1 /*
2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "code/nmethod.hpp"
27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
30 #include "gc_implementation/g1/heapRegion.inline.hpp"
31 #include "gc_implementation/g1/heapRegionBounds.inline.hpp"
32 #include "gc_implementation/g1/heapRegionRemSet.hpp"
33 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
34 #include "gc_implementation/shared/liveRange.hpp"
35 #include "memory/genOopClosures.inline.hpp"
36 #include "memory/iterator.hpp"
37 #include "memory/space.inline.hpp"
38 #include "oops/oop.inline.hpp"
39 #include "runtime/orderAccess.inline.hpp"
40 #include "gc_implementation/g1/heapRegionTracer.hpp"
41 
42 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
43 
44 int    HeapRegion::LogOfHRGrainBytes = 0;
45 int    HeapRegion::LogOfHRGrainWords = 0;
46 size_t HeapRegion::GrainBytes        = 0;
47 size_t HeapRegion::GrainWords        = 0;
48 size_t HeapRegion::CardsPerRegion    = 0;
49 
HeapRegionDCTOC(G1CollectedHeap * g1,HeapRegion * hr,G1ParPushHeapRSClosure * cl,CardTableModRefBS::PrecisionStyle precision)50 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
51                                  HeapRegion* hr,
52                                  G1ParPushHeapRSClosure* cl,
53                                  CardTableModRefBS::PrecisionStyle precision) :
54   DirtyCardToOopClosure(hr, cl, precision, NULL),
55   _hr(hr), _rs_scan(cl), _g1(g1) { }
56 
FilterOutOfRegionClosure(HeapRegion * r,OopClosure * oc)57 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
58                                                    OopClosure* oc) :
59   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
60 
walk_mem_region(MemRegion mr,HeapWord * bottom,HeapWord * top)61 void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
62                                       HeapWord* bottom,
63                                       HeapWord* top) {
64   G1CollectedHeap* g1h = _g1;
65   size_t oop_size;
66   HeapWord* cur = bottom;
67 
68   // Start filtering what we add to the remembered set. If the object is
69   // not considered dead, either because it is marked (in the mark bitmap)
70   // or it was allocated after marking finished, then we add it. Otherwise
71   // we can safely ignore the object.
72   if (!g1h->is_obj_dead(oop(cur), _hr)) {
73     oop_size = oop(cur)->oop_iterate(_rs_scan, mr);
74   } else {
75     oop_size = _hr->block_size(cur);
76   }
77 
78   cur += oop_size;
79 
80   if (cur < top) {
81     oop cur_oop = oop(cur);
82     oop_size = _hr->block_size(cur);
83     HeapWord* next_obj = cur + oop_size;
84     while (next_obj < top) {
85       // Keep filtering the remembered set.
86       if (!g1h->is_obj_dead(cur_oop, _hr)) {
87         // Bottom lies entirely below top, so we can call the
88         // non-memRegion version of oop_iterate below.
89         cur_oop->oop_iterate(_rs_scan);
90       }
91       cur = next_obj;
92       cur_oop = oop(cur);
93       oop_size = _hr->block_size(cur);
94       next_obj = cur + oop_size;
95     }
96 
97     // Last object. Need to do dead-obj filtering here too.
98     if (!g1h->is_obj_dead(oop(cur), _hr)) {
99       oop(cur)->oop_iterate(_rs_scan, mr);
100     }
101   }
102 }
103 
max_region_size()104 size_t HeapRegion::max_region_size() {
105   return HeapRegionBounds::max_size();
106 }
107 
setup_heap_region_size(size_t initial_heap_size,size_t max_heap_size)108 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
109   uintx region_size = G1HeapRegionSize;
110   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
111     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
112     region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
113                        (uintx) HeapRegionBounds::min_size());
114   }
115 
116   int region_size_log = log2_long((jlong) region_size);
117   // Recalculate the region size to make sure it's a power of
118   // 2. This means that region_size is the largest power of 2 that's
119   // <= what we've calculated so far.
120   region_size = ((uintx)1 << region_size_log);
121 
122   // Now make sure that we don't go over or under our limits.
123   if (region_size < HeapRegionBounds::min_size()) {
124     region_size = HeapRegionBounds::min_size();
125   } else if (region_size > HeapRegionBounds::max_size()) {
126     region_size = HeapRegionBounds::max_size();
127   }
128 
129   // And recalculate the log.
130   region_size_log = log2_long((jlong) region_size);
131 
132   // Now, set up the globals.
133   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
134   LogOfHRGrainBytes = region_size_log;
135 
136   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
137   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
138 
139   guarantee(GrainBytes == 0, "we should only set it once");
140   // The cast to int is safe, given that we've bounded region_size by
141   // MIN_REGION_SIZE and MAX_REGION_SIZE.
142   GrainBytes = (size_t)region_size;
143 
144   guarantee(GrainWords == 0, "we should only set it once");
145   GrainWords = GrainBytes >> LogHeapWordSize;
146   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
147 
148   guarantee(CardsPerRegion == 0, "we should only set it once");
149   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
150 }
151 
reset_after_compaction()152 void HeapRegion::reset_after_compaction() {
153   G1OffsetTableContigSpace::reset_after_compaction();
154   // After a compaction the mark bitmap is invalid, so we must
155   // treat all objects as being inside the unmarked area.
156   zero_marked_bytes();
157   init_top_at_mark_start();
158 }
159 
hr_clear(bool par,bool clear_space,bool locked)160 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
161   assert(_humongous_start_region == NULL,
162          "we should have already filtered out humongous regions");
163   assert(_end == _orig_end,
164          "we should have already filtered out humongous regions");
165 
166   _in_collection_set = false;
167 
168   set_allocation_context(AllocationContext::system());
169   set_young_index_in_cset(-1);
170   uninstall_surv_rate_group();
171   set_free();
172   reset_pre_dummy_top();
173 
174   if (!par) {
175     // If this is parallel, this will be done later.
