1 /*
2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "classfile/classLoader.hpp"
27 #include "classfile/javaClasses.hpp"
28 #include "classfile/systemDictionary.hpp"
29 #include "classfile/vmSymbols.hpp"
30 #include "code/scopeDesc.hpp"
31 #include "compiler/compileBroker.hpp"
32 #include "interpreter/interpreter.hpp"
33 #include "interpreter/linkResolver.hpp"
34 #include "interpreter/oopMapCache.hpp"
35 #include "jfr/jfrEvents.hpp"
36 #include "jvmtifiles/jvmtiEnv.hpp"
37 #include "memory/gcLocker.inline.hpp"
38 #include "memory/metaspaceShared.hpp"
39 #include "memory/oopFactory.hpp"
40 #include "memory/universe.inline.hpp"
41 #include "oops/instanceKlass.hpp"
42 #include "oops/objArrayOop.hpp"
43 #include "oops/oop.inline.hpp"
44 #include "oops/symbol.hpp"
45 #include "prims/jvm_misc.hpp"
46 #include "prims/jvmtiExport.hpp"
47 #include "prims/jvmtiThreadState.hpp"
48 #include "prims/privilegedStack.hpp"
49 #include "runtime/arguments.hpp"
50 #include "runtime/biasedLocking.hpp"
51 #include "runtime/deoptimization.hpp"
52 #include "runtime/fprofiler.hpp"
53 #include "runtime/frame.inline.hpp"
54 #include "runtime/init.hpp"
55 #include "runtime/interfaceSupport.hpp"
56 #include "runtime/java.hpp"
57 #include "runtime/javaCalls.hpp"
58 #include "runtime/jniPeriodicChecker.hpp"
59 #include "runtime/memprofiler.hpp"
60 #include "runtime/mutexLocker.hpp"
61 #include "runtime/objectMonitor.hpp"
62 #include "runtime/orderAccess.inline.hpp"
63 #include "runtime/osThread.hpp"
64 #include "runtime/safepoint.hpp"
65 #include "runtime/sharedRuntime.hpp"
66 #include "runtime/statSampler.hpp"
67 #include "runtime/stubRoutines.hpp"
68 #include "runtime/task.hpp"
69 #include "runtime/thread.inline.hpp"
70 #include "runtime/threadCritical.hpp"
71 #include "runtime/threadLocalStorage.hpp"
72 #include "runtime/vframe.hpp"
73 #include "runtime/vframeArray.hpp"
74 #include "runtime/vframe_hp.hpp"
75 #include "runtime/vmThread.hpp"
76 #include "runtime/vm_operations.hpp"
77 #include "services/attachListener.hpp"
78 #include "services/management.hpp"
79 #include "services/memTracker.hpp"
80 #include "services/threadService.hpp"
81 #include "utilities/defaultStream.hpp"
82 #include "utilities/dtrace.hpp"
83 #include "utilities/events.hpp"
84 #include "utilities/preserveException.hpp"
85 #include "utilities/macros.hpp"
86 #ifdef TARGET_OS_FAMILY_linux
87 # include "os_linux.inline.hpp"
88 #endif
89 #ifdef TARGET_OS_FAMILY_solaris
90 # include "os_solaris.inline.hpp"
91 #endif
92 #ifdef TARGET_OS_FAMILY_windows
93 # include "os_windows.inline.hpp"
94 #endif
95 #ifdef TARGET_OS_FAMILY_bsd
96 # include "os_bsd.inline.hpp"
97 #endif
98 #if INCLUDE_ALL_GCS
99 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
100 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
101 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
102 #endif // INCLUDE_ALL_GCS
103 #ifdef COMPILER1
104 #include "c1/c1_Compiler.hpp"
105 #endif
106 #ifdef COMPILER2
107 #include "opto/c2compiler.hpp"
108 #include "opto/idealGraphPrinter.hpp"
109 #endif
110 #if INCLUDE_RTM_OPT
111 #include "runtime/rtmLocking.hpp"
112 #endif
113 #if INCLUDE_JFR
114 #include "jfr/jfr.hpp"
115 #endif
116 
117 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
118 
119 #ifdef DTRACE_ENABLED
120 
121 // Only bother with this argument setup if dtrace is available
122 
123 #ifndef USDT2
124 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
125 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
126 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
127   intptr_t, intptr_t, bool);
128 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
129   intptr_t, intptr_t, bool);
130 
131 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
132   {                                                                        \
133     ResourceMark rm(this);                                                 \
134     int len = 0;                                                           \
135     const char* name = (javathread)->get_thread_name();                    \
136     len = strlen(name);                                                    \
137     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
138       name, len,                                                           \
139       java_lang_Thread::thread_id((javathread)->threadObj()),              \
140       (javathread)->osthread()->thread_id(),                               \
141       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
142   }
143 
144 #else /* USDT2 */
145 
146 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
147 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
148 
149 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
150   {                                                                        \
151     ResourceMark rm(this);                                                 \
152     int len = 0;                                                           \
153     const char* name = (javathread)->get_thread_name();                    \
154     len = strlen(name);                                                    \
155     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
156       (char *) name, len,                                                           \
157       java_lang_Thread::thread_id((javathread)->threadObj()),              \
158       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
159       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
160   }
161 
162 #endif /* USDT2 */
163 
164 #else //  ndef DTRACE_ENABLED
165 
166 #define DTRACE_THREAD_PROBE(probe, javathread)
167 
168 #endif // ndef DTRACE_ENABLED
169 
170 
171 // Class hierarchy
172 // - Thread
173 //   - VMThread
174 //   - WatcherThread
175 //   - ConcurrentMarkSweepThread
176 //   - JavaThread
177 //     - CompilerThread
178 
179 // ======= Thread ========
180 // Support for forcing alignment of thread objects for biased locking
allocate(size_t size,bool throw_excpt,MEMFLAGS flags)181 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
182   if (UseBiasedLocking) {
183     const int alignment = markOopDesc::biased_lock_alignment;
184     size_t aligned_size = size + (alignment - sizeof(intptr_t));
185     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
186                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
187                                               AllocFailStrategy::RETURN_NULL);
188     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
189     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
190            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
191            "JavaThread alignment code overflowed allocated storage");
192     if (TraceBiasedLocking) {
193       if (aligned_addr != real_malloc_addr)
194         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
195                       real_malloc_addr, aligned_addr);
196     }
197     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
198     return aligned_addr;
199   } else {
200     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
201                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
202   }
203 }
204 
operator delete(void * p)205 void Thread::operator delete(void* p) {
206   if (UseBiasedLocking) {
207     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
208     FreeHeap(real_malloc_addr, mtThread);
209   } else {
210     FreeHeap(p, mtThread);
211   }
212 }
213 
214 
215 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
216 // JavaThread
217 
218 
Thread()219 Thread::Thread() {
220   // stack and get_thread
221   set_stack_base(NULL);
222   set_stack_size(0);
223   set_self_raw_id(0);
224   set_lgrp_id(-1);
225 
226   // allocated data structures
227   set_osthread(NULL);
228   set_resource_area(new (mtThread)ResourceArea());
229   DEBUG_ONLY(_current_resource_mark = NULL;)
230   set_handle_area(new (mtThread) HandleArea(NULL));
231   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
232   set_active_handles(NULL);
233   set_free_handle_block(NULL);
234   set_last_handle_mark(NULL);
235 
236   // This initial value ==> never claimed.
237   _oops_do_parity = 0;
238 
239   _metadata_on_stack_buffer = NULL;
240 
241   // the handle mark links itself to last_handle_mark
242   new HandleMark(this);
243 
244   // plain initialization
245   debug_only(_owned_locks = NULL;)
246   debug_only(_allow_allocation_count = 0;)
247   NOT_PRODUCT(_allow_safepoint_count = 0;)
248   NOT_PRODUCT(_skip_gcalot = false;)
249   _jvmti_env_iteration_count = 0;
250   set_allocated_bytes(0);
251   _vm_operation_started_count = 0;
252   _vm_operation_completed_count = 0;
253   _current_pending_monitor = NULL;
254   _current_pending_monitor_is_from_java = true;
255   _current_waiting_monitor = NULL;
256   _num_nested_signal = 0;
257   omFreeList = NULL ;
258   omFreeCount = 0 ;
259   omFreeProvision = 32 ;
260   omInUseList = NULL ;
261   omInUseCount = 0 ;
262 
263 #ifdef ASSERT
264   _visited_for_critical_count = false;
265 #endif
266 
267   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
268   _suspend_flags = 0;
269 
270   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
271   _hashStateX = os::random() ;
272   _hashStateY = 842502087 ;
273   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
274   _hashStateW = 273326509 ;
275 
276   _OnTrap   = 0 ;
277   _schedctl = NULL ;
278   _Stalled  = 0 ;
279   _TypeTag  = 0x2BAD ;
280 
281   // Many of the following fields are effectively final - immutable
282   // Note that nascent threads can't use the Native Monitor-Mutex
283   // construct until the _MutexEvent is initialized ...
284   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
285   // we might instead use a stack of ParkEvents that we could provision on-demand.
286   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
287   // and ::Release()
288   _ParkEvent   = ParkEvent::Allocate (this) ;
289   _SleepEvent  = ParkEvent::Allocate (this) ;
290   _MutexEvent  = ParkEvent::Allocate (this) ;
291   _MuxEvent    = ParkEvent::Allocate (this) ;
292 
293 #ifdef CHECK_UNHANDLED_OOPS
294   if (CheckUnhandledOops) {
295     _unhandled_oops = new UnhandledOops(this);
296   }
297 #endif // CHECK_UNHANDLED_OOPS
298 #ifdef ASSERT
299   if (UseBiasedLocking) {
300     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
301     assert(this == _real_malloc_address ||
302            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
303            "bug in forced alignment of thread objects");
304   }
305 #endif /* ASSERT */
306 }
307 
initialize_thread_local_storage()308 void Thread::initialize_thread_local_storage() {
309   // Note: Make sure this method only calls
310   // non-blocking operations. Otherwise, it might not work
311   // with the thread-startup/safepoint interaction.
