1 /*
2  * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
26 #define SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
27 
28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
29 #include "memory/collectorPolicy.hpp"
30 #include "memory/generation.hpp"
31 #include "memory/sharedHeap.hpp"
32 
33 class SubTasksDone;
34 
35 // A "GenCollectedHeap" is a SharedHeap that uses generational
36 // collection.  It is represented with a sequence of Generation's.
37 class GenCollectedHeap : public SharedHeap {
38   friend class GenCollectorPolicy;
39   friend class Generation;
40   friend class DefNewGeneration;
41   friend class TenuredGeneration;
42   friend class ConcurrentMarkSweepGeneration;
43   friend class CMSCollector;
44   friend class GenMarkSweep;
45   friend class VM_GenCollectForAllocation;
46   friend class VM_GenCollectFull;
47   friend class VM_GenCollectFullConcurrent;
48   friend class VM_GC_HeapInspection;
49   friend class VM_HeapDumper;
50   friend class HeapInspection;
51   friend class GCCauseSetter;
52   friend class VMStructs;
53 public:
54   enum SomeConstants {
55     max_gens = 10
56   };
57 
58   friend class VM_PopulateDumpSharedSpace;
59 
60  protected:
61   // Fields:
62   static GenCollectedHeap* _gch;
63 
64  private:
65   int _n_gens;
66   Generation* _gens[max_gens];
67   GenerationSpec** _gen_specs;
68 
69   // The generational collector policy.
70   GenCollectorPolicy* _gen_policy;
71 
72   // Indicates that the most recent previous incremental collection failed.
73   // The flag is cleared when an action is taken that might clear the
74   // condition that caused that incremental collection to fail.
75   bool _incremental_collection_failed;
76 
77   // In support of ExplicitGCInvokesConcurrent functionality
78   unsigned int _full_collections_completed;
79 
80   // Data structure for claiming the (potentially) parallel tasks in
81   // (gen-specific) roots processing.
82   SubTasksDone* _process_strong_tasks;
83 
84   // In block contents verification, the number of header words to skip
85   NOT_PRODUCT(static size_t _skip_header_HeapWords;)
86 
87 protected:
88   // Helper functions for allocation
89   HeapWord* attempt_allocation(size_t size,
90                                bool   is_tlab,
91                                bool   first_only);
92 
93   // Helper function for two callbacks below.
94   // Considers collection of the first max_level+1 generations.
95   void do_collection(bool   full,
96                      bool   clear_all_soft_refs,
97                      size_t size,
98                      bool   is_tlab,
99                      int    max_level);
100 
101   // Callback from VM_GenCollectForAllocation operation.
102   // This function does everything necessary/possible to satisfy an
103   // allocation request that failed in the youngest generation that should
104   // have handled it (including collection, expansion, etc.)
105   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
106 
107   // Callback from VM_GenCollectFull operation.
108   // Perform a full collection of the first max_level+1 generations.
109   virtual void do_full_collection(bool clear_all_soft_refs);
110   void do_full_collection(bool clear_all_soft_refs, int max_level);
111 
112   // Does the "cause" of GC indicate that
113   // we absolutely __must__ clear soft refs?
114   bool must_clear_all_soft_refs();
115 
116 public:
117   GenCollectedHeap(GenCollectorPolicy *policy);
118 
119   GCStats* gc_stats(int level) const;
120 
121   // Returns JNI_OK on success
122   virtual jint initialize();
123   char* allocate(size_t alignment,
124                  size_t* _total_reserved, int* _n_covered_regions,
125                  ReservedSpace* heap_rs);
126 
127   // Does operations required after initialization has been done.
