1 /*
2  * Copyright (c) 2012, 2021, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "c1/c1_ValueStack.hpp"
27 #include "c1/c1_RangeCheckElimination.hpp"
28 #include "c1/c1_IR.hpp"
29 #include "c1/c1_Canonicalizer.hpp"
30 #include "c1/c1_ValueMap.hpp"
31 #include "ci/ciMethodData.hpp"
32 #include "runtime/deoptimization.hpp"
33 
34 // Macros for the Trace and the Assertion flag
35 #ifdef ASSERT
36 #define TRACE_RANGE_CHECK_ELIMINATION(code) if (TraceRangeCheckElimination) { code; }
37 #define ASSERT_RANGE_CHECK_ELIMINATION(code) if (AssertRangeCheckElimination) { code; }
38 #define TRACE_OR_ASSERT_RANGE_CHECK_ELIMINATION(code) if (TraceRangeCheckElimination || AssertRangeCheckElimination) { code; }
39 #else
40 #define TRACE_RANGE_CHECK_ELIMINATION(code)
41 #define ASSERT_RANGE_CHECK_ELIMINATION(code)
42 #define TRACE_OR_ASSERT_RANGE_CHECK_ELIMINATION(code)
43 #endif
44 
45 // Entry point for the optimization
eliminate(IR * ir)46 void RangeCheckElimination::eliminate(IR *ir) {
47   bool do_elimination = ir->compilation()->has_access_indexed();
48   ASSERT_RANGE_CHECK_ELIMINATION(do_elimination = true);
49   if (do_elimination) {
50     RangeCheckEliminator rce(ir);
51   }
52 }
53 
54 // Constructor
RangeCheckEliminator(IR * ir)55 RangeCheckEliminator::RangeCheckEliminator(IR *ir) :
56   _bounds(Instruction::number_of_instructions(), NULL),
57   _access_indexed_info(Instruction::number_of_instructions(), NULL)
58 {
59   _visitor.set_range_check_eliminator(this);
60   _ir = ir;
61   _number_of_instructions = Instruction::number_of_instructions();
62   _optimistic = ir->compilation()->is_optimistic();
63 
64   TRACE_RANGE_CHECK_ELIMINATION(
65     tty->cr();
66     tty->print_cr("Range check elimination");
67     ir->method()->print_name(tty);
68     tty->cr();
69   );
70 
71   TRACE_RANGE_CHECK_ELIMINATION(
72     tty->print_cr("optimistic=%d", (int)_optimistic);
73   );
74 
75 #ifdef ASSERT
76   // Verifies several conditions that must be true on the IR-input. Only used for debugging purposes.
77   TRACE_RANGE_CHECK_ELIMINATION(
78     tty->print_cr("Verification of IR . . .");
79   );
80   Verification verification(ir);
81 #endif
82 
83   // Set process block flags
84   // Optimization so a blocks is only processed if it contains an access indexed instruction or if
85   // one of its children in the dominator tree contains an access indexed instruction.
86   set_process_block_flags(ir->start());
87 
88   // Pass over instructions in the dominator tree
89   TRACE_RANGE_CHECK_ELIMINATION(
90     tty->print_cr("Starting pass over dominator tree . . .")
91   );
92   calc_bounds(ir->start(), NULL);
93 
94   TRACE_RANGE_CHECK_ELIMINATION(
95     tty->print_cr("Finished!")
96   );
97 }
98 
99 // Instruction specific work for some instructions
100 // Constant
do_Constant(Constant * c)101 void RangeCheckEliminator::Visitor::do_Constant(Constant *c) {
102   IntConstant *ic = c->type()->as_IntConstant();
103   if (ic != NULL) {
104     int value = ic->value();
105     _bound = new Bound(value, NULL, value, NULL);
106   }
107 }
108 
109 // LogicOp
do_LogicOp(LogicOp * lo)110 void RangeCheckEliminator::Visitor::do_LogicOp(LogicOp *lo) {
111   if (lo->type()->as_IntType() && lo->op() == Bytecodes::_iand && (lo->x()->as_Constant() || lo->y()->as_Constant())) {
112     int constant = 0;
113     Constant *c = lo->x()->as_Constant();
114     if (c != NULL) {
115       constant = c->type()->as_IntConstant()->value();
116     } else {
117       constant = lo->y()->as_Constant()->type()->as_IntConstant()->value();
118     }
119     if (constant >= 0) {
120       _bound = new Bound(0, NULL, constant, NULL);
121     }
122   }
123 }
124 
125 // Phi
do_Phi(Phi * phi)126 void RangeCheckEliminator::Visitor::do_Phi(Phi *phi) {
127   if (!phi->type()->as_IntType() && !phi->type()->as_ObjectType()) return;
128 
129   BlockBegin *block = phi->block();
130   int op_count = phi->operand_count();
131   bool has_upper = true;
132   bool has_lower = true;
133   assert(phi, "Phi must not be null");
134   Bound *bound = NULL;
135 
136   // TODO: support more difficult phis
137   for (int i=0; i<op_count; i++) {
138     Value v = phi->operand_at(i);
139 
140     if (v == phi) continue;
141 
142     // Check if instruction is connected with phi itself
143     Op2 *op2 = v->as_Op2();
144     if (op2 != NULL) {
145       Value x = op2->x();
146       Value y = op2->y();
147       if ((x == phi || y == phi)) {
148         Value other = x;
149         if (other == phi) {
150           other = y;
151         }
152         ArithmeticOp *ao = v->as_ArithmeticOp();
153         if (ao != NULL && ao->op() == Bytecodes::_iadd) {
154           assert(ao->op() == Bytecodes::_iadd, "Has to be add!");
155           if (ao->type()->as_IntType()) {
156             Constant *c = other->as_Constant();
157             if (c != NULL) {
158               assert(c->type()->as_IntConstant(), "Constant has to be of type integer");
159               int value = c->type()->as_IntConstant()->value();
160               if (value == 1) {
161                 has_upper = false;
162               } else if (value > 1) {
163                 // Overflow not guaranteed
164                 has_upper = false;
165                 has_lower = false;
166               } else if (value < 0) {
167                 has_lower = false;
168               }
169               continue;
170             }
171           }
172         }
173       }
174     }
175 
176     // No connection -> new bound
177     Bound *v_bound = _rce->get_bound(v);
178     Bound *cur_bound;
179     int cur_constant = 0;
180     Value cur_value = v;
181 
182     if (v->type()->as_IntConstant()) {
183       cur_constant = v->type()->as_IntConstant()->value();
184       cur_value = NULL;
185     }
186     if (!v_bound->has_upper() || !v_bound->has_lower()) {
187       cur_bound = new Bound(cur_constant, cur_value, cur_constant, cur_value);
188     } else {
189       cur_bound = v_bound;
190     }
191     if (cur_bound) {
192       if (!bound) {
193         bound = cur_bound->copy();
194       } else {
195         bound->or_op(cur_bound);
196       }
197     } else {
198       // No bound!
