f2d:
1503     __ cvtss2sd(xmm0, xmm0);
1504     break;
1505   case Bytecodes::_d2i:
1506   {
1507     Label L;
1508     __ cvttsd2sil(rax, xmm0);
1509     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1510     __ jcc(Assembler::notEqual, L);
1511     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
1512     __ bind(L);
1513   }
1514     break;
1515   case Bytecodes::_d2l:
1516   {
1517     Label L;
1518     __ cvttsd2siq(rax, xmm0);
1519     // NaN or overflow/underflow?
1520     __ cmp64(rax, ExternalAddress((address) &is_nan));
1521     __ jcc(Assembler::notEqual, L);
1522     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
1523     __ bind(L);
1524   }
1525     break;
1526   case Bytecodes::_d2f:
1527     __ cvtsd2ss(xmm0, xmm0);
1528     break;
1529   default:
1530     ShouldNotReachHere();
1531   }
1532 }
1533 
lcmp()1534 void TemplateTable::lcmp() {
1535   transition(ltos, itos);
1536   Label done;
1537   __ pop_l(rdx);
1538   __ cmpq(rdx, rax);
1539   __ movl(rax, -1);
1540   __ jccb(Assembler::less, done);
1541   __ setb(Assembler::notEqual, rax);
1542   __ movzbl(rax, rax);
1543   __ bind(done);
1544 }
1545 
float_cmp(bool is_float,int unordered_result)1546 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1547   Label done;
1548   if (is_float) {
1549     // XXX get rid of pop here, use ... reg, mem32
1550     __ pop_f(xmm1);
1551     __ ucomiss(xmm1, xmm0);
1552   } else {
1553     // XXX get rid of pop here, use ... reg, mem64
1554     __ pop_d(xmm1);
1555     __ ucomisd(xmm1, xmm0);
1556   }
1557   if (unordered_result < 0) {
1558     __ movl(rax, -1);
1559     __ jccb(Assembler::parity, done);
1560     __ jccb(Assembler::below, done);
1561     __ setb(Assembler::notEqual, rdx);
1562     __ movzbl(rax, rdx);
1563   } else {
1564     __ movl(rax, 1);
1565     __ jccb(Assembler::parity, done);
1566     __ jccb(Assembler::above, done);
1567     __ movl(rax, 0);
1568     __ jccb(Assembler::equal, done);
1569     __ decrementl(rax);
1570   }
1571   __ bind(done);
1572 }
1573 
branch(bool is_jsr,bool is_wide)1574 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1575   __ get_method(rcx); // rcx holds method
1576   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
1577                                      // holds bumped taken count
1578 
1579   const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
1580                              InvocationCounter::counter_offset();
1581   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
1582                               InvocationCounter::counter_offset();
1583 
1584   // Load up edx with the branch displacement
1585   if (is_wide) {
1586     __ movl(rdx, at_bcp(1));
1587   } else {
1588     __ load_signed_short(rdx, at_bcp(1));
1589   }
1590   __ bswapl(rdx);
1591 
1592   if (!is_wide) {
1593     __ sarl(rdx, 16);
1594   }
1595   __ movl2ptr(rdx, rdx);
1596 
1597   // Handle all the JSR stuff here, then exit.
1598   // It's much shorter and cleaner than intermingling with the non-JSR
1599   // normal-branch stuff occurring below.
1600   if (is_jsr) {
1601     // Pre-load the next target bytecode into rbx
1602     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
1603 
1604     // compute return address as bci in rax
1605     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
1606                         in_bytes(ConstMethod::codes_offset())));
1607     __ subptr(rax, Address(rcx, Method::const_offset()));
1608     // Adjust the bcp in r13 by the displacement in rdx
1609     __ addptr(r13, rdx);
1610     // jsr returns atos that is not an oop
1611     __ push_i(rax);
1612     __ dispatch_only(vtos);
1613     return;
1614   }
1615 
1616   // Normal (non-jsr) branch handling
1617 
1618   // Adjust the bcp in r13 by the displacement in rdx
1619   __ addptr(r13, rdx);
1620 
1621   assert(UseLoopCounter || !UseOnStackReplacement,
1622          "on-stack-replacement requires loop counters");
1623   Label backedge_counter_overflow;
1624   Label profile_method;
1625   Label dispatch;
1626   if (UseLoopCounter) {
1627     // increment backedge counter for backward branches
1628     // rax: MDO
1629     // ebx: MDO bumped taken-count
1630     // rcx: method
1631     // rdx: target offset
1632     // r13: target bcp
1633     // r14: locals pointer
1634     __ testl(rdx, rdx);             // check if forward or backward branch
1635     __ jcc(Assembler::positive, dispatch); // count only if backward branch
1636 
1637     // check if MethodCounters exists
1638     Label has_counters;
1639     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
1640     __ testptr(rax, rax);
1641     __ jcc(Assembler::notZero, has_counters);
1642     __ push(rdx);
1643     __ push(rcx);
1644     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters),
1645                rcx);
1646     __ pop(rcx);
1647     __ pop(rdx);
1648     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
1649     __ jcc(Assembler::zero, dispatch);
1650     __ bind(has_counters);
1651 
1652     if (TieredCompilation) {
1653       Label no_mdo;
1654       int increment = InvocationCounter::count_increment;
1655       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
1656       if (ProfileInterpreter) {
1657         // Are we profiling?
1658         __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
1659         __ testptr(rbx, rbx);
1660         __ jccb(Assembler::zero, no_mdo);
1661         // Increment the MDO backedge counter
1662         const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
1663                                            in_bytes(InvocationCounter::counter_offset()));
1664         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, rax, false, Assembler::zero,
1665                                    UseOnStackReplacement ? &backedge_counter_overflow : NULL);
1666         __ jmp(dispatch);
1667       }
1668       __ bind(no_mdo);
1669       // Increment backedge counter in MethodCounters*
1670       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
1671       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
1672                                  rax, false, Assembler::zero,
1673                                  UseOnStackReplacement ? &backedge_counter_overflow : NULL);
1674     } else {
1675       // increment counter
1676       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
1677       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
1678       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
1679       __ movl(Address(rcx, be_offset), rax);        // store counter
1680 
1681       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
1682 
1683       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
1684       __ addl(rax, Address(rcx, be_offset));        // add both counters
1685 
1686       if (ProfileInterpreter) {
1687         // Test to see if we should create a method data oop
1688         __ cmp32(rax,
1689                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
1690         __ jcc(Assembler::less, dispatch);
1691 
1692         // if no method data exists, go to profile method
1693         __ test_method_data_pointer(rax, profile_method);
1694 
1695         if (UseOnStackReplacement) {
1696           // check for overflow against ebx which is the MDO taken count
1697           __ cmp32(rbx,
1698                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1699           __ jcc(Assembler::below, dispatch);
1700 
1701           // When ProfileInterpreter is on, the backedge_count comes
1702           // from the MethodData*, which value does not get reset on
1703           // the call to frequency_counter_overflow().  To avoid
1704           // excessive calls to the overflow routine while the method is
1705           // being compiled, add a second test to make sure the overflow
1706           // function is called only once every overflow_frequency.
1707           const int overflow_frequency = 1024;
1708           __ andl(rbx, overflow_frequency - 1);
1709           __ jcc(Assembler::zero, backedge_counter_overflow);
1710 
1711         }
1712       } else {
1713         if (UseOnStackReplacement) {
1714           // check for overflow against eax, which is the sum of the
1715           // counters
1716           __ cmp32(rax,
1717                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1718           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
1719 
1720         }
1721       }
1722     }
1723     __ bind(dispatch);
1724   }
1725 
1726   // Pre-load the next target bytecode into rbx
1727   __ load_unsigned_byte(rbx, Address(r13, 0));
1728 
1729   // continue with the bytecode @ target
1730   // eax: return bci for jsr's, unused otherwise
1731   // ebx: target bytecode
1732   // r13: target bcp
1733   __ dispatch_only(vtos);
1734 
1735   if (UseLoopCounter) {
1736     if (ProfileInterpreter) {
1737       // Out-of-line code to allocate method data oop.
1738       __ bind(profile_method);
1739       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1740       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
1741       __ set_method_data_pointer_for_bcp();
1742       __ jmp(dispatch);
1743     }
1744 
1745     if (UseOnStackReplacement) {
1746       // invocation counter overflow
1747       __ bind(backedge_counter_overflow);
1748       __ negptr(rdx);
1749       __ addptr(rdx, r13); // branch bcp
1750       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
1751       __ call_VM(noreg,
1752                  CAST_FROM_FN_PTR(address,
1753                                   InterpreterRuntime::frequency_counter_overflow),
1754                  rdx);
1755       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
1756 
1757       // rax: osr nmethod (osr ok) or NULL (osr not possible)
1758       // ebx: target bytecode
1759       // rdx: scratch
1760       // r14: locals pointer
1761       // r13: bcp
1762       __ testptr(rax, rax);                        // test result
1763       __ jcc(Assembler::zero, dispatch);         // no osr if null
1764       // nmethod may have been invalidated (VM may block upon call_VM return)
1765       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
1766       __ cmpl(rcx, InvalidOSREntryBci);
1767       __ jcc(Assembler::equal, dispatch);
1768 
1769       // We have the address of an on stack replacement routine in eax
1770       // We need to prepare to execute the OSR method. First we must
1771       // migrate the locals and monitors off of the stack.
1772 
1773       __ mov(r13, rax);                             // save the nmethod
1774 
1775       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1776 
1777       // eax is OSR buffer, move it to expected parameter location
1778       __ mov(j_rarg0, rax);
1779 
1780       // We use j_rarg definitions here so that registers don't conflict as parameter
1781       // registers change across platforms as we are in the midst of a calling
1782       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
1783 
1784       const Register retaddr = j_rarg2;
1785       const Register sender_sp = j_rarg1;
1786 
1787       // pop the interpreter frame
1788       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
1789       __ leave();                                // remove frame anchor
1790       __ pop(retaddr);                           // get return address
1791       __ mov(rsp, sender_sp);                   // set sp to sender sp
1792       // Ensure compiled code always sees stack at proper alignment
1793       __ andptr(rsp, -(StackAlignmentInBytes));
1794 
1795       // unlike x86 we need no specialized return from compiled code
1796       // to the interpreter or the call stub.