128   void post_initialize();
129 
130   // Initialize ("weak") refs processing support
131   virtual void ref_processing_init();
132 
kind() const133   virtual CollectedHeap::Name kind() const {
134     return CollectedHeap::GenCollectedHeap;
135   }
136 
137   // The generational collector policy.
gen_policy() const138   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
collector_policy() const139   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) gen_policy(); }
140 
141   // Adaptive size policy
size_policy()142   virtual AdaptiveSizePolicy* size_policy() {
143     return gen_policy()->size_policy();
144   }
145 
146   // Return the (conservative) maximum heap alignment
conservative_max_heap_alignment()147   static size_t conservative_max_heap_alignment() {
148     return Generation::GenGrain;
149   }
150 
151   size_t capacity() const;
152   size_t used() const;
153 
154   // Save the "used_region" for generations level and lower.
155   void save_used_regions(int level);
156 
157   size_t max_capacity() const;
158 
159   HeapWord* mem_allocate(size_t size,
160                          bool*  gc_overhead_limit_was_exceeded);
161 
162   // We may support a shared contiguous allocation area, if the youngest
163   // generation does.
164   bool supports_inline_contig_alloc() const;
165   HeapWord** top_addr() const;
166   HeapWord** end_addr() const;
167 
168   // Does this heap support heap inspection? (+PrintClassHistogram)
supports_heap_inspection() const169   virtual bool supports_heap_inspection() const { return true; }
170 
171   // Perform a full collection of the heap; intended for use in implementing
172   // "System.gc". This implies as full a collection as the CollectedHeap
173   // supports. Caller does not hold the Heap_lock on entry.
174   void collect(GCCause::Cause cause);
175 
176   // The same as above but assume that the caller holds the Heap_lock.
177   void collect_locked(GCCause::Cause cause);
178 
179   // Perform a full collection of the first max_level+1 generations.
180   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
181   void collect(GCCause::Cause cause, int max_level);
182 
183   // Returns "TRUE" iff "p" points into the committed areas of the heap.
184   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
185   // be expensive to compute in general, so, to prevent
186   // their inadvertent use in product jvm's, we restrict their use to
187   // assertion checking or verification only.
188   bool is_in(const void* p) const;
189 
190   // override
is_in_closed_subset(const void * p) const191   bool is_in_closed_subset(const void* p) const {
192     if (UseConcMarkSweepGC) {
193       return is_in_reserved(p);
194     } else {
195       return is_in(p);
196     }
197   }
198 
199   // Returns true if the reference is to an object in the reserved space
200   // for the young generation.
201   // Assumes the the young gen address range is less than that of the old gen.
202   bool is_in_young(oop p);
203 
204 #ifdef ASSERT
205   virtual bool is_in_partial_collection(const void* p);
206 #endif
207 
is_scavengable(const void * addr)208   virtual bool is_scavengable(const void* addr) {
209     return is_in_young((oop)addr);
210   }
211 
212   // Iteration functions.
213   void oop_iterate(ExtendedOopClosure* cl);
214   void object_iterate(ObjectClosure* cl);
215   void safe_object_iterate(ObjectClosure* cl);
216   Space* space_containing(const void* addr) const;
217 
218   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
219   // each address in the (reserved) heap is a member of exactly
220   // one block.  The defining characteristic of a block is that it is
221   // possible to find its size, and thus to progress forward to the next
222   // block.  (Blocks may be of different sizes.)  Thus, blocks may
223   // represent Java objects, or they might be free blocks in a
224   // free-list-based heap (or subheap), as long as the two kinds are
225   // distinguishable and the size of each is determinable.
226 
227   // Returns the address of the start of the "block" that contains the
228   // address "addr".  We say "blocks" instead of "object" since some heaps
229   // may not pack objects densely; a chunk may either be an object or a
230   // non-object.
231   virtual HeapWord* block_start(const void* addr) const;
232 
233   // Requires "addr" to be the start of a chunk, and returns its size.
234   // "addr + size" is required to be the start of a new chunk, or the end
235   // of the active area of the heap. Assumes (and verifies in non-product
236   // builds) that addr is in the allocated part of the heap and is
237   // the start of a chunk.