312 
313   // During Java thread startup, safepoint code should allow this
314   // method to complete because it may need to allocate memory to
315   // store information for the new thread.
316 
317   // initialize structure dependent on thread local storage
318   ThreadLocalStorage::set_thread(this);
319 }
320 
record_stack_base_and_size()321 void Thread::record_stack_base_and_size() {
322   set_stack_base(os::current_stack_base());
323   set_stack_size(os::current_stack_size());
324   if (is_Java_thread()) {
325     ((JavaThread*) this)->set_stack_overflow_limit();
326   }
327   // CR 7190089: on Solaris, primordial thread's stack is adjusted
328   // in initialize_thread(). Without the adjustment, stack size is
329   // incorrect if stack is set to unlimited (ulimit -s unlimited).
330   // So far, only Solaris has real implementation of initialize_thread().
331   //
332   // set up any platform-specific state.
333   os::initialize_thread(this);
334 
335 #if INCLUDE_NMT
336   // record thread's native stack, stack grows downward
337   address stack_low_addr = stack_base() - stack_size();
338   MemTracker::record_thread_stack(stack_low_addr, stack_size());
339 #endif // INCLUDE_NMT
340 }
341 
342 
~Thread()343 Thread::~Thread() {
344   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
345   ObjectSynchronizer::omFlush (this) ;
346 
347   // stack_base can be NULL if the thread is never started or exited before
348   // record_stack_base_and_size called. Although, we would like to ensure
349   // that all started threads do call record_stack_base_and_size(), there is
350   // not proper way to enforce that.
351 #if INCLUDE_NMT
352   if (_stack_base != NULL) {
353     address low_stack_addr = stack_base() - stack_size();
354     MemTracker::release_thread_stack(low_stack_addr, stack_size());
355 #ifdef ASSERT
356     set_stack_base(NULL);
357 #endif
358   }
359 #endif // INCLUDE_NMT
360 
361   // deallocate data structures
362   delete resource_area();
363   // since the handle marks are using the handle area, we have to deallocated the root
364   // handle mark before deallocating the thread's handle area,
365   assert(last_handle_mark() != NULL, "check we have an element");
366   delete last_handle_mark();
367   assert(last_handle_mark() == NULL, "check we have reached the end");
368 
369   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
370   // We NULL out the fields for good hygiene.
371   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
372   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
373   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
374   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
375 
376   delete handle_area();
377   delete metadata_handles();
378 
379   // osthread() can be NULL, if creation of thread failed.
380   if (osthread() != NULL) os::free_thread(osthread());
381 
382   delete _SR_lock;
383 
384   // clear thread local storage if the Thread is deleting itself
385   if (this == Thread::current()) {
386     ThreadLocalStorage::set_thread(NULL);
387   } else {
388     // In the case where we're not the current thread, invalidate all the
389     // caches in case some code tries to get the current thread or the
390     // thread that was destroyed, and gets stale information.
391     ThreadLocalStorage::invalidate_all();
392   }
393   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
394 }
395 
396 // NOTE: dummy function for assertion purpose.
run()397 void Thread::run() {
398   ShouldNotReachHere();
399 }
400 
401 #ifdef ASSERT
402 // Private method to check for dangling thread pointer
check_for_dangling_thread_pointer(Thread * thread)403 void check_for_dangling_thread_pointer(Thread *thread) {
404  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
405          "possibility of dangling Thread pointer");
406 }
407 #endif
408 
409 
410 #ifndef PRODUCT
411 // Tracing method for basic thread operations
trace(const char * msg,const Thread * const thread)412 void Thread::trace(const char* msg, const Thread* const thread) {
413   if (!TraceThreadEvents) return;
414   ResourceMark rm;
415   ThreadCritical tc;
416   const char *name = "non-Java thread";
417   int prio = -1;
418   if (thread->is_Java_thread()
419       && !thread->is_Compiler_thread()) {
420     // The Threads_lock must be held to get information about
421     // this thread but may not be in some situations when
422     // tracing  thread events.
423     bool release_Threads_lock = false;
424     if (!Threads_lock->owned_by_self()) {
425       Threads_lock->lock();
426       release_Threads_lock = true;
427     }
428     JavaThread* jt = (JavaThread *)thread;
429     name = (char *)jt->get_thread_name();
430     oop thread_oop = jt->threadObj();
431     if (thread_oop != NULL) {
432       prio = java_lang_Thread::priority(thread_oop);
433     }
434     if (release_Threads_lock) {
435       Threads_lock->unlock();
436     }
437   }
438   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
439 }
440 #endif
441 
442 
get_priority(const Thread * const thread)443 ThreadPriority Thread::get_priority(const Thread* const thread) {
444   trace("get priority", thread);
445   ThreadPriority priority;
446   // Can return an error!
447   (void)os::get_priority(thread, priority);
448   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
449   return priority;
450 }
451 
set_priority(Thread * thread,ThreadPriority priority)452 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
453   trace("set priority", thread);
454   debug_only(check_for_dangling_thread_pointer(thread);)
455   // Can return an error!
456   (void)os::set_priority(thread, priority);
457 }
458 
459 
start(Thread * thread)460 void Thread::start(Thread* thread) {
461   trace("start", thread);
462   // Start is different from resume in that its safety is guaranteed by context or
463   // being called from a Java method synchronized on the Thread object.
464   if (!DisableStartThread) {
465     if (thread->is_Java_thread()) {
466       // Initialize the thread state to RUNNABLE before starting this thread.
467       // Can not set it after the thread started because we do not know the
468       // exact thread state at that time. It could be in MONITOR_WAIT or
469       // in SLEEPING or some other state.
470       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
471                                           java_lang_Thread::RUNNABLE);
472     }
473     os::start_thread(thread);
474   }
475 }
476 
477 // Enqueue a VM_Operation to do the job for us - sometime later
send_async_exception(oop java_thread,oop java_throwable)478 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
479   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
480   VMThread::execute(vm_stop);
481 }
482 
483 
484 //
485 // Check if an external suspend request has completed (or has been
486 // cancelled). Returns true if the thread is externally suspended and
487 // false otherwise.
488 //
489 // The bits parameter returns information about the code path through
490 // the routine. Useful for debugging:
491 //
492 // set in is_ext_suspend_completed():
493 // 0x00000001 - routine was entered
494 // 0x00000010 - routine return false at end
495 // 0x00000100 - thread exited (return false)
496 // 0x00000200 - suspend request cancelled (return false)
497 // 0x00000400 - thread suspended (return true)
498 // 0x00001000 - thread is in a suspend equivalent state (return true)
499 // 0x00002000 - thread is native and walkable (return true)
500 // 0x00004000 - thread is native_trans and walkable (needed retry)
501 //
502 // set in wait_for_ext_suspend_completion():
503 // 0x00010000 - routine was entered
504 // 0x00020000 - suspend request cancelled before loop (return false)
505 // 0x00040000 - thread suspended before loop (return true)
506 // 0x00080000 - suspend request cancelled in loop (return false)
507 // 0x00100000 - thread suspended in loop (return true)
508 // 0x00200000 - suspend not completed during retry loop (return false)
509 //
510 
511 // Helper class for tracing suspend wait debug bits.
512 //
513 // 0x00000100 indicates that the target thread exited before it could
514 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
515 // 0x00080000 each indicate a cancelled suspend request so they don't
516 // count as wait failures either.
517 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
518 
519 class TraceSuspendDebugBits : public StackObj {
520  private:
521   JavaThread * jt;
522   bool         is_wait;
523   bool         called_by_wait;  // meaningful when !is_wait
524   uint32_t *   bits;
525 
526  public:
TraceSuspendDebugBits(JavaThread * _jt,bool _is_wait,bool _called_by_wait,uint32_t * _bits)527   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
528                         uint32_t *_bits) {
529     jt             = _jt;
530     is_wait        = _is_wait;
531     called_by_wait = _called_by_wait;
532     bits           = _bits;
533   }
534 
~TraceSuspendDebugBits()535   ~TraceSuspendDebugBits() {
536     if (!is_wait) {
537 #if 1
538       // By default, don't trace bits for is_ext_suspend_completed() calls.
539       // That trace is very chatty.
540       return;
541 #else
542       if (!called_by_wait) {
543         // If tracing for is_ext_suspend_completed() is enabled, then only
544         // trace calls to it from wait_for_ext_suspend_completion()
545         return;
546       }
547 #endif
548     }
549 
550     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
551       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
552         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
553         ResourceMark rm;
554 
555         tty->print_cr(
556             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
557             jt->get_thread_name(), *bits);
558 
559         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
560       }
561     }
562   }
563 };
564 #undef DEBUG_FALSE_BITS
565 
566 
is_ext_suspend_completed(bool called_by_wait,int delay,uint32_t * bits)567 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
568   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
569 
570   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
571   bool do_trans_retry;           // flag to force the retry
572 
573   *bits |= 0x00000001;
574 
575   do {
576     do_trans_retry = false;
577 
578     if (is_exiting()) {
579       // Thread is in the process of exiting. This is always checked
580       // first to reduce the risk of dereferencing a freed JavaThread.
581       *bits |= 0x00000100;
582       return false;
583     }
584 
585     if (!is_external_suspend()) {
586       // Suspend request is cancelled. This is always checked before
587       // is_ext_suspended() to reduce the risk of a rogue resume
588       // confusing the thread that made the suspend request.
589       *bits |= 0x00000200;
590       return false;
591     }
592 
593     if (is_ext_suspended()) {
594       // thread is suspended
595       *bits |= 0x00000400;
596       return true;
597     }
598 
599     // Now that we no longer do hard suspends of threads running
600     // native code, the target thread can be changing thread state
601     // while we are in this routine:
602     //
603     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
604     //
605     // We save a copy of the thread state as observed at this moment
606     // and make our decision about suspend completeness based on the
607     // copy. This closes the race where the thread state is seen as
608     // _thread_in_native_trans in the if-thread_blocked check, but is
609     // seen as _thread_blocked in if-thread_in_native_trans check.