176     HeapRegionRemSet* hrrs = rem_set();
177     if (locked) {
178       hrrs->clear_locked();
179     } else {
180       hrrs->clear();
181     }
182     _claimed = InitialClaimValue;
183   }
184   zero_marked_bytes();
185 
186   _offsets.resize(HeapRegion::GrainWords);
187   init_top_at_mark_start();
188   if (clear_space) clear(SpaceDecorator::Mangle);
189 }
190 
par_clear()191 void HeapRegion::par_clear() {
192   assert(used() == 0, "the region should have been already cleared");
193   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
194   HeapRegionRemSet* hrrs = rem_set();
195   hrrs->clear();
196   CardTableModRefBS* ct_bs =
197                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
198   ct_bs->clear(MemRegion(bottom(), end()));
199 }
200 
calc_gc_efficiency()201 void HeapRegion::calc_gc_efficiency() {
202   // GC efficiency is the ratio of how much space would be
203   // reclaimed over how long we predict it would take to reclaim it.
204   G1CollectedHeap* g1h = G1CollectedHeap::heap();
205   G1CollectorPolicy* g1p = g1h->g1_policy();
206 
207   // Retrieve a prediction of the elapsed time for this region for
208   // a mixed gc because the region will only be evacuated during a
209   // mixed gc.
210   double region_elapsed_time_ms =
211     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
212   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
213 }
214 
set_free()215 void HeapRegion::set_free() {
216   report_region_type_change(G1HeapRegionTraceType::Free);
217   _type.set_free();
218 }
219 
set_eden()220 void HeapRegion::set_eden() {
221   report_region_type_change(G1HeapRegionTraceType::Eden);
222   _type.set_eden();
223 }
224 
set_eden_pre_gc()225 void HeapRegion::set_eden_pre_gc() {
226   report_region_type_change(G1HeapRegionTraceType::Eden);
227   _type.set_eden_pre_gc();
228 }
229 
set_survivor()230 void HeapRegion::set_survivor() {
231   report_region_type_change(G1HeapRegionTraceType::Survivor);
232   _type.set_survivor();
233 }
234 
set_old()235 void HeapRegion::set_old() {
236   report_region_type_change(G1HeapRegionTraceType::Old);
237   _type.set_old();
238 }
239 
set_startsHumongous(HeapWord * new_top,HeapWord * new_end)240 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
241   assert(!isHumongous(), "sanity / pre-condition");
242   assert(end() == _orig_end,
243          "Should be normal before the humongous object allocation");
244   assert(top() == bottom(), "should be empty");
245   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
246 
247   report_region_type_change(G1HeapRegionTraceType::StartsHumongous);
248   _type.set_starts_humongous();
249   _humongous_start_region = this;
250 
251   set_end(new_end);
252   _offsets.set_for_starts_humongous(new_top);
253 }
254 
set_continuesHumongous(HeapRegion * first_hr)255 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
256   assert(!isHumongous(), "sanity / pre-condition");
257   assert(end() == _orig_end,
258          "Should be normal before the humongous object allocation");
259   assert(top() == bottom(), "should be empty");
260   assert(first_hr->startsHumongous(), "pre-condition");
261 
262   report_region_type_change(G1HeapRegionTraceType::ContinuesHumongous);
263   _type.set_continues_humongous();
264   _humongous_start_region = first_hr;
265 }
266 
clear_humongous()267 void HeapRegion::clear_humongous() {
268   assert(isHumongous(), "pre-condition");
269 
270   if (startsHumongous()) {
271     assert(top() <= end(), "pre-condition");
272     set_end(_orig_end);
273     if (top() > end()) {
274       // at least one "continues humongous" region after it
275       set_top(end());
276     }
277   } else {
278     // continues humongous
279     assert(end() == _orig_end, "sanity");
280   }
281 
282   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
283   _humongous_start_region = NULL;
284 }
285 
claimHeapRegion(jint claimValue)286 bool HeapRegion::claimHeapRegion(jint claimValue) {
287   jint current = _claimed;
288   if (current != claimValue) {
289     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
290     if (res == current) {
291       return true;
292     }
293   }
294   return false;
295 }
296 
HeapRegion(uint hrm_index,G1BlockOffsetSharedArray * sharedOffsetArray,MemRegion mr)297 HeapRegion::HeapRegion(uint hrm_index,
298                        G1BlockOffsetSharedArray* sharedOffsetArray,
299                        MemRegion mr) :
300     G1OffsetTableContigSpace(sharedOffsetArray, mr),
301     _hrm_index(hrm_index),
302     _allocation_context(AllocationContext::system()),
303     _humongous_start_region(NULL),
304     _in_collection_set(false),
305     _next_in_special_set(NULL), _orig_end(NULL),
306     _claimed(InitialClaimValue), _evacuation_failed(false),
307     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
308     _next_young_region(NULL),
309     _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL),
310 #ifdef ASSERT
311     _containing_set(NULL),
312 #endif // ASSERT
313      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
314     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
315     _predicted_bytes_to_copy(0)
316 {
317   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
318   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
319 
320   initialize(mr);
321 }
322 
initialize(MemRegion mr,bool clear_space,bool mangle_space)323 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
324   assert(_rem_set->is_empty(), "Remembered set must be empty");
325 
326   G1OffsetTableContigSpace::initialize(mr, clear_space, mangle_space);
327 
328   _orig_end = mr.end();
329   hr_clear(false /*par*/, false /*clear_space*/);
330   set_top(bottom());
331   record_timestamp();
332 }
333 
report_region_type_change(G1HeapRegionTraceType::Type to)334 void HeapRegion::report_region_type_change(G1HeapRegionTraceType::Type to) {
335   HeapRegionTracer::send_region_type_change(_hrm_index,
336                                             get_trace_type(),
337                                             to,
338                                             (uintptr_t)bottom(),
339                                             used());
340 }
341 
next_compaction_space() const342 CompactibleSpace* HeapRegion::next_compaction_space() const {
343   return G1CollectedHeap::heap()->next_compaction_region(this);
344 }
345 
note_self_forwarding_removal_start(bool during_initial_mark,bool during_conc_mark)346 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
347                                                     bool during_conc_mark) {
348   // We always recreate the prev marking info and we'll explicitly
349   // mark all objects we find to be self-forwarded on the prev
350   // bitmap. So all objects need to be below PTAMS.