199       bound = NULL;
200       break;
201     }
202   }
203 
204   if (bound) {
205     if (!has_upper) {
206       bound->remove_upper();
207     }
208     if (!has_lower) {
209       bound->remove_lower();
210     }
211     _bound = bound;
212   } else {
213     _bound = new Bound();
214   }
215 }
216 
217 
218 // ArithmeticOp
do_ArithmeticOp(ArithmeticOp * ao)219 void RangeCheckEliminator::Visitor::do_ArithmeticOp(ArithmeticOp *ao) {
220   Value x = ao->x();
221   Value y = ao->y();
222 
223   if (ao->op() == Bytecodes::_irem) {
224     Bound* x_bound = _rce->get_bound(x);
225     Bound* y_bound = _rce->get_bound(y);
226     if (x_bound->lower() >= 0 && x_bound->lower_instr() == NULL && y->as_ArrayLength() != NULL) {
227       _bound = new Bound(0, NULL, -1, y);
228     } else {
229       _bound = new Bound();
230     }
231   } else if (!x->as_Constant() || !y->as_Constant()) {
232     assert(!x->as_Constant() || !y->as_Constant(), "One of the operands must be non-constant!");
233     if (((x->as_Constant() || y->as_Constant()) && (ao->op() == Bytecodes::_iadd)) || (y->as_Constant() && ao->op() == Bytecodes::_isub)) {
234       assert(ao->op() == Bytecodes::_iadd || ao->op() == Bytecodes::_isub, "Operand must be iadd or isub");
235 
236       if (y->as_Constant()) {
237         Value tmp = x;
238         x = y;
239         y = tmp;
240       }
241       assert(x->as_Constant()->type()->as_IntConstant(), "Constant must be int constant!");
242 
243       // Constant now in x
244       int const_value = x->as_Constant()->type()->as_IntConstant()->value();
245       if (ao->op() == Bytecodes::_iadd || const_value != min_jint) {
246         if (ao->op() == Bytecodes::_isub) {
247           const_value = -const_value;
248         }
249 
250         Bound * bound = _rce->get_bound(y);
251         if (bound->has_upper() && bound->has_lower()) {
252           int new_lower = bound->lower() + const_value;
253           jlong new_lowerl = ((jlong)bound->lower()) + const_value;
254           int new_upper = bound->upper() + const_value;
255           jlong new_upperl = ((jlong)bound->upper()) + const_value;
256 
257           if (((jlong)new_lower) == new_lowerl && ((jlong)new_upper == new_upperl)) {
258             Bound *newBound = new Bound(new_lower, bound->lower_instr(), new_upper, bound->upper_instr());
259             _bound = newBound;
260           } else {
261             // overflow
262             _bound = new Bound();
263           }
264         } else {
265           _bound = new Bound();
266         }
267       } else {
268         _bound = new Bound();
269       }
270     } else {
271       Bound *bound = _rce->get_bound(x);
272       if (ao->op() == Bytecodes::_isub) {
273         if (bound->lower_instr() == y) {
274           _bound = new Bound(Instruction::geq, NULL, bound->lower());
275         } else {
276           _bound = new Bound();
277         }
278       } else {
279         _bound = new Bound();
280       }
281     }
282   }
283 }
284 
285 // IfOp
do_IfOp(IfOp * ifOp)286 void RangeCheckEliminator::Visitor::do_IfOp(IfOp *ifOp)
287 {
288   if (ifOp->tval()->type()->as_IntConstant() && ifOp->fval()->type()->as_IntConstant()) {
289     int min = ifOp->tval()->type()->as_IntConstant()->value();
290     int max = ifOp->fval()->type()->as_IntConstant()->value();
291     if (min > max) {
292       // min ^= max ^= min ^= max;
293       int tmp = min;
294       min = max;
295       max = tmp;
296     }
297     _bound = new Bound(min, NULL, max, NULL);
298   }
299 }
300 
301 // Get bound. Returns the current bound on Value v. Normally this is the topmost element on the bound stack.
get_bound(Value v)302 RangeCheckEliminator::Bound *RangeCheckEliminator::get_bound(Value v) {
303   // Wrong type or NULL -> No bound
304   if (!v || (!v->type()->as_IntType() && !v->type()->as_ObjectType())) return NULL;
305 
306   if (!_bounds[v->id()]) {
307     // First (default) bound is calculated
308     // Create BoundStack
309     _bounds[v->id()] = new BoundStack();
310     _visitor.clear_bound();
311     Value visit_value = v;
312     visit_value->visit(&_visitor);
313     Bound *bound = _visitor.bound();
314     if (bound) {
315       _bounds[v->id()]->push(bound);
316     }
317     if (_bounds[v->id()]->length() == 0) {
318       assert(!(v->as_Constant() && v->type()->as_IntConstant()), "constants not handled here");
319       _bounds[v->id()]->push(new Bound());
320     }
321   } else if (_bounds[v->id()]->length() == 0) {
322     // To avoid endless loops, bound is currently in calculation -> nothing known about it
323     return new Bound();
324   }
325 
326   // Return bound
327   return _bounds[v->id()]->top();
328 }
329 
330 // Update bound
update_bound(IntegerStack & pushed,Value v,Instruction::Condition cond,Value value,int constant)331 void RangeCheckEliminator::update_bound(IntegerStack &pushed, Value v, Instruction::Condition cond, Value value, int constant) {
332   if (cond == Instruction::gtr) {
333     cond = Instruction::geq;
334     constant++;
335   } else if (cond == Instruction::lss) {
336     cond = Instruction::leq;
337     constant--;
338   }
339   Bound *bound = new Bound(cond, value, constant);
340   update_bound(pushed, v, bound);
341 }
342 
343 // Checks for loop invariance. Returns true if the instruction is outside of the loop which is identified by loop_header.
loop_invariant(BlockBegin * loop_header,Instruction * instruction)344 bool RangeCheckEliminator::loop_invariant(BlockBegin *loop_header, Instruction *instruction) {
345   assert(loop_header, "Loop header must not be null!");
346   if (!instruction) return true;
347   return instruction->dominator_depth() < loop_header->dominator_depth();
348 }
349 
350 // Update bound. Pushes a new bound onto the stack. Tries to do a conjunction with the current bound.
update_bound(IntegerStack & pushed,Value v,Bound * bound)351 void RangeCheckEliminator::update_bound(IntegerStack &pushed, Value v, Bound *bound) {
352   if (v->as_Constant()) {
353     // No bound update for constants
354     return;
355   }
356   if (!_bounds[v->id()]) {
357     get_bound(v);
358     assert(_bounds[v->id()], "Now Stack must exist");
359   }
360   Bound *top = NULL;
361   if (_bounds[v->id()]->length() > 0) {
362     top = _bounds[v->id()]->top();
363   }
364   if (top) {
365     bound->and_op(top);
366   }
367   _bounds[v->id()]->push(bound);
368   pushed.append(v->id());
369 }
370 
371 // Add instruction + idx for in block motion
add_access_indexed_info(InstructionList & indices,int idx,Value instruction,AccessIndexed * ai)372 void RangeCheckEliminator::add_access_indexed_info(InstructionList &indices, int idx, Value instruction, AccessIndexed *ai) {
373   int id = instruction->id();
374   AccessIndexedInfo *aii = _access_indexed_info[id];
375   if (aii == NULL) {
376     aii = new AccessIndexedInfo();
377     _access_indexed_info[id] = aii;
378     indices.append(instruction);
379     aii->_min = idx;
380     aii->_max = idx;
381     aii->_list = new AccessIndexedList();
382   } else if (idx >= aii->_min && idx <= aii->_max) {
383     remove_range_check(ai);
384     return;
385   }
386   aii->_min = MIN2(aii->_min, idx);
387   aii->_max = MAX2(aii->_max, idx);
388   aii->_list->append(ai);
389 }
390 
391 // In block motion. Tries to reorder checks in order to reduce some of them.
392 // Example:
393 // a[i] = 0;
394 // a[i+2] = 0;
395 // a[i+1] = 0;
396 // In this example the check for a[i+1] would be considered as unnecessary during the first iteration.
397 // After this i is only checked once for i >= 0 and i+2 < a.length before the first array access. If this
398 // check fails, deoptimization is called.
in_block_motion(BlockBegin * block,AccessIndexedList & accessIndexed,InstructionList & arrays)399 void RangeCheckEliminator::in_block_motion(BlockBegin *block, AccessIndexedList &accessIndexed, InstructionList &arrays) {
400   InstructionList indices;
401 
402   // Now iterate over all arrays
403   for (int i=0; i<arrays.length(); i++) {
404     int max_constant = -1;
405     AccessIndexedList list_constant;
406     Value array = arrays.at(i);
407 
408     // For all AccessIndexed-instructions in this block concerning the current array.
