1 /*
2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_VM_MEMORY_SPACE_HPP
26 #define SHARE_VM_MEMORY_SPACE_HPP
27 
28 #include "memory/allocation.hpp"
29 #include "memory/blockOffsetTable.hpp"
30 #include "memory/cardTableModRefBS.hpp"
31 #include "memory/iterator.hpp"
32 #include "memory/memRegion.hpp"
33 #include "memory/watermark.hpp"
34 #include "oops/markOop.hpp"
35 #include "runtime/mutexLocker.hpp"
36 #include "utilities/macros.hpp"
37 #include "utilities/workgroup.hpp"
38 
39 // A space is an abstraction for the "storage units" backing
40 // up the generation abstraction. It includes specific
41 // implementations for keeping track of free and used space,
42 // for iterating over objects and free blocks, etc.
43 
44 // Here's the Space hierarchy:
45 //
46 // - Space               -- an asbtract base class describing a heap area
47 //   - CompactibleSpace  -- a space supporting compaction
48 //     - CompactibleFreeListSpace -- (used for CMS generation)
49 //     - ContiguousSpace -- a compactible space in which all free space
50 //                          is contiguous
51 //       - EdenSpace     -- contiguous space used as nursery
52 //         - ConcEdenSpace -- contiguous space with a 'soft end safe' allocation
53 //       - OffsetTableContigSpace -- contiguous space with a block offset array
54 //                          that allows "fast" block_start calls
55 //         - TenuredSpace -- (used for TenuredGeneration)
56 
57 // Forward decls.
58 class Space;
59 class BlockOffsetArray;
60 class BlockOffsetArrayContigSpace;
61 class Generation;
62 class CompactibleSpace;
63 class BlockOffsetTable;
64 class GenRemSet;
65 class CardTableRS;
66 class DirtyCardToOopClosure;
67 
68 // A Space describes a heap area. Class Space is an abstract
69 // base class.
70 //
71 // Space supports allocation, size computation and GC support is provided.
72 //
73 // Invariant: bottom() and end() are on page_size boundaries and
74 // bottom() <= top() <= end()
75 // top() is inclusive and end() is exclusive.
76 
77 class Space: public CHeapObj<mtGC> {
78   friend class VMStructs;
79  protected:
80   HeapWord* _bottom;
81   HeapWord* _end;
82 
83   // Used in support of save_marks()
84   HeapWord* _saved_mark_word;
85 
86   MemRegionClosure* _preconsumptionDirtyCardClosure;
87 
88   // A sequential tasks done structure. This supports
89   // parallel GC, where we have threads dynamically
90   // claiming sub-tasks from a larger parallel task.
91   SequentialSubTasksDone _par_seq_tasks;
92 
Space()93   Space():
94     _bottom(NULL), _end(NULL), _preconsumptionDirtyCardClosure(NULL) { }
95 
96  public:
97   // Accessors
bottom() const98   HeapWord* bottom() const         { return _bottom; }
end() const99   HeapWord* end() const            { return _end;    }
set_bottom(HeapWord * value)100   virtual void set_bottom(HeapWord* value) { _bottom = value; }
set_end(HeapWord * value)101   virtual void set_end(HeapWord* value)    { _end = value; }
102 
saved_mark_word() const103   virtual HeapWord* saved_mark_word() const  { return _saved_mark_word; }
104 
set_saved_mark_word(HeapWord * p)105   void set_saved_mark_word(HeapWord* p) { _saved_mark_word = p; }
106 
107   // Returns true if this object has been allocated since a
108   // generation's "save_marks" call.
obj_allocated_since_save_marks(const oop obj) const109   virtual bool obj_allocated_since_save_marks(const oop obj) const {
110     return (HeapWord*)obj >= saved_mark_word();
111   }
112 
preconsumptionDirtyCardClosure() const113   MemRegionClosure* preconsumptionDirtyCardClosure() const {
114     return _preconsumptionDirtyCardClosure;
115   }
setPreconsumptionDirtyCardClosure(MemRegionClosure * cl)116   void setPreconsumptionDirtyCardClosure(MemRegionClosure* cl) {
117     _preconsumptionDirtyCardClosure = cl;
118   }
119 
120   // Returns a subregion of the space containing only the allocated objects in
121   // the space.