610     JavaThreadState save_state = thread_state();
611 
612     if (save_state == _thread_blocked && is_suspend_equivalent()) {
613       // If the thread's state is _thread_blocked and this blocking
614       // condition is known to be equivalent to a suspend, then we can
615       // consider the thread to be externally suspended. This means that
616       // the code that sets _thread_blocked has been modified to do
617       // self-suspension if the blocking condition releases. We also
618       // used to check for CONDVAR_WAIT here, but that is now covered by
619       // the _thread_blocked with self-suspension check.
620       //
621       // Return true since we wouldn't be here unless there was still an
622       // external suspend request.
623       *bits |= 0x00001000;
624       return true;
625     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
626       // Threads running native code will self-suspend on native==>VM/Java
627       // transitions. If its stack is walkable (should always be the case
628       // unless this function is called before the actual java_suspend()
629       // call), then the wait is done.
630       *bits |= 0x00002000;
631       return true;
632     } else if (!called_by_wait && !did_trans_retry &&
633                save_state == _thread_in_native_trans &&
634                frame_anchor()->walkable()) {
635       // The thread is transitioning from thread_in_native to another
636       // thread state. check_safepoint_and_suspend_for_native_trans()
637       // will force the thread to self-suspend. If it hasn't gotten
638       // there yet we may have caught the thread in-between the native
639       // code check above and the self-suspend. Lucky us. If we were
640       // called by wait_for_ext_suspend_completion(), then it
641       // will be doing the retries so we don't have to.
642       //
643       // Since we use the saved thread state in the if-statement above,
644       // there is a chance that the thread has already transitioned to
645       // _thread_blocked by the time we get here. In that case, we will
646       // make a single unnecessary pass through the logic below. This
647       // doesn't hurt anything since we still do the trans retry.
648 
649       *bits |= 0x00004000;
650 
651       // Once the thread leaves thread_in_native_trans for another
652       // thread state, we break out of this retry loop. We shouldn't
653       // need this flag to prevent us from getting back here, but
654       // sometimes paranoia is good.
655       did_trans_retry = true;
656 
657       // We wait for the thread to transition to a more usable state.
658       for (int i = 1; i <= SuspendRetryCount; i++) {
659         // We used to do an "os::yield_all(i)" call here with the intention
660         // that yielding would increase on each retry. However, the parameter
661         // is ignored on Linux which means the yield didn't scale up. Waiting
662         // on the SR_lock below provides a much more predictable scale up for
663         // the delay. It also provides a simple/direct point to check for any
664         // safepoint requests from the VMThread
665 
666         // temporarily drops SR_lock while doing wait with safepoint check
667         // (if we're a JavaThread - the WatcherThread can also call this)
668         // and increase delay with each retry
669         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
670 
671         // check the actual thread state instead of what we saved above
672         if (thread_state() != _thread_in_native_trans) {
673           // the thread has transitioned to another thread state so
674           // try all the checks (except this one) one more time.
675           do_trans_retry = true;
676           break;
677         }
678       } // end retry loop
679 
680 
681     }
682   } while (do_trans_retry);
683 
684   *bits |= 0x00000010;
685   return false;
686 }
687 
688 //
689 // Wait for an external suspend request to complete (or be cancelled).
690 // Returns true if the thread is externally suspended and false otherwise.
691 //
wait_for_ext_suspend_completion(int retries,int delay,uint32_t * bits)692 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
693        uint32_t *bits) {
694   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
695                              false /* !called_by_wait */, bits);
696 
697   // local flag copies to minimize SR_lock hold time
698   bool is_suspended;
699   bool pending;
700   uint32_t reset_bits;
701 
702   // set a marker so is_ext_suspend_completed() knows we are the caller
703   *bits |= 0x00010000;
704 
705   // We use reset_bits to reinitialize the bits value at the top of
706   // each retry loop. This allows the caller to make use of any
707   // unused bits for their own marking purposes.
708   reset_bits = *bits;
709 
710   {
711     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
712     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
713                                             delay, bits);
714     pending = is_external_suspend();
715   }
716   // must release SR_lock to allow suspension to complete
717 
718   if (!pending) {
719     // A cancelled suspend request is the only false return from
720     // is_ext_suspend_completed() that keeps us from entering the
721     // retry loop.
722     *bits |= 0x00020000;
723     return false;
724   }
725 
726   if (is_suspended) {
727     *bits |= 0x00040000;
728     return true;
729   }
730 
731   for (int i = 1; i <= retries; i++) {
732     *bits = reset_bits;  // reinit to only track last retry
733 
734     // We used to do an "os::yield_all(i)" call here with the intention
735     // that yielding would increase on each retry. However, the parameter
736     // is ignored on Linux which means the yield didn't scale up. Waiting
737     // on the SR_lock below provides a much more predictable scale up for
738     // the delay. It also provides a simple/direct point to check for any
739     // safepoint requests from the VMThread
740 
741     {
742       MutexLocker ml(SR_lock());
743       // wait with safepoint check (if we're a JavaThread - the WatcherThread
744       // can also call this)  and increase delay with each retry
745       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
746 
747       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
748                                               delay, bits);
749 
750       // It is possible for the external suspend request to be cancelled
751       // (by a resume) before the actual suspend operation is completed.
752       // Refresh our local copy to see if we still need to wait.
753       pending = is_external_suspend();
754     }
755 
756     if (!pending) {
757       // A cancelled suspend request is the only false return from
758       // is_ext_suspend_completed() that keeps us from staying in the
759       // retry loop.
760       *bits |= 0x00080000;
761       return false;
762     }
763 
764     if (is_suspended) {
765       *bits |= 0x00100000;
766       return true;
767     }
768   } // end retry loop
769 
770   // thread did not suspend after all our retries
771   *bits |= 0x00200000;
772   return false;
773 }
774 
775 #ifndef PRODUCT
record_jump(address target,address instr,const char * file,int line)776 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
777 
778   // This should not need to be atomic as the only way for simultaneous
779   // updates is via interrupts. Even then this should be rare or non-existant
780   // and we don't care that much anyway.
781 
782   int index = _jmp_ring_index;
783   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
784   _jmp_ring[index]._target = (intptr_t) target;
785   _jmp_ring[index]._instruction = (intptr_t) instr;
786   _jmp_ring[index]._file = file;
787   _jmp_ring[index]._line = line;
788 }
789 #endif /* PRODUCT */
790 
791 // Called by flat profiler
792 // Callers have already called wait_for_ext_suspend_completion
793 // The assertion for that is currently too complex to put here:
profile_last_Java_frame(frame * _fr)794 bool JavaThread::profile_last_Java_frame(frame* _fr) {
795   bool gotframe = false;
796   // self suspension saves needed state.
797   if (has_last_Java_frame() && _anchor.walkable()) {
798      *_fr = pd_last_frame();
799      gotframe = true;
800   }
801   return gotframe;
802 }
803 
interrupt(Thread * thread)804 void Thread::interrupt(Thread* thread) {
805   trace("interrupt", thread);
806   debug_only(check_for_dangling_thread_pointer(thread);)
807   os::interrupt(thread);
808 }
809 
is_interrupted(Thread * thread,bool clear_interrupted)810 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
811   trace("is_interrupted", thread);
812   debug_only(check_for_dangling_thread_pointer(thread);)
813   // Note:  If clear_interrupted==false, this simply fetches and
814   // returns the value of the field osthread()->interrupted().
815   return os::is_interrupted(thread, clear_interrupted);
816 }
817 
818 
819 // GC Support
claim_oops_do_par_case(int strong_roots_parity)820 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
821   jint thread_parity = _oops_do_parity;
822   if (thread_parity != strong_roots_parity) {
823     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
824     if (res == thread_parity) {
825       return true;
826     } else {
827       guarantee(res == strong_roots_parity, "Or else what?");
828       assert(SharedHeap::heap()->workers()->active_workers() > 0,
829          "Should only fail when parallel.");
830       return false;
831     }
832   }
833   assert(SharedHeap::heap()->workers()->active_workers() > 0,
834          "Should only fail when parallel.");
835   return false;
836 }
837 
oops_do(OopClosure * f,CLDClosure * cld_f,CodeBlobClosure * cf)838 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
839   if (active_handles() != NULL) {
840     active_handles()->oops_do(f);
841   }
842   // Do oop for ThreadShadow
843   f->do_oop((oop*)&_pending_exception);
844   handle_area()->oops_do(f);
845 }
846 
nmethods_do(CodeBlobClosure * cf)847 void Thread::nmethods_do(CodeBlobClosure* cf) {
848   // no nmethods in a generic thread...
849 }
850 
metadata_do(void f (Metadata *))851 void Thread::metadata_do(void f(Metadata*)) {
852   if (metadata_handles() != NULL) {
853     for (int i = 0; i< metadata_handles()->length(); i++) {
854       f(metadata_handles()->at(i));
855     }
856   }
857 }
858 
print_on(outputStream * st) const859 void Thread::print_on(outputStream* st) const {
860   // get_priority assumes osthread initialized
861   if (osthread() != NULL) {
862     int os_prio;
863     if (os::get_native_priority(this, &os_prio) == OS_OK) {
864       st->print("os_prio=%d ", os_prio);
865     }
866     st->print("tid=" INTPTR_FORMAT " ", this);
867     ext().print_on(st);
868     osthread()->print_on(st);
869   }
870   debug_only(if (WizardMode) print_owned_locks_on(st);)
871 }
872 
873 // Thread::print_on_error() is called by fatal error handler. Don't use
874 // any lock or allocate memory.
print_on_error(outputStream * st,char * buf,int buflen) const875 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
876   if      (is_VM_thread())                  st->print("VMThread");
877   else if (is_Compiler_thread())            st->print("CompilerThread");
878   else if (is_Java_thread())                st->print("JavaThread");
879   else if (is_GC_task_thread())             st->print("GCTaskThread");
880   else if (is_Watcher_thread())             st->print("WatcherThread");
881   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
882   else st->print("Thread");
883 
884   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
885             _stack_base - _stack_size, _stack_base);
886 
887   if (osthread()) {
888     st->print(" [id=%d]", osthread()->thread_id());
889   }
890 }
891 
892 #ifdef ASSERT
print_owned_locks_on(outputStream * st) const893 void Thread::print_owned_locks_on(outputStream* st) const {
894   Monitor *cur = _owned_locks;
895   if (cur == NULL) {
896     st->print(" (no locks) ");
897   } else {
898     st->print_cr(" Locks owned:");
899     while(cur) {
900       cur->print_on(st);
901       cur = cur->next();
902     }
903   }
904 }
905 
906 static int ref_use_count  = 0;
907 
owns_locks_but_compiled_lock() const908 bool Thread::owns_locks_but_compiled_lock() const {
909   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
910     if (cur != Compile_lock) return true;
911   }
912   return false;
913 }
914 
915 
916 #endif
917 
918 #ifndef PRODUCT
919 
920 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
921 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
922 // no threads which allow_vm_block's are held
check_for_valid_safepoint_state(bool potential_vm_operation)923 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
924     // Check if current thread is allowed to block at a safepoint
925     if (!(_allow_safepoint_count == 0))
926       fatal("Possible safepoint reached by thread that does not allow it");
927     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
928       fatal("LEAF method calling lock?");
929     }
930 
931 #ifdef ASSERT
932     if (potential_vm_operation && is_Java_thread()
933         && !Universe::is_bootstrapping()) {
934       // Make sure we do not hold any locks that the VM thread also uses.