409     for(int j=0; j<accessIndexed.length(); j++) {
410       AccessIndexed *ai = accessIndexed.at(j);
411       if (ai->array() != array || !ai->check_flag(Instruction::NeedsRangeCheckFlag)) continue;
412 
413       Value index = ai->index();
414       Constant *c = index->as_Constant();
415       if (c != NULL) {
416         int constant_value = c->type()->as_IntConstant()->value();
417         if (constant_value >= 0) {
418           if (constant_value <= max_constant) {
419             // No range check needed for this
420             remove_range_check(ai);
421           } else {
422             max_constant = constant_value;
423             list_constant.append(ai);
424           }
425         }
426       } else {
427         int last_integer = 0;
428         Instruction *last_instruction = index;
429         int base = 0;
430         ArithmeticOp *ao = index->as_ArithmeticOp();
431 
432         while (ao != NULL && (ao->x()->as_Constant() || ao->y()->as_Constant()) && (ao->op() == Bytecodes::_iadd || ao->op() == Bytecodes::_isub)) {
433           c = ao->y()->as_Constant();
434           Instruction *other = ao->x();
435           if (!c && ao->op() == Bytecodes::_iadd) {
436             c = ao->x()->as_Constant();
437             other = ao->y();
438           }
439 
440           if (c) {
441             int value = c->type()->as_IntConstant()->value();
442             if (value != min_jint) {
443               if (ao->op() == Bytecodes::_isub) {
444                 value = -value;
445               }
446               base += value;
447               last_integer = base;
448               last_instruction = other;
449             }
450             index = other;
451           } else {
452             break;
453           }
454           ao = index->as_ArithmeticOp();
455         }
456         add_access_indexed_info(indices, last_integer, last_instruction, ai);
457       }
458     }
459 
460     // Iterate over all different indices
461     if (_optimistic) {
462       for (int i = 0; i < indices.length(); i++) {
463         Instruction *index_instruction = indices.at(i);
464         AccessIndexedInfo *info = _access_indexed_info[index_instruction->id()];
465         assert(info != NULL, "Info must not be null");
466 
467         // if idx < 0, max > 0, max + idx may fall between 0 and
468         // length-1 and if min < 0, min + idx may overflow and be >=
469         // 0. The predicate wouldn't trigger but some accesses could
470         // be with a negative index. This test guarantees that for the
471         // min and max value that are kept the predicate can't let
472         // some incorrect accesses happen.
473         bool range_cond = (info->_max < 0 || info->_max + min_jint <= info->_min);
474 
475         // Generate code only if more than 2 range checks can be eliminated because of that.
476         // 2 because at least 2 comparisons are done
477         if (info->_list->length() > 2 && range_cond) {
478           AccessIndexed *first = info->_list->at(0);
479           Instruction *insert_position = first->prev();
480           assert(insert_position->next() == first, "prev was calculated");
481           ValueStack *state = first->state_before();
482 
483           // Load min Constant
484           Constant *min_constant = NULL;
485           if (info->_min != 0) {
486             min_constant = new Constant(new IntConstant(info->_min));
487             NOT_PRODUCT(min_constant->set_printable_bci(first->printable_bci()));
488             insert_position = insert_position->insert_after(min_constant);
489           }
490 
491           // Load max Constant
492           Constant *max_constant = NULL;
493           if (info->_max != 0) {
494             max_constant = new Constant(new IntConstant(info->_max));
495             NOT_PRODUCT(max_constant->set_printable_bci(first->printable_bci()));
496             insert_position = insert_position->insert_after(max_constant);
497           }
498 
499           // Load array length
500           Value length_instr = first->length();
501           if (!length_instr) {
502             ArrayLength *length = new ArrayLength(array, first->state_before()->copy());
503             length->set_exception_state(length->state_before());
504             length->set_flag(Instruction::DeoptimizeOnException, true);
505             insert_position = insert_position->insert_after_same_bci(length);
506             length_instr = length;
507           }
508 
509           // Calculate lower bound
510           Instruction *lower_compare = index_instruction;
511           if (min_constant) {
512             ArithmeticOp *ao = new ArithmeticOp(Bytecodes::_iadd, min_constant, lower_compare, false, NULL);
513             insert_position = insert_position->insert_after_same_bci(ao);
514             lower_compare = ao;
515           }
516 
517           // Calculate upper bound
518           Instruction *upper_compare = index_instruction;
519           if (max_constant) {
520             ArithmeticOp *ao = new ArithmeticOp(Bytecodes::_iadd, max_constant, upper_compare, false, NULL);
521             insert_position = insert_position->insert_after_same_bci(ao);
522             upper_compare = ao;
523           }
524 
525           // Trick with unsigned compare is done
526           int bci = NOT_PRODUCT(first->printable_bci()) PRODUCT_ONLY(-1);
527           insert_position = predicate(upper_compare, Instruction::aeq, length_instr, state, insert_position, bci);
528           insert_position = predicate_cmp_with_const(lower_compare, Instruction::leq, -1, state, insert_position);
529           for (int j = 0; j<info->_list->length(); j++) {
530             AccessIndexed *ai = info->_list->at(j);
531             remove_range_check(ai);
532           }
533         }
534       }
535 
536       if (list_constant.length() > 1) {
537         AccessIndexed *first = list_constant.at(0);
538         Instruction *insert_position = first->prev();
539         ValueStack *state = first->state_before();
540         // Load max Constant
541         Constant *constant = new Constant(new IntConstant(max_constant));
542         NOT_PRODUCT(constant->set_printable_bci(first->printable_bci()));
543         insert_position = insert_position->insert_after(constant);
544         Instruction *compare_instr = constant;
545         Value length_instr = first->length();
546         if (!length_instr) {
547           ArrayLength *length = new ArrayLength(array, state->copy());
548           length->set_exception_state(length->state_before());
549           length->set_flag(Instruction::DeoptimizeOnException, true);
550           insert_position = insert_position->insert_after_same_bci(length);
551           length_instr = length;
552         }
553         // Compare for greater or equal to array length
554         insert_position = predicate(compare_instr, Instruction::geq, length_instr, state, insert_position);
555         for (int j = 0; j<list_constant.length(); j++) {
556           AccessIndexed *ai = list_constant.at(j);
557           remove_range_check(ai);
558         }
559       }
560     }
561 
562     // Clear data structures for next array
563     for (int i = 0; i < indices.length(); i++) {
564       Instruction *index_instruction = indices.at(i);
565       _access_indexed_info[index_instruction->id()] = NULL;
566     }
567     indices.clear();
568   }
569 }
570 
set_process_block_flags(BlockBegin * block)571 bool RangeCheckEliminator::set_process_block_flags(BlockBegin *block) {
572   Instruction *cur = block;
573   bool process = false;
574 
575   while (cur) {
576     process |= (cur->as_AccessIndexed() != NULL);
577     cur = cur->next();
578   }
579 
580   BlockList *dominates = block->dominates();
581   for (int i=0; i<dominates->length(); i++) {
582     BlockBegin *next = dominates->at(i);
583     process |= set_process_block_flags(next);
584   }
585 
586   if (!process) {
587     block->set(BlockBegin::donot_eliminate_range_checks);
588   }
589   return process;
590 }
591 
is_ok_for_deoptimization(Instruction * insert_position,Instruction * array_instr,Instruction * length_instr,Instruction * lower_instr,int lower,Instruction * upper_instr,int upper)592 bool RangeCheckEliminator::is_ok_for_deoptimization(Instruction *insert_position, Instruction *array_instr, Instruction *length_instr, Instruction *lower_instr, int lower, Instruction *upper_instr, int upper) {
593   bool upper_check = true;
594   assert(lower_instr || lower >= 0, "If no lower_instr present, lower must be greater 0");
595   assert(!lower_instr || lower_instr->dominator_depth() <= insert_position->dominator_depth(), "Dominator depth must be smaller");
596   assert(!upper_instr || upper_instr->dominator_depth() <= insert_position->dominator_depth(), "Dominator depth must be smaller");
597   assert(array_instr, "Array instruction must exist");
598   assert(array_instr->dominator_depth() <= insert_position->dominator_depth(), "Dominator depth must be smaller");
599   assert(!length_instr || length_instr->dominator_depth() <= insert_position->dominator_depth(), "Dominator depth must be smaller");
600 
601   if (upper_instr && upper_instr->as_ArrayLength() && upper_instr->as_ArrayLength()->array() == array_instr) {
602     // static check
603     if (upper >= 0) return false; // would always trigger a deopt:
604                                   // array_length + x >= array_length, x >= 0 is always true
605     upper_check = false;
606   }
607   if (lower_instr && lower_instr->as_ArrayLength() && lower_instr->as_ArrayLength()->array() == array_instr) {
608     if (lower > 0) return false;
609   }
610   // No upper check required -> skip
611   if (upper_check && upper_instr && upper_instr->type()->as_ObjectType() && upper_instr == array_instr) {
612     // upper_instr is object means that the upper bound is the length
613     // of the upper_instr.