122   virtual MemRegion used_region() const = 0;
123 
124   // Returns a region that is guaranteed to contain (at least) all objects
125   // allocated at the time of the last call to "save_marks".  If the space
126   // initializes its DirtyCardToOopClosure's specifying the "contig" option
127   // (that is, if the space is contiguous), then this region must contain only
128   // such objects: the memregion will be from the bottom of the region to the
129   // saved mark.  Otherwise, the "obj_allocated_since_save_marks" method of
130   // the space must distiguish between objects in the region allocated before
131   // and after the call to save marks.
used_region_at_save_marks() const132   MemRegion used_region_at_save_marks() const {
133     return MemRegion(bottom(), saved_mark_word());
134   }
135 
136   // Initialization.
137   // "initialize" should be called once on a space, before it is used for
138   // any purpose.  The "mr" arguments gives the bounds of the space, and
139   // the "clear_space" argument should be true unless the memory in "mr" is
140   // known to be zeroed.
141   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
142 
143   // The "clear" method must be called on a region that may have
144   // had allocation performed in it, but is now to be considered empty.
145   virtual void clear(bool mangle_space);
146 
147   // For detecting GC bugs.  Should only be called at GC boundaries, since
148   // some unused space may be used as scratch space during GC's.
149   // Default implementation does nothing. We also call this when expanding
150   // a space to satisfy an allocation request. See bug #4668531
mangle_unused_area()151   virtual void mangle_unused_area() {}
mangle_unused_area_complete()152   virtual void mangle_unused_area_complete() {}
mangle_region(MemRegion mr)153   virtual void mangle_region(MemRegion mr) {}
154 
155   // Testers
is_empty() const156   bool is_empty() const              { return used() == 0; }
not_empty() const157   bool not_empty() const             { return used() > 0; }
158 
159   // Returns true iff the given the space contains the
160   // given address as part of an allocated object. For
161   // ceratin kinds of spaces, this might be a potentially
162   // expensive operation. To prevent performance problems
163   // on account of its inadvertent use in product jvm's,
164   // we restrict its use to assertion checks only.
is_in(const void * p) const165   bool is_in(const void* p) const {
166     return used_region().contains(p);
167   }
168 
169   // Returns true iff the given reserved memory of the space contains the
170   // given address.
is_in_reserved(const void * p) const171   bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; }
172 
173   // Returns true iff the given block is not allocated.
174   virtual bool is_free_block(const HeapWord* p) const = 0;
175 
176   // Test whether p is double-aligned
is_aligned(void * p)177   static bool is_aligned(void* p) {
178     return ((intptr_t)p & (sizeof(double)-1)) == 0;
179   }
180 
181   // Size computations.  Sizes are in bytes.
capacity() const182   size_t capacity()     const { return byte_size(bottom(), end()); }
183   virtual size_t used() const = 0;
184   virtual size_t free() const = 0;
185 
186   // Iterate over all the ref-containing fields of all objects in the
187   // space, calling "cl.do_oop" on each.  Fields in objects allocated by
188   // applications of the closure are not included in the iteration.
189   virtual void oop_iterate(ExtendedOopClosure* cl);
190 
191   // Iterate over all objects in the space, calling "cl.do_object" on
192   // each.  Objects allocated by applications of the closure are not
193   // included in the iteration.
194   virtual void object_iterate(ObjectClosure* blk) = 0;
195   // Similar to object_iterate() except only iterates over
196   // objects whose internal references point to objects in the space.
197   virtual void safe_object_iterate(ObjectClosure* blk) = 0;
198 
199   // Create and return a new dirty card to oop closure. Can be
200   // overriden to return the appropriate type of closure
201   // depending on the type of space in which the closure will
202   // operate. ResourceArea allocated.
203   virtual DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,
204                                              CardTableModRefBS::PrecisionStyle precision,
205                                              HeapWord* boundary = NULL);
206 
207   // If "p" is in the space, returns the address of the start of the
208   // "block" that contains "p".  We say "block" instead of "object" since
209   // some heaps may not pack objects densely; a chunk may either be an
210   // object or a non-object.  If "p" is not in the space, return NULL.