935       // This could potentially lead to deadlocks
936       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
937         // Threads_lock is special, since the safepoint synchronization will not start before this is
938         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
939         // since it is used to transfer control between JavaThreads and the VMThread
940         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
941         if ( (cur->allow_vm_block() &&
942               cur != Threads_lock &&
943               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
944               cur != VMOperationRequest_lock &&
945               cur != VMOperationQueue_lock) ||
946               cur->rank() == Mutex::special) {
947           fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
948         }
949       }
950     }
951 
952     if (GCALotAtAllSafepoints) {
953       // We could enter a safepoint here and thus have a gc
954       InterfaceSupport::check_gc_alot();
955     }
956 #endif
957 }
958 #endif
959 
is_in_stack(address adr) const960 bool Thread::is_in_stack(address adr) const {
961   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
962   address end = os::current_stack_pointer();
963   // Allow non Java threads to call this without stack_base
964   if (_stack_base == NULL) return true;
965   if (stack_base() > adr && adr >= end) return true;
966 
967   return false;
968 }
969 
970 
is_in_usable_stack(address adr) const971 bool Thread::is_in_usable_stack(address adr) const {
972   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
973   size_t usable_stack_size = _stack_size - stack_guard_size;
974 
975   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
976 }
977 
978 
979 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
980 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
981 // used for compilation in the future. If that change is made, the need for these methods
982 // should be revisited, and they should be removed if possible.
983 
is_lock_owned(address adr) const984 bool Thread::is_lock_owned(address adr) const {
985   return on_local_stack(adr);
986 }
987 
set_as_starting_thread()988 bool Thread::set_as_starting_thread() {
989  // NOTE: this must be called inside the main thread.
990   return os::create_main_thread((JavaThread*)this);
991 }
992 
initialize_class(Symbol * class_name,TRAPS)993 static void initialize_class(Symbol* class_name, TRAPS) {
994   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
995   InstanceKlass::cast(klass)->initialize(CHECK);
996 }
997 
998 
999 // Creates the initial ThreadGroup
create_initial_thread_group(TRAPS)1000 static Handle create_initial_thread_group(TRAPS) {
1001   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
1002   instanceKlassHandle klass (THREAD, k);
1003 
1004   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
1005   {
1006     JavaValue result(T_VOID);
1007     JavaCalls::call_special(&result,
1008                             system_instance,
1009                             klass,
1010                             vmSymbols::object_initializer_name(),
1011                             vmSymbols::void_method_signature(),
1012                             CHECK_NH);
1013   }
1014   Universe::set_system_thread_group(system_instance());
1015 
1016   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
1017   {
1018     JavaValue result(T_VOID);
1019     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1020     JavaCalls::call_special(&result,
1021                             main_instance,
1022                             klass,
1023                             vmSymbols::object_initializer_name(),
1024                             vmSymbols::threadgroup_string_void_signature(),
1025                             system_instance,
1026                             string,
1027                             CHECK_NH);
1028   }
1029   return main_instance;
1030 }
1031 
1032 // Creates the initial Thread
create_initial_thread(Handle thread_group,JavaThread * thread,TRAPS)1033 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1034   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1035   instanceKlassHandle klass (THREAD, k);
1036   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1037 
1038   java_lang_Thread::set_thread(thread_oop(), thread);
1039   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1040   thread->set_threadObj(thread_oop());
1041 
1042   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1043 
1044   JavaValue result(T_VOID);
1045   JavaCalls::call_special(&result, thread_oop,
1046                                    klass,
1047                                    vmSymbols::object_initializer_name(),
1048                                    vmSymbols::threadgroup_string_void_signature(),
1049                                    thread_group,
1050                                    string,
1051                                    CHECK_NULL);
1052   return thread_oop();
1053 }
1054 
call_initializeSystemClass(TRAPS)1055 static void call_initializeSystemClass(TRAPS) {
1056   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1057   instanceKlassHandle klass (THREAD, k);
1058 
1059   JavaValue result(T_VOID);
1060   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1061                                          vmSymbols::void_method_signature(), CHECK);
1062 }
1063 
1064 char java_runtime_name[128] = "";
1065 char java_runtime_version[128] = "";
1066 
1067 // extract the JRE name from sun.misc.Version.java_runtime_name
get_java_runtime_name(TRAPS)1068 static const char* get_java_runtime_name(TRAPS) {
1069   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1070                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1071   fieldDescriptor fd;
1072   bool found = k != NULL &&
1073                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1074                                                         vmSymbols::string_signature(), &fd);
1075   if (found) {
1076     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1077     if (name_oop == NULL)
1078       return NULL;
1079     const char* name = java_lang_String::as_utf8_string(name_oop,
1080                                                         java_runtime_name,
1081                                                         sizeof(java_runtime_name));
1082     return name;
1083   } else {
1084     return NULL;
1085   }
1086 }
1087 
1088 // extract the JRE version from sun.misc.Version.java_runtime_version
get_java_runtime_version(TRAPS)1089 static const char* get_java_runtime_version(TRAPS) {
1090   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1091                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1092   fieldDescriptor fd;
1093   bool found = k != NULL &&
1094                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1095                                                         vmSymbols::string_signature(), &fd);
1096   if (found) {
1097     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1098     if (name_oop == NULL)
1099       return NULL;
1100     const char* name = java_lang_String::as_utf8_string(name_oop,
1101                                                         java_runtime_version,
1102                                                         sizeof(java_runtime_version));
1103     return name;
1104   } else {
1105     return NULL;
1106   }
1107 }
1108 
1109 // General purpose hook into Java code, run once when the VM is initialized.
1110 // The Java library method itself may be changed independently from the VM.
call_postVMInitHook(TRAPS)1111 static void call_postVMInitHook(TRAPS) {
1112   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1113   instanceKlassHandle klass (THREAD, k);
1114   if (klass.not_null()) {
1115     JavaValue result(T_VOID);
1116     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1117                                            vmSymbols::void_method_signature(),
1118                                            CHECK);
1119   }
1120 }
1121 
reset_vm_info_property(TRAPS)1122 static void reset_vm_info_property(TRAPS) {
1123   // the vm info string
1124   ResourceMark rm(THREAD);
1125   const char *vm_info = VM_Version::vm_info_string();
1126 
1127   // java.lang.System class
1128   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1129   instanceKlassHandle klass (THREAD, k);
1130 
1131   // setProperty arguments
1132   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1133   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1134 
1135   // return value
1136   JavaValue r(T_OBJECT);
1137 
1138   // public static String setProperty(String key, String value);
1139   JavaCalls::call_static(&r,
1140                          klass,
1141                          vmSymbols::setProperty_name(),
1142                          vmSymbols::string_string_string_signature(),
1143                          key_str,
1144                          value_str,
1145                          CHECK);
1146 }
1147 
1148 
allocate_threadObj(Handle thread_group,char * thread_name,bool daemon,TRAPS)1149 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1150   assert(thread_group.not_null(), "thread group should be specified");
1151   assert(threadObj() == NULL, "should only create Java thread object once");
1152 
1153   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1154   instanceKlassHandle klass (THREAD, k);
1155   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1156 
1157   java_lang_Thread::set_thread(thread_oop(), this);
1158   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1159   set_threadObj(thread_oop());
1160 
1161   JavaValue result(T_VOID);
1162   if (thread_name != NULL) {
1163     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1164     // Thread gets assigned specified name and null target
1165     JavaCalls::call_special(&result,
1166                             thread_oop,
1167                             klass,
1168                             vmSymbols::object_initializer_name(),
1169                             vmSymbols::threadgroup_string_void_signature(),
1170                             thread_group, // Argument 1
1171                             name,         // Argument 2
1172                             THREAD);
1173   } else {
1174     // Thread gets assigned name "Thread-nnn" and null target
1175     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1176     JavaCalls::call_special(&result,
1177                             thread_oop,
1178                             klass,
1179                             vmSymbols::object_initializer_name(),
1180                             vmSymbols::threadgroup_runnable_void_signature(),
1181                             thread_group, // Argument 1
1182                             Handle(),     // Argument 2
1183                             THREAD);
1184   }
1185 
1186 
1187   if (daemon) {
1188       java_lang_Thread::set_daemon(thread_oop());
1189   }
1190 
1191   if (HAS_PENDING_EXCEPTION) {
1192     return;
1193   }
1194 
1195   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1196   Handle threadObj(this, this->threadObj());
1197 
1198   JavaCalls::call_special(&result,
1199                          thread_group,
1200                          group,
1201                          vmSymbols::add_method_name(),
1202                          vmSymbols::thread_void_signature(),
1203                          threadObj,          // Arg 1
1204                          THREAD);
1205 
1206 
1207 }
1208 
1209 // NamedThread --  non-JavaThread subclasses with multiple
1210 // uniquely named instances should derive from this.