614     return false;
615   }
616   return true;
617 }
618 
insert_after(Instruction * insert_position,Instruction * instr,int bci)619 Instruction* RangeCheckEliminator::insert_after(Instruction* insert_position, Instruction* instr, int bci) {
620   if (bci != -1) {
621     NOT_PRODUCT(instr->set_printable_bci(bci));
622     return insert_position->insert_after(instr);
623   } else {
624     return insert_position->insert_after_same_bci(instr);
625   }
626 }
627 
predicate(Instruction * left,Instruction::Condition cond,Instruction * right,ValueStack * state,Instruction * insert_position,int bci)628 Instruction* RangeCheckEliminator::predicate(Instruction* left, Instruction::Condition cond, Instruction* right, ValueStack* state, Instruction *insert_position, int bci) {
629   RangeCheckPredicate *deoptimize = new RangeCheckPredicate(left, cond, true, right, state->copy());
630   return insert_after(insert_position, deoptimize, bci);
631 }
632 
predicate_cmp_with_const(Instruction * instr,Instruction::Condition cond,int constant,ValueStack * state,Instruction * insert_position,int bci)633 Instruction* RangeCheckEliminator::predicate_cmp_with_const(Instruction* instr, Instruction::Condition cond, int constant, ValueStack* state, Instruction *insert_position, int bci) {
634   Constant *const_instr = new Constant(new IntConstant(constant));
635   insert_position = insert_after(insert_position, const_instr, bci);
636   return predicate(instr, cond, const_instr, state, insert_position);
637 }
638 
predicate_add(Instruction * left,int left_const,Instruction::Condition cond,Instruction * right,ValueStack * state,Instruction * insert_position,int bci)639 Instruction* RangeCheckEliminator::predicate_add(Instruction* left, int left_const, Instruction::Condition cond, Instruction* right, ValueStack* state, Instruction *insert_position, int bci) {
640   Constant *constant = new Constant(new IntConstant(left_const));
641   insert_position = insert_after(insert_position, constant, bci);
642   ArithmeticOp *ao = new ArithmeticOp(Bytecodes::_iadd, constant, left, false, NULL);
643   insert_position = insert_position->insert_after_same_bci(ao);
644   return predicate(ao, cond, right, state, insert_position);
645 }
646 
predicate_add_cmp_with_const(Instruction * left,int left_const,Instruction::Condition cond,int constant,ValueStack * state,Instruction * insert_position,int bci)647 Instruction* RangeCheckEliminator::predicate_add_cmp_with_const(Instruction* left, int left_const, Instruction::Condition cond, int constant, ValueStack* state, Instruction *insert_position, int bci) {
648   Constant *const_instr = new Constant(new IntConstant(constant));
649   insert_position = insert_after(insert_position, const_instr, bci);
650   return predicate_add(left, left_const, cond, const_instr, state, insert_position);
651 }
652 
653 // Insert deoptimization
insert_deoptimization(ValueStack * state,Instruction * insert_position,Instruction * array_instr,Instruction * length_instr,Instruction * lower_instr,int lower,Instruction * upper_instr,int upper,AccessIndexed * ai)654 void RangeCheckEliminator::insert_deoptimization(ValueStack *state, Instruction *insert_position, Instruction *array_instr, Instruction *length_instr, Instruction *lower_instr, int lower, Instruction *upper_instr, int upper, AccessIndexed *ai) {
655   assert(is_ok_for_deoptimization(insert_position, array_instr, length_instr, lower_instr, lower, upper_instr, upper), "should have been tested before");
656   bool upper_check = !(upper_instr && upper_instr->as_ArrayLength() && upper_instr->as_ArrayLength()->array() == array_instr);
657 
658   int bci = NOT_PRODUCT(ai->printable_bci()) PRODUCT_ONLY(-1);
659   if (lower_instr) {
660     assert(!lower_instr->type()->as_ObjectType(), "Must not be object type");
661     if (lower == 0) {
662       // Compare for less than 0
663       insert_position = predicate_cmp_with_const(lower_instr, Instruction::lss, 0, state, insert_position, bci);
664     } else if (lower > 0) {
665       // Compare for smaller 0
666       insert_position = predicate_add_cmp_with_const(lower_instr, lower, Instruction::lss, 0, state, insert_position, bci);
667     } else {
668       assert(lower < 0, "");
669       // Add 1
670       lower++;
671       lower = -lower;
672       // Compare for smaller or equal 0
673       insert_position = predicate_cmp_with_const(lower_instr, Instruction::leq, lower, state, insert_position, bci);
674     }
675   }
676 
677   // No upper check required -> skip
678   if (!upper_check) return;
679 
680   // We need to know length of array
681   if (!length_instr) {
682     // Load length if necessary
683     ArrayLength *length = new ArrayLength(array_instr, state->copy());
684     NOT_PRODUCT(length->set_printable_bci(ai->printable_bci()));
685     length->set_exception_state(length->state_before());
686     length->set_flag(Instruction::DeoptimizeOnException, true);
687     insert_position = insert_position->insert_after(length);
688     length_instr = length;
689   }
690 
691   if (!upper_instr) {
692     // Compare for geq array.length
693     insert_position = predicate_cmp_with_const(length_instr, Instruction::leq, upper, state, insert_position, bci);
694   } else {
695     if (upper_instr->type()->as_ObjectType()) {
696       assert(state, "must not be null");
697       assert(upper_instr != array_instr, "should be");
698       ArrayLength *length = new ArrayLength(upper_instr, state->copy());
699       NOT_PRODUCT(length->set_printable_bci(ai->printable_bci()));
700       length->set_flag(Instruction::DeoptimizeOnException, true);
701       length->set_exception_state(length->state_before());
702       insert_position = insert_position->insert_after(length);
703       upper_instr = length;
704     }
705     assert(upper_instr->type()->as_IntType(), "Must not be object type!");
706 
707     if (upper == 0) {
708       // Compare for geq array.length
709       insert_position = predicate(upper_instr, Instruction::geq, length_instr, state, insert_position, bci);
710     } else if (upper < 0) {
711       // Compare for geq array.length
712       insert_position = predicate_add(upper_instr, upper, Instruction::geq, length_instr, state, insert_position, bci);
713     } else {
714       assert(upper > 0, "");
715       upper = -upper;
716       // Compare for geq array.length
717       insert_position = predicate_add(length_instr, upper, Instruction::leq, upper_instr, state, insert_position, bci);
718     }
719   }
720 }
721 
722 // Add if condition
add_if_condition(IntegerStack & pushed,Value x,Value y,Instruction::Condition condition)723 void RangeCheckEliminator::add_if_condition(IntegerStack &pushed, Value x, Value y, Instruction::Condition condition) {
724   if (y->as_Constant()) return;
725 
726   int const_value = 0;
727   Value instr_value = x;
728   Constant *c = x->as_Constant();
729   ArithmeticOp *ao = x->as_ArithmeticOp();
730 
731   if (c != NULL) {
732     const_value = c->type()->as_IntConstant()->value();
733     instr_value = NULL;