238   virtual size_t block_size(const HeapWord* addr) const;
239 
240   // Requires "addr" to be the start of a block, and returns "TRUE" iff
241   // the block is an object. Assumes (and verifies in non-product
242   // builds) that addr is in the allocated part of the heap and is
243   // the start of a chunk.
244   virtual bool block_is_obj(const HeapWord* addr) const;
245 
246   // Section on TLAB's.
247   virtual bool supports_tlab_allocation() const;
248   virtual size_t tlab_capacity(Thread* thr) const;
249   virtual size_t tlab_used(Thread* thr) const;
250   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
251   virtual HeapWord* allocate_new_tlab(size_t size);
252 
253   // Can a compiler initialize a new object without store barriers?
254   // This permission only extends from the creation of a new object
255   // via a TLAB up to the first subsequent safepoint.
can_elide_tlab_store_barriers() const256   virtual bool can_elide_tlab_store_barriers() const {
257     return true;
258   }
259 
card_mark_must_follow_store() const260   virtual bool card_mark_must_follow_store() const {
261     return UseConcMarkSweepGC;
262   }
263 
264   // We don't need barriers for stores to objects in the
265   // young gen and, a fortiori, for initializing stores to
266   // objects therein. This applies to {DefNew,ParNew}+{Tenured,CMS}
267   // only and may need to be re-examined in case other
268   // kinds of collectors are implemented in the future.
can_elide_initializing_store_barrier(oop new_obj)269   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
270     // We wanted to assert that:-
271     // assert(UseParNewGC || UseSerialGC || UseConcMarkSweepGC,
272     //       "Check can_elide_initializing_store_barrier() for this collector");
273     // but unfortunately the flag UseSerialGC need not necessarily always
274     // be set when DefNew+Tenured are being used.
275     return is_in_young(new_obj);
276   }
277 
278   // The "requestor" generation is performing some garbage collection
279   // action for which it would be useful to have scratch space.  The
280   // requestor promises to allocate no more than "max_alloc_words" in any
281   // older generation (via promotion say.)   Any blocks of space that can
282   // be provided are returned as a list of ScratchBlocks, sorted by
283   // decreasing size.
284   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
285   // Allow each generation to reset any scratch space that it has
286   // contributed as it needs.
287   void release_scratch();
288 
289   // Ensure parsability: override
290   virtual void ensure_parsability(bool retire_tlabs);
291 
292   // Time in ms since the longest time a collector ran in
293   // in any generation.
294   virtual jlong millis_since_last_gc();
295 
296   // Total number of full collections completed.
total_full_collections_completed()297   unsigned int total_full_collections_completed() {
298     assert(_full_collections_completed <= _total_full_collections,
299            "Can't complete more collections than were started");
300     return _full_collections_completed;
301   }
302 
303   // Update above counter, as appropriate, at the end of a stop-world GC cycle
304   unsigned int update_full_collections_completed();
305   // Update above counter, as appropriate, at the end of a concurrent GC cycle
306   unsigned int update_full_collections_completed(unsigned int count);
307 
308   // Update "time of last gc" for all constituent generations
309   // to "now".
update_time_of_last_gc(jlong now)310   void update_time_of_last_gc(jlong now) {
311     for (int i = 0; i < _n_gens; i++) {
312       _gens[i]->update_time_of_last_gc(now);
313     }
314   }
315 
316   // Update the gc statistics for each generation.
317   // "level" is the level of the lastest collection
update_gc_stats(int current_level,bool full)318   void update_gc_stats(int current_level, bool full) {
319     for (int i = 0; i < _n_gens; i++) {
320       _gens[i]->update_gc_stats(current_level, full);
321     }
322   }
323 
324   // Override.
no_gc_in_progress()325   bool no_gc_in_progress() { return !is_gc_active(); }
326 
327   // Override.
328   void prepare_for_verify();
329 
330   // Override.
331   void verify(bool silent, VerifyOption option);
332 
333   // Override.