211   virtual HeapWord* block_start_const(const void* p) const = 0;
212 
213   // The non-const version may have benevolent side effects on the data
214   // structure supporting these calls, possibly speeding up future calls.
215   // The default implementation, however, is simply to call the const
216   // version.
217   inline virtual HeapWord* block_start(const void* p);
218 
219   // Requires "addr" to be the start of a chunk, and returns its size.
220   // "addr + size" is required to be the start of a new chunk, or the end
221   // of the active area of the heap.
222   virtual size_t block_size(const HeapWord* addr) const = 0;
223 
224   // Requires "addr" to be the start of a block, and returns "TRUE" iff
225   // the block is an object.
226   virtual bool block_is_obj(const HeapWord* addr) const = 0;
227 
228   // Requires "addr" to be the start of a block, and returns "TRUE" iff
229   // the block is an object and the object is alive.
230   virtual bool obj_is_alive(const HeapWord* addr) const;
231 
232   // Allocation (return NULL if full).  Assumes the caller has established
233   // mutually exclusive access to the space.
234   virtual HeapWord* allocate(size_t word_size) = 0;
235 
236   // Allocation (return NULL if full).  Enforces mutual exclusion internally.
237   virtual HeapWord* par_allocate(size_t word_size) = 0;
238 
239   // Mark-sweep-compact support: all spaces can update pointers to objects
240   // moving as a part of compaction.
241   virtual void adjust_pointers();
242 
243   // PrintHeapAtGC support
244   virtual void print() const;
245   virtual void print_on(outputStream* st) const;
246   virtual void print_short() const;
247   virtual void print_short_on(outputStream* st) const;
248 
249 
250   // Accessor for parallel sequential tasks.
par_seq_tasks()251   SequentialSubTasksDone* par_seq_tasks() { return &_par_seq_tasks; }
252 
253   // IF "this" is a ContiguousSpace, return it, else return NULL.
toContiguousSpace()254   virtual ContiguousSpace* toContiguousSpace() {
255     return NULL;
256   }
257 
258   // Debugging
259   virtual void verify() const = 0;
260 };
261 
262 // A MemRegionClosure (ResourceObj) whose "do_MemRegion" function applies an
263 // OopClosure to (the addresses of) all the ref-containing fields that could
264 // be modified by virtue of the given MemRegion being dirty. (Note that
265 // because of the imprecise nature of the write barrier, this may iterate
266 // over oops beyond the region.)
267 // This base type for dirty card to oop closures handles memory regions
268 // in non-contiguous spaces with no boundaries, and should be sub-classed
269 // to support other space types. See ContiguousDCTOC for a sub-class
270 // that works with ContiguousSpaces.
271 
272 class DirtyCardToOopClosure: public MemRegionClosureRO {
273 protected:
274   ExtendedOopClosure* _cl;
275   Space* _sp;
276   CardTableModRefBS::PrecisionStyle _precision;
277   HeapWord* _boundary;          // If non-NULL, process only non-NULL oops
278                                 // pointing below boundary.
279   HeapWord* _min_done;          // ObjHeadPreciseArray precision requires
280                                 // a downwards traversal; this is the
281                                 // lowest location already done (or,
282                                 // alternatively, the lowest address that
283                                 // shouldn't be done again.  NULL means infinity.)
284   NOT_PRODUCT(HeapWord* _last_bottom;)
285   NOT_PRODUCT(HeapWord* _last_explicit_min_done;)
286 
287   // Get the actual top of the area on which the closure will
288   // operate, given where the top is assumed to be (the end of the
289   // memory region passed to do_MemRegion) and where the object
290   // at the top is assumed to start. For example, an object may
291   // start at the top but actually extend past the assumed top,
292   // in which case the top becomes the end of the object.
293   virtual HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
294 
295   // Walk the given memory region from bottom to (actual) top
296   // looking for objects and applying the oop closure (_cl) to
297   // them. The base implementation of this treats the area as
298   // blocks, where a block may or may not be an object. Sub-
299   // classes should override this to provide more accurate
300   // or possibly more efficient walking.