734   } else if (ao != NULL &&  (!ao->x()->as_Constant() || !ao->y()->as_Constant()) && ((ao->op() == Bytecodes::_isub && ao->y()->as_Constant()) || ao->op() == Bytecodes::_iadd)) {
735     assert(!ao->x()->as_Constant() || !ao->y()->as_Constant(), "At least one operator must be non-constant!");
736     assert(ao->op() == Bytecodes::_isub || ao->op() == Bytecodes::_iadd, "Operation has to be add or sub!");
737     c = ao->x()->as_Constant();
738     if (c != NULL) {
739       const_value = c->type()->as_IntConstant()->value();
740       instr_value = ao->y();
741     } else {
742       c = ao->y()->as_Constant();
743       if (c != NULL) {
744         const_value = c->type()->as_IntConstant()->value();
745         instr_value = ao->x();
746       }
747     }
748     if (ao->op() == Bytecodes::_isub) {
749       assert(ao->y()->as_Constant(), "1 - x not supported, only x - 1 is valid!");
750       if (const_value > min_jint) {
751         const_value = -const_value;
752       } else {
753         const_value = 0;
754         instr_value = x;
755       }
756     }
757   }
758 
759   update_bound(pushed, y, condition, instr_value, const_value);
760 }
761 
762 // Process If
process_if(IntegerStack & pushed,BlockBegin * block,If * cond)763 void RangeCheckEliminator::process_if(IntegerStack &pushed, BlockBegin *block, If *cond) {
764   // Only if we are direct true / false successor and NOT both ! (even this may occur)
765   if ((cond->tsux() == block || cond->fsux() == block) && cond->tsux() != cond->fsux()) {
766     Instruction::Condition condition = cond->cond();
767     if (cond->fsux() == block) {
768       condition = Instruction::negate(condition);
769     }
770     Value x = cond->x();
771     Value y = cond->y();
772     if (x->type()->as_IntType() && y->type()->as_IntType()) {
773       add_if_condition(pushed, y, x, condition);
774       add_if_condition(pushed, x, y, Instruction::mirror(condition));
775     }
776   }
777 }
778 
779 // Process access indexed
process_access_indexed(BlockBegin * loop_header,BlockBegin * block,AccessIndexed * ai)780 void RangeCheckEliminator::process_access_indexed(BlockBegin *loop_header, BlockBegin *block, AccessIndexed *ai) {
781   TRACE_RANGE_CHECK_ELIMINATION(
782     tty->fill_to(block->dominator_depth()*2)
783   );
784   TRACE_RANGE_CHECK_ELIMINATION(
785     tty->print_cr("Access indexed: index=%d length=%d", ai->index()->id(), (ai->length() != NULL ? ai->length()->id() :-1 ))
786   );
787 
788   if (ai->check_flag(Instruction::NeedsRangeCheckFlag)) {
789     Bound *index_bound = get_bound(ai->index());
790     if (!index_bound->has_lower() || !index_bound->has_upper()) {
791       TRACE_RANGE_CHECK_ELIMINATION(
792         tty->fill_to(block->dominator_depth()*2);
793         tty->print_cr("Index instruction %d has no lower and/or no upper bound!", ai->index()->id())
794       );
795       return;
796     }
797 
798     Bound *array_bound;
799     if (ai->length()) {
800       array_bound = get_bound(ai->length());
801     } else {
802       array_bound = get_bound(ai->array());
803     }
804 
805     if (in_array_bound(index_bound, ai->array()) ||
806       (index_bound && array_bound && index_bound->is_smaller(array_bound) && !index_bound->lower_instr() && index_bound->lower() >= 0)) {
807         TRACE_RANGE_CHECK_ELIMINATION(
808           tty->fill_to(block->dominator_depth()*2);
809           tty->print_cr("Bounds check for instruction %d in block B%d can be fully eliminated!", ai->id(), ai->block()->block_id())
810         );
811 
812         remove_range_check(ai);
813     } else if (_optimistic && loop_header) {
814       assert(ai->array(), "Array must not be null!");
815       assert(ai->index(), "Index must not be null!");
816 
817       // Array instruction
818       Instruction *array_instr = ai->array();
819       if (!loop_invariant(loop_header, array_instr)) {
820         TRACE_RANGE_CHECK_ELIMINATION(
821           tty->fill_to(block->dominator_depth()*2);
822           tty->print_cr("Array %d is not loop invariant to header B%d", ai->array()->id(), loop_header->block_id())
823         );
824         return;
825       }
826 
827       // Lower instruction
828       Value index_instr = ai->index();
829       Value lower_instr = index_bound->lower_instr();
830       if (!loop_invariant(loop_header, lower_instr)) {
831         TRACE_RANGE_CHECK_ELIMINATION(
832           tty->fill_to(block->dominator_depth()*2);
833           tty->print_cr("Lower instruction %d not loop invariant!", lower_instr->id())
834         );
835         return;
836       }
837       if (!lower_instr && index_bound->lower() < 0) {
838         TRACE_RANGE_CHECK_ELIMINATION(
839           tty->fill_to(block->dominator_depth()*2);
840           tty->print_cr("Lower bound smaller than 0 (%d)!", index_bound->lower())
841         );
842         return;
843       }
844 
845       // Upper instruction
846       Value upper_instr = index_bound->upper_instr();
847       if (!loop_invariant(loop_header, upper_instr)) {
848         TRACE_RANGE_CHECK_ELIMINATION(
849           tty->fill_to(block->dominator_depth()*2);
850           tty->print_cr("Upper instruction %d not loop invariant!", upper_instr->id())
851         );
852         return;
853       }
854 
855       // Length instruction
856       Value length_instr = ai->length();
857       if (!loop_invariant(loop_header, length_instr)) {
858         // Generate length instruction yourself!
859         length_instr = NULL;
860       }
861 
862       TRACE_RANGE_CHECK_ELIMINATION(
863         tty->fill_to(block->dominator_depth()*2);
864         tty->print_cr("LOOP INVARIANT access indexed %d found in block B%d!", ai->id(), ai->block()->block_id())
865       );
866 
867       BlockBegin *pred_block = loop_header->dominator();
868       assert(pred_block != NULL, "Every loop header has a dominator!");
869       BlockEnd *pred_block_end = pred_block->end();
870       Instruction *insert_position = pred_block_end->prev();
871       ValueStack *state = pred_block_end->state_before();
872       if (pred_block_end->as_Goto() && state == NULL) state = pred_block_end->state();
873       assert(state, "State must not be null");
874 
875       // Add deoptimization to dominator of loop header
876       TRACE_RANGE_CHECK_ELIMINATION(
877         tty->fill_to(block->dominator_depth()*2);
878         tty->print_cr("Inserting deopt at bci %d in block B%d!", state->bci(), insert_position->block()->block_id())
879       );
880 
881       if (!is_ok_for_deoptimization(insert_position, array_instr, length_instr, lower_instr, index_bound->lower(), upper_instr, index_bound->upper())) {
882         TRACE_RANGE_CHECK_ELIMINATION(
883           tty->fill_to(block->dominator_depth()*2);
884           tty->print_cr("Could not eliminate because of static analysis!")
885         );
886         return;
887       }
888 
889       insert_deoptimization(state, insert_position, array_instr, length_instr, lower_instr, index_bound->lower(), upper_instr, index_bound->upper(), ai);
890 
891       // Finally remove the range check!