334   virtual void print_on(outputStream* st) const;
335   virtual void print_gc_threads_on(outputStream* st) const;
336   virtual void gc_threads_do(ThreadClosure* tc) const;
337   virtual void print_tracing_info() const;
338   virtual void print_on_error(outputStream* st) const;
339 
340   // PrintGC, PrintGCDetails support
341   void print_heap_change(size_t prev_used) const;
342 
343   // The functions below are helper functions that a subclass of
344   // "CollectedHeap" can use in the implementation of its virtual
345   // functions.
346 
347   class GenClosure : public StackObj {
348    public:
349     virtual void do_generation(Generation* gen) = 0;
350   };
351 
352   // Apply "cl.do_generation" to all generations in the heap
353   // If "old_to_young" determines the order.
354   void generation_iterate(GenClosure* cl, bool old_to_young);
355 
356   void space_iterate(SpaceClosure* cl);
357 
358   // Return "true" if all generations have reached the
359   // maximal committed limit that they can reach, without a garbage
360   // collection.
361   virtual bool is_maximal_no_gc() const;
362 
363   // Return the generation before "gen".
prev_gen(Generation * gen) const364   Generation* prev_gen(Generation* gen) const {
365     int l = gen->level();
366     guarantee(l > 0, "Out of bounds");
367     return _gens[l-1];
368   }
369 
370   // Return the generation after "gen".
next_gen(Generation * gen) const371   Generation* next_gen(Generation* gen) const {
372     int l = gen->level() + 1;
373     guarantee(l < _n_gens, "Out of bounds");
374     return _gens[l];
375   }
376 
get_gen(int i) const377   Generation* get_gen(int i) const {
378     guarantee(i >= 0 && i < _n_gens, "Out of bounds");
379     return _gens[i];
380   }
381 
n_gens() const382   int n_gens() const {
383     assert(_n_gens == gen_policy()->number_of_generations(), "Sanity");
384     return _n_gens;
385   }
386 
387   // Convenience function to be used in situations where the heap type can be
388   // asserted to be this type.
389   static GenCollectedHeap* heap();
390 
391   void set_par_threads(uint t);
392   void set_n_termination(uint t);
393 
394   // Invoke the "do_oop" method of one of the closures "not_older_gens"
395   // or "older_gens" on root locations for the generation at
396   // "level".  (The "older_gens" closure is used for scanning references
397   // from older generations; "not_older_gens" is used everywhere else.)
398   // If "younger_gens_as_roots" is false, younger generations are
399   // not scanned as roots; in this case, the caller must be arranging to
400   // scan the younger generations itself.  (For example, a generation might
401   // explicitly mark reachable objects in younger generations, to avoid
402   // excess storage retention.)
403   // The "so" argument determines which of the roots
404   // the closure is applied to:
405   // "SO_None" does none;
406   enum ScanningOption {
407     SO_None                =  0x0,
408     SO_AllCodeCache        =  0x8,
409     SO_ScavengeCodeCache   = 0x10
410   };
411 
412  private:
413   void process_roots(bool activate_scope,
414                      ScanningOption so,
415                      OopClosure* strong_roots,
416                      OopClosure* weak_roots,
417                      CLDClosure* strong_cld_closure,
418                      CLDClosure* weak_cld_closure,
419                      CodeBlobToOopClosure* code_roots);
420 
421   void gen_process_roots(int level,
422                          bool younger_gens_as_roots,
423                          bool activate_scope,
424                          ScanningOption so,
425                          OopsInGenClosure* not_older_gens,
426                          OopsInGenClosure* weak_roots,
427                          OopsInGenClosure* older_gens,
428                          CLDClosure* cld_closure,
429                          CLDClosure* weak_cld_closure,
430                          CodeBlobClosure* code_closure);
431 
432  public:
433   static const bool StrongAndWeakRoots = false;
434   static const bool StrongRootsOnly    = true;
435 
436   void gen_process_roots(int level,
437                          bool younger_gens_as_roots,
438                          bool activate_scope,
439                          ScanningOption so,
440                          bool only_strong_roots,
441                          OopsInGenClosure* not_older_gens,
442                          OopsInGenClosure* older_gens,
443                          CLDClosure* cld_closure);
444 
445   // Apply "root_closure" to all the weak roots of the system.