301   virtual void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
302 
303 public:
DirtyCardToOopClosure(Space * sp,ExtendedOopClosure * cl,CardTableModRefBS::PrecisionStyle precision,HeapWord * boundary)304   DirtyCardToOopClosure(Space* sp, ExtendedOopClosure* cl,
305                         CardTableModRefBS::PrecisionStyle precision,
306                         HeapWord* boundary) :
307     _sp(sp), _cl(cl), _precision(precision), _boundary(boundary),
308     _min_done(NULL) {
309     NOT_PRODUCT(_last_bottom = NULL);
310     NOT_PRODUCT(_last_explicit_min_done = NULL);
311   }
312 
313   void do_MemRegion(MemRegion mr);
314 
set_min_done(HeapWord * min_done)315   void set_min_done(HeapWord* min_done) {
316     _min_done = min_done;
317     NOT_PRODUCT(_last_explicit_min_done = _min_done);
318   }
319 #ifndef PRODUCT
set_last_bottom(HeapWord * last_bottom)320   void set_last_bottom(HeapWord* last_bottom) {
321     _last_bottom = last_bottom;
322   }
323 #endif
324 };
325 
326 // A structure to represent a point at which objects are being copied
327 // during compaction.
328 class CompactPoint : public StackObj {
329 public:
330   Generation* gen;
331   CompactibleSpace* space;
332   HeapWord* threshold;
333 
CompactPoint(Generation * g=NULL)334   CompactPoint(Generation* g = NULL) :
335     gen(g), space(NULL), threshold(0) {}
336 };
337 
338 // A space that supports compaction operations.  This is usually, but not
339 // necessarily, a space that is normally contiguous.  But, for example, a
340 // free-list-based space whose normal collection is a mark-sweep without
341 // compaction could still support compaction in full GC's.
342 
343 class CompactibleSpace: public Space {
344   friend class VMStructs;
345   friend class CompactibleFreeListSpace;
346 private:
347   HeapWord* _compaction_top;
348   CompactibleSpace* _next_compaction_space;
349 
350 public:
CompactibleSpace()351   CompactibleSpace() :
352    _compaction_top(NULL), _next_compaction_space(NULL) {}
353 
354   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
355   virtual void clear(bool mangle_space);
356 
357   // Used temporarily during a compaction phase to hold the value
358   // top should have when compaction is complete.
compaction_top() const359   HeapWord* compaction_top() const { return _compaction_top;    }
360 
set_compaction_top(HeapWord * value)361   void set_compaction_top(HeapWord* value) {
362     assert(value == NULL || (value >= bottom() && value <= end()),
363       "should point inside space");
364     _compaction_top = value;
365   }
366 
367   // Perform operations on the space needed after a compaction
368   // has been performed.
369   virtual void reset_after_compaction() = 0;
370 
371   // Returns the next space (in the current generation) to be compacted in
372   // the global compaction order.  Also is used to select the next
373   // space into which to compact.
374 
next_compaction_space() const375   virtual CompactibleSpace* next_compaction_space() const {
376     return _next_compaction_space;
377   }
378 
set_next_compaction_space(CompactibleSpace * csp)379   void set_next_compaction_space(CompactibleSpace* csp) {
380     _next_compaction_space = csp;
381   }
382 
383   // MarkSweep support phase2
384 
385   // Start the process of compaction of the current space: compute
386   // post-compaction addresses, and insert forwarding pointers.  The fields
387   // "cp->gen" and "cp->compaction_space" are the generation and space into
388   // which we are currently compacting.  This call updates "cp" as necessary,
389   // and leaves the "compaction_top" of the final value of
390   // "cp->compaction_space" up-to-date.  Offset tables may be updated in
391   // this phase as if the final copy had occurred; if so, "cp->threshold"
392   // indicates when the next such action should be taken.
393   virtual void prepare_for_compaction(CompactPoint* cp);
394   // MarkSweep support phase3
395   virtual void adjust_pointers();
396   // MarkSweep support phase4
397   virtual void compact();
398 
399   // The maximum percentage of objects that can be dead in the compacted
400   // live part of a compacted space ("deadwood" support.)
allowed_dead_ratio() const401   virtual size_t allowed_dead_ratio() const { return 0; };
402 
403   // Some contiguous spaces may maintain some data structures that should
404   // be updated whenever an allocation crosses a boundary.  This function
405   // returns the first such boundary.