NamedThread()1211 NamedThread::NamedThread() : Thread() {
1212   _name = NULL;
1213   _processed_thread = NULL;
1214 }
1215 
~NamedThread()1216 NamedThread::~NamedThread() {
1217   JFR_ONLY(Jfr::on_thread_exit(this);)
1218   if (_name != NULL) {
1219     FREE_C_HEAP_ARRAY(char, _name, mtThread);
1220     _name = NULL;
1221   }
1222 }
1223 
set_name(const char * format,...)1224 void NamedThread::set_name(const char* format, ...) {
1225   guarantee(_name == NULL, "Only get to set name once.");
1226   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1227   guarantee(_name != NULL, "alloc failure");
1228   va_list ap;
1229   va_start(ap, format);
1230   jio_vsnprintf(_name, max_name_len, format, ap);
1231   va_end(ap);
1232 }
1233 
1234 // ======= WatcherThread ========
1235 
1236 // The watcher thread exists to simulate timer interrupts.  It should
1237 // be replaced by an abstraction over whatever native support for
1238 // timer interrupts exists on the platform.
1239 
1240 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1241 bool WatcherThread::_startable = false;
1242 volatile bool  WatcherThread::_should_terminate = false;
1243 
WatcherThread()1244 WatcherThread::WatcherThread() : Thread() {
1245   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1246   if (os::create_thread(this, os::watcher_thread)) {
1247     _watcher_thread = this;
1248 
1249     // Set the watcher thread to the highest OS priority which should not be
1250     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1251     // is created. The only normal thread using this priority is the reference
1252     // handler thread, which runs for very short intervals only.
1253     // If the VMThread's priority is not lower than the WatcherThread profiling
1254     // will be inaccurate.
1255     os::set_priority(this, MaxPriority);
1256     if (!DisableStartThread) {
1257       os::start_thread(this);
1258     }
1259   }
1260 }
1261 
sleep() const1262 int WatcherThread::sleep() const {
1263   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1264 
1265   // remaining will be zero if there are no tasks,
1266   // causing the WatcherThread to sleep until a task is
1267   // enrolled
1268   int remaining = PeriodicTask::time_to_wait();
1269   int time_slept = 0;
1270 
1271   // we expect this to timeout - we only ever get unparked when
1272   // we should terminate or when a new task has been enrolled
1273   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1274 
1275   jlong time_before_loop = os::javaTimeNanos();
1276 
1277   for (;;) {
1278     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1279     jlong now = os::javaTimeNanos();
1280 
1281     if (remaining == 0) {
1282         // if we didn't have any tasks we could have waited for a long time
1283         // consider the time_slept zero and reset time_before_loop
1284         time_slept = 0;
1285         time_before_loop = now;
1286     } else {
1287         // need to recalulate since we might have new tasks in _tasks
1288         time_slept = (int) ((now - time_before_loop) / 1000000);
1289     }
1290 
1291     // Change to task list or spurious wakeup of some kind
1292     if (timedout || _should_terminate) {
1293         break;
1294     }
1295 
1296     remaining = PeriodicTask::time_to_wait();
1297     if (remaining == 0) {
1298         // Last task was just disenrolled so loop around and wait until
1299         // another task gets enrolled
1300         continue;
1301     }
1302 
1303     remaining -= time_slept;
1304     if (remaining <= 0)
1305       break;
1306   }
1307 
1308   return time_slept;
1309 }
1310 
run()1311 void WatcherThread::run() {
1312   assert(this == watcher_thread(), "just checking");
1313 
1314   this->record_stack_base_and_size();
1315   this->initialize_thread_local_storage();
1316   this->set_native_thread_name(this->name());
1317   this->set_active_handles(JNIHandleBlock::allocate_block());
1318   while(!_should_terminate) {
1319     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1320     assert(watcher_thread() == this,  "thread consistency check");
1321 
1322     // Calculate how long it'll be until the next PeriodicTask work
1323     // should be done, and sleep that amount of time.
1324     int time_waited = sleep();
1325 
1326     if (is_error_reported()) {
1327       // A fatal error has happened, the error handler(VMError::report_and_die)
1328       // should abort JVM after creating an error log file. However in some
1329       // rare cases, the error handler itself might deadlock. Here we try to
1330       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1331       //
1332       // This code is in WatcherThread because WatcherThread wakes up
1333       // periodically so the fatal error handler doesn't need to do anything;
1334       // also because the WatcherThread is less likely to crash than other
1335       // threads.
1336 
1337       for (;;) {
1338         if (!ShowMessageBoxOnError
1339          && (OnError == NULL || OnError[0] == '\0')
1340          && Arguments::abort_hook() == NULL) {
1341              os::sleep(this, 2 * 60 * 1000, false);
1342              fdStream err(defaultStream::output_fd());
1343              err.print_raw_cr("# [ timer expired, abort... ]");
1344              // skip atexit/vm_exit/vm_abort hooks
1345              os::die();
1346         }
1347 
1348         // Wake up 5 seconds later, the fatal handler may reset OnError or
1349         // ShowMessageBoxOnError when it is ready to abort.
1350         os::sleep(this, 5 * 1000, false);
1351       }
1352     }
1353 
1354     PeriodicTask::real_time_tick(time_waited);
1355   }
1356 
1357   // Signal that it is terminated
1358   {
1359     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1360     _watcher_thread = NULL;
1361     Terminator_lock->notify();
1362   }
1363 
1364   // Thread destructor usually does this..
1365   ThreadLocalStorage::set_thread(NULL);
1366 }
1367 
start()1368 void WatcherThread::start() {
1369   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1370 
1371   if (watcher_thread() == NULL && _startable) {
1372     _should_terminate = false;
1373     // Create the single instance of WatcherThread
1374     new WatcherThread();
1375   }
1376 }
1377 
make_startable()1378 void WatcherThread::make_startable() {
1379   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1380   _startable = true;
1381 }
1382 
stop()1383 void WatcherThread::stop() {
1384   {
1385     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1386     _should_terminate = true;
1387     OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1388 
1389     WatcherThread* watcher = watcher_thread();
1390     if (watcher != NULL)
1391       watcher->unpark();
1392   }
1393 
1394   // it is ok to take late safepoints here, if needed
1395   MutexLocker mu(Terminator_lock);
1396 
1397   while(watcher_thread() != NULL) {
1398     // This wait should make safepoint checks, wait without a timeout,
1399     // and wait as a suspend-equivalent condition.
1400     //
1401     // Note: If the FlatProfiler is running, then this thread is waiting
1402     // for the WatcherThread to terminate and the WatcherThread, via the
1403     // FlatProfiler task, is waiting for the external suspend request on
1404     // this thread to complete. wait_for_ext_suspend_completion() will
1405     // eventually timeout, but that takes time. Making this wait a
1406     // suspend-equivalent condition solves that timeout problem.
1407     //
1408     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1409                           Mutex::_as_suspend_equivalent_flag);
1410   }
1411 }
1412 
unpark()1413 void WatcherThread::unpark() {
1414   MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1415   PeriodicTask_lock->notify();
1416 }
1417 
print_on(outputStream * st) const1418 void WatcherThread::print_on(outputStream* st) const {
1419   st->print("\"%s\" ", name());
1420   Thread::print_on(st);
1421   st->cr();
1422 }
1423 
1424 // ======= JavaThread ========
1425 
1426 // A JavaThread is a normal Java thread
1427 
initialize()1428 void JavaThread::initialize() {
1429   // Initialize fields
1430 
1431   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1432   set_claimed_par_id(UINT_MAX);
1433 
1434   set_saved_exception_pc(NULL);
1435   set_threadObj(NULL);
1436   _anchor.clear();
1437   set_entry_point(NULL);
1438   set_jni_functions(jni_functions());
1439   set_callee_target(NULL);
1440   set_vm_result(NULL);
1441   set_vm_result_2(NULL);
1442   set_vframe_array_head(NULL);
1443   set_vframe_array_last(NULL);
1444   set_deferred_locals(NULL);
1445   set_deopt_mark(NULL);
1446   set_deopt_nmethod(NULL);
1447   clear_must_deopt_id();
1448   set_monitor_chunks(NULL);
1449   set_next(NULL);
1450   set_thread_state(_thread_new);
1451   _terminated = _not_terminated;
1452   _privileged_stack_top = NULL;
1453   _array_for_gc = NULL;
1454   _suspend_equivalent = false;
1455   _in_deopt_handler = 0;
1456   _doing_unsafe_access = false;
1457   _stack_guard_state = stack_guard_unused;
1458   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1459   _exception_pc  = 0;
1460   _exception_handler_pc = 0;
1461   _is_method_handle_return = 0;
1462   _jvmti_thread_state= NULL;
1463   _should_post_on_exceptions_flag = JNI_FALSE;
1464   _jvmti_get_loaded_classes_closure = NULL;
1465   _interp_only_mode    = 0;
1466   _special_runtime_exit_condition = _no_async_condition;
1467   _pending_async_exception = NULL;
1468   _thread_stat = NULL;
1469   _thread_stat = new ThreadStatistics();
1470   _blocked_on_compilation = false;
1471   _jni_active_critical = 0;
1472   _pending_jni_exception_check_fn = NULL;
1473   _do_not_unlock_if_synchronized = false;
1474   _cached_monitor_info = NULL;
1475   _parker = Parker::Allocate(this) ;
1476 
1477 #ifndef PRODUCT
1478   _jmp_ring_index = 0;
1479   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1480     record_jump(NULL, NULL, NULL, 0);
1481   }
1482 #endif /* PRODUCT */
1483 
1484   set_thread_profiler(NULL);
1485   if (FlatProfiler::is_active()) {
1486     // This is where we would decide to either give each thread it's own profiler
1487     // or use one global one from FlatProfiler,
1488     // or up to some count of the number of profiled threads, etc.