1797 
1798       // push the return address
1799       __ push(retaddr);
1800 
1801       // and begin the OSR nmethod
1802       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
1803     }
1804   }
1805 }
1806 
1807 
if_0cmp(Condition cc)1808 void TemplateTable::if_0cmp(Condition cc) {
1809   transition(itos, vtos);
1810   // assume branch is more often taken than not (loops use backward branches)
1811   Label not_taken;
1812   __ testl(rax, rax);
1813   __ jcc(j_not(cc), not_taken);
1814   branch(false, false);
1815   __ bind(not_taken);
1816   __ profile_not_taken_branch(rax);
1817 }
1818 
if_icmp(Condition cc)1819 void TemplateTable::if_icmp(Condition cc) {
1820   transition(itos, vtos);
1821   // assume branch is more often taken than not (loops use backward branches)
1822   Label not_taken;
1823   __ pop_i(rdx);
1824   __ cmpl(rdx, rax);
1825   __ jcc(j_not(cc), not_taken);
1826   branch(false, false);
1827   __ bind(not_taken);
1828   __ profile_not_taken_branch(rax);
1829 }
1830 
if_nullcmp(Condition cc)1831 void TemplateTable::if_nullcmp(Condition cc) {
1832   transition(atos, vtos);
1833   // assume branch is more often taken than not (loops use backward branches)
1834   Label not_taken;
1835   __ testptr(rax, rax);
1836   __ jcc(j_not(cc), not_taken);
1837   branch(false, false);
1838   __ bind(not_taken);
1839   __ profile_not_taken_branch(rax);
1840 }
1841 
if_acmp(Condition cc)1842 void TemplateTable::if_acmp(Condition cc) {
1843   transition(atos, vtos);
1844   // assume branch is more often taken than not (loops use backward branches)
1845   Label not_taken;
1846   __ pop_ptr(rdx);
1847   __ cmpptr(rdx, rax);
1848   __ jcc(j_not(cc), not_taken);
1849   branch(false, false);
1850   __ bind(not_taken);
1851   __ profile_not_taken_branch(rax);
1852 }
1853 
ret()1854 void TemplateTable::ret() {
1855   transition(vtos, vtos);
1856   locals_index(rbx);
1857   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
1858   __ profile_ret(rbx, rcx);
1859   __ get_method(rax);
1860   __ movptr(r13, Address(rax, Method::const_offset()));
1861   __ lea(r13, Address(r13, rbx, Address::times_1,
1862                       ConstMethod::codes_offset()));
1863   __ dispatch_next(vtos);
1864 }
1865 
wide_ret()1866 void TemplateTable::wide_ret() {
1867   transition(vtos, vtos);
1868   locals_index_wide(rbx);
1869   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
1870   __ profile_ret(rbx, rcx);
1871   __ get_method(rax);
1872   __ movptr(r13, Address(rax, Method::const_offset()));
1873   __ lea(r13, Address(r13, rbx, Address::times_1, ConstMethod::codes_offset()));
1874   __ dispatch_next(vtos);
1875 }
1876 
tableswitch()1877 void TemplateTable::tableswitch() {
1878   Label default_case, continue_execution;
1879   transition(itos, vtos);
1880   // align r13
1881   __ lea(rbx, at_bcp(BytesPerInt));
1882   __ andptr(rbx, -BytesPerInt);
1883   // load lo & hi
1884   __ movl(rcx, Address(rbx, BytesPerInt));
1885   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
1886   __ bswapl(rcx);
1887   __ bswapl(rdx);
1888   // check against lo & hi
1889   __ cmpl(rax, rcx);
1890   __ jcc(Assembler::less, default_case);
1891   __ cmpl(rax, rdx);
1892   __ jcc(Assembler::greater, default_case);
1893   // lookup dispatch offset
1894   __ subl(rax, rcx);
1895   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
1896   __ profile_switch_case(rax, rbx, rcx);
1897   // continue execution
1898   __ bind(continue_execution);
1899   __ bswapl(rdx);
1900   __ movl2ptr(rdx, rdx);
1901   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
1902   __ addptr(r13, rdx);
1903   __ dispatch_only(vtos);
1904   // handle default
1905   __ bind(default_case);
1906   __ profile_switch_default(rax);
1907   __ movl(rdx, Address(rbx, 0));
1908   __ jmp(continue_execution);
1909 }
1910 
lookupswitch()1911 void TemplateTable::lookupswitch() {
1912   transition(itos, itos);
1913   __ stop("lookupswitch bytecode should have been rewritten");
1914 }
1915 
fast_linearswitch()1916 void TemplateTable::fast_linearswitch() {
1917   transition(itos, vtos);
1918   Label loop_entry, loop, found, continue_execution;
1919   // bswap rax so we can avoid bswapping the table entries
1920   __ bswapl(rax);
1921   // align r13
1922   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
1923                                     // this instruction (change offsets
1924                                     // below)
1925   __ andptr(rbx, -BytesPerInt);
1926   // set counter
1927   __ movl(rcx, Address(rbx, BytesPerInt));
1928   __ bswapl(rcx);
1929   __ jmpb(loop_entry);
1930   // table search
1931   __ bind(loop);
1932   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
1933   __ jcc(Assembler::equal, found);
1934   __ bind(loop_entry);
1935   __ decrementl(rcx);
1936   __ jcc(Assembler::greaterEqual, loop);
1937   // default case
1938   __ profile_switch_default(rax);
1939   __ movl(rdx, Address(rbx, 0));
1940   __ jmp(continue_execution);
1941   // entry found -> get offset
1942   __ bind(found);
1943   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
1944   __ profile_switch_case(rcx, rax, rbx);
1945   // continue execution
1946   __ bind(continue_execution);
1947   __ bswapl(rdx);
1948   __ movl2ptr(rdx, rdx);
1949   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
1950   __ addptr(r13, rdx);
1951   __ dispatch_only(vtos);
1952 }
1953 
fast_binaryswitch()1954 void TemplateTable::fast_binaryswitch() {
1955   transition(itos, vtos);
1956   // Implementation using the following core algorithm:
1957   //
1958   // int binary_search(int key, LookupswitchPair* array, int n) {
1959   //   // Binary search according to "Methodik des Programmierens" by
1960   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1961   //   int i = 0;
1962   //   int j = n;
1963   //   while (i+1 < j) {
1964   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1965   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1966   //     // where a stands for the array and assuming that the (inexisting)
1967   //     // element a[n] is infinitely big.
1968   //     int h = (i + j) >> 1;
1969   //     // i < h < j
1970   //     if (key < array[h].fast_match()) {
1971   //       j = h;
1972   //     } else {
1973   //       i = h;
1974   //     }
1975   //   }
1976   //   // R: a[i] <= key < a[i+1] or Q
1977   //   // (i.e., if key is within array, i is the correct index)
1978   //   return i;
1979   // }
1980 
1981   // Register allocation
1982   const Register key   = rax; // already set (tosca)
1983   const Register array = rbx;
1984   const Register i     = rcx;
1985   const Register j     = rdx;
1986   const Register h     = rdi;
1987   const Register temp  = rsi;
1988 
1989   // Find array start
1990   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
1991                                           // get rid of this
1992                                           // instruction (change
1993                                           // offsets below)
1994   __ andptr(array, -BytesPerInt);
1995 
1996   // Initialize i & j
1997   __ xorl(i, i);                            // i = 0;
1998   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
1999 
2000   // Convert j into native byteordering
2001   __ bswapl(j);
2002 
2003   // And start
2004   Label entry;
2005   __ jmp(entry);
2006 
2007   // binary search loop
2008   {
2009     Label loop;
2010     __ bind(loop);
2011     // int h = (i + j) >> 1;
2012     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
2013     __ sarl(h, 1);                               // h = (i + j) >> 1;
2014     // if (key < array[h].fast_match()) {
2015     //   j = h;
2016     // } else {
2017     //   i = h;
2018     // }
2019     // Convert array[h].match to native byte-ordering before compare
2020     __ movl(temp, Address(array, h, Address::times_8));
2021     __ bswapl(temp);
2022     __ cmpl(key, temp);
2023     // j = h if (key <  array[h].fast_match())
2024     __ cmovl(Assembler::less, j, h);
2025     // i = h if (key >= array[h].fast_match())
2026     __ cmovl(Assembler::greaterEqual, i, h);
2027     // while (i+1 < j)
2028     __ bind(entry);
2029     __ leal(h, Address(i, 1)); // i+1
2030     __ cmpl(h, j);             // i+1 < j
2031     __ jcc(Assembler::less, loop);
2032   }
2033 
2034   // end of binary search, result index is i (must check again!)
2035   Label default_case;
2036   // Convert array[i].match to native byte-ordering before compare
2037   __ movl(temp, Address(array, i, Address::times_8));
2038   __ bswapl(temp);
2039   __ cmpl(key, temp);
2040   __ jcc(Assembler::notEqual, default_case);
2041 
2042   // entry found -> j = offset
2043   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
2044   __ profile_switch_case(i, key, array);
2045   __ bswapl(j);
2046   __ movl2ptr(j, j);
2047   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
2048   __ addptr(r13, j);
2049   __ dispatch_only(vtos);
2050 
2051   // default case -> j = default offset
2052   __ bind(default_case);
2053   __ profile_switch_default(i);
2054   __ movl(j, Address(array, -2 * BytesPerInt));
2055   __ bswapl(j);
2056   __ movl2ptr(j, j);
2057   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
2058   __ addptr(r13, j);
2059   __ dispatch_only(vtos);
2060 }
2061 
2062 
_return(TosState state)2063 void TemplateTable::_return(TosState state) {
2064   transition(state, state);
2065   assert(_desc->calls_vm(),
2066          "inconsistent calls_vm information"); // call in remove_activation
2067 
2068   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2069     assert(state == vtos, "only valid state");
2070     __ movptr(c_rarg1, aaddress(0));
2071     __ load_klass(rdi, c_rarg1);
2072     __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
2073     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
2074     Label skip_register_finalizer;
2075     __ jcc(Assembler::zero, skip_register_finalizer);
2076 
2077     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
2078 
2079     __ bind(skip_register_finalizer);
2080   }
2081 
2082   // Narrow result if state is itos but result type is smaller.