406   // (The default implementation returns the end of the space, so the
407   // boundary is never crossed.)
initialize_threshold()408   virtual HeapWord* initialize_threshold() { return end(); }
409 
410   // "q" is an object of the given "size" that should be forwarded;
411   // "cp" names the generation ("gen") and containing "this" (which must
412   // also equal "cp->space").  "compact_top" is where in "this" the
413   // next object should be forwarded to.  If there is room in "this" for
414   // the object, insert an appropriate forwarding pointer in "q".
415   // If not, go to the next compaction space (there must
416   // be one, since compaction must succeed -- we go to the first space of
417   // the previous generation if necessary, updating "cp"), reset compact_top
418   // and then forward.  In either case, returns the new value of "compact_top".
419   // If the forwarding crosses "cp->threshold", invokes the "cross_threhold"
420   // function of the then-current compaction space, and updates "cp->threshold
421   // accordingly".
422   virtual HeapWord* forward(oop q, size_t size, CompactPoint* cp,
423                     HeapWord* compact_top);
424 
425   // Return a size with adjusments as required of the space.
adjust_object_size_v(size_t size) const426   virtual size_t adjust_object_size_v(size_t size) const { return size; }
427 
428 protected:
429   // Used during compaction.
430   HeapWord* _first_dead;
431   HeapWord* _end_of_live;
432 
433   // Minimum size of a free block.
minimum_free_block_size() const434   virtual size_t minimum_free_block_size() const { return 0; }
435 
436   // This the function is invoked when an allocation of an object covering
437   // "start" to "end occurs crosses the threshold; returns the next
438   // threshold.  (The default implementation does nothing.)
cross_threshold(HeapWord * start,HeapWord * the_end)439   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* the_end) {
440     return end();
441   }
442 
443   // Requires "allowed_deadspace_words > 0", that "q" is the start of a
444   // free block of the given "word_len", and that "q", were it an object,
445   // would not move if forwared.  If the size allows, fill the free
446   // block with an object, to prevent excessive compaction.  Returns "true"
447   // iff the free region was made deadspace, and modifies
448   // "allowed_deadspace_words" to reflect the number of available deadspace
449   // words remaining after this operation.
450   bool insert_deadspace(size_t& allowed_deadspace_words, HeapWord* q,
451                         size_t word_len);
452 };
453 
454 class GenSpaceMangler;
455 
456 // A space in which the free area is contiguous.  It therefore supports
457 // faster allocation, and compaction.
458 class ContiguousSpace: public CompactibleSpace {
459   friend class OneContigSpaceCardGeneration;
460   friend class VMStructs;
461  protected:
462   HeapWord* _top;
463   HeapWord* _concurrent_iteration_safe_limit;
464   // A helper for mangling the unused area of the space in debug builds.
465   GenSpaceMangler* _mangler;
466 
mangler()467   GenSpaceMangler* mangler() { return _mangler; }
468 
469   // Allocation helpers (return NULL if full).
470   inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value);
471   inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value);
472 
473  public:
474   ContiguousSpace();
475   ~ContiguousSpace();
476 
477   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
478   virtual void clear(bool mangle_space);
479 
480   // Accessors
top() const481   HeapWord* top() const            { return _top;    }
set_top(HeapWord * value)482   void set_top(HeapWord* value)    { _top = value; }
483 
set_saved_mark()484   void set_saved_mark()            { _saved_mark_word = top();    }
reset_saved_mark()485   void reset_saved_mark()          { _saved_mark_word = bottom(); }
486 
bottom_mark()487   WaterMark bottom_mark()     { return WaterMark(this, bottom()); }
top_mark()488   WaterMark top_mark()        { return WaterMark(this, top()); }
saved_mark()489   WaterMark saved_mark()      { return WaterMark(this, saved_mark_word()); }
saved_mark_at_top() const490   bool saved_mark_at_top() const { return saved_mark_word() == top(); }
491 
492   // In debug mode mangle (write it with a particular bit
493   // pattern) the unused part of a space.