892       remove_range_check(ai);
893     }
894   }
895 }
896 
remove_range_check(AccessIndexed * ai)897 void RangeCheckEliminator::remove_range_check(AccessIndexed *ai) {
898   ai->set_flag(Instruction::NeedsRangeCheckFlag, false);
899   // no range check, no need for the length instruction anymore
900   ai->clear_length();
901 
902   TRACE_RANGE_CHECK_ELIMINATION(
903     tty->fill_to(ai->dominator_depth()*2);
904     tty->print_cr("Range check for instruction %d eliminated!", ai->id());
905   );
906 
907   ASSERT_RANGE_CHECK_ELIMINATION(
908     Value array_length = ai->length();
909     if (!array_length) {
910       array_length = ai->array();
911       assert(array_length->type()->as_ObjectType(), "Has to be object type!");
912     }
913     int cur_constant = -1;
914     Value cur_value = array_length;
915     if (cur_value->type()->as_IntConstant()) {
916       cur_constant += cur_value->type()->as_IntConstant()->value();
917       cur_value = NULL;
918     }
919     Bound *new_index_bound = new Bound(0, NULL, cur_constant, cur_value);
920     add_assertions(new_index_bound, ai->index(), ai);
921   );
922 }
923 
924 // Calculate bounds for instruction in this block and children blocks in the dominator tree
calc_bounds(BlockBegin * block,BlockBegin * loop_header)925 void RangeCheckEliminator::calc_bounds(BlockBegin *block, BlockBegin *loop_header) {
926   // Ensures a valid loop_header
927   assert(!loop_header || loop_header->is_set(BlockBegin::linear_scan_loop_header_flag), "Loop header has to be real !");
928 
929   // Tracing output
930   TRACE_RANGE_CHECK_ELIMINATION(
931     tty->fill_to(block->dominator_depth()*2);
932     tty->print_cr("Block B%d", block->block_id());
933   );
934 
935   // Pushed stack for conditions
936   IntegerStack pushed;
937   // Process If
938   BlockBegin *parent = block->dominator();
939   if (parent != NULL) {
940     If *cond = parent->end()->as_If();
941     if (cond != NULL) {
942       process_if(pushed, block, cond);
943     }
944   }
945 
946   // Interate over current block
947   InstructionList arrays;
948   AccessIndexedList accessIndexed;
949   Instruction *cur = block;
950 
951   while (cur) {
952     // Ensure cur wasn't inserted during the elimination
953     if (cur->id() < this->_bounds.length()) {
954       // Process only if it is an access indexed instruction
955       AccessIndexed *ai = cur->as_AccessIndexed();
956       if (ai != NULL) {
957         process_access_indexed(loop_header, block, ai);
958         accessIndexed.append(ai);
959         if (!arrays.contains(ai->array())) {
960           arrays.append(ai->array());
961         }
962         Bound *b = get_bound(ai->index());
963         if (!b->lower_instr()) {
964           // Lower bound is constant
965           update_bound(pushed, ai->index(), Instruction::geq, NULL, 0);
966         }
967         if (!b->has_upper()) {
968           if (ai->length() && ai->length()->type()->as_IntConstant()) {
969             int value = ai->length()->type()->as_IntConstant()->value();
970             update_bound(pushed, ai->index(), Instruction::lss, NULL, value);
971           } else {
972             // Has no upper bound
973             Instruction *instr = ai->length();
974             if (instr == NULL) instr = ai->array();
975             update_bound(pushed, ai->index(), Instruction::lss, instr, 0);
976           }
977         }
978       }
979     }
980     cur = cur->next();
981   }
982 
983   // Output current condition stack
984   TRACE_RANGE_CHECK_ELIMINATION(dump_condition_stack(block));
985 
986   // Do in block motion of range checks
987   in_block_motion(block, accessIndexed, arrays);
988 
989   // Call all dominated blocks
990   for (int i=0; i<block->dominates()->length(); i++) {
991     BlockBegin *next = block->dominates()->at(i);
992     if (!next->is_set(BlockBegin::donot_eliminate_range_checks)) {
993       // if current block is a loop header and:
994       // - next block belongs to the same loop
995       // or
996       // - next block belongs to an inner loop
997       // then current block is the loop header for next block
998       if (block->is_set(BlockBegin::linear_scan_loop_header_flag) && (block->loop_index() == next->loop_index() || next->loop_depth() > block->loop_depth())) {
999         calc_bounds(next, block);
1000       } else {
1001         calc_bounds(next, loop_header);
1002       }
1003     }
1004   }
1005 
1006   // Reset stack
1007   for (int i=0; i<pushed.length(); i++) {
1008     _bounds[pushed[i]]->pop();
1009   }
1010 }
1011 
1012 #ifndef PRODUCT
1013 // Dump condition stack
dump_condition_stack(BlockBegin * block)1014 void RangeCheckEliminator::dump_condition_stack(BlockBegin *block) {
1015   for (int i=0; i<_ir->linear_scan_order()->length(); i++) {
1016     BlockBegin *cur_block = _ir->linear_scan_order()->at(i);
1017     Instruction *instr = cur_block;
1018     for_each_phi_fun(cur_block, phi,
1019                      BoundStack *bound_stack = _bounds.at(phi->id());
1020                      if (bound_stack && bound_stack->length() > 0) {
1021                        Bound *bound = bound_stack->top();
1022                        if ((bound->has_lower() || bound->has_upper()) && (bound->lower_instr() != phi || bound->upper_instr() != phi || bound->lower() != 0 || bound->upper() != 0)) {
1023                            TRACE_RANGE_CHECK_ELIMINATION(tty->fill_to(2*block->dominator_depth());
1024                                                          tty->print("i%d", phi->id());
1025                                                          tty->print(": ");
1026                                                          bound->print();
1027                                                          tty->cr();
1028                            );
1029                          }
1030                      });
1031 
1032     while (!instr->as_BlockEnd()) {
1033       if (instr->id() < _bounds.length()) {
1034         BoundStack *bound_stack = _bounds.at(instr->id());
1035         if (bound_stack && bound_stack->length() > 0) {
1036           Bound *bound = bound_stack->top();
1037           if ((bound->has_lower() || bound->has_upper()) && (bound->lower_instr() != instr || bound->upper_instr() != instr || bound->lower() != 0 || bound->upper() != 0)) {
1038               TRACE_RANGE_CHECK_ELIMINATION(tty->fill_to(2*block->dominator_depth());
1039                                             tty->print("i%d", instr->id());
1040                                             tty->print(": ");
1041                                             bound->print();
1042                                             tty->cr();
1043               );
1044           }
1045         }
1046       }
1047       instr = instr->next();
1048     }
1049   }
1050 }
1051 #endif
1052 
1053 // Verification or the IR
Verification(IR * ir)1054 RangeCheckEliminator::Verification::Verification(IR *ir) : _used(BlockBegin::number_of_blocks(), false) {
1055   this->_ir = ir;
1056   ir->iterate_linear_scan_order(this);
1057 }
1058 
1059 // Verify this block
block_do(BlockBegin * block)1060 void RangeCheckEliminator::Verification::block_do(BlockBegin *block) {
1061   If *cond = block->end()->as_If();
1062   // Watch out: tsux and fsux can be the same!
1063   if (block->number_of_sux() > 1) {
1064     for (int i=0; i<block->number_of_sux(); i++) {
1065       BlockBegin *sux = block->sux_at(i);
1066       BlockBegin *pred = NULL;
1067       for (int j=0; j<sux->number_of_preds(); j++) {
1068         BlockBegin *cur = sux->pred_at(j);
1069         assert(cur != NULL, "Predecessor must not be null");
1070         if (!pred) {
1071           pred = cur;
1072         }
1073         assert(cur == pred, "Block must not have more than one predecessor if its predecessor has more than one successor");
1074       }
1075       assert(sux->number_of_preds() >= 1, "Block must have at least one predecessor");
1076       assert(sux->pred_at(0) == block, "Wrong successor");
1077     }
1078   }
1079 
1080   BlockBegin *dominator = block->dominator();
1081   if (dominator) {
1082     assert(block != _ir->start(), "Start block must not have a dominator!");
1083     assert(can_reach(dominator, block), "Dominator can't reach his block !");
1084     assert(can_reach(_ir->start(), dominator), "Dominator is unreachable !");
1085     assert(!can_reach(_ir->start(), block, dominator), "Wrong dominator ! Block can be reached anyway !");
1086     BlockList *all_blocks = _ir->linear_scan_order();
1087     for (int i=0; i<all_blocks->length(); i++) {
1088       BlockBegin *cur = all_blocks->at(i);
1089       if (cur != dominator && cur != block) {
1090         assert(can_reach(dominator, block, cur), "There has to be another dominator!");
1091       }
1092     }
1093   } else {
1094     assert(block == _ir->start(), "Only start block must not have a dominator");
1095   }
1096 
1097   if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
1098     int loop_index = block->loop_index();
1099     BlockList *all_blocks = _ir->linear_scan_order();
1100     assert(block->number_of_preds() >= 1, "Block must have at least one predecessor");
1101     assert(!block->is_set(BlockBegin::exception_entry_flag), "Loop header must not be exception handler!");
1102     // Sometimes, the backbranch comes from an exception handler. In
1103     // this case, loop indexes/loop depths may not appear correct.