351   _prev_marked_bytes = 0;
352 
353   if (during_initial_mark) {
354     // During initial-mark, we'll also explicitly mark all objects
355     // we find to be self-forwarded on the next bitmap. So all
356     // objects need to be below NTAMS.
357     _next_top_at_mark_start = top();
358     _next_marked_bytes = 0;
359   } else if (during_conc_mark) {
360     // During concurrent mark, all objects in the CSet (including
361     // the ones we find to be self-forwarded) are implicitly live.
362     // So all objects need to be above NTAMS.
363     _next_top_at_mark_start = bottom();
364     _next_marked_bytes = 0;
365   }
366 }
367 
note_self_forwarding_removal_end(bool during_initial_mark,bool during_conc_mark,size_t marked_bytes)368 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
369                                                   bool during_conc_mark,
370                                                   size_t marked_bytes) {
371   assert(0 <= marked_bytes && marked_bytes <= used(),
372          err_msg("marked: " SIZE_FORMAT " used: " SIZE_FORMAT,
373                  marked_bytes, used()));
374   _prev_top_at_mark_start = top();
375   _prev_marked_bytes = marked_bytes;
376 }
377 
378 HeapWord*
object_iterate_mem_careful(MemRegion mr,ObjectClosure * cl)379 HeapRegion::object_iterate_mem_careful(MemRegion mr,
380                                                  ObjectClosure* cl) {
381   G1CollectedHeap* g1h = G1CollectedHeap::heap();
382   // We used to use "block_start_careful" here.  But we're actually happy
383   // to update the BOT while we do this...
384   HeapWord* cur = block_start(mr.start());
385   mr = mr.intersection(used_region());
386   if (mr.is_empty()) return NULL;
387   // Otherwise, find the obj that extends onto mr.start().
388 
389   assert(cur <= mr.start()
390          && (oop(cur)->klass_or_null() == NULL ||
391              cur + oop(cur)->size() > mr.start()),
392          "postcondition of block_start");
393   oop obj;
394   while (cur < mr.end()) {
395     obj = oop(cur);
396     if (obj->klass_or_null() == NULL) {
397       // Ran into an unparseable point.
398       return cur;
399     } else if (!g1h->is_obj_dead(obj)) {
400       cl->do_object(obj);
401     }
402     if (cl->abort()) return cur;
403     // The check above must occur before the operation below, since an
404     // abort might invalidate the "size" operation.
405     cur += block_size(cur);
406   }
407   return NULL;
408 }
409 
410 // Humongous objects are allocated directly in the old-gen.  Need
411 // special handling for concurrent processing encountering an
412 // in-progress allocation.
do_oops_on_card_in_humongous(MemRegion mr,FilterOutOfRegionClosure * cl,HeapRegion * hr,G1CollectedHeap * g1h)413 static bool do_oops_on_card_in_humongous(MemRegion mr,
414                                          FilterOutOfRegionClosure* cl,
415                                          HeapRegion* hr,
416                                          G1CollectedHeap* g1h) {
417   assert(hr->isHumongous(), "precondition");
418   HeapRegion* sr = hr->humongous_start_region();
419   oop obj = oop(sr->bottom());
420 
421   // If concurrent and klass_or_null is NULL, then space has been
422   // allocated but the object has not yet been published by setting
423   // the klass.  That can only happen if the card is stale.  However,
424   // we've already set the card clean, so we must return failure,
425   // since the allocating thread could have performed a write to the
426   // card that might be missed otherwise.
427   if (!g1h->is_gc_active() && (obj->klass_or_null_acquire() == NULL)) {
428     return false;
429   }
430 
431   // Only filler objects follow a humongous object in the containing
432   // regions, and we can ignore those.  So only process the one
433   // humongous object.
434   if (!g1h->is_obj_dead(obj, sr)) {
435     if (obj->is_objArray() || (sr->bottom() < mr.start())) {
436       // objArrays are always marked precisely, so limit processing
437       // with mr.  Non-objArrays might be precisely marked, and since
438       // it's humongous it's worthwhile avoiding full processing.
439       // However, the card could be stale and only cover filler
440       // objects.  That should be rare, so not worth checking for;
441       // instead let it fall out from the bounded iteration.
442       obj->oop_iterate(cl, mr);
443     } else {
444       // If obj is not an objArray and mr contains the start of the
445       // obj, then this could be an imprecise mark, and we need to
446       // process the entire object.