494 
495   // Used to save the an address in a space for later use during mangling.
496   void set_top_for_allocations(HeapWord* v) PRODUCT_RETURN;
497   // Used to save the space's current top for later use during mangling.
498   void set_top_for_allocations() PRODUCT_RETURN;
499 
500   // Mangle regions in the space from the current top up to the
501   // previously mangled part of the space.
502   void mangle_unused_area() PRODUCT_RETURN;
503   // Mangle [top, end)
504   void mangle_unused_area_complete() PRODUCT_RETURN;
505   // Mangle the given MemRegion.
506   void mangle_region(MemRegion mr) PRODUCT_RETURN;
507 
508   // Do some sparse checking on the area that should have been mangled.
509   void check_mangled_unused_area(HeapWord* limit) PRODUCT_RETURN;
510   // Check the complete area that should have been mangled.
511   // This code may be NULL depending on the macro DEBUG_MANGLING.
512   void check_mangled_unused_area_complete() PRODUCT_RETURN;
513 
514   // Size computations: sizes in bytes.
capacity() const515   size_t capacity() const        { return byte_size(bottom(), end()); }
used() const516   size_t used() const            { return byte_size(bottom(), top()); }
free() const517   size_t free() const            { return byte_size(top(),    end()); }
518 
519   virtual bool is_free_block(const HeapWord* p) const;
520 
521   // In a contiguous space we have a more obvious bound on what parts
522   // contain objects.
used_region() const523   MemRegion used_region() const { return MemRegion(bottom(), top()); }
524 
525   // Allocation (return NULL if full)
526   virtual HeapWord* allocate(size_t word_size);
527   virtual HeapWord* par_allocate(size_t word_size);
528   HeapWord* allocate_aligned(size_t word_size);
529 
530   // Iteration
531   void oop_iterate(ExtendedOopClosure* cl);
532   void object_iterate(ObjectClosure* blk);
533   // For contiguous spaces this method will iterate safely over objects
534   // in the space (i.e., between bottom and top) when at a safepoint.
535   void safe_object_iterate(ObjectClosure* blk);
536 
537   // Iterate over as many initialized objects in the space as possible,
538   // calling "cl.do_object_careful" on each. Return NULL if all objects
539   // in the space (at the start of the iteration) were iterated over.
540   // Return an address indicating the extent of the iteration in the
541   // event that the iteration had to return because of finding an
542   // uninitialized object in the space, or if the closure "cl"
543   // signaled early termination.
544   HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
concurrent_iteration_safe_limit()545   HeapWord* concurrent_iteration_safe_limit() {
546     assert(_concurrent_iteration_safe_limit <= top(),
547            "_concurrent_iteration_safe_limit update missed");
548     return _concurrent_iteration_safe_limit;
549   }
550   // changes the safe limit, all objects from bottom() to the new
551   // limit should be properly initialized
set_concurrent_iteration_safe_limit(HeapWord * new_limit)552   void set_concurrent_iteration_safe_limit(HeapWord* new_limit) {
553     assert(new_limit <= top(), "uninitialized objects in the safe range");
554     _concurrent_iteration_safe_limit = new_limit;
555   }
556 
557 
558 #if INCLUDE_ALL_GCS
559   // In support of parallel oop_iterate.
560   #define ContigSpace_PAR_OOP_ITERATE_DECL(OopClosureType, nv_suffix)  \
561     void par_oop_iterate(MemRegion mr, OopClosureType* blk);
562 
ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DECL)563     ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DECL)
564   #undef ContigSpace_PAR_OOP_ITERATE_DECL
565 #endif // INCLUDE_ALL_GCS
566 
567   // Compaction support
568   virtual void reset_after_compaction() {
569     assert(compaction_top() >= bottom() && compaction_top() <= end(), "should point inside space");
570     set_top(compaction_top());
571     // set new iteration safe limit
572     set_concurrent_iteration_safe_limit(compaction_top());
573   }
574 
575   // Override.
576   DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,
577                                      CardTableModRefBS::PrecisionStyle precision,
578                                      HeapWord* boundary = NULL);
579 
580   // Apply "blk->do_oop" to the addresses of all reference fields in objects
581   // starting with the _saved_mark_word, which was noted during a generation's
582   // save_marks and is required to denote the head of an object.