1104     bool loop_through_xhandler = false;
1105     for (int i = 0; i < block->number_of_exception_handlers(); i++) {
1106       BlockBegin *xhandler = block->exception_handler_at(i);
1107       for (int j = 0; j < block->number_of_preds(); j++) {
1108         if (dominates(xhandler, block->pred_at(j)) || xhandler == block->pred_at(j)) {
1109           loop_through_xhandler = true;
1110         }
1111       }
1112     }
1113 
1114     for (int i=0; i<block->number_of_sux(); i++) {
1115       BlockBegin *sux = block->sux_at(i);
1116       assert(sux->loop_depth() != block->loop_depth() || sux->loop_index() == block->loop_index() || loop_through_xhandler, "Loop index has to be same");
1117       assert(sux->loop_depth() == block->loop_depth() || sux->loop_index() != block->loop_index(), "Loop index has to be different");
1118     }
1119 
1120     for (int i=0; i<all_blocks->length(); i++) {
1121       BlockBegin *cur = all_blocks->at(i);
1122       if (cur->loop_index() == loop_index && cur != block) {
1123         assert(dominates(block->dominator(), cur), "Dominator of loop header must dominate all loop blocks");
1124       }
1125     }
1126   }
1127 
1128   Instruction *cur = block;
1129   while (cur) {
1130     assert(cur->block() == block, "Block begin has to be set correctly!");
1131     cur = cur->next();
1132   }
1133 }
1134 
1135 // Loop header must dominate all loop blocks
dominates(BlockBegin * dominator,BlockBegin * block)1136 bool RangeCheckEliminator::Verification::dominates(BlockBegin *dominator, BlockBegin *block) {
1137   BlockBegin *cur = block->dominator();
1138   while (cur && cur != dominator) {
1139     cur = cur->dominator();
1140   }
1141   return cur == dominator;
1142 }
1143 
1144 // Try to reach Block end beginning in Block start and not using Block dont_use
can_reach(BlockBegin * start,BlockBegin * end,BlockBegin * dont_use)1145 bool RangeCheckEliminator::Verification::can_reach(BlockBegin *start, BlockBegin *end, BlockBegin *dont_use /* = NULL */) {
1146   if (start == end) return start != dont_use;
1147   // Simple BSF from start to end
1148   //  BlockBeginList _current;
1149   for (int i=0; i<_used.length(); i++) {
1150     _used[i] = false;
1151   }
1152   _current.truncate(0);
1153   _successors.truncate(0);
1154   if (start != dont_use) {
1155     _current.push(start);
1156     _used[start->block_id()] = true;
1157   }
1158 
1159   //  BlockBeginList _successors;
1160   while (_current.length() > 0) {
1161     BlockBegin *cur = _current.pop();
1162     // Add exception handlers to list
1163     for (int i=0; i<cur->number_of_exception_handlers(); i++) {
1164       BlockBegin *xhandler = cur->exception_handler_at(i);
1165       _successors.push(xhandler);
1166       // Add exception handlers of _successors to list
1167       for (int j=0; j<xhandler->number_of_exception_handlers(); j++) {
1168         BlockBegin *sux_xhandler = xhandler->exception_handler_at(j);
1169         _successors.push(sux_xhandler);
1170       }
1171     }
1172     // Add normal _successors to list
1173     for (int i=0; i<cur->number_of_sux(); i++) {
1174       BlockBegin *sux = cur->sux_at(i);
1175       _successors.push(sux);
1176       // Add exception handlers of _successors to list
1177       for (int j=0; j<sux->number_of_exception_handlers(); j++) {
1178         BlockBegin *xhandler = sux->exception_handler_at(j);
1179         _successors.push(xhandler);
1180       }
1181     }
1182     for (int i=0; i<_successors.length(); i++) {
1183       BlockBegin *sux = _successors[i];
1184       assert(sux != NULL, "Successor must not be NULL!");
1185       if (sux == end) {
1186         return true;
1187       }
1188       if (sux != dont_use && !_used[sux->block_id()]) {
1189         _used[sux->block_id()] = true;
1190         _current.push(sux);
1191       }
1192     }
1193     _successors.truncate(0);
1194   }
1195 
1196   return false;
1197 }
1198 
1199 // Bound
~Bound()1200 RangeCheckEliminator::Bound::~Bound() {
1201 }
1202 
1203 // Bound constructor
Bound()1204 RangeCheckEliminator::Bound::Bound() {
1205   init();
1206   this->_lower = min_jint;
1207   this->_upper = max_jint;
1208   this->_lower_instr = NULL;
1209   this->_upper_instr = NULL;
1210 }
1211 
1212 // Bound constructor
Bound(int lower,Value lower_instr,int upper,Value upper_instr)1213 RangeCheckEliminator::Bound::Bound(int lower, Value lower_instr, int upper, Value upper_instr) {
1214   init();
1215   assert(!lower_instr || !lower_instr->as_Constant() || !lower_instr->type()->as_IntConstant(), "Must not be constant!");
1216   assert(!upper_instr || !upper_instr->as_Constant() || !upper_instr->type()->as_IntConstant(), "Must not be constant!");
1217   this->_lower = lower;
1218   this->_upper = upper;
1219   this->_lower_instr = lower_instr;
1220   this->_upper_instr = upper_instr;
1221 }
1222 
1223 // Bound constructor
Bound(Instruction::Condition cond,Value v,int constant)1224 RangeCheckEliminator::Bound::Bound(Instruction::Condition cond, Value v, int constant) {
1225   assert(!v || (v->type() && (v->type()->as_IntType() || v->type()->as_ObjectType())), "Type must be array or integer!");
1226   assert(!v || !v->as_Constant() || !v->type()->as_IntConstant(), "Must not be constant!");
1227 
1228   init();
1229   if (cond == Instruction::eql) {
1230     _lower = constant;
1231     _lower_instr = v;
1232     _upper = constant;
1233     _upper_instr = v;
1234   } else if (cond == Instruction::neq) {
1235     _lower = min_jint;
1236     _upper = max_jint;
1237     _lower_instr = NULL;
1238     _upper_instr = NULL;
1239     if (v == NULL) {
1240       if (constant == min_jint) {
1241         _lower++;
1242       }
1243       if (constant == max_jint) {
1244         _upper--;
1245       }
1246     }
1247   } else if (cond == Instruction::geq) {
1248     _lower = constant;
1249     _lower_instr = v;
1250     _upper = max_jint;
1251     _upper_instr = NULL;
1252   } else if (cond == Instruction::leq) {
1253     _lower = min_jint;
1254     _lower_instr = NULL;
1255     _upper = constant;
1256     _upper_instr = v;
1257   } else {
1258     ShouldNotReachHere();
1259   }
1260 }
1261 
1262 // Set lower
set_lower(int value,Value v)1263 void RangeCheckEliminator::Bound::set_lower(int value, Value v) {
1264   assert(!v || !v->as_Constant() || !v->type()->as_IntConstant(), "Must not be constant!");
1265   this->_lower = value;
1266   this->_lower_instr = v;
1267 }
1268 
1269 // Set upper
set_upper(int value,Value v)1270 void RangeCheckEliminator::Bound::set_upper(int value, Value v) {
1271   assert(!v || !v->as_Constant() || !v->type()->as_IntConstant(), "Must not be constant!");
1272   this->_upper = value;
1273   this->_upper_instr = v;
1274 }
1275 
1276 // Add constant -> no overflow may occur
add_constant(int value)1277 void RangeCheckEliminator::Bound::add_constant(int value) {
1278   this->_lower += value;
1279   this->_upper += value;
1280 }
1281 
1282 // Init
init()1283 void RangeCheckEliminator::Bound::init() {
1284 }
1285 
1286 // or
or_op(Bound * b)1287 void RangeCheckEliminator::Bound::or_op(Bound *b) {
1288   // Watch out, bound is not guaranteed not to overflow!