447       obj->oop_iterate(cl);
448     }
449   }
450   return true;
451 }
452 
oops_on_card_seq_iterate_careful(MemRegion mr,FilterOutOfRegionClosure * cl,jbyte * card_ptr)453 bool HeapRegion::oops_on_card_seq_iterate_careful(MemRegion mr,
454                                                   FilterOutOfRegionClosure* cl,
455                                                   jbyte* card_ptr) {
456   assert(card_ptr != NULL, "pre-condition");
457   G1CollectedHeap* g1h = G1CollectedHeap::heap();
458 
459   // If we're within a stop-world GC, then we might look at a card in a
460   // GC alloc region that extends onto a GC LAB, which may not be
461   // parseable.  Stop such at the "scan_top" of the region.
462   if (g1h->is_gc_active()) {
463     mr = mr.intersection(MemRegion(bottom(), scan_top()));
464   } else {
465     mr = mr.intersection(used_region());
466   }
467   if (mr.is_empty()) {
468     return true;
469   }
470 
471   // The intersection of the incoming mr (for the card) and the
472   // allocated part of the region is non-empty. This implies that
473   // we have actually allocated into this region. The code in
474   // G1CollectedHeap.cpp that allocates a new region sets the
475   // is_young tag on the region before allocating. Thus we
476   // safely know if this region is young.
477   if (is_young()) {
478     return true;
479   }
480 
481   // We can only clean the card here, after we make the decision that
482   // the card is not young.
483   *card_ptr = CardTableModRefBS::clean_card_val();
484   // We must complete this write before we do any of the reads below.
485   OrderAccess::storeload();
486 
487   // Special handling for humongous regions.
488   if (isHumongous()) {
489     return do_oops_on_card_in_humongous(mr, cl, this, g1h);
490   }
491 
492   // During GC we limit mr by scan_top. So we never get here with an
493   // mr covering objects allocated during GC.  Non-humongous objects
494   // are only allocated in the old-gen during GC.  So the parts of the
495   // heap that may be examined here are always parsable; there's no
496   // need to use klass_or_null here to detect in-progress allocations.
497 
498   // Cache the boundaries of the memory region in some const locals
499   HeapWord* const start = mr.start();
500   HeapWord* const end = mr.end();
501 
502   // Find the obj that extends onto mr.start().
503   // Update BOT as needed while finding start of (possibly dead)
504   // object containing the start of the region.
505   HeapWord* cur = block_start(start);
506 
507 #ifdef ASSERT
508   {
509     assert(cur <= start,
510            err_msg("cur: " PTR_FORMAT ", start: " PTR_FORMAT, p2i(cur), p2i(start)));
511     HeapWord* next = cur + block_size(cur);
512     assert(start < next,
513            err_msg("start: " PTR_FORMAT ", next: " PTR_FORMAT, p2i(start), p2i(next)));
514   }
515 #endif
516 
517   do {
518     oop obj = oop(cur);
519     assert(obj->is_oop(true), err_msg("Not an oop at " PTR_FORMAT, p2i(cur)));
520     assert(obj->klass_or_null() != NULL,
521            err_msg("Unparsable heap at " PTR_FORMAT, p2i(cur)));
522 
523     if (g1h->is_obj_dead(obj, this)) {
524       // Carefully step over dead object.
525       cur += block_size(cur);
526     } else {
527       // Step over live object, and process its references.
528       cur += obj->size();
529       // Non-objArrays are usually marked imprecise at the object
530       // start, in which case we need to iterate over them in full.
531       // objArrays are precisely marked, but can still be iterated
532       // over in full if completely covered.
533       if (!obj->is_objArray() || (((HeapWord*)obj) >= start && cur <= end)) {
534         obj->oop_iterate(cl);
535       } else {
536         obj->oop_iterate(cl, mr);
537       }
538     }
539   } while (cur < end);
540 
541   return true;
542 }
543 
544 // Code roots support
545 
add_strong_code_root(nmethod * nm)546 void HeapRegion::add_strong_code_root(nmethod* nm) {
547   HeapRegionRemSet* hrrs = rem_set();
548   hrrs->add_strong_code_root(nm);
549 }
550 
add_strong_code_root_locked(nmethod * nm)551 void HeapRegion::add_strong_code_root_locked(nmethod* nm) {
552   assert_locked_or_safepoint(CodeCache_lock);
553   HeapRegionRemSet* hrrs = rem_set();
554   hrrs->add_strong_code_root_locked(nm);
555 }
556 
remove_strong_code_root(nmethod * nm)557 void HeapRegion::remove_strong_code_root(nmethod* nm) {
558   HeapRegionRemSet* hrrs = rem_set();
559   hrrs->remove_strong_code_root(nm);
560 }
561 
strong_code_roots_do(CodeBlobClosure * blk) const562 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
563   HeapRegionRemSet* hrrs = rem_set();
564   hrrs->strong_code_roots_do(blk);
565 }
566 
567 class VerifyStrongCodeRootOopClosure: public OopClosure {
568   const HeapRegion* _hr;
569   nmethod* _nm;
570   bool _failures;
571   bool _has_oops_in_region;
572 
do_oop_work(T * p)573   template <class T> void do_oop_work(T* p) {
574     T heap_oop = oopDesc::load_heap_oop(p);
575     if (!oopDesc::is_null(heap_oop)) {
576       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
577 
578       // Note: not all the oops embedded in the nmethod are in the
579       // current region. We only look at those which are.