583   // Fields in objects allocated by applications of the closure
584   // *are* included in the iteration.
585   // Updates _saved_mark_word to point to just after the last object
586   // iterated over.
587 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
588   void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
589 
590   ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DECL)
591 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DECL
592 
593   // Same as object_iterate, but starting from "mark", which is required
594   // to denote the start of an object.  Objects allocated by
595   // applications of the closure *are* included in the iteration.
596   virtual void object_iterate_from(WaterMark mark, ObjectClosure* blk);
597 
598   // Very inefficient implementation.
599   virtual HeapWord* block_start_const(const void* p) const;
600   size_t block_size(const HeapWord* p) const;
601   // If a block is in the allocated area, it is an object.
block_is_obj(const HeapWord * p) const602   bool block_is_obj(const HeapWord* p) const { return p < top(); }
603 
604   // Addresses for inlined allocation
top_addr()605   HeapWord** top_addr() { return &_top; }
end_addr()606   HeapWord** end_addr() { return &_end; }
607 
608   // Overrides for more efficient compaction support.
609   void prepare_for_compaction(CompactPoint* cp);
610 
611   // PrintHeapAtGC support.
612   virtual void print_on(outputStream* st) const;
613 
614   // Checked dynamic downcasts.
toContiguousSpace()615   virtual ContiguousSpace* toContiguousSpace() {
616     return this;
617   }
618 
619   // Debugging
620   virtual void verify() const;
621 
622   // Used to increase collection frequency.  "factor" of 0 means entire
623   // space.
624   void allocate_temporary_filler(int factor);
625 
626 };
627 
628 
629 // A dirty card to oop closure that does filtering.
630 // It knows how to filter out objects that are outside of the _boundary.
631 class Filtering_DCTOC : public DirtyCardToOopClosure {
632 protected:
633   // Override.
634   void walk_mem_region(MemRegion mr,
635                        HeapWord* bottom, HeapWord* top);
636 
637   // Walk the given memory region, from bottom to top, applying
638   // the given oop closure to (possibly) all objects found. The
639   // given oop closure may or may not be the same as the oop
640   // closure with which this closure was created, as it may
641   // be a filtering closure which makes use of the _boundary.
642   // We offer two signatures, so the FilteringClosure static type is
643   // apparent.
644   virtual void walk_mem_region_with_cl(MemRegion mr,
645                                        HeapWord* bottom, HeapWord* top,
646                                        ExtendedOopClosure* cl) = 0;
647   virtual void walk_mem_region_with_cl(MemRegion mr,
648                                        HeapWord* bottom, HeapWord* top,
649                                        FilteringClosure* cl) = 0;
650 
651 public:
Filtering_DCTOC(Space * sp,ExtendedOopClosure * cl,CardTableModRefBS::PrecisionStyle precision,HeapWord * boundary)652   Filtering_DCTOC(Space* sp, ExtendedOopClosure* cl,
653                   CardTableModRefBS::PrecisionStyle precision,
654                   HeapWord* boundary) :
655     DirtyCardToOopClosure(sp, cl, precision, boundary) {}
656 };
657 
658 // A dirty card to oop closure for contiguous spaces
659 // (ContiguousSpace and sub-classes).
660 // It is a FilteringClosure, as defined above, and it knows:
661 //
662 // 1. That the actual top of any area in a memory region
663 //    contained by the space is bounded by the end of the contiguous
664 //    region of the space.
665 // 2. That the space is really made up of objects and not just
666 //    blocks.
667 
668 class ContiguousSpaceDCTOC : public Filtering_DCTOC {
669 protected:
670   // Overrides.
671   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
672 
673   virtual void walk_mem_region_with_cl(MemRegion mr,
674                                        HeapWord* bottom, HeapWord* top,
675                                        ExtendedOopClosure* cl);
676   virtual void walk_mem_region_with_cl(MemRegion mr,
677                                        HeapWord* bottom, HeapWord* top,
678                                        FilteringClosure* cl);
679 
680 public:
ContiguousSpaceDCTOC(ContiguousSpace * sp,ExtendedOopClosure * cl,CardTableModRefBS::PrecisionStyle precision,HeapWord * boundary)681   ContiguousSpaceDCTOC(ContiguousSpace* sp, ExtendedOopClosure* cl,
682                        CardTableModRefBS::PrecisionStyle precision,
683                        HeapWord* boundary) :
684     Filtering_DCTOC(sp, cl, precision, boundary)
685   {}
686 };
687 
688 
689 // Class EdenSpace describes eden-space in new generation.