2083   // Need to narrow in the return bytecode rather than in generate_return_entry
2084   // since compiled code callers expect the result to already be narrowed.
2085   if (state == itos) {
2086     __ narrow(rax);
2087   }
2088   __ remove_activation(state, r13);
2089 
2090   __ jmp(r13);
2091 }
2092 
2093 // ----------------------------------------------------------------------------
2094 // Volatile variables demand their effects be made known to all CPU's
2095 // in order.  Store buffers on most chips allow reads & writes to
2096 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2097 // without some kind of memory barrier (i.e., it's not sufficient that
2098 // the interpreter does not reorder volatile references, the hardware
2099 // also must not reorder them).
2100 //
2101 // According to the new Java Memory Model (JMM):
2102 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
2103 //     writes act as aquire & release, so:
2104 // (2) A read cannot let unrelated NON-volatile memory refs that
2105 //     happen after the read float up to before the read.  It's OK for
2106 //     non-volatile memory refs that happen before the volatile read to
2107 //     float down below it.
2108 // (3) Similar a volatile write cannot let unrelated NON-volatile
2109 //     memory refs that happen BEFORE the write float down to after the
2110 //     write.  It's OK for non-volatile memory refs that happen after the
2111 //     volatile write to float up before it.
2112 //
2113 // We only put in barriers around volatile refs (they are expensive),
2114 // not _between_ memory refs (that would require us to track the
2115 // flavor of the previous memory refs).  Requirements (2) and (3)
2116 // require some barriers before volatile stores and after volatile
2117 // loads.  These nearly cover requirement (1) but miss the
2118 // volatile-store-volatile-load case.  This final case is placed after
2119 // volatile-stores although it could just as well go before
2120 // volatile-loads.
volatile_barrier(Assembler::Membar_mask_bits order_constraint)2121 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
2122                                      order_constraint) {
2123   // Helper function to insert a is-volatile test and memory barrier
2124   if (os::is_MP()) { // Not needed on single CPU
2125     __ membar(order_constraint);
2126   }
2127 }
2128 
resolve_cache_and_index(int byte_no,Register Rcache,Register index,size_t index_size)2129 void TemplateTable::resolve_cache_and_index(int byte_no,
2130                                             Register Rcache,
2131                                             Register index,
2132                                             size_t index_size) {
2133   const Register temp = rbx;
2134   assert_different_registers(Rcache, index, temp);
2135 
2136   Label resolved;
2137     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2138     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
2139     __ cmpl(temp, (int) bytecode());  // have we resolved this bytecode?
2140     __ jcc(Assembler::equal, resolved);
2141 
2142   // resolve first time through
2143   address entry;
2144   switch (bytecode()) {
2145   case Bytecodes::_getstatic:
2146   case Bytecodes::_putstatic:
2147   case Bytecodes::_getfield:
2148   case Bytecodes::_putfield:
2149     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
2150     break;
2151   case Bytecodes::_invokevirtual:
2152   case Bytecodes::_invokespecial:
2153   case Bytecodes::_invokestatic:
2154   case Bytecodes::_invokeinterface:
2155     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
2156     break;
2157   case Bytecodes::_invokehandle:
2158     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);
2159     break;
2160   case Bytecodes::_invokedynamic:
2161     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);
2162     break;
2163   default:
2164     fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
2165     break;
2166   }
2167   __ movl(temp, (int) bytecode());
2168   __ call_VM(noreg, entry, temp);
2169 
2170   // Update registers with resolved info
2171   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2172   __ bind(resolved);
2173 }
2174 
2175 // The cache and index registers must be set before call
load_field_cp_cache_entry(Register obj,Register cache,Register index,Register off,Register flags,bool is_static=false)2176 void TemplateTable::load_field_cp_cache_entry(Register obj,
2177                                               Register cache,
2178                                               Register index,
2179                                               Register off,
2180                                               Register flags,
2181                                               bool is_static = false) {
2182   assert_different_registers(cache, index, flags, off);
2183 
2184   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2185   // Field offset
2186   __ movptr(off, Address(cache, index, Address::times_ptr,
2187                          in_bytes(cp_base_offset +
2188                                   ConstantPoolCacheEntry::f2_offset())));
2189   // Flags
2190   __ movl(flags, Address(cache, index, Address::times_ptr,
2191                          in_bytes(cp_base_offset +
2192                                   ConstantPoolCacheEntry::flags_offset())));
2193 
2194   // klass overwrite register
2195   if (is_static) {
2196     __ movptr(obj, Address(cache, index, Address::times_ptr,
2197                            in_bytes(cp_base_offset +
2198                                     ConstantPoolCacheEntry::f1_offset())));
2199     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2200     __ movptr(obj, Address(obj, mirror_offset));
2201   }
2202 }
2203 
load_invoke_cp_cache_entry(int byte_no,Register method,Register itable_index,Register flags,bool is_invokevirtual,bool is_invokevfinal,bool is_invokedynamic)2204 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2205                                                Register method,
2206                                                Register itable_index,
2207                                                Register flags,
2208                                                bool is_invokevirtual,
2209                                                bool is_invokevfinal, /*unused*/
2210                                                bool is_invokedynamic) {
2211   // setup registers
2212   const Register cache = rcx;
2213   const Register index = rdx;
2214   assert_different_registers(method, flags);
2215   assert_different_registers(method, cache, index);
2216   assert_different_registers(itable_index, flags);
2217   assert_different_registers(itable_index, cache, index);
2218   // determine constant pool cache field offsets
2219   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2220   const int method_offset = in_bytes(
2221     ConstantPoolCache::base_offset() +
2222       ((byte_no == f2_byte)
2223        ? ConstantPoolCacheEntry::f2_offset()
2224        : ConstantPoolCacheEntry::f1_offset()));
2225   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
2226                                     ConstantPoolCacheEntry::flags_offset());
2227   // access constant pool cache fields
2228   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
2229                                     ConstantPoolCacheEntry::f2_offset());
2230 
2231   size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
2232   resolve_cache_and_index(byte_no, cache, index, index_size);
2233     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
2234 
2235   if (itable_index != noreg) {
2236     // pick up itable or appendix index from f2 also:
2237     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
2238   }
2239   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
2240 }
2241 
2242 // Correct values of the cache and index registers are preserved.
jvmti_post_field_access(Register cache,Register index,bool is_static,bool has_tos)2243 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
2244                                             bool is_static, bool has_tos) {
2245   // do the JVMTI work here to avoid disturbing the register state below
2246   // We use c_rarg registers here because we want to use the register used in
2247   // the call to the VM
2248   if (JvmtiExport::can_post_field_access()) {
2249     // Check to see if a field access watch has been set before we
2250     // take the time to call into the VM.
2251     Label L1;
2252     assert_different_registers(cache, index, rax);
2253     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2254     __ testl(rax, rax);
2255     __ jcc(Assembler::zero, L1);
2256 
2257     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
2258 
2259     // cache entry pointer
2260     __ addptr(c_rarg2, in_bytes(ConstantPoolCache::base_offset()));
2261     __ shll(c_rarg3, LogBytesPerWord);
2262     __ addptr(c_rarg2, c_rarg3);
2263     if (is_static) {
2264       __ xorl(c_rarg1, c_rarg1); // NULL object reference
2265     } else {
2266       __ movptr(c_rarg1, at_tos()); // get object pointer without popping it
2267       __ verify_oop(c_rarg1);
2268     }
2269     // c_rarg1: object pointer or NULL
2270     // c_rarg2: cache entry pointer
2271     // c_rarg3: jvalue object on the stack
2272     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2273                                        InterpreterRuntime::post_field_access),
2274                c_rarg1, c_rarg2, c_rarg3);
2275     __ get_cache_and_index_at_bcp(cache, index, 1);
2276     __ bind(L1);
2277   }
2278 }
2279 
pop_and_check_object(Register r)2280 void TemplateTable::pop_and_check_object(Register r) {
2281   __ pop_ptr(r);
2282   __ null_check(r);  // for field access must check obj.