580       if (_hr->is_in(obj)) {
581         // Object is in the region. Check that its less than top
582         if (_hr->top() <= (HeapWord*)obj) {
583           // Object is above top
584           gclog_or_tty->print_cr("Object " PTR_FORMAT " in region "
585                                  "[" PTR_FORMAT ", " PTR_FORMAT ") is above "
586                                  "top " PTR_FORMAT,
587                                  (void *)obj, _hr->bottom(), _hr->end(), _hr->top());
588           _failures = true;
589           return;
590         }
591         // Nmethod has at least one oop in the current region
592         _has_oops_in_region = true;
593       }
594     }
595   }
596 
597 public:
VerifyStrongCodeRootOopClosure(const HeapRegion * hr,nmethod * nm)598   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
599     _hr(hr), _failures(false), _has_oops_in_region(false) {}
600 
do_oop(narrowOop * p)601   void do_oop(narrowOop* p) { do_oop_work(p); }
do_oop(oop * p)602   void do_oop(oop* p)       { do_oop_work(p); }
603 
failures()604   bool failures()           { return _failures; }
has_oops_in_region()605   bool has_oops_in_region() { return _has_oops_in_region; }
606 };
607 
608 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
609   const HeapRegion* _hr;
610   bool _failures;
611 public:
VerifyStrongCodeRootCodeBlobClosure(const HeapRegion * hr)612   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
613     _hr(hr), _failures(false) {}
614 
do_code_blob(CodeBlob * cb)615   void do_code_blob(CodeBlob* cb) {
616     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
617     if (nm != NULL) {
618       // Verify that the nemthod is live
619       if (!nm->is_alive()) {
620         gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] has dead nmethod "
621                                PTR_FORMAT " in its strong code roots",
622                                _hr->bottom(), _hr->end(), nm);
623         _failures = true;
624       } else {
625         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
626         nm->oops_do(&oop_cl);
627         if (!oop_cl.has_oops_in_region()) {
628           gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] has nmethod "
629                                  PTR_FORMAT " in its strong code roots "
630                                  "with no pointers into region",
631                                  _hr->bottom(), _hr->end(), nm);
632           _failures = true;
633         } else if (oop_cl.failures()) {
634           gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] has other "
635                                  "failures for nmethod " PTR_FORMAT,
636                                  _hr->bottom(), _hr->end(), nm);
637           _failures = true;
638         }
639       }
640     }
641   }
642 
failures()643   bool failures()       { return _failures; }
644 };
645 
verify_strong_code_roots(VerifyOption vo,bool * failures) const646 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
647   if (!G1VerifyHeapRegionCodeRoots) {
648     // We're not verifying code roots.
649     return;
650   }
651   if (vo == VerifyOption_G1UseMarkWord) {
652     // Marking verification during a full GC is performed after class
653     // unloading, code cache unloading, etc so the strong code roots
654     // attached to each heap region are in an inconsistent state. They won't
655     // be consistent until the strong code roots are rebuilt after the
656     // actual GC. Skip verifying the strong code roots in this particular
657     // time.
658     assert(VerifyDuringGC, "only way to get here");
659     return;
660   }
661 
662   HeapRegionRemSet* hrrs = rem_set();
663   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
664 
665   // if this region is empty then there should be no entries
666   // on its strong code root list
667   if (is_empty()) {
668     if (strong_code_roots_length > 0) {
669       gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] is empty "
670                              "but has " SIZE_FORMAT " code root entries",
671                              bottom(), end(), strong_code_roots_length);
672       *failures = true;
673     }
674     return;
675   }
676 
677   if (continuesHumongous()) {
678     if (strong_code_roots_length > 0) {
679       gclog_or_tty->print_cr("region " HR_FORMAT " is a continuation of a humongous "
680                              "region but has " SIZE_FORMAT " code root entries",
681                              HR_FORMAT_PARAMS(this), strong_code_roots_length);
682       *failures = true;
683     }
684     return;
685   }
686 
687   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
688   strong_code_roots_do(&cb_cl);
689 
690   if (cb_cl.failures()) {
691     *failures = true;
692   }
693 }
694 
print() const695 void HeapRegion::print() const { print_on(gclog_or_tty); }
print_on(outputStream * st) const696 void HeapRegion::print_on(outputStream* st) const {
697   st->print("AC%4u", allocation_context());
698   st->print(" %2s", get_short_type_str());
699   if (in_collection_set())
700     st->print(" CS");
701   else
702     st->print("   ");
703   st->print(" TS %5d", _gc_time_stamp);
704   st->print(" PTAMS " PTR_FORMAT " NTAMS " PTR_FORMAT,
705             prev_top_at_mark_start(), next_top_at_mark_start());
706   G1OffsetTableContigSpace::print_on(st);
707 }
708 
709 class G1VerificationClosure : public OopClosure {
710 protected:
711   G1CollectedHeap* _g1h;
712   CardTableModRefBS* _bs;
713   oop _containing_obj;
714   bool _failures;
715   int _n_failures;
716   VerifyOption _vo;
717 public:
718   // _vo == UsePrevMarking -> use "prev" marking information,
719   // _vo == UseNextMarking -> use "next" marking information,
720   // _vo == UseMarkWord    -> use mark word from object header.