1489     ThreadProfiler* pp = new ThreadProfiler();
1490     pp->engage();
1491     set_thread_profiler(pp);
1492   }
1493 
1494   // Setup safepoint state info for this thread
1495   ThreadSafepointState::create(this);
1496 
1497   debug_only(_java_call_counter = 0);
1498 
1499   // JVMTI PopFrame support
1500   _popframe_condition = popframe_inactive;
1501   _popframe_preserved_args = NULL;
1502   _popframe_preserved_args_size = 0;
1503   _frames_to_pop_failed_realloc = 0;
1504 
1505   pd_initialize();
1506 }
1507 
1508 #if INCLUDE_ALL_GCS
1509 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1510 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1511 #endif // INCLUDE_ALL_GCS
1512 
JavaThread(bool is_attaching_via_jni)1513 JavaThread::JavaThread(bool is_attaching_via_jni) :
1514   Thread()
1515 #if INCLUDE_ALL_GCS
1516   , _satb_mark_queue(&_satb_mark_queue_set),
1517   _dirty_card_queue(&_dirty_card_queue_set)
1518 #endif // INCLUDE_ALL_GCS
1519 {
1520   initialize();
1521   if (is_attaching_via_jni) {
1522     _jni_attach_state = _attaching_via_jni;
1523   } else {
1524     _jni_attach_state = _not_attaching_via_jni;
1525   }
1526   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1527 }
1528 
reguard_stack(address cur_sp)1529 bool JavaThread::reguard_stack(address cur_sp) {
1530   if (_stack_guard_state != stack_guard_yellow_disabled) {
1531     return true; // Stack already guarded or guard pages not needed.
1532   }
1533 
1534   if (register_stack_overflow()) {
1535     // For those architectures which have separate register and
1536     // memory stacks, we must check the register stack to see if
1537     // it has overflowed.
1538     return false;
1539   }
1540 
1541   // Java code never executes within the yellow zone: the latter is only
1542   // there to provoke an exception during stack banging.  If java code
1543   // is executing there, either StackShadowPages should be larger, or
1544   // some exception code in c1, c2 or the interpreter isn't unwinding
1545   // when it should.
1546   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1547 
1548   enable_stack_yellow_zone();
1549   return true;
1550 }
1551 
reguard_stack(void)1552 bool JavaThread::reguard_stack(void) {
1553   return reguard_stack(os::current_stack_pointer());
1554 }
1555 
1556 
block_if_vm_exited()1557 void JavaThread::block_if_vm_exited() {
1558   if (_terminated == _vm_exited) {
1559     // _vm_exited is set at safepoint, and Threads_lock is never released
1560     // we will block here forever
1561     Threads_lock->lock_without_safepoint_check();
1562     ShouldNotReachHere();
1563   }
1564 }
1565 
1566 
1567 // Remove this ifdef when C1 is ported to the compiler interface.
1568 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1569 
JavaThread(ThreadFunction entry_point,size_t stack_sz)1570 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1571   Thread()
1572 #if INCLUDE_ALL_GCS
1573   , _satb_mark_queue(&_satb_mark_queue_set),
1574   _dirty_card_queue(&_dirty_card_queue_set)
1575 #endif // INCLUDE_ALL_GCS
1576 {
1577   if (TraceThreadEvents) {
1578     tty->print_cr("creating thread %p", this);
1579   }
1580   initialize();
1581   _jni_attach_state = _not_attaching_via_jni;
1582   set_entry_point(entry_point);
1583   // Create the native thread itself.
1584   // %note runtime_23
1585   os::ThreadType thr_type = os::java_thread;
1586   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1587                                                      os::java_thread;
1588   os::create_thread(this, thr_type, stack_sz);
1589   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1590   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1591   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1592   // the exception consists of creating the exception object & initializing it, initialization
1593   // will leave the VM via a JavaCall and then all locks must be unlocked).
1594   //
1595   // The thread is still suspended when we reach here. Thread must be explicit started
1596   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1597   // by calling Threads:add. The reason why this is not done here, is because the thread
1598   // object must be fully initialized (take a look at JVM_Start)
1599 }
1600 
~JavaThread()1601 JavaThread::~JavaThread() {
1602   if (TraceThreadEvents) {
1603       tty->print_cr("terminate thread %p", this);
1604   }
1605 
1606   // JSR166 -- return the parker to the free list
1607   Parker::Release(_parker);
1608   _parker = NULL ;
1609 
1610   // Free any remaining  previous UnrollBlock
1611   vframeArray* old_array = vframe_array_last();
1612 
1613   if (old_array != NULL) {
1614     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1615     old_array->set_unroll_block(NULL);
1616     delete old_info;
1617     delete old_array;
1618   }
1619 
1620   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1621   if (deferred != NULL) {
1622     // This can only happen if thread is destroyed before deoptimization occurs.
1623     assert(deferred->length() != 0, "empty array!");
1624     do {
1625       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1626       deferred->remove_at(0);
1627       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1628       delete dlv;
1629     } while (deferred->length() != 0);
1630     delete deferred;
1631   }
1632 
1633   // All Java related clean up happens in exit
1634   ThreadSafepointState::destroy(this);
1635   if (_thread_profiler != NULL) delete _thread_profiler;
1636   if (_thread_stat != NULL) delete _thread_stat;
1637 }
1638 
1639 
1640 // The first routine called by a new Java thread
run()1641 void JavaThread::run() {
1642   // initialize thread-local alloc buffer related fields
1643   this->initialize_tlab();
1644 
1645   // used to test validitity of stack trace backs
1646   this->record_base_of_stack_pointer();
1647 
1648   // Record real stack base and size.
1649   this->record_stack_base_and_size();
1650 
1651   // Initialize thread local storage; set before calling MutexLocker
1652   this->initialize_thread_local_storage();
1653 
1654   this->create_stack_guard_pages();
1655 
1656   this->cache_global_variables();
1657 
1658   // Thread is now sufficient initialized to be handled by the safepoint code as being
1659   // in the VM. Change thread state from _thread_new to _thread_in_vm
1660   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1661 
1662   assert(JavaThread::current() == this, "sanity check");
1663   assert(!Thread::current()->owns_locks(), "sanity check");
1664 
1665   DTRACE_THREAD_PROBE(start, this);
1666 
1667   // This operation might block. We call that after all safepoint checks for a new thread has
1668   // been completed.
1669   this->set_active_handles(JNIHandleBlock::allocate_block());
1670 
1671   if (JvmtiExport::should_post_thread_life()) {
1672     JvmtiExport::post_thread_start(this);
1673   }
1674 
1675   JFR_ONLY(Jfr::on_thread_start(this);)
1676 
1677   // We call another function to do the rest so we are sure that the stack addresses used
1678   // from there will be lower than the stack base just computed
1679   thread_main_inner();
1680 
1681   // Note, thread is no longer valid at this point!
1682 }
1683 
1684 
thread_main_inner()1685 void JavaThread::thread_main_inner() {
1686   assert(JavaThread::current() == this, "sanity check");
1687   assert(this->threadObj() != NULL, "just checking");
1688 
1689   // Execute thread entry point unless this thread has a pending exception
1690   // or has been stopped before starting.
1691   // Note: Due to JVM_StopThread we can have pending exceptions already!
1692   if (!this->has_pending_exception() &&
1693       !java_lang_Thread::is_stillborn(this->threadObj())) {
1694     {
1695       ResourceMark rm(this);
1696       this->set_native_thread_name(this->get_thread_name());
1697     }
1698     HandleMark hm(this);
1699     this->entry_point()(this, this);
1700   }
1701 
1702   DTRACE_THREAD_PROBE(stop, this);
1703 
1704   this->exit(false);
1705   delete this;
1706 }
1707 
1708 
ensure_join(JavaThread * thread)1709 static void ensure_join(JavaThread* thread) {
1710   // We do not need to grap the Threads_lock, since we are operating on ourself.
1711   Handle threadObj(thread, thread->threadObj());
1712   assert(threadObj.not_null(), "java thread object must exist");
1713   ObjectLocker lock(threadObj, thread);
1714   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1715   thread->clear_pending_exception();
1716   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1717   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1718   // Clear the native thread instance - this makes isAlive return false and allows the join()
1719   // to complete once we've done the notify_all below
1720   java_lang_Thread::set_thread(threadObj(), NULL);
1721   lock.notify_all(thread);
1722   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1723   thread->clear_pending_exception();
1724 }
1725 
1726 
1727 // For any new cleanup additions, please check to see if they need to be applied to
1728 // cleanup_failed_attach_current_thread as well.
exit(bool destroy_vm,ExitType exit_type)1729 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1730   assert(this == JavaThread::current(),  "thread consistency check");
1731 
1732   HandleMark hm(this);
1733   Handle uncaught_exception(this, this->pending_exception());
1734   this->clear_pending_exception();
1735   Handle threadObj(this, this->threadObj());
1736   assert(threadObj.not_null(), "Java thread object should be created");
1737 
1738   if (get_thread_profiler() != NULL) {
1739     get_thread_profiler()->disengage();
1740     ResourceMark rm;
1741     get_thread_profiler()->print(get_thread_name());
1742   }
1743 
1744 
1745   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1746   {
1747     EXCEPTION_MARK;
1748 
1749     CLEAR_PENDING_EXCEPTION;
1750   }
1751   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1752   // has to be fixed by a runtime query method
1753   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1754     // JSR-166: change call from from ThreadGroup.uncaughtException to
1755     // java.lang.Thread.dispatchUncaughtException
1756     if (uncaught_exception.not_null()) {
1757       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1758       {
1759         EXCEPTION_MARK;
1760         // Check if the method Thread.dispatchUncaughtException() exists. If so
1761         // call it.  Otherwise we have an older library without the JSR-166 changes,
1762         // so call ThreadGroup.uncaughtException()
1763         KlassHandle recvrKlass(THREAD, threadObj->klass());
1764         CallInfo callinfo;
1765         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1766         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1767                                            vmSymbols::dispatchUncaughtException_name(),
1768                                            vmSymbols::throwable_void_signature(),
1769                                            KlassHandle(), false, false, THREAD);
1770         CLEAR_PENDING_EXCEPTION;
1771         methodHandle method = callinfo.selected_method();
1772         if (method.not_null()) {
1773           JavaValue result(T_VOID);
1774           JavaCalls::call_virtual(&result,
1775                                   threadObj, thread_klass,
1776                                   vmSymbols::dispatchUncaughtException_name(),
1777                                   vmSymbols::throwable_void_signature(),
1778                                   uncaught_exception,
1779                                   THREAD);
1780         } else {
1781           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1782           JavaValue result(T_VOID);
1783           JavaCalls::call_virtual(&result,
1784                                   group, thread_group,
1785                                   vmSymbols::uncaughtException_name(),
1786                                   vmSymbols::thread_throwable_void_signature(),
1787                                   threadObj,           // Arg 1
1788                                   uncaught_exception,  // Arg 2
1789                                   THREAD);
1790         }
1791         if (HAS_PENDING_EXCEPTION) {
1792           ResourceMark rm(this);
1793           jio_fprintf(defaultStream::error_stream(),
1794                 "\nException: %s thrown from the UncaughtExceptionHandler"
1795                 " in thread \"%s\"\n",
1796                 pending_exception()->klass()->external_name(),
1797                 get_thread_name());
1798           CLEAR_PENDING_EXCEPTION;
1799         }
1800       }
1801     }
1802     JFR_ONLY(Jfr::on_java_thread_dismantle(this);)
1803 
1804     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1805     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1806     // is deprecated anyhow.