2283   __ verify_oop(r);
2284 }
2285 
getfield_or_static(int byte_no,bool is_static)2286 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2287   transition(vtos, vtos);
2288 
2289   const Register cache = rcx;
2290   const Register index = rdx;
2291   const Register obj   = c_rarg3;
2292   const Register off   = rbx;
2293   const Register flags = rax;
2294   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
2295 
2296   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2297   jvmti_post_field_access(cache, index, is_static, false);
2298   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2299 
2300   if (!is_static) {
2301     // obj is on the stack
2302     pop_and_check_object(obj);
2303   }
2304 
2305   const Address field(obj, off, Address::times_1);
2306 
2307   Label Done, notByte, notBool, notInt, notShort, notChar,
2308               notLong, notFloat, notObj, notDouble;
2309 
2310   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2311   // Make sure we don't need to mask edx after the above shift
2312   assert(btos == 0, "change code, btos != 0");
2313 
2314   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
2315   __ jcc(Assembler::notZero, notByte);
2316   // btos
2317   __ load_signed_byte(rax, field);
2318   __ push(btos);
2319   // Rewrite bytecode to be faster
2320   if (!is_static) {
2321     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2322   }
2323   __ jmp(Done);
2324 
2325   __ bind(notByte);
2326   __ cmpl(flags, ztos);
2327   __ jcc(Assembler::notEqual, notBool);
2328 
2329   // ztos (same code as btos)
2330   __ load_signed_byte(rax, field);
2331   __ push(ztos);
2332   // Rewrite bytecode to be faster
2333   if (!is_static) {
2334     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2335     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2336   }
2337   __ jmp(Done);
2338 
2339   __ bind(notBool);
2340   __ cmpl(flags, atos);
2341   __ jcc(Assembler::notEqual, notObj);
2342   // atos
2343   __ load_heap_oop(rax, field);
2344   __ push(atos);
2345   if (!is_static) {
2346     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
2347   }
2348   __ jmp(Done);
2349 
2350   __ bind(notObj);
2351   __ cmpl(flags, itos);
2352   __ jcc(Assembler::notEqual, notInt);
2353   // itos
2354   __ movl(rax, field);
2355   __ push(itos);
2356   // Rewrite bytecode to be faster
2357   if (!is_static) {
2358     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
2359   }
2360   __ jmp(Done);
2361 
2362   __ bind(notInt);
2363   __ cmpl(flags, ctos);
2364   __ jcc(Assembler::notEqual, notChar);
2365   // ctos
2366   __ load_unsigned_short(rax, field);
2367   __ push(ctos);
2368   // Rewrite bytecode to be faster
2369   if (!is_static) {
2370     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
2371   }
2372   __ jmp(Done);
2373 
2374   __ bind(notChar);
2375   __ cmpl(flags, stos);
2376   __ jcc(Assembler::notEqual, notShort);
2377   // stos
2378   __ load_signed_short(rax, field);
2379   __ push(stos);
2380   // Rewrite bytecode to be faster
2381   if (!is_static) {
2382     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
2383   }
2384   __ jmp(Done);
2385 
2386   __ bind(notShort);
2387   __ cmpl(flags, ltos);
2388   __ jcc(Assembler::notEqual, notLong);
2389   // ltos
2390   __ movq(rax, field);
2391   __ push(ltos);
2392   // Rewrite bytecode to be faster
2393   if (!is_static) {
2394     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
2395   }
2396   __ jmp(Done);
2397 
2398   __ bind(notLong);
2399   __ cmpl(flags, ftos);
2400   __ jcc(Assembler::notEqual, notFloat);
2401   // ftos
2402   __ movflt(xmm0, field);
2403   __ push(ftos);
2404   // Rewrite bytecode to be faster
2405   if (!is_static) {
2406     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
2407   }
2408   __ jmp(Done);
2409 
2410   __ bind(notFloat);
2411 #ifdef ASSERT
2412   __ cmpl(flags, dtos);
2413   __ jcc(Assembler::notEqual, notDouble);
2414 #endif
2415   // dtos
2416   __ movdbl(xmm0, field);
2417   __ push(dtos);
2418   // Rewrite bytecode to be faster
2419   if (!is_static) {
2420     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
2421   }
2422 #ifdef ASSERT
2423   __ jmp(Done);
2424 
2425   __ bind(notDouble);
2426   __ stop("Bad state");
2427 #endif
2428 
2429   __ bind(Done);
2430   // [jk] not needed currently
2431   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
2432   //                                              Assembler::LoadStore));
2433 }
2434 
2435 
getfield(int byte_no)2436 void TemplateTable::getfield(int byte_no) {
2437   getfield_or_static(byte_no, false);
2438 }
2439 
getstatic(int byte_no)2440 void TemplateTable::getstatic(int byte_no) {
2441   getfield_or_static(byte_no, true);
2442 }
2443 
2444 // The registers cache and index expected to be set before call.
2445 // The function may destroy various registers, just not the cache and index registers.
jvmti_post_field_mod(Register cache,Register index,bool is_static)2446 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2447   transition(vtos, vtos);
2448 
2449   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2450 
2451   if (JvmtiExport::can_post_field_modification()) {
2452     // Check to see if a field modification watch has been set before
2453     // we take the time to call into the VM.
2454     Label L1;
2455     assert_different_registers(cache, index, rax);
2456     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2457     __ testl(rax, rax);
2458     __ jcc(Assembler::zero, L1);
2459 
2460     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
2461 
2462     if (is_static) {
2463       // Life is simple.  Null out the object pointer.
2464       __ xorl(c_rarg1, c_rarg1);
2465     } else {
2466       // Life is harder. The stack holds the value on top, followed by
2467       // the object.  We don't know the size of the value, though; it
2468       // could be one or two words depending on its type. As a result,
2469       // we must find the type to determine where the object is.
2470       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
2471                            Address::times_8,
2472                            in_bytes(cp_base_offset +
2473                                      ConstantPoolCacheEntry::flags_offset())));
2474       __ shrl(c_rarg3, ConstantPoolCacheEntry::tos_state_shift);
2475       // Make sure we don't need to mask rcx after the above shift
2476       ConstantPoolCacheEntry::verify_tos_state_shift();
2477       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
2478       __ cmpl(c_rarg3, ltos);
2479       __ cmovptr(Assembler::equal,
2480                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
2481       __ cmpl(c_rarg3, dtos);
2482       __ cmovptr(Assembler::equal,
2483                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
2484     }
2485     // cache entry pointer
2486     __ addptr(c_rarg2, in_bytes(cp_base_offset));
2487     __ shll(rscratch1, LogBytesPerWord);
2488     __ addptr(c_rarg2, rscratch1);
2489     // object (tos)
2490     __ mov(c_rarg3, rsp);
2491     // c_rarg1: object pointer set up above (NULL if static)
2492     // c_rarg2: cache entry pointer
2493     // c_rarg3: jvalue object on the stack
2494     __ call_VM(noreg,
2495                CAST_FROM_FN_PTR(address,
2496                                 InterpreterRuntime::post_field_modification),
2497                c_rarg1, c_rarg2, c_rarg3);
2498     __ get_cache_and_index_at_bcp(cache, index, 1);
2499     __ bind(L1);
2500   }
2501 }
2502 
putfield_or_static(int byte_no,bool is_static)2503 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2504   transition(vtos, vtos);
2505 
2506   const Register cache = rcx;
2507   const Register index = rdx;
2508   const Register obj   = rcx;
2509   const Register off   = rbx;
2510   const Register flags = rax;
2511   const Register bc    = c_rarg3;
2512 
2513   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2514   jvmti_post_field_mod(cache, index, is_static);
2515   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2516 
2517   // [jk] not needed currently
2518   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
2519   //                                              Assembler::StoreStore));
2520 
2521   Label notVolatile, Done;
2522   __ movl(rdx, flags);
2523   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
2524   __ andl(rdx, 0x1);
2525 
2526   // field address
2527   const Address field(obj, off, Address::times_1);
2528 
2529   Label notByte, notBool, notInt, notShort, notChar,
2530         notLong, notFloat, notObj, notDouble;
2531 
2532   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2533 
2534   assert(btos == 0, "change code, btos != 0");
2535   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
2536   __ jcc(Assembler::notZero, notByte);
2537 
2538   // btos
2539   {
2540     __ pop(btos);
2541     if (!is_static) pop_and_check_object(obj);
2542     __ movb(field, rax);
2543     if (!is_static) {
2544       patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
2545     }
2546     __ jmp(Done);
2547   }
2548 
2549   __ bind(notByte);
2550   __ cmpl(flags, ztos);
2551   __ jcc(Assembler::notEqual, notBool);
2552 
2553   // ztos
2554   {
2555     __ pop(ztos);
2556     if (!is_static) pop_and_check_object(obj);
2557     __ andl(rax, 0x1);
2558     __ movb(field, rax);
2559     if (!is_static) {
2560       patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no);
2561     }
2562     __ jmp(Done);
2563   }
2564 
2565   __ bind(notBool);
2566   __ cmpl(flags, atos);
2567   __ jcc(Assembler::notEqual, notObj);
2568 
2569   // atos
2570   {
2571     __ pop(atos);
2572     if (!is_static) pop_and_check_object(obj);
2573     // Store into the field
2574     do_oop_store(_masm, field, rax, _bs->kind(), false);
2575     if (!is_static) {
2576       patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
2577     }
2578     __ jmp(Done);
2579   }
2580 
2581   __ bind(notObj);
2582   __ cmpl(flags, itos);
2583   __ jcc(Assembler::notEqual, notInt);
2584 
2585   // itos
2586   {
2587     __ pop(itos);
2588     if (!is_static) pop_and_check_object(obj);
2589     __ movl(field, rax);
2590     if (!is_static) {
2591       patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
2592     }
2593     __ jmp(Done);
2594   }
2595 
2596   __ bind(notInt);
2597   __ cmpl(flags, ctos);
2598   __ jcc(Assembler::notEqual, notChar);
2599 
2600   // ctos
2601   {
2602     __ pop(ctos);
2603     if (!is_static) pop_and_check_object(obj);
2604     __ movw(field, rax);
2605     if (!is_static) {
2606       patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
2607     }
2608     __ jmp(Done);
2609   }
2610 
2611   __ bind(notChar);
2612   __ cmpl(flags, stos);
2613   __ jcc(Assembler::notEqual, notShort);
2614 
2615   // stos
2616   {
2617     __ pop(stos);
2618     if (!is_static) pop_and_check_object(obj);
2619     __ movw(field, rax);
2620     if (!is_static) {
2621       patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
2622     }
2623     __ jmp(Done);
2624   }
2625 
2626   __ bind(notShort);
2627   __ cmpl(flags, ltos);
2628   __ jcc(Assembler::notEqual, notLong);
2629 
2630   // ltos
2631   {
2632     __ pop(ltos);
2633     if (!is_static) pop_and_check_object(obj);
2634     __ movq(field, rax);
2635     if (!is_static) {
2636       patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
2637     }
2638     __ jmp(Done);
2639   }
2640 
2641   __ bind(notLong);
2642   __ cmpl(flags, ftos);
2643   __ jcc(Assembler::notEqual, notFloat);
2644 
2645   // ftos
2646   {
2647     __ pop(ftos);
2648     if (!is_static) pop_and_check_object(obj);
2649     __ movflt(field, xmm0);
2650     if (!is_static) {
2651       patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
2652     }
2653     __ jmp(Done);
2654   }
2655 
2656   __ bind(notFloat);
2657 #ifdef ASSERT
2658   __ cmpl(flags, dtos);
2659   __ jcc(Assembler::notEqual, notDouble);
2660 #endif
2661 
2662   // dtos
2663   {
2664     __ pop(dtos);
2665     if (!is_static) pop_and_check_object(obj);
2666     __ movdbl(field, xmm0);
2667     if (!is_static) {
2668       patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
2669     }
2670   }
2671 
2672 #ifdef ASSERT
2673   __ jmp(Done);
2674 
2675   __ bind(notDouble);
2676   __ stop("Bad state");
2677 #endif
2678 
2679   __ bind(Done);
2680 
2681   // Check for volatile store
2682   __ testl(rdx, rdx);
2683   __ jcc(Assembler::zero, notVolatile);
2684   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2685                                                Assembler::StoreStore));
2686   __ bind(notVolatile);
2687 }
2688 
putfield(int byte_no)2689 void TemplateTable::putfield(int byte_no) {
2690   putfield_or_static(byte_no, false);
2691 }
2692 
putstatic(int byte_no)2693 void TemplateTable::putstatic(int byte_no) {
2694   putfield_or_static(byte_no, true);
2695 }
2696 
jvmti_post_fast_field_mod()2697 void TemplateTable::jvmti_post_fast_field_mod() {
2698   if (JvmtiExport::can_post_field_modification()) {
2699     // Check to see if a field modification watch has been set before
2700     // we take the time to call into the VM.