G1VerificationClosure(G1CollectedHeap * g1h,VerifyOption vo)721   G1VerificationClosure(G1CollectedHeap* g1h, VerifyOption vo) :
722     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
723     _failures(false), _n_failures(0), _vo(vo)
724   {
725     BarrierSet* bs = _g1h->barrier_set();
726     if (bs->is_a(BarrierSet::CardTableModRef))
727       _bs = (CardTableModRefBS*)bs;
728   }
729 
set_containing_obj(oop obj)730   void set_containing_obj(oop obj) {
731     _containing_obj = obj;
732   }
733 
failures()734   bool failures() { return _failures; }
n_failures()735   int n_failures() { return _n_failures; }
736 
print_object(outputStream * out,oop obj)737   void print_object(outputStream* out, oop obj) {
738 #ifdef PRODUCT
739     Klass* k = obj->klass();
740     const char* class_name = InstanceKlass::cast(k)->external_name();
741     out->print_cr("class name %s", class_name);
742 #else // PRODUCT
743     obj->print_on(out);
744 #endif // PRODUCT
745   }
746 };
747 
748 class VerifyLiveClosure : public G1VerificationClosure {
749 public:
VerifyLiveClosure(G1CollectedHeap * g1h,VerifyOption vo)750   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
do_oop(narrowOop * p)751   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
do_oop(oop * p)752   virtual void do_oop(oop* p) { do_oop_work(p); }
753 
754   template <class T>
do_oop_work(T * p)755   void do_oop_work(T* p) {
756     assert(_containing_obj != NULL, "Precondition");
757     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
758       "Precondition");
759     verify_liveness(p);
760   }
761 
762   template <class T>
verify_liveness(T * p)763   void verify_liveness(T* p) {
764     T heap_oop = oopDesc::load_heap_oop(p);
765     if (!oopDesc::is_null(heap_oop)) {
766       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
767       bool failed = false;
768       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
769         MutexLockerEx x(ParGCRareEvent_lock,
770           Mutex::_no_safepoint_check_flag);
771 
772         if (!_failures) {
773           gclog_or_tty->cr();
774           gclog_or_tty->print_cr("----------");
775         }
776         if (!_g1h->is_in_closed_subset(obj)) {
777           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
778           gclog_or_tty->print_cr("Field " PTR_FORMAT
779                                  " of live obj " PTR_FORMAT " in region "
780                                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
781                                  p, (void*) _containing_obj,
782                                  from->bottom(), from->end());
783           print_object(gclog_or_tty, _containing_obj);
784           gclog_or_tty->print_cr("points to obj " PTR_FORMAT " not in the heap",
785                                  (void*) obj);
786         } else {
787           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
788           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
789           gclog_or_tty->print_cr("Field " PTR_FORMAT
790                                  " of live obj " PTR_FORMAT " in region "
791                                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
792                                  p, (void*) _containing_obj,
793                                  from->bottom(), from->end());
794           print_object(gclog_or_tty, _containing_obj);
795           gclog_or_tty->print_cr("points to dead obj " PTR_FORMAT " in region "
796                                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
797                                  (void*) obj, to->bottom(), to->end());
798           print_object(gclog_or_tty, obj);
799         }
800         gclog_or_tty->print_cr("----------");
801         gclog_or_tty->flush();
802         _failures = true;
803         failed = true;
804         _n_failures++;
805       }
806     }
807   }
808 };
809 
810 class VerifyRemSetClosure : public G1VerificationClosure {
811 public:
VerifyRemSetClosure(G1CollectedHeap * g1h,VerifyOption vo)812   VerifyRemSetClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
do_oop(narrowOop * p)813   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
do_oop(oop * p)814   virtual void do_oop(oop* p) { do_oop_work(p); }
815 
816   template <class T>
do_oop_work(T * p)817   void do_oop_work(T* p) {
818     assert(_containing_obj != NULL, "Precondition");
819     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
820       "Precondition");
821     verify_remembered_set(p);
822   }
823 
824   template <class T>
verify_remembered_set(T * p)825   void verify_remembered_set(T* p) {
826     T heap_oop = oopDesc::load_heap_oop(p);
827     if (!oopDesc::is_null(heap_oop)) {
828       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
829       bool failed = false;
830       HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
831       HeapRegion* to   = _g1h->heap_region_containing(obj);
832       if (from != NULL && to != NULL &&
833           from != to &&
834           !to->isHumongous()) {
835         jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
836         jbyte cv_field = *_bs->byte_for_const(p);
837         const jbyte dirty = CardTableModRefBS::dirty_card_val();
838 
839         bool is_bad = !(from->is_young()
840                         || to->rem_set()->contains_reference(p)
841                         || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
842                             (_containing_obj->is_objArray() ?
843                                 cv_field == dirty
844                              : cv_obj == dirty || cv_field == dirty));
845         if (is_bad) {
846           MutexLockerEx x(ParGCRareEvent_lock,
847                           Mutex::_no_safepoint_check_flag);
848 
849           if (!_failures) {
850             gclog_or_tty->cr();
851             gclog_or_tty->print_cr("----------");
852           }
853           gclog_or_tty->print_cr("Missing rem set entry:");
854           gclog_or_tty->print_cr("Field " PTR_FORMAT " "
855                                  "of obj " PTR_FORMAT ", "
856                                  "in region " HR_FORMAT,
857                                  p, (void*) _containing_obj,
858                                  HR_FORMAT_PARAMS(from));
859           _containing_obj->print_on(gclog_or_tty);
860           gclog_or_tty->print_cr("points to obj " PTR_FORMAT " "
861                                  "in region " HR_FORMAT,
862                                  (void*) obj,
863                                  HR_FORMAT_PARAMS(to));
864           if (obj->is_oop()) {
865             obj->print_on(gclog_or_tty);
866           }
867           gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
868                         cv_obj, cv_field);
869           gclog_or_tty->print_cr("----------");
870           gclog_or_tty->flush();
871           _failures = true;
872           if (!failed) _n_failures++;
873         }
874       }
875     }
876   }
877 };
878 
879 // This really ought to be commoned up into OffsetTableContigSpace somehow.
880 // We would need a mechanism to make that code skip dead objects.
881 
verify(VerifyOption vo,bool * failures) const882 void HeapRegion::verify(VerifyOption vo,
883                         bool* failures) const {
884   G1CollectedHeap* g1 = G1CollectedHeap::heap();
885   *failures = false;
886   HeapWord* p = bottom();
887   HeapWord* prev_p = NULL;
888   VerifyLiveClosure vl_cl(g1, vo);
889   VerifyRemSetClosure vr_cl(g1, vo);
890   bool is_humongous = isHumongous();
891   bool do_bot_verify = !is_young();
892   size_t object_num = 0;
893   while (p < top()) {
894     oop obj = oop(p);
895     size_t obj_size = block_size(p);
896     object_num += 1;
897 
898     if (is_humongous != g1->isHumongous(obj_size) &&
899         !g1->is_obj_dead(obj, this)) { // Dead objects may have bigger block_size since they span several objects.