690 
691 class DefNewGeneration;
692 
693 class EdenSpace : public ContiguousSpace {
694   friend class VMStructs;
695  private:
696   DefNewGeneration* _gen;
697 
698   // _soft_end is used as a soft limit on allocation.  As soft limits are
699   // reached, the slow-path allocation code can invoke other actions and then
700   // adjust _soft_end up to a new soft limit or to end().
701   HeapWord* _soft_end;
702 
703  public:
EdenSpace(DefNewGeneration * gen)704   EdenSpace(DefNewGeneration* gen) :
705    _gen(gen), _soft_end(NULL) {}
706 
707   // Get/set just the 'soft' limit.
soft_end()708   HeapWord* soft_end()               { return _soft_end; }
soft_end_addr()709   HeapWord** soft_end_addr()         { return &_soft_end; }
set_soft_end(HeapWord * value)710   void set_soft_end(HeapWord* value) { _soft_end = value; }
711 
712   // Override.
713   void clear(bool mangle_space);
714 
715   // Set both the 'hard' and 'soft' limits (_end and _soft_end).
set_end(HeapWord * value)716   void set_end(HeapWord* value) {
717     set_soft_end(value);
718     ContiguousSpace::set_end(value);
719   }
720 
721   // Allocation (return NULL if full)
722   HeapWord* allocate(size_t word_size);
723   HeapWord* par_allocate(size_t word_size);
724 };
725 
726 // Class ConcEdenSpace extends EdenSpace for the sake of safe
727 // allocation while soft-end is being modified concurrently
728 
729 class ConcEdenSpace : public EdenSpace {
730  public:
ConcEdenSpace(DefNewGeneration * gen)731   ConcEdenSpace(DefNewGeneration* gen) : EdenSpace(gen) { }
732 
733   // Allocation (return NULL if full)
734   HeapWord* par_allocate(size_t word_size);
735 };
736 
737 
738 // A ContigSpace that Supports an efficient "block_start" operation via
739 // a BlockOffsetArray (whose BlockOffsetSharedArray may be shared with
740 // other spaces.)  This is the abstract base class for old generation
741 // (tenured) spaces.
742 
743 class OffsetTableContigSpace: public ContiguousSpace {
744   friend class VMStructs;
745  protected:
746   BlockOffsetArrayContigSpace _offsets;
747   Mutex _par_alloc_lock;
748 
749  public:
750   // Constructor
751   OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
752                          MemRegion mr);
753 
754   void set_bottom(HeapWord* value);
755   void set_end(HeapWord* value);
756 
757   void clear(bool mangle_space);
758 
759   inline HeapWord* block_start_const(const void* p) const;
760 
761   // Add offset table update.
762   virtual inline HeapWord* allocate(size_t word_size);
763   inline HeapWord* par_allocate(size_t word_size);
764 
765   // MarkSweep support phase3
766   virtual HeapWord* initialize_threshold();
767   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
768 
769   virtual void print_on(outputStream* st) const;
770 
771   // Debugging
772   void verify() const;
773 };
774 
775 
776 // Class TenuredSpace is used by TenuredGeneration
777 
778 class TenuredSpace: public OffsetTableContigSpace {
779   friend class VMStructs;
780  protected:
781   // Mark sweep support
782   size_t allowed_dead_ratio() const;
783  public:
784   // Constructor
TenuredSpace(BlockOffsetSharedArray * sharedOffsetArray,MemRegion mr)785   TenuredSpace(BlockOffsetSharedArray* sharedOffsetArray,
786                MemRegion mr) :
787     OffsetTableContigSpace(sharedOffsetArray, mr) {}
788 };
789 #endif // SHARE_VM_MEMORY_SPACE_HPP
790