2701     Label L2;
2702     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2703     __ testl(c_rarg3, c_rarg3);
2704     __ jcc(Assembler::zero, L2);
2705     __ pop_ptr(rbx);                  // copy the object pointer from tos
2706     __ verify_oop(rbx);
2707     __ push_ptr(rbx);                 // put the object pointer back on tos
2708     // Save tos values before call_VM() clobbers them. Since we have
2709     // to do it for every data type, we use the saved values as the
2710     // jvalue object.
2711     switch (bytecode()) {          // load values into the jvalue object
2712     case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
2713     case Bytecodes::_fast_bputfield: // fall through
2714     case Bytecodes::_fast_zputfield: // fall through
2715     case Bytecodes::_fast_sputfield: // fall through
2716     case Bytecodes::_fast_cputfield: // fall through
2717     case Bytecodes::_fast_iputfield: __ push_i(rax); break;
2718     case Bytecodes::_fast_dputfield: __ push_d(); break;
2719     case Bytecodes::_fast_fputfield: __ push_f(); break;
2720     case Bytecodes::_fast_lputfield: __ push_l(rax); break;
2721 
2722     default:
2723       ShouldNotReachHere();
2724     }
2725     __ mov(c_rarg3, rsp);             // points to jvalue on the stack
2726     // access constant pool cache entry
2727     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
2728     __ verify_oop(rbx);
2729     // rbx: object pointer copied above
2730     // c_rarg2: cache entry pointer
2731     // c_rarg3: jvalue object on the stack
2732     __ call_VM(noreg,
2733                CAST_FROM_FN_PTR(address,
2734                                 InterpreterRuntime::post_field_modification),
2735                rbx, c_rarg2, c_rarg3);
2736 
2737     switch (bytecode()) {             // restore tos values
2738     case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
2739     case Bytecodes::_fast_bputfield: // fall through
2740     case Bytecodes::_fast_zputfield: // fall through
2741     case Bytecodes::_fast_sputfield: // fall through
2742     case Bytecodes::_fast_cputfield: // fall through
2743     case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
2744     case Bytecodes::_fast_dputfield: __ pop_d(); break;
2745     case Bytecodes::_fast_fputfield: __ pop_f(); break;
2746     case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
2747     }
2748     __ bind(L2);
2749   }
2750 }
2751 
fast_storefield(TosState state)2752 void TemplateTable::fast_storefield(TosState state) {
2753   transition(state, vtos);
2754 
2755   ByteSize base = ConstantPoolCache::base_offset();
2756 
2757   jvmti_post_fast_field_mod();
2758 
2759   // access constant pool cache
2760   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2761 
2762   // test for volatile with rdx
2763   __ movl(rdx, Address(rcx, rbx, Address::times_8,
2764                        in_bytes(base +
2765                                 ConstantPoolCacheEntry::flags_offset())));
2766 
2767   // replace index with field offset from cache entry
2768   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
2769                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
2770 
2771   // [jk] not needed currently
2772   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
2773   //                                              Assembler::StoreStore));
2774 
2775   Label notVolatile;
2776   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
2777   __ andl(rdx, 0x1);
2778 
2779   // Get object from stack
2780   pop_and_check_object(rcx);
2781 
2782   // field address
2783   const Address field(rcx, rbx, Address::times_1);
2784 
2785   // access field
2786   switch (bytecode()) {
2787   case Bytecodes::_fast_aputfield:
2788     do_oop_store(_masm, field, rax, _bs->kind(), false);
2789     break;
2790   case Bytecodes::_fast_lputfield:
2791     __ movq(field, rax);
2792     break;
2793   case Bytecodes::_fast_iputfield:
2794     __ movl(field, rax);
2795     break;
2796   case Bytecodes::_fast_zputfield:
2797     __ andl(rax, 0x1);  // boolean is true if LSB is 1
2798     // fall through to bputfield
2799   case Bytecodes::_fast_bputfield:
2800     __ movb(field, rax);
2801     break;
2802   case Bytecodes::_fast_sputfield:
2803     // fall through
2804   case Bytecodes::_fast_cputfield:
2805     __ movw(field, rax);
2806     break;
2807   case Bytecodes::_fast_fputfield:
2808     __ movflt(field, xmm0);
2809     break;
2810   case Bytecodes::_fast_dputfield:
2811     __ movdbl(field, xmm0);
2812     break;
2813   default:
2814     ShouldNotReachHere();
2815   }
2816 
2817   // Check for volatile store
2818   __ testl(rdx, rdx);
2819   __ jcc(Assembler::zero, notVolatile);
2820   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2821                                                Assembler::StoreStore));
2822   __ bind(notVolatile);
2823 }
2824 
2825 
fast_accessfield(TosState state)2826 void TemplateTable::fast_accessfield(TosState state) {
2827   transition(atos, state);
2828 
2829   // Do the JVMTI work here to avoid disturbing the register state below
2830   if (JvmtiExport::can_post_field_access()) {
2831     // Check to see if a field access watch has been set before we
2832     // take the time to call into the VM.
2833     Label L1;
2834     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2835     __ testl(rcx, rcx);
2836     __ jcc(Assembler::zero, L1);
2837     // access constant pool cache entry
2838     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
2839     __ verify_oop(rax);
2840     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
2841     __ mov(c_rarg1, rax);
2842     // c_rarg1: object pointer copied above
2843     // c_rarg2: cache entry pointer
2844     __ call_VM(noreg,
2845                CAST_FROM_FN_PTR(address,
2846                                 InterpreterRuntime::post_field_access),
2847                c_rarg1, c_rarg2);
2848     __ pop_ptr(rax); // restore object pointer
2849     __ bind(L1);
2850   }
2851 
2852   // access constant pool cache
2853   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2854   // replace index with field offset from cache entry
2855   // [jk] not needed currently
2856   // if (os::is_MP()) {
2857   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
2858   //                        in_bytes(ConstantPoolCache::base_offset() +
2859   //                                 ConstantPoolCacheEntry::flags_offset())));
2860   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
2861   //   __ andl(rdx, 0x1);
2862   // }
2863   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
2864                          in_bytes(ConstantPoolCache::base_offset() +
2865                                   ConstantPoolCacheEntry::f2_offset())));
2866 
2867   // rax: object
2868   __ verify_oop(rax);
2869   __ null_check(rax);
2870   Address field(rax, rbx, Address::times_1);
2871 
2872   // access field
2873   switch (bytecode()) {
2874   case Bytecodes::_fast_agetfield:
2875     __ load_heap_oop(rax, field);
2876     __ verify_oop(rax);
2877     break;
2878   case Bytecodes::_fast_lgetfield:
2879     __ movq(rax, field);
2880     break;
2881   case Bytecodes::_fast_igetfield:
2882     __ movl(rax, field);
2883     break;
2884   case Bytecodes::_fast_bgetfield:
2885     __ movsbl(rax, field);
2886     break;
2887   case Bytecodes::_fast_sgetfield:
2888     __ load_signed_short(rax, field);
2889     break;
2890   case Bytecodes::_fast_cgetfield:
2891     __ load_unsigned_short(rax, field);
2892     break;
2893   case Bytecodes::_fast_fgetfield:
2894     __ movflt(xmm0, field);
2895     break;
2896   case Bytecodes::_fast_dgetfield:
2897     __ movdbl(xmm0, field);
2898     break;
2899   default:
2900     ShouldNotReachHere();
2901   }
2902   // [jk] not needed currently
2903   // if (os::is_MP()) {
2904   //   Label notVolatile;
2905   //   __ testl(rdx, rdx);
2906   //   __ jcc(Assembler::zero, notVolatile);
2907   //   __ membar(Assembler::LoadLoad);
2908   //   __ bind(notVolatile);
2909   //};
2910 }
2911 
fast_xaccess(TosState state)2912 void TemplateTable::fast_xaccess(TosState state) {
2913   transition(vtos, state);
2914 
2915   // get receiver
2916   __ movptr(rax, aaddress(0));
2917   // access constant pool cache
2918   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
2919   __ movptr(rbx,
2920             Address(rcx, rdx, Address::times_8,
2921                     in_bytes(ConstantPoolCache::base_offset() +
2922                              ConstantPoolCacheEntry::f2_offset())));
2923   // make sure exception is reported in correct bcp range (getfield is
2924   // next instruction)
2925   __ increment(r13);
2926   __ null_check(rax);
2927   switch (state) {
2928   case itos:
2929     __ movl(rax, Address(rax, rbx, Address::times_1));
2930     break;
2931   case atos:
2932     __ load_heap_oop(rax, Address(rax, rbx, Address::times_1));
2933     __ verify_oop(rax);
2934     break;
2935   case ftos:
2936     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
2937     break;
2938   default:
2939     ShouldNotReachHere();
2940   }
2941 
2942   // [jk] not needed currently
2943   // if (os::is_MP()) {
2944   //   Label notVolatile;
2945   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
2946   //                        in_bytes(ConstantPoolCache::base_offset() +
2947   //                                 ConstantPoolCacheEntry::flags_offset())));
2948   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
2949   //   __ testl(rdx, 0x1);
2950   //   __ jcc(Assembler::zero, notVolatile);
2951   //   __ membar(Assembler::LoadLoad);
2952   //   __ bind(notVolatile);
2953   // }
2954 
2955   __ decrement(r13);
2956 }
2957 
2958 
2959 
2960 //-----------------------------------------------------------------------------
2961 // Calls
2962 
count_calls(Register method,Register temp)2963 void TemplateTable::count_calls(Register method, Register temp) {
2964   // implemented elsewhere
2965   ShouldNotReachHere();
2966 }
2967 
prepare_invoke(int byte_no,Register method,Register index,Register recv,Register flags)2968 void TemplateTable::prepare_invoke(int byte_no,