900       gclog_or_tty->print_cr("obj " PTR_FORMAT " is of %shumongous size ("
901                              SIZE_FORMAT " words) in a %shumongous region",
902                              p, g1->isHumongous(obj_size) ? "" : "non-",
903                              obj_size, is_humongous ? "" : "non-");
904        *failures = true;
905        return;
906     }
907 
908     // If it returns false, verify_for_object() will output the
909     // appropriate message.
910     if (do_bot_verify &&
911         !g1->is_obj_dead(obj, this) &&
912         !_offsets.verify_for_object(p, obj_size)) {
913       *failures = true;
914       return;
915     }
916 
917     if (!g1->is_obj_dead_cond(obj, this, vo)) {
918       if (obj->is_oop()) {
919         Klass* klass = obj->klass();
920         bool is_metaspace_object = Metaspace::contains(klass) ||
921                                    (vo == VerifyOption_G1UsePrevMarking &&
922                                    ClassLoaderDataGraph::unload_list_contains(klass));
923         if (!is_metaspace_object) {
924           gclog_or_tty->print_cr("klass " PTR_FORMAT " of object " PTR_FORMAT " "
925                                  "not metadata", klass, (void *)obj);
926           *failures = true;
927           return;
928         } else if (!klass->is_klass()) {
929           gclog_or_tty->print_cr("klass " PTR_FORMAT " of object " PTR_FORMAT " "
930                                  "not a klass", klass, (void *)obj);
931           *failures = true;
932           return;
933         } else {
934           vl_cl.set_containing_obj(obj);
935           if (!g1->full_collection() || G1VerifyRSetsDuringFullGC) {
936             // verify liveness and rem_set
937             vr_cl.set_containing_obj(obj);
938             G1Mux2Closure mux(&vl_cl, &vr_cl);
939             obj->oop_iterate_no_header(&mux);
940 
941             if (vr_cl.failures()) {
942               *failures = true;
943             }
944             if (G1MaxVerifyFailures >= 0 &&
945               vr_cl.n_failures() >= G1MaxVerifyFailures) {
946               return;
947             }
948           } else {
949             // verify only liveness
950             obj->oop_iterate_no_header(&vl_cl);
951           }
952           if (vl_cl.failures()) {
953             *failures = true;
954           }
955           if (G1MaxVerifyFailures >= 0 &&
956               vl_cl.n_failures() >= G1MaxVerifyFailures) {
957             return;
958           }
959         }
960       } else {
961         gclog_or_tty->print_cr(PTR_FORMAT " not an oop", (void *)obj);
962         *failures = true;
963         return;
964       }
965     }
966     prev_p = p;
967     p += obj_size;
968   }
969 
970   if (p != top()) {
971     gclog_or_tty->print_cr("end of last object " PTR_FORMAT " "
972                            "does not match top " PTR_FORMAT, p, top());
973     *failures = true;
974     return;
975   }
976 
977   HeapWord* the_end = end();
978   assert(p == top(), "it should still hold");
979   // Do some extra BOT consistency checking for addresses in the
980   // range [top, end). BOT look-ups in this range should yield
981   // top. No point in doing that if top == end (there's nothing there).
982   if (p < the_end) {
983     // Look up top
984     HeapWord* addr_1 = p;
985     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
986     if (b_start_1 != p) {
987       gclog_or_tty->print_cr("BOT look up for top: " PTR_FORMAT " "
988                              " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
989                              addr_1, b_start_1, p);
990       *failures = true;
991       return;
992     }
993 
994     // Look up top + 1
995     HeapWord* addr_2 = p + 1;
996     if (addr_2 < the_end) {
997       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
998       if (b_start_2 != p) {
999         gclog_or_tty->print_cr("BOT look up for top + 1: " PTR_FORMAT " "
1000                                " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
1001                                addr_2, b_start_2, p);
1002         *failures = true;
1003         return;
1004       }
1005     }
1006 
1007     // Look up an address between top and end
1008     size_t diff = pointer_delta(the_end, p) / 2;
1009     HeapWord* addr_3 = p + diff;
1010     if (addr_3 < the_end) {
1011       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
1012       if (b_start_3 != p) {
1013         gclog_or_tty->print_cr("BOT look up for top + diff: " PTR_FORMAT " "
1014                                " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
1015                                addr_3, b_start_3, p);
1016         *failures = true;
1017         return;
1018       }
1019     }
1020 
1021     // Loook up end - 1
1022     HeapWord* addr_4 = the_end - 1;
1023     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
1024     if (b_start_4 != p) {
1025       gclog_or_tty->print_cr("BOT look up for end - 1: " PTR_FORMAT " "
1026                              " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
1027                              addr_4, b_start_4, p);
1028       *failures = true;
1029       return;
1030     }
1031   }
1032 
1033   if (is_humongous && object_num > 1) {
1034     gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] is humongous "
1035                            "but has " SIZE_FORMAT ", objects",
1036                            bottom(), end(), object_num);
1037     *failures = true;
1038     return;
1039   }
1040 
1041   verify_strong_code_roots(vo, failures);
1042 }
1043 
verify() const1044 void HeapRegion::verify() const {
1045   bool dummy = false;
1046   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
1047 }
1048 
verify_rem_set(VerifyOption vo,bool * failures) const1049 void HeapRegion::verify_rem_set(VerifyOption vo, bool* failures) const {
1050   G1CollectedHeap* g1 = G1CollectedHeap::heap();
1051   *failures = false;
1052   HeapWord* p = bottom();
1053   HeapWord* prev_p = NULL;
1054   VerifyRemSetClosure vr_cl(g1, vo);
1055   while (p < top()) {
1056     oop obj = oop(p);
1057     size_t obj_size = block_size(p);
1058 
1059     if (!g1->is_obj_dead_cond(obj, this, vo)) {
1060       if (obj->is_oop()) {
1061         vr_cl.set_containing_obj(obj);
1062         obj->oop_iterate_no_header(&vr_cl);
1063 
1064         if (vr_cl.failures()) {
1065           *failures = true;
1066         }
1067         if (G1MaxVerifyFailures >= 0 &&
1068           vr_cl.n_failures() >= G1MaxVerifyFailures) {
1069           return;
1070         }
1071       } else {
1072         gclog_or_tty->print_cr(PTR_FORMAT " not an oop", p2i(obj));
1073         *failures = true;
1074         return;
1075       }
1076     }
1077 
1078     prev_p = p;
1079     p += obj_size;
1080   }
1081 }
1082 
verify_rem_set() const1083 void HeapRegion::verify_rem_set() const {
1084   bool failures = false;
1085   verify_rem_set(VerifyOption_G1UsePrevMarking, &failures);
1086   guarantee(!failures, "HeapRegion RemSet verification failed");
1087 }
1088 
1089 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
1090 // away eventually.