1807     if (!is_Compiler_thread()) {
1808       int count = 3;
1809       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1810         EXCEPTION_MARK;
1811         JavaValue result(T_VOID);
1812         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1813         JavaCalls::call_virtual(&result,
1814                               threadObj, thread_klass,
1815                               vmSymbols::exit_method_name(),
1816                               vmSymbols::void_method_signature(),
1817                               THREAD);
1818         CLEAR_PENDING_EXCEPTION;
1819       }
1820     }
1821     // notify JVMTI
1822     if (JvmtiExport::should_post_thread_life()) {
1823       JvmtiExport::post_thread_end(this);
1824     }
1825 
1826     // We have notified the agents that we are exiting, before we go on,
1827     // we must check for a pending external suspend request and honor it
1828     // in order to not surprise the thread that made the suspend request.
1829     while (true) {
1830       {
1831         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1832         if (!is_external_suspend()) {
1833           set_terminated(_thread_exiting);
1834           ThreadService::current_thread_exiting(this);
1835           break;
1836         }
1837         // Implied else:
1838         // Things get a little tricky here. We have a pending external
1839         // suspend request, but we are holding the SR_lock so we
1840         // can't just self-suspend. So we temporarily drop the lock
1841         // and then self-suspend.
1842       }
1843 
1844       ThreadBlockInVM tbivm(this);
1845       java_suspend_self();
1846 
1847       // We're done with this suspend request, but we have to loop around
1848       // and check again. Eventually we will get SR_lock without a pending
1849       // external suspend request and will be able to mark ourselves as
1850       // exiting.
1851     }
1852     // no more external suspends are allowed at this point
1853   } else {
1854     // before_exit() has already posted JVMTI THREAD_END events
1855   }
1856 
1857   // Notify waiters on thread object. This has to be done after exit() is called
1858   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1859   // group should have the destroyed bit set before waiters are notified).
1860   ensure_join(this);
1861   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1862 
1863   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1864   // held by this thread must be released.  A detach operation must only
1865   // get here if there are no Java frames on the stack.  Therefore, any
1866   // owned monitors at this point MUST be JNI-acquired monitors which are
1867   // pre-inflated and in the monitor cache.
1868   //
1869   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1870   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1871     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1872     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1873     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1874   }
1875 
1876   // These things needs to be done while we are still a Java Thread. Make sure that thread
1877   // is in a consistent state, in case GC happens
1878   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1879   JFR_ONLY(Jfr::on_thread_exit(this);)
1880 
1881   if (active_handles() != NULL) {
1882     JNIHandleBlock* block = active_handles();
1883     set_active_handles(NULL);
1884     JNIHandleBlock::release_block(block);
1885   }
1886 
1887   if (free_handle_block() != NULL) {
1888     JNIHandleBlock* block = free_handle_block();
1889     set_free_handle_block(NULL);
1890     JNIHandleBlock::release_block(block);
1891   }
1892 
1893   // These have to be removed while this is still a valid thread.
1894   remove_stack_guard_pages();
1895 
1896   if (UseTLAB) {
1897     tlab().make_parsable(true);  // retire TLAB
1898   }
1899 
1900   if (JvmtiEnv::environments_might_exist()) {
1901     JvmtiExport::cleanup_thread(this);
1902   }
1903 
1904   // We must flush any deferred card marks before removing a thread from
1905   // the list of active threads.
1906   Universe::heap()->flush_deferred_store_barrier(this);
1907   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1908 
1909 #if INCLUDE_ALL_GCS
1910   // We must flush the G1-related buffers before removing a thread
1911   // from the list of active threads. We must do this after any deferred
1912   // card marks have been flushed (above) so that any entries that are
1913   // added to the thread's dirty card queue as a result are not lost.
1914   if (UseG1GC) {
1915     flush_barrier_queues();
1916   }
1917 #endif // INCLUDE_ALL_GCS
1918 
1919   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1920   Threads::remove(this);
1921 }
1922 
1923 #if INCLUDE_ALL_GCS
1924 // Flush G1-related queues.
flush_barrier_queues()1925 void JavaThread::flush_barrier_queues() {
1926   satb_mark_queue().flush();
1927   dirty_card_queue().flush();
1928 }
1929 
initialize_queues()1930 void JavaThread::initialize_queues() {
1931   assert(!SafepointSynchronize::is_at_safepoint(),
1932          "we should not be at a safepoint");
1933 
1934   ObjPtrQueue& satb_queue = satb_mark_queue();
1935   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1936   // The SATB queue should have been constructed with its active
1937   // field set to false.
1938   assert(!satb_queue.is_active(), "SATB queue should not be active");
1939   assert(satb_queue.is_empty(), "SATB queue should be empty");
1940   // If we are creating the thread during a marking cycle, we should
1941   // set the active field of the SATB queue to true.
1942   if (satb_queue_set.is_active()) {
1943     satb_queue.set_active(true);
1944   }
1945 
1946   DirtyCardQueue& dirty_queue = dirty_card_queue();
1947   // The dirty card queue should have been constructed with its
1948   // active field set to true.
1949   assert(dirty_queue.is_active(), "dirty card queue should be active");
1950 }
1951 #endif // INCLUDE_ALL_GCS
1952 
cleanup_failed_attach_current_thread()1953 void JavaThread::cleanup_failed_attach_current_thread() {
1954   if (get_thread_profiler() != NULL) {
1955     get_thread_profiler()->disengage();
1956     ResourceMark rm;
1957     get_thread_profiler()->print(get_thread_name());
1958   }
1959 
1960   if (active_handles() != NULL) {
1961     JNIHandleBlock* block = active_handles();
1962     set_active_handles(NULL);
1963     JNIHandleBlock::release_block(block);
1964   }
1965 
1966   if (free_handle_block() != NULL) {
1967     JNIHandleBlock* block = free_handle_block();
1968     set_free_handle_block(NULL);
1969     JNIHandleBlock::release_block(block);
1970   }
1971 
1972   // These have to be removed while this is still a valid thread.
1973   remove_stack_guard_pages();
1974 
1975   if (UseTLAB) {
1976     tlab().make_parsable(true);  // retire TLAB, if any
1977   }
1978 
1979 #if INCLUDE_ALL_GCS
1980   if (UseG1GC) {
1981     flush_barrier_queues();
1982   }
1983 #endif // INCLUDE_ALL_GCS
1984 
1985   Threads::remove(this);
1986   delete this;
1987 }
1988 
1989 
1990 
1991 
active()1992 JavaThread* JavaThread::active() {
1993   Thread* thread = ThreadLocalStorage::thread();
1994   assert(thread != NULL, "just checking");
1995   if (thread->is_Java_thread()) {
1996     return (JavaThread*) thread;
1997   } else {
1998     assert(thread->is_VM_thread(), "this must be a vm thread");
1999     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2000     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2001     assert(ret->is_Java_thread(), "must be a Java thread");
2002     return ret;
2003   }
2004 }
2005 
is_lock_owned(address adr) const2006 bool JavaThread::is_lock_owned(address adr) const {
2007   if (Thread::is_lock_owned(adr)) return true;
2008 
2009   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2010     if (chunk->contains(adr)) return true;
2011   }
2012 
2013   return false;
2014 }
2015 
2016 
add_monitor_chunk(MonitorChunk * chunk)2017 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2018   chunk->set_next(monitor_chunks());
2019   set_monitor_chunks(chunk);
2020 }
2021 
remove_monitor_chunk(MonitorChunk * chunk)2022 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2023   guarantee(monitor_chunks() != NULL, "must be non empty");
2024   if (monitor_chunks() == chunk) {
2025     set_monitor_chunks(chunk->next());
2026   } else {
2027     MonitorChunk* prev = monitor_chunks();
2028     while (prev->next() != chunk) prev = prev->next();
2029     prev->set_next(chunk->next());
2030   }
2031 }
2032 
2033 // JVM support.
2034 
2035 // Note: this function shouldn't block if it's called in
2036 // _thread_in_native_trans state (such as from
2037 // check_special_condition_for_native_trans()).
check_and_handle_async_exceptions(bool check_unsafe_error)2038 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2039 
2040   if (has_last_Java_frame() && has_async_condition()) {
2041     // If we are at a polling page safepoint (not a poll return)
2042     // then we must defer async exception because live registers
2043     // will be clobbered by the exception path. Poll return is
2044     // ok because the call we a returning from already collides
2045     // with exception handling registers and so there is no issue.
2046     // (The exception handling path kills call result registers but
2047     //  this is ok since the exception kills the result anyway).
2048 
2049     if (is_at_poll_safepoint()) {
2050       // if the code we are returning to has deoptimized we must defer
2051       // the exception otherwise live registers get clobbered on the
2052       // exception path before deoptimization is able to retrieve them.