1289   // Update lower bound
1290   if (_lower_instr != b->_lower_instr || (_lower_instr && _lower != b->_lower)) {
1291     _lower_instr = NULL;
1292     _lower = min_jint;
1293   } else {
1294     _lower = MIN2(_lower, b->_lower);
1295   }
1296   // Update upper bound
1297   if (_upper_instr != b->_upper_instr || (_upper_instr && _upper != b->_upper)) {
1298     _upper_instr = NULL;
1299     _upper = max_jint;
1300   } else {
1301     _upper = MAX2(_upper, b->_upper);
1302   }
1303 }
1304 
1305 // and
and_op(Bound * b)1306 void RangeCheckEliminator::Bound::and_op(Bound *b) {
1307   // Update lower bound
1308   if (_lower_instr == b->_lower_instr) {
1309     _lower = MAX2(_lower, b->_lower);
1310   }
1311   if (b->has_lower()) {
1312     bool set = true;
1313     if (_lower_instr != NULL && b->_lower_instr != NULL) {
1314       set = (_lower_instr->dominator_depth() > b->_lower_instr->dominator_depth());
1315     }
1316     if (set) {
1317       _lower = b->_lower;
1318       _lower_instr = b->_lower_instr;
1319     }
1320   }
1321   // Update upper bound
1322   if (_upper_instr == b->_upper_instr) {
1323     _upper = MIN2(_upper, b->_upper);
1324   }
1325   if (b->has_upper()) {
1326     bool set = true;
1327     if (_upper_instr != NULL && b->_upper_instr != NULL) {
1328       set = (_upper_instr->dominator_depth() > b->_upper_instr->dominator_depth());
1329     }
1330     if (set) {
1331       _upper = b->_upper;
1332       _upper_instr = b->_upper_instr;
1333     }
1334   }
1335 }
1336 
1337 // has_upper
has_upper()1338 bool RangeCheckEliminator::Bound::has_upper() {
1339   return _upper_instr != NULL || _upper < max_jint;
1340 }
1341 
1342 // is_smaller
is_smaller(Bound * b)1343 bool RangeCheckEliminator::Bound::is_smaller(Bound *b) {
1344   if (b->_lower_instr != _upper_instr) {
1345     return false;
1346   }
1347   return _upper < b->_lower;
1348 }
1349 
1350 // has_lower
has_lower()1351 bool RangeCheckEliminator::Bound::has_lower() {
1352   return _lower_instr != NULL || _lower > min_jint;
1353 }
1354 
1355 // in_array_bound
in_array_bound(Bound * bound,Value array)1356 bool RangeCheckEliminator::in_array_bound(Bound *bound, Value array){
1357   if (!bound) return false;
1358   assert(array != NULL, "Must not be null!");
1359   assert(bound != NULL, "Must not be null!");
1360   if (bound->lower() >=0 && bound->lower_instr() == NULL && bound->upper() < 0 && bound->upper_instr() != NULL) {
1361     ArrayLength *len = bound->upper_instr()->as_ArrayLength();
1362     if (bound->upper_instr() == array || (len != NULL && len->array() == array)) {
1363       return true;
1364     }
1365   }
1366   return false;
1367 }
1368 
1369 // remove_lower
remove_lower()1370 void RangeCheckEliminator::Bound::remove_lower() {
1371   _lower = min_jint;
1372   _lower_instr = NULL;
1373 }
1374 
1375 // remove_upper
remove_upper()1376 void RangeCheckEliminator::Bound::remove_upper() {
1377   _upper = max_jint;
1378   _upper_instr = NULL;
1379 }
1380 
1381 // upper
upper()1382 int RangeCheckEliminator::Bound::upper() {
1383   return _upper;
1384 }
1385 
1386 // lower
lower()1387 int RangeCheckEliminator::Bound::lower() {
1388   return _lower;
1389 }
1390 
1391 // upper_instr
upper_instr()1392 Value RangeCheckEliminator::Bound::upper_instr() {
1393   return _upper_instr;
1394 }
1395 
1396 // lower_instr
lower_instr()1397 Value RangeCheckEliminator::Bound::lower_instr() {
1398   return _lower_instr;
1399 }
1400 
1401 // print
print()1402 void RangeCheckEliminator::Bound::print() {
1403   tty->print("%s", "");
1404   if (this->_lower_instr || this->_lower != min_jint) {
1405     if (this->_lower_instr) {
1406       tty->print("i%d", this->_lower_instr->id());
1407       if (this->_lower > 0) {
1408         tty->print("+%d", _lower);
1409       }
1410       if (this->_lower < 0) {
1411         tty->print("%d", _lower);
1412       }
1413     } else {
1414       tty->print("%d", _lower);
1415     }
1416     tty->print(" <= ");
1417   }
1418   tty->print("x");
1419   if (this->_upper_instr || this->_upper != max_jint) {
1420     tty->print(" <= ");
1421     if (this->_upper_instr) {
1422       tty->print("i%d", this->_upper_instr->id());
1423       if (this->_upper > 0) {
1424         tty->print("+%d", _upper);
1425       }
1426       if (this->_upper < 0) {
1427         tty->print("%d", _upper);
1428       }
1429     } else {
1430       tty->print("%d", _upper);
1431     }
1432   }
1433 }
1434 
1435 // Copy
copy()1436 RangeCheckEliminator::Bound *RangeCheckEliminator::Bound::copy() {
1437   Bound *b = new Bound();
1438   b->_lower = _lower;
1439   b->_lower_instr = _lower_instr;
1440   b->_upper = _upper;
1441   b->_upper_instr = _upper_instr;
1442   return b;
1443 }
1444 
1445 #ifdef ASSERT
1446 // Add assertion
add_assertion(Instruction * instruction,Instruction * position,int i,Value instr,Instruction::Condition cond)1447 void RangeCheckEliminator::Bound::add_assertion(Instruction *instruction, Instruction *position, int i, Value instr, Instruction::Condition cond) {
1448   Instruction *result = position;
1449   Instruction *compare_with = NULL;
1450   ValueStack *state = position->state_before();
1451   if (position->as_BlockEnd() && !position->as_Goto()) {
1452     state = position->as_BlockEnd()->state_before();
1453   }
1454   Instruction *instruction_before = position->prev();
1455   if (position->as_Return() && Compilation::current()->method()->is_synchronized() && instruction_before->as_MonitorExit()) {
1456     instruction_before = instruction_before->prev();
1457   }
1458   result = instruction_before;
1459   // Load constant only if needed
1460   Constant *constant = NULL;
1461   if (i != 0 || !instr) {
1462     constant = new Constant(new IntConstant(i));
1463     NOT_PRODUCT(constant->set_printable_bci(position->printable_bci()));
1464     result = result->insert_after(constant);
1465     compare_with = constant;
1466   }
1467 
1468   if (instr) {
1469     assert(instr->type()->as_ObjectType() || instr->type()->as_IntType(), "Type must be array or integer!");
1470     compare_with = instr;
1471     // Load array length if necessary
1472     Instruction *op = instr;
1473     if (instr->type()->as_ObjectType()) {
1474       assert(state, "must not be null");
1475       ArrayLength *length = new ArrayLength(instr, state->copy());
1476       NOT_PRODUCT(length->set_printable_bci(position->printable_bci()));
1477       length->set_exception_state(length->state_before());
1478       result = result->insert_after(length);
1479       op = length;
1480       compare_with = length;
1481     }
1482     // Add operation only if necessary
1483     if (constant) {
1484       ArithmeticOp *ao = new ArithmeticOp(Bytecodes::_iadd, constant, op, false, NULL);
1485       NOT_PRODUCT(ao->set_printable_bci(position->printable_bci()));
1486       result = result->insert_after(ao);
1487       compare_with = ao;
1488       // TODO: Check that add operation does not overflow!
1489     }
1490   }
1491   assert(compare_with != NULL, "You have to compare with something!");
1492   assert(instruction != NULL, "Instruction must not be null!");
1493 
1494   if (instruction->type()->as_ObjectType()) {
1495     // Load array length if necessary
1496     Instruction *op = instruction;
1497     assert(state, "must not be null");
1498     ArrayLength *length = new ArrayLength(instruction, state->copy());
1499     length->set_exception_state(length->state_before());
1500     NOT_PRODUCT(length->set_printable_bci(position->printable_bci()));
1501     result = result->insert_after(length);
1502     instruction = length;
1503   }
1504 
1505   Assert *assert = new Assert(instruction, cond, false, compare_with);
1506   NOT_PRODUCT(assert->set_printable_bci(position->printable_bci()));
1507   result->insert_after(assert);
1508 }
1509 
1510 // Add assertions
add_assertions(Bound * bound,Instruction * instruction,Instruction * position)1511 void RangeCheckEliminator::add_assertions(Bound *bound, Instruction *instruction, Instruction *position) {
1512   // Add lower bound assertion
1513   if (bound->has_lower()) {
1514     bound->add_assertion(instruction, position, bound->lower(), bound->lower_instr(), Instruction::geq);
1515   }
1516   // Add upper bound assertion
1517   if (bound->has_upper()) {
1518     bound->add_assertion(instruction, position, bound->upper(), bound->upper_instr(), Instruction::leq);
1519   }
1520 }
1521 #endif
1522 
1523