446   // These include JNI weak roots, string table,
447   // and referents of reachable weak refs.
448   void gen_process_weak_roots(OopClosure* root_closure);
449 
450   // Set the saved marks of generations, if that makes sense.
451   // In particular, if any generation might iterate over the oops
452   // in other generations, it should call this method.
453   void save_marks();
454 
455   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
456   // allocated since the last call to save_marks in generations at or above
457   // "level".  The "cur" closure is
458   // applied to references in the generation at "level", and the "older"
459   // closure to older generations.
460 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
461   void oop_since_save_marks_iterate(int level,                          \
462                                     OopClosureType* cur,                \
463                                     OopClosureType* older);
464 
465   ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
466 
467 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
468 
469   // Returns "true" iff no allocations have occurred in any generation at
470   // "level" or above since the last
471   // call to "save_marks".
472   bool no_allocs_since_save_marks(int level);
473 
474   // Returns true if an incremental collection is likely to fail.
475   // We optionally consult the young gen, if asked to do so;
476   // otherwise we base our answer on whether the previous incremental
477   // collection attempt failed with no corrective action as of yet.
incremental_collection_will_fail(bool consult_young)478   bool incremental_collection_will_fail(bool consult_young) {
479     // Assumes a 2-generation system; the first disjunct remembers if an
480     // incremental collection failed, even when we thought (second disjunct)
481     // that it would not.
482     assert(heap()->collector_policy()->is_two_generation_policy(),
483            "the following definition may not be suitable for an n(>2)-generation system");
484     return incremental_collection_failed() ||
485            (consult_young && !get_gen(0)->collection_attempt_is_safe());
486   }
487 
488   // If a generation bails out of an incremental collection,
489   // it sets this flag.
incremental_collection_failed() const490   bool incremental_collection_failed() const {
491     return _incremental_collection_failed;
492   }
set_incremental_collection_failed()493   void set_incremental_collection_failed() {
494     _incremental_collection_failed = true;
495   }
clear_incremental_collection_failed()496   void clear_incremental_collection_failed() {
497     _incremental_collection_failed = false;
498   }
499 
500   // Promotion of obj into gen failed.  Try to promote obj to higher
501   // gens in ascending order; return the new location of obj if successful.
502   // Otherwise, try expand-and-allocate for obj in both the young and old
503   // generation; return the new location of obj if successful.  Otherwise, return NULL.
504   oop handle_failed_promotion(Generation* old_gen,
505                               oop obj,
506                               size_t obj_size);
507 
508 private:
509   // Accessor for memory state verification support
510   NOT_PRODUCT(
511     static size_t skip_header_HeapWords() { return _skip_header_HeapWords; }
512   )
513 
514   // Override
515   void check_for_non_bad_heap_word_value(HeapWord* addr,
516     size_t size) PRODUCT_RETURN;
517 
518   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
519   // in an essential way: compaction is performed across generations, by
520   // iterating over spaces.
521   void prepare_for_compaction();
522 
523   // Perform a full collection of the first max_level+1 generations.
524   // This is the low level interface used by the public versions of
525   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
526   void collect_locked(GCCause::Cause cause, int max_level);
527 
528   // Returns success or failure.
529   bool create_cms_collector();
530 
531   // In support of ExplicitGCInvokesConcurrent functionality
532   bool should_do_concurrent_full_gc(GCCause::Cause cause);
533   void collect_mostly_concurrent(GCCause::Cause cause);
534 
535   // Save the tops of the spaces in all generations
536   void record_gen_tops_before_GC() PRODUCT_RETURN;
537 
538 protected:
539   virtual void gc_prologue(bool full);
540   virtual void gc_epilogue(bool full);
541 };
542 
543 #endif // SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
544