2969                                    Register method,  // linked method (or i-klass)
2970                                    Register index,   // itable index, MethodType, etc.
2971                                    Register recv,    // if caller wants to see it
2972                                    Register flags    // if caller wants to test it
2973                                    ) {
2974   // determine flags
2975   const Bytecodes::Code code = bytecode();
2976   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
2977   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
2978   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
2979   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
2980   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
2981   const bool load_receiver       = (recv  != noreg);
2982   const bool save_flags          = (flags != noreg);
2983   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
2984   assert(save_flags    == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
2985   assert(flags == noreg || flags == rdx, "");
2986   assert(recv  == noreg || recv  == rcx, "");
2987 
2988   // setup registers & access constant pool cache
2989   if (recv  == noreg)  recv  = rcx;
2990   if (flags == noreg)  flags = rdx;
2991   assert_different_registers(method, index, recv, flags);
2992 
2993   // save 'interpreter return address'
2994   __ save_bcp();
2995 
2996   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
2997 
2998   // maybe push appendix to arguments (just before return address)
2999   if (is_invokedynamic || is_invokehandle) {
3000     Label L_no_push;
3001     __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
3002     __ jcc(Assembler::zero, L_no_push);
3003     // Push the appendix as a trailing parameter.
3004     // This must be done before we get the receiver,
3005     // since the parameter_size includes it.
3006     __ push(rbx);
3007     __ mov(rbx, index);
3008     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
3009     __ load_resolved_reference_at_index(index, rbx);
3010     __ pop(rbx);
3011     __ push(index);  // push appendix (MethodType, CallSite, etc.)
3012     __ bind(L_no_push);
3013   }
3014 
3015   // load receiver if needed (after appendix is pushed so parameter size is correct)
3016   // Note: no return address pushed yet
3017   if (load_receiver) {
3018     __ movl(recv, flags);
3019     __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
3020     const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
3021     const int receiver_is_at_end      = -1;  // back off one slot to get receiver
3022     Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
3023     __ movptr(recv, recv_addr);
3024     __ verify_oop(recv);
3025   }
3026 
3027   if (save_flags) {
3028     __ movl(r13, flags);
3029   }
3030 
3031   // compute return type
3032   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
3033   // Make sure we don't need to mask flags after the above shift
3034   ConstantPoolCacheEntry::verify_tos_state_shift();
3035   // load return address
3036   {
3037     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3038     ExternalAddress table(table_addr);
3039     __ lea(rscratch1, table);
3040     __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
3041   }
3042 
3043   // push return address
3044   __ push(flags);
3045 
3046   // Restore flags value from the constant pool cache, and restore rsi
3047   // for later null checks.  r13 is the bytecode pointer
3048   if (save_flags) {
3049     __ movl(flags, r13);
3050     __ restore_bcp();
3051   }
3052 }
3053 
3054 
invokevirtual_helper(Register index,Register recv,Register flags)3055 void TemplateTable::invokevirtual_helper(Register index,
3056                                          Register recv,
3057                                          Register flags) {
3058   // Uses temporary registers rax, rdx
3059   assert_different_registers(index, recv, rax, rdx);
3060   assert(index == rbx, "");
3061   assert(recv  == rcx, "");
3062 
3063   // Test for an invoke of a final method
3064   Label notFinal;
3065   __ movl(rax, flags);
3066   __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
3067   __ jcc(Assembler::zero, notFinal);
3068 
3069   const Register method = index;  // method must be rbx
3070   assert(method == rbx,
3071          "Method* must be rbx for interpreter calling convention");
3072 
3073   // do the call - the index is actually the method to call
3074   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
3075 
3076   // It's final, need a null check here!
3077   __ null_check(recv);
3078 
3079   // profile this call
3080   __ profile_final_call(rax);
3081   __ profile_arguments_type(rax, method, r13, true);
3082 
3083   __ jump_from_interpreted(method, rax);
3084 
3085   __ bind(notFinal);
3086 
3087   // get receiver klass
3088   __ null_check(recv, oopDesc::klass_offset_in_bytes());
3089   __ load_klass(rax, recv);
3090 
3091   // profile this call
3092   __ profile_virtual_call(rax, r14, rdx);
3093 
3094   // get target Method* & entry point
3095   __ lookup_virtual_method(rax, index, method);
3096   __ profile_arguments_type(rdx, method, r13, true);
3097   __ jump_from_interpreted(method, rdx);
3098 }
3099 
3100 
invokevirtual(int byte_no)3101 void TemplateTable::invokevirtual(int byte_no) {
3102   transition(vtos, vtos);
3103   assert(byte_no == f2_byte, "use this argument");
3104   prepare_invoke(byte_no,
3105                  rbx,    // method or vtable index
3106                  noreg,  // unused itable index
3107                  rcx, rdx); // recv, flags
3108 
3109   // rbx: index
3110   // rcx: receiver
3111   // rdx: flags
3112 
3113   invokevirtual_helper(rbx, rcx, rdx);
3114 }
3115 
3116 
invokespecial(int byte_no)3117 void TemplateTable::invokespecial(int byte_no) {
3118   transition(vtos, vtos);
3119   assert(byte_no == f1_byte, "use this argument");
3120   prepare_invoke(byte_no, rbx, noreg,  // get f1 Method*
3121                  rcx);  // get receiver also for null check
3122   __ verify_oop(rcx);
3123   __ null_check(rcx);
3124   // do the call
3125   __ profile_call(rax);
3126   __ profile_arguments_type(rax, rbx, r13, false);
3127   __ jump_from_interpreted(rbx, rax);
3128 }
3129 
3130 
invokestatic(int byte_no)3131 void TemplateTable::invokestatic(int byte_no) {
3132   transition(vtos, vtos);
3133   assert(byte_no == f1_byte, "use this argument");
3134   prepare_invoke(byte_no, rbx);  // get f1 Method*
3135   // do the call
3136   __ profile_call(rax);
3137   __ profile_arguments_type(rax, rbx, r13, false);
3138   __ jump_from_interpreted(rbx, rax);
3139 }
3140 
fast_invokevfinal(int byte_no)3141 void TemplateTable::fast_invokevfinal(int byte_no) {
3142   transition(vtos, vtos);
3143   assert(byte_no == f2_byte, "use this argument");
3144   __ stop("fast_invokevfinal not used on amd64");
3145 }
3146 
invokeinterface(int byte_no)3147 void TemplateTable::invokeinterface(int byte_no) {
3148   transition(vtos, vtos);
3149   assert(byte_no == f1_byte, "use this argument");
3150   prepare_invoke(byte_no, rax, rbx,  // get f1 Klass*, f2 Method*
3151                  rcx, rdx); // recv, flags
3152 
3153   // rax: reference klass (from f1)
3154   // rbx: method (from f2)
3155   // rcx: receiver
3156   // rdx: flags
3157 
3158   // Special case of invokeinterface called for virtual method of
3159   // java.lang.Object.  See cpCacheOop.cpp for details.
3160   // This code isn't produced by javac, but could be produced by
3161   // another compliant java compiler.
3162   Label notMethod;
3163   __ movl(r14, rdx);
3164   __ andl(r14, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
3165   __ jcc(Assembler::zero, notMethod);
3166 
3167   invokevirtual_helper(rbx, rcx, rdx);
3168   __ bind(notMethod);
3169 
3170   // Get receiver klass into rdx - also a null check
3171   __ restore_locals();  // restore r14
3172   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
3173   __ load_klass(rdx, rcx);
3174 
3175   Label no_such_interface, no_such_method;
3176 
3177   // Receiver subtype check against REFC.
3178   // Superklass in rax. Subklass in rdx. Blows rcx, rdi.
3179   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3180                              rdx, rax, noreg,
3181                              // outputs: scan temp. reg, scan temp. reg
3182                              r13, r14,
3183                              no_such_interface,
3184                              /*return_method=*/false);
3185 
3186   // profile this call
3187   __ restore_bcp(); // rbcp was destroyed by receiver type check
3188   __ profile_virtual_call(rdx, r13, r14);
3189 
3190   // Get declaring interface class from method, and itable index
3191   __ movptr(rax, Address(rbx, Method::const_offset()));
3192   __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
3193   __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes()));
3194   __ movl(rbx, Address(rbx, Method::itable_index_offset()));
3195   __ subl(rbx, Method::itable_index_max);
3196   __ negl(rbx);
3197 
3198   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3199                              rdx, rax, rbx,
3200                              // outputs: method, scan temp. reg
3201                              rbx, r13,
3202                              no_such_interface);
3203 
3204   // rbx: Method* to call
3205   // rcx: receiver
3206   // Check for abstract method error
3207   // Note: This should be done more efficiently via a throw_abstract_method_error
3208   //       interpreter entry point and a conditional jump to it in case of a null
3209   //       method.
3210   __ testptr(rbx, rbx);
3211   __ jcc(Assembler::zero, no_such_method);
3212 
3213   __ profile_arguments_type(rdx, rbx, r13, true);
3214 
3215   // do the call
3216   // rcx: receiver
3217   // rbx,: Method*
3218   __ jump_from_interpreted(rbx, rdx);
3219   __ should_not_reach_here();
3220 
3221   // exception handling code follows...
3222   // note: must restore interpreter registers to canonical
3223   //       state for exception handling to work correctly!
3224 
3225   __ bind(no_such_method);
3226   // throw exception
3227   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3228   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
3229   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3230   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3231   // the call_VM checks for exception, so we should never return here.