1091 
clear(bool mangle_space)1092 void G1OffsetTableContigSpace::clear(bool mangle_space) {
1093   set_top(bottom());
1094   _scan_top = bottom();
1095   CompactibleSpace::clear(mangle_space);
1096   reset_bot();
1097 }
1098 
set_bottom(HeapWord * new_bottom)1099 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
1100   Space::set_bottom(new_bottom);
1101   _offsets.set_bottom(new_bottom);
1102 }
1103 
set_end(HeapWord * new_end)1104 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
1105   Space::set_end(new_end);
1106   _offsets.resize(new_end - bottom());
1107 }
1108 
print() const1109 void G1OffsetTableContigSpace::print() const {
1110   print_short();
1111   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
1112                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
1113                 bottom(), top(), _offsets.threshold(), end());
1114 }
1115 
initialize_threshold()1116 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
1117   return _offsets.initialize_threshold();
1118 }
1119 
cross_threshold(HeapWord * start,HeapWord * end)1120 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
1121                                                     HeapWord* end) {
1122   _offsets.alloc_block(start, end);
1123   return _offsets.threshold();
1124 }
1125 
scan_top() const1126 HeapWord* G1OffsetTableContigSpace::scan_top() const {
1127   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1128   HeapWord* local_top = top();
1129   OrderAccess::loadload();
1130   const unsigned local_time_stamp = _gc_time_stamp;
1131   assert(local_time_stamp <= g1h->get_gc_time_stamp(), "invariant");
1132   if (local_time_stamp < g1h->get_gc_time_stamp()) {
1133     return local_top;
1134   } else {
1135     return _scan_top;
1136   }
1137 }
1138 
record_timestamp()1139 void G1OffsetTableContigSpace::record_timestamp() {
1140   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1141   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
1142 
1143   if (_gc_time_stamp < curr_gc_time_stamp) {
1144     // Setting the time stamp here tells concurrent readers to look at
1145     // scan_top to know the maximum allowed address to look at.
1146 
1147     // scan_top should be bottom for all regions except for the
1148     // retained old alloc region which should have scan_top == top
1149     HeapWord* st = _scan_top;
1150     guarantee(st == _bottom || st == _top, "invariant");
1151 
1152     _gc_time_stamp = curr_gc_time_stamp;
1153   }
1154 }
1155 
record_retained_region()1156 void G1OffsetTableContigSpace::record_retained_region() {
1157   // scan_top is the maximum address where it's safe for the next gc to
1158   // scan this region.
1159   _scan_top = top();
1160 }
1161 
safe_object_iterate(ObjectClosure * blk)1162 void G1OffsetTableContigSpace::safe_object_iterate(ObjectClosure* blk) {
1163   object_iterate(blk);
1164 }
1165 
object_iterate(ObjectClosure * blk)1166 void G1OffsetTableContigSpace::object_iterate(ObjectClosure* blk) {
1167   HeapWord* p = bottom();
1168   while (p < top()) {
1169     if (block_is_obj(p)) {
1170       blk->do_object(oop(p));
1171     }
1172     p += block_size(p);
1173   }
1174 }
1175 
1176 #define block_is_always_obj(q) true
prepare_for_compaction(CompactPoint * cp)1177 void G1OffsetTableContigSpace::prepare_for_compaction(CompactPoint* cp) {
1178   SCAN_AND_FORWARD(cp, top, block_is_always_obj, block_size);
1179 }
1180 #undef block_is_always_obj
1181 
1182 G1OffsetTableContigSpace::
G1OffsetTableContigSpace(G1BlockOffsetSharedArray * sharedOffsetArray,MemRegion mr)1183 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
1184                          MemRegion mr) :
1185   _offsets(sharedOffsetArray, mr),
1186   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
1187   _gc_time_stamp(0)
1188 {
1189   _offsets.set_space(this);
1190 }
1191 
initialize(MemRegion mr,bool clear_space,bool mangle_space)1192 void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
1193   CompactibleSpace::initialize(mr, clear_space, mangle_space);
1194   _top = bottom();
1195   _scan_top = bottom();
1196   set_saved_mark_word(NULL);
1197   reset_bot();
1198 }
1199 
1200