3232   __ should_not_reach_here();
3233 
3234   __ bind(no_such_interface);
3235   // throw exception
3236   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3237   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
3238   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3239   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3240                    InterpreterRuntime::throw_IncompatibleClassChangeError));
3241   // the call_VM checks for exception, so we should never return here.
3242   __ should_not_reach_here();
3243 }
3244 
3245 
invokehandle(int byte_no)3246 void TemplateTable::invokehandle(int byte_no) {
3247   transition(vtos, vtos);
3248   assert(byte_no == f1_byte, "use this argument");
3249   const Register rbx_method = rbx;
3250   const Register rax_mtype  = rax;
3251   const Register rcx_recv   = rcx;
3252   const Register rdx_flags  = rdx;
3253 
3254   if (!EnableInvokeDynamic) {
3255     // rewriter does not generate this bytecode
3256     __ should_not_reach_here();
3257     return;
3258   }
3259 
3260   prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv);
3261   __ verify_method_ptr(rbx_method);
3262   __ verify_oop(rcx_recv);
3263   __ null_check(rcx_recv);
3264 
3265   // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
3266   // rbx: MH.invokeExact_MT method (from f2)
3267 
3268   // Note:  rax_mtype is already pushed (if necessary) by prepare_invoke
3269 
3270   // FIXME: profile the LambdaForm also
3271   __ profile_final_call(rax);
3272   __ profile_arguments_type(rdx, rbx_method, r13, true);
3273 
3274   __ jump_from_interpreted(rbx_method, rdx);
3275 }
3276 
3277 
invokedynamic(int byte_no)3278 void TemplateTable::invokedynamic(int byte_no) {
3279   transition(vtos, vtos);
3280   assert(byte_no == f1_byte, "use this argument");
3281 
3282   if (!EnableInvokeDynamic) {
3283     // We should not encounter this bytecode if !EnableInvokeDynamic.
3284     // The verifier will stop it.  However, if we get past the verifier,
3285     // this will stop the thread in a reasonable way, without crashing the JVM.
3286     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3287                      InterpreterRuntime::throw_IncompatibleClassChangeError));
3288     // the call_VM checks for exception, so we should never return here.
3289     __ should_not_reach_here();
3290     return;
3291   }
3292 
3293   const Register rbx_method   = rbx;
3294   const Register rax_callsite = rax;
3295 
3296   prepare_invoke(byte_no, rbx_method, rax_callsite);
3297 
3298   // rax: CallSite object (from cpool->resolved_references[f1])
3299   // rbx: MH.linkToCallSite method (from f2)
3300 
3301   // Note:  rax_callsite is already pushed by prepare_invoke
3302 
3303   // %%% should make a type profile for any invokedynamic that takes a ref argument
3304   // profile this call
3305   __ profile_call(r13);
3306   __ profile_arguments_type(rdx, rbx_method, r13, false);
3307 
3308   __ verify_oop(rax_callsite);
3309 
3310   __ jump_from_interpreted(rbx_method, rdx);
3311 }
3312 
3313 
3314 //-----------------------------------------------------------------------------
3315 // Allocation
3316 
_new()3317 void TemplateTable::_new() {
3318   transition(vtos, atos);
3319   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3320   Label slow_case;
3321   Label done;
3322   Label initialize_header;
3323   Label initialize_object; // including clearing the fields
3324   Label allocate_shared;
3325 
3326   __ get_cpool_and_tags(rsi, rax);
3327   // Make sure the class we're about to instantiate has been resolved.
3328   // This is done before loading InstanceKlass to be consistent with the order
3329   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3330   const int tags_offset = Array<u1>::base_offset_in_bytes();
3331   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
3332           JVM_CONSTANT_Class);
3333   __ jcc(Assembler::notEqual, slow_case);
3334 
3335   // get InstanceKlass
3336   __ movptr(rsi, Address(rsi, rdx,
3337             Address::times_8, sizeof(ConstantPool)));
3338 
3339   // make sure klass is initialized & doesn't have finalizer
3340   // make sure klass is fully initialized
3341   __ cmpb(Address(rsi,
3342                   InstanceKlass::init_state_offset()),
3343           InstanceKlass::fully_initialized);
3344   __ jcc(Assembler::notEqual, slow_case);
3345 
3346   // get instance_size in InstanceKlass (scaled to a count of bytes)
3347   __ movl(rdx,
3348           Address(rsi,
3349                   Klass::layout_helper_offset()));
3350   // test to see if it has a finalizer or is malformed in some way
3351   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
3352   __ jcc(Assembler::notZero, slow_case);
3353 
3354   // Allocate the instance
3355   // 1) Try to allocate in the TLAB
3356   // 2) if fail and the object is large allocate in the shared Eden
3357   // 3) if the above fails (or is not applicable), go to a slow case
3358   // (creates a new TLAB, etc.)
3359 
3360   const bool allow_shared_alloc =
3361     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
3362 
3363   if (UseTLAB) {
3364     __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
3365     __ lea(rbx, Address(rax, rdx, Address::times_1));
3366     __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
3367     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
3368     __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
3369     if (ZeroTLAB) {
3370       // the fields have been already cleared
3371       __ jmp(initialize_header);
3372     } else {
3373       // initialize both the header and fields
3374       __ jmp(initialize_object);
3375     }
3376   }
3377 
3378   // Allocation in the shared Eden, if allowed.
3379   //
3380   // rdx: instance size in bytes
3381   if (allow_shared_alloc) {
3382     __ bind(allocate_shared);
3383 
3384     ExternalAddress top((address)Universe::heap()->top_addr());
3385     ExternalAddress end((address)Universe::heap()->end_addr());
3386 
3387     const Register RtopAddr = rscratch1;
3388     const Register RendAddr = rscratch2;
3389 
3390     __ lea(RtopAddr, top);
3391     __ lea(RendAddr, end);
3392     __ movptr(rax, Address(RtopAddr, 0));
3393 
3394     // For retries rax gets set by cmpxchgq
3395     Label retry;
3396     __ bind(retry);
3397     __ lea(rbx, Address(rax, rdx, Address::times_1));
3398     __ cmpptr(rbx, Address(RendAddr, 0));
3399     __ jcc(Assembler::above, slow_case);
3400 
3401     // Compare rax with the top addr, and if still equal, store the new
3402     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
3403     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
3404     //
3405     // rax: object begin
3406     // rbx: object end
3407     // rdx: instance size in bytes
3408     if (os::is_MP()) {
3409       __ lock();
3410     }
3411     __ cmpxchgptr(rbx, Address(RtopAddr, 0));
3412 
3413     // if someone beat us on the allocation, try again, otherwise continue
3414     __ jcc(Assembler::notEqual, retry);
3415 
3416     __ incr_allocated_bytes(r15_thread, rdx, 0);
3417   }
3418 
3419   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3420     // The object is initialized before the header.  If the object size is
3421     // zero, go directly to the header initialization.
3422     __ bind(initialize_object);
3423     __ decrementl(rdx, sizeof(oopDesc));
3424     __ jcc(Assembler::zero, initialize_header);
3425 
3426     // Initialize object fields
3427     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
3428     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
3429     {
3430       Label loop;
3431       __ bind(loop);
3432       __ movq(Address(rax, rdx, Address::times_8,
3433                       sizeof(oopDesc) - oopSize),
3434               rcx);
3435       __ decrementl(rdx);
3436       __ jcc(Assembler::notZero, loop);
3437     }
3438 
3439     // initialize object header only.
3440     __ bind(initialize_header);
3441     if (UseBiasedLocking) {
3442       __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset()));
3443       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
3444     } else {
3445       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
3446                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
3447     }
3448     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
3449     __ store_klass_gap(rax, rcx);  // zero klass gap for compressed oops
3450     __ store_klass(rax, rsi);      // store klass last
3451 
3452     {
3453       SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
3454       // Trigger dtrace event for fastpath
3455       __ push(atos); // save the return value
3456       __ call_VM_leaf(
3457            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
3458       __ pop(atos); // restore the return value
3459 
3460     }
3461     __ jmp(done);
3462   }
3463 
3464 
3465   // slow case
3466   __ bind(slow_case);
3467   __ get_constant_pool(c_rarg1);
3468   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3469   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3470   __ verify_oop(rax);
3471 
3472   // continue
3473   __ bind(done);
3474 }
3475 
newarray()3476 void TemplateTable::newarray() {
3477   transition(itos, atos);
3478   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3479   __ movl(c_rarg2, rax);
3480   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3481           c_rarg1, c_rarg2);
3482 }
3483 
anewarray()3484 void TemplateTable::anewarray() {
3485   transition(itos, atos);
3486   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3487   __ get_constant_pool(c_rarg1);
3488   __ movl(c_rarg3, rax);
3489   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3490           c_rarg1, c_rarg2, c_rarg3);
3491 }
3492 
arraylength()3493 void TemplateTable::arraylength() {
3494   transition(atos, itos);
3495   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
3496   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
3497 }
3498 
checkcast()3499 void TemplateTable::checkcast() {
3500   transition(atos, atos);
3501   Label done, is_null, ok_is_subtype, quicked, resolved;
3502   __ testptr(rax, rax); // object is in rax
3503   __ jcc(Assembler::zero, is_null);
3504 
3505   // Get cpool & tags index
3506   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3507   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3508   // See if bytecode has already been quicked
3509   __ cmpb(Address(rdx, rbx,
3510                   Address::times_1,
3511                   Array<u1>::base_offset_in_bytes()),
3512           JVM_CONSTANT_Class);
3513   __ jcc(Assembler::equal, quicked);
3514   __ push(atos); // save receiver for result, and for GC
3515   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3516   // vm_result_2 has metadata result
3517   __ get_vm_result_2(rax, r15_thread);
3518   __ pop_ptr(rdx); // restore receiver
3519   __ jmpb(resolved);
3520 
3521   // Get superklass in rax and subklass in rbx
3522   __ bind(quicked);
3523   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
3524   __ movptr(rax, Address(rcx, rbx,
3525                        Address::times_8, sizeof(ConstantPool)));
3526 
3527   __ bind(resolved);
3528   __ load_klass(rbx, rdx);
3529 
3530   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
3531   // Superklass in rax.  Subklass in rbx.
3532   __ gen_subtype_check(rbx, ok_is_subtype);
3533 
3534   // Come here on failure
3535   __ push_ptr(rdx);
3536   // object is at TOS
3537   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
3538 
3539   // Come here on success
3540   __ bind(ok_is_subtype);
3541   __ mov(rax, rdx); // Restore object in rdx
3542 
3543   // Collect counts on whether this check-cast sees NULLs a lot or not.
3544   if (ProfileInterpreter) {
3545     __ jmp(done);
3546     __ bind(is_null);
3547     __ profile_null_seen(rcx);
3548   } else {
3549     __ bind(is_null);   // same as 'done'
3550   }
3551   __ bind(done);
3552 }
3553 
instanceof()3554 void TemplateTable::instanceof() {
3555   transition(atos, itos);
3556   Label done, is_null, ok_is_subtype, quicked, resolved;
3557   __ testptr(rax, rax);
3558   __ jcc(Assembler::zero, is_null);
3559 
3560   // Get cpool & tags index
3561   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3562   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3563   // See if bytecode has already been quicked
3564   __ cmpb(Address(rdx, rbx,
3565                   Address::times_1,
3566                   Array<u1>::base_offset_in_bytes()),
3567           JVM_CONSTANT_Class);
3568   __ jcc(Assembler::equal, quicked);
3569 
3570   __ push(atos); // save receiver for result, and for GC
3571   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3572   // vm_result_2 has metadata result
3573   __ get_vm_result_2(rax, r15_thread);
3574   __ pop_ptr(rdx); // restore receiver
3575   __ verify_oop(rdx);
3576   __ load_klass(rdx, rdx);
3577   __ jmpb(resolved);
3578 
3579   // Get superklass in rax and subklass in rdx
3580   __ bind(quicked);
3581   __ load_klass(rdx, rax);
3582   __ movptr(rax, Address(rcx, rbx,
3583                          Address::times_8, sizeof(ConstantPool)));
3584 
3585   __ bind(resolved);
3586 
3587   // Generate subtype check.  Blows rcx, rdi
3588   // Superklass in rax.  Subklass in rdx.
3589   __ gen_subtype_check(rdx, ok_is_subtype);
3590 
3591   // Come here on failure
3592   __ xorl(rax, rax);
3593   __ jmpb(done);
3594   // Come here on success
3595   __ bind(ok_is_subtype);
3596   __ movl(rax, 1);
3597 
3598   // Collect counts on whether this test sees NULLs a lot or not.
3599   if (ProfileInterpreter) {
3600     __ jmp(done);
3601     __ bind(is_null);
3602     __ profile_null_seen(rcx);
3603   } else {
3604     __ bind(is_null);   // same as 'done'
3605   }
3606   __ bind(done);
3607   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
3608   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
3609 }
3610 
3611 //-----------------------------------------------------------------------------
3612 // Breakpoints
_breakpoint()3613 void TemplateTable::_breakpoint() {
3614   // Note: We get here even if we are single stepping..
3615   // jbug inists on setting breakpoints at every bytecode
3616   // even if we are in single step mode.
3617 
3618   transition(vtos, vtos);
3619 
3620   // get the unpatched byte code
3621   __ get_method(c_rarg1);
3622   __ call_VM(noreg,
3623              CAST_FROM_FN_PTR(address,
3624                               InterpreterRuntime::get_original_bytecode_at),
3625              c_rarg1, r13);
3626   __ mov(rbx, rax);
3627 
3628   // post the breakpoint event
3629   __ get_method(c_rarg1);
3630   __ call_VM(noreg,
3631              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
3632              c_rarg1, r13);
3633 
3634   // complete the execution of original bytecode
3635   __ dispatch_only_normal(vtos);
3636 }
3637 
3638 //-----------------------------------------------------------------------------
3639 // Exceptions
3640 
athrow()3641 void TemplateTable::athrow() {
3642   transition(atos, vtos);
3643   __ null_check(rax);
3644   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
3645 }
3646 
3647 //-----------------------------------------------------------------------------
3648 // Synchronization
3649 //
3650 // Note: monitorenter & exit are symmetric routines; which is reflected
3651 //       in the assembly code structure as well
3652 //
3653 // Stack layout:
3654 //
3655 // [expressions  ] <--- rsp               = expression stack top
3656 // ..
3657 // [expressions  ]
3658 // [monitor entry] <--- monitor block top = expression stack bot
3659 // ..
3660 // [monitor entry]
3661 // [frame data   ] <--- monitor block bot
3662 // ...
3663 // [saved rbp    ] <--- rbp
monitorenter()3664 void TemplateTable::monitorenter() {
3665   transition(atos, vtos);
3666 
3667   // check for NULL object
3668   __ null_check(rax);
3669 
3670   const Address monitor_block_top(
3671         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3672   const Address monitor_block_bot(
3673         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3674   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
3675 
3676   Label allocated;
3677 
3678   // initialize entry pointer
3679   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
3680 
3681   // find a free slot in the monitor block (result in c_rarg1)
3682   {
3683     Label entry, loop, exit;
3684     __ movptr(c_rarg3, monitor_block_top); // points to current entry,
3685                                      // starting with top-most entry
3686     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3687                                      // of monitor block
3688     __ jmpb(entry);
3689 
3690     __ bind(loop);
3691     // check if current entry is used
3692     __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
3693     // if not used then remember entry in c_rarg1
3694     __ cmov(Assembler::equal, c_rarg1, c_rarg3);
3695     // check if current entry is for same object
3696     __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
3697     // if same object then stop searching
3698     __ jccb(Assembler::equal, exit);
3699     // otherwise advance to next entry
3700     __ addptr(c_rarg3, entry_size);
3701     __ bind(entry);
3702     // check if bottom reached
3703     __ cmpptr(c_rarg3, c_rarg2);
3704     // if not at bottom then check this entry
3705     __ jcc(Assembler::notEqual, loop);
3706     __ bind(exit);
3707   }
3708 
3709   __ testptr(c_rarg1, c_rarg1); // check if a slot has been found
3710   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
3711 
3712   // allocate one if there's no free slot
3713   {
3714     Label entry, loop;
3715     // 1. compute new pointers             // rsp: old expression stack top
3716     __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
3717     __ subptr(rsp, entry_size);            // move expression stack top
3718     __ subptr(c_rarg1, entry_size);        // move expression stack bottom
3719     __ mov(c_rarg3, rsp);                  // set start value for copy loop
3720     __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom
3721     __ jmp(entry);
3722     // 2. move expression stack contents
3723     __ bind(loop);
3724     __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
3725                                                       // word from old location
3726     __ movptr(Address(c_rarg3, 0), c_rarg2);          // and store it at new location
3727     __ addptr(c_rarg3, wordSize);                     // advance to next word
3728     __ bind(entry);
3729     __ cmpptr(c_rarg3, c_rarg1);            // check if bottom reached
3730     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
3731                                             // copy next word
3732   }
3733 
3734   // call run-time routine
3735   // c_rarg1: points to monitor entry
3736   __ bind(allocated);
3737 
3738   // Increment bcp to point to the next bytecode, so exception
3739   // handling for async. exceptions work correctly.
3740   // The object has already been poped from the stack, so the
3741   // expression stack looks correct.
3742   __ increment(r13);
3743 
3744   // store object
3745   __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
3746   __ lock_object(c_rarg1);
3747 
3748   // check to make sure this monitor doesn't cause stack overflow after locking
3749   __ save_bcp();  // in case of exception
3750   __ generate_stack_overflow_check(0);
3751 
3752   // The bcp has already been incremented. Just need to dispatch to
3753   // next instruction.
3754   __ dispatch_next(vtos);
3755 }
3756 
3757 
monitorexit()3758 void TemplateTable::monitorexit() {
3759   transition(atos, vtos);
3760 
3761   // check for NULL object
3762   __ null_check(rax);
3763 
3764   const Address monitor_block_top(
3765         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3766   const Address monitor_block_bot(
3767         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3768   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
3769 
3770   Label found;
3771 
3772   // find matching slot
3773   {
3774     Label entry, loop;
3775     __ movptr(c_rarg1, monitor_block_top); // points to current entry,
3776                                      // starting with top-most entry
3777     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3778                                      // of monitor block
3779     __ jmpb(entry);
3780 
3781     __ bind(loop);
3782     // check if current entry is for same object
3783     __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
3784     // if same object then stop searching
3785     __ jcc(Assembler::equal, found);
3786     // otherwise advance to next entry
3787     __ addptr(c_rarg1, entry_size);
3788     __ bind(entry);
3789     // check if bottom reached
3790     __ cmpptr(c_rarg1, c_rarg2);
3791     // if not at bottom then check this entry
3792     __ jcc(Assembler::notEqual, loop);
3793   }
3794 
3795   // error handling. Unlocking was not block-structured
3796   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3797                    InterpreterRuntime::throw_illegal_monitor_state_exception));
3798   __ should_not_reach_here();
3799 
3800   // call run-time routine
3801   // rsi: points to monitor entry
3802   __ bind(found);
3803   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
3804   __ unlock_object(c_rarg1);
3805   __ pop_ptr(rax); // discard object
3806 }
3807 
3808 
3809 // Wide instructions
wide()3810 void TemplateTable::wide() {
3811   transition(vtos, vtos);
3812   __ load_unsigned_byte(rbx, at_bcp(1));
3813   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
3814   __ jmp(Address(rscratch1, rbx, Address::times_8));
3815   // Note: the r13 increment step is part of the individual wide
3816   // bytecode implementations
3817 }
3818 
3819 
3820 // Multi arrays
multianewarray()3821 void TemplateTable::multianewarray() {
3822   transition(vtos, atos);
3823   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
3824   // last dim is on top of stack; we want address of first one:
3825   // first_addr = last_addr + (ndims - 1) * wordSize
3826   __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
3827   call_VM(rax,
3828           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
3829           c_rarg1);
3830   __ load_unsigned_byte(rbx, at_bcp(3));
3831   __ lea(rsp, Address(rsp, rbx, Address::times_8));
3832 }
3833 #endif // !CC_INTERP
3834