2053       //
2054       RegisterMap map(this, false);
2055       frame caller_fr = last_frame().sender(&map);
2056       assert(caller_fr.is_compiled_frame(), "what?");
2057       if (caller_fr.is_deoptimized_frame()) {
2058         if (TraceExceptions) {
2059           ResourceMark rm;
2060           tty->print_cr("deferred async exception at compiled safepoint");
2061         }
2062         return;
2063       }
2064     }
2065   }
2066 
2067   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2068   if (condition == _no_async_condition) {
2069     // Conditions have changed since has_special_runtime_exit_condition()
2070     // was called:
2071     // - if we were here only because of an external suspend request,
2072     //   then that was taken care of above (or cancelled) so we are done
2073     // - if we were here because of another async request, then it has
2074     //   been cleared between the has_special_runtime_exit_condition()
2075     //   and now so again we are done
2076     return;
2077   }
2078 
2079   // Check for pending async. exception
2080   if (_pending_async_exception != NULL) {
2081     // Only overwrite an already pending exception, if it is not a threadDeath.
2082     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2083 
2084       // We cannot call Exceptions::_throw(...) here because we cannot block
2085       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2086 
2087       if (TraceExceptions) {
2088         ResourceMark rm;
2089         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2090         if (has_last_Java_frame() ) {
2091           frame f = last_frame();
2092           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2093         }
2094         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2095       }
2096       _pending_async_exception = NULL;
2097       clear_has_async_exception();
2098     }
2099   }
2100 
2101   if (check_unsafe_error &&
2102       condition == _async_unsafe_access_error && !has_pending_exception()) {
2103     condition = _no_async_condition;  // done
2104     switch (thread_state()) {
2105     case _thread_in_vm:
2106       {
2107         JavaThread* THREAD = this;
2108         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2109       }
2110     case _thread_in_native:
2111       {
2112         ThreadInVMfromNative tiv(this);
2113         JavaThread* THREAD = this;
2114         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2115       }
2116     case _thread_in_Java:
2117       {
2118         ThreadInVMfromJava tiv(this);
2119         JavaThread* THREAD = this;
2120         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2121       }
2122     default:
2123       ShouldNotReachHere();
2124     }
2125   }
2126 
2127   assert(condition == _no_async_condition || has_pending_exception() ||
2128          (!check_unsafe_error && condition == _async_unsafe_access_error),
2129          "must have handled the async condition, if no exception");
2130 }
2131 
handle_special_runtime_exit_condition(bool check_asyncs)2132 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2133   //
2134   // Check for pending external suspend. Internal suspend requests do
2135   // not use handle_special_runtime_exit_condition().
2136   // If JNIEnv proxies are allowed, don't self-suspend if the target
2137   // thread is not the current thread. In older versions of jdbx, jdbx
2138   // threads could call into the VM with another thread's JNIEnv so we
2139   // can be here operating on behalf of a suspended thread (4432884).
2140   bool do_self_suspend = is_external_suspend_with_lock();
2141   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2142     //
2143     // Because thread is external suspended the safepoint code will count
2144     // thread as at a safepoint. This can be odd because we can be here
2145     // as _thread_in_Java which would normally transition to _thread_blocked
2146     // at a safepoint. We would like to mark the thread as _thread_blocked
2147     // before calling java_suspend_self like all other callers of it but
2148     // we must then observe proper safepoint protocol. (We can't leave
2149     // _thread_blocked with a safepoint in progress). However we can be
2150     // here as _thread_in_native_trans so we can't use a normal transition
2151     // constructor/destructor pair because they assert on that type of
2152     // transition. We could do something like:
2153     //
2154     // JavaThreadState state = thread_state();
2155     // set_thread_state(_thread_in_vm);
2156     // {
2157     //   ThreadBlockInVM tbivm(this);
2158     //   java_suspend_self()
2159     // }
2160     // set_thread_state(_thread_in_vm_trans);
2161     // if (safepoint) block;
2162     // set_thread_state(state);
2163     //
2164     // but that is pretty messy. Instead we just go with the way the
2165     // code has worked before and note that this is the only path to
2166     // java_suspend_self that doesn't put the thread in _thread_blocked
2167     // mode.
2168 
2169     frame_anchor()->make_walkable(this);
2170     java_suspend_self();
2171 
2172     // We might be here for reasons in addition to the self-suspend request
2173     // so check for other async requests.
2174   }
2175 
2176   if (check_asyncs) {
2177     check_and_handle_async_exceptions();
2178   }
2179 
2180   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2181 }
2182 
send_thread_stop(oop java_throwable)2183 void JavaThread::send_thread_stop(oop java_throwable)  {
2184   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2185   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2186   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2187 
2188   // Do not throw asynchronous exceptions against the compiler thread
2189   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2190   if (is_Compiler_thread()) return;
2191 
2192   {
2193     // Actually throw the Throwable against the target Thread - however
2194     // only if there is no thread death exception installed already.
2195     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2196       // If the topmost frame is a runtime stub, then we are calling into
2197       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2198       // must deoptimize the caller before continuing, as the compiled  exception handler table
2199       // may not be valid
2200       if (has_last_Java_frame()) {
2201         frame f = last_frame();
2202         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2203           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2204           RegisterMap reg_map(this, UseBiasedLocking);
2205           frame compiled_frame = f.sender(&reg_map);
2206           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2207             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2208           }
2209         }
2210       }
2211 
2212       // Set async. pending exception in thread.
2213       set_pending_async_exception(java_throwable);
2214 
2215       if (TraceExceptions) {
2216        ResourceMark rm;
2217        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2218       }
2219       // for AbortVMOnException flag
2220       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2221     }
2222   }
2223 
2224 
2225   // Interrupt thread so it will wake up from a potential wait()
2226   Thread::interrupt(this);
2227 }
2228 
2229 // External suspension mechanism.
2230 //
2231 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2232 // to any VM_locks and it is at a transition
2233 // Self-suspension will happen on the transition out of the vm.
2234 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2235 //
2236 // Guarantees on return:
2237 //   + Target thread will not execute any new bytecode (that's why we need to
2238 //     force a safepoint)
2239 //   + Target thread will not enter any new monitors
2240 //
java_suspend()2241 void JavaThread::java_suspend() {
2242   { MutexLocker mu(Threads_lock);
2243     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2244        return;
2245     }
2246   }
2247 
2248   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2249     if (!is_external_suspend()) {
2250       // a racing resume has cancelled us; bail out now
2251       return;
2252     }
2253 
2254     // suspend is done
2255     uint32_t debug_bits = 0;
2256     // Warning: is_ext_suspend_completed() may temporarily drop the
2257     // SR_lock to allow the thread to reach a stable thread state if
2258     // it is currently in a transient thread state.
2259     if (is_ext_suspend_completed(false /* !called_by_wait */,
2260                                  SuspendRetryDelay, &debug_bits) ) {
2261       return;
2262     }
2263   }
2264 
2265   VM_ForceSafepoint vm_suspend;
2266   VMThread::execute(&vm_suspend);
2267 }
2268 
2269 // Part II of external suspension.
2270 // A JavaThread self suspends when it detects a pending external suspend
2271 // request. This is usually on transitions. It is also done in places
2272 // where continuing to the next transition would surprise the caller,
2273 // e.g., monitor entry.
2274 //
2275 // Returns the number of times that the thread self-suspended.
2276 //
2277 // Note: DO NOT call java_suspend_self() when you just want to block current
2278 //       thread. java_suspend_self() is the second stage of cooperative
2279 //       suspension for external suspend requests and should only be used
2280 //       to complete an external suspend request.
2281 //
java_suspend_self()2282 int JavaThread::java_suspend_self() {
2283   int ret = 0;
2284 
2285   // we are in the process of exiting so don't suspend
2286   if (is_exiting()) {
2287      clear_external_suspend();
2288      return ret;
2289   }
2290 
2291   assert(_anchor.walkable() ||
2292     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2293     "must have walkable stack");
2294 
2295   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2296 
2297   assert(!this->is_ext_suspended(),
2298     "a thread trying to self-suspend should not already be suspended");
2299 
2300   if (this->is_suspend_equivalent()) {
2301     // If we are self-suspending as a result of the lifting of a
2302     // suspend equivalent condition, then the suspend_equivalent
2303     // flag is not cleared until we set the ext_suspended flag so
2304     // that wait_for_ext_suspend_completion() returns consistent
2305     // results.
2306     this->clear_suspend_equivalent();
2307   }
2308 
2309   // A racing resume may have cancelled us before we grabbed SR_lock
2310   // above. Or another external suspend request could be waiting for us
2311   // by the time we return from SR_lock()->wait(). The thread
2312   // that requested the suspension may already be trying to walk our
2313   // stack and if we return now, we can change the stack out from under
2314   // it. This would be a "bad thing (TM)" and cause the stack walker
2315   // to crash. We stay self-suspended until there are no more pending
2316   // external suspend requests.
2317   while (is_external_suspend()) {
2318     ret++;
2319     this->set_ext_suspended();
2320 
2321     // _ext_suspended flag is cleared by java_resume()
2322     while (is_ext_suspended()) {
2323       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2324     }
2325   }
2326 
2327   return ret;
2328 }
2329 
2330 #ifdef ASSERT
2331 // verify the JavaThread has not yet been published in the Threads::list, and
2332 // hence doesn't need protection from concurrent access at this stage
verify_not_published()2333 void JavaThread::verify_not_published() {
2334   if (!Threads_lock->owned_by_self()) {
2335    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2336    assert( !Threads::includes(this),
2337            "java thread shouldn't have been published yet!");
2338   }
2339   else {
2340    assert( !Threads::includes(this),
2341            "java thread shouldn't have been published yet!");
2342   }
2343 }
2344 #endif
2345 
2346 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2347 // progress or when _suspend_flags is non-zero.
2348 // Current thread needs to self-suspend if there is a suspend request and/or
2349 // block if a safepoint is in progress.
2350 // Async exception ISN'T checked.
2351 // Note only the ThreadInVMfromNative transition can call this function
2352 // directly and when thread state is _thread_in_native_trans
check_safepoint_and_suspend_for_native_trans(JavaThread * thread)2353 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2354   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2355 
2356   JavaThread *curJT = JavaThread::current();
2357   bool do_self_suspend = thread->is_external_suspend();
2358 
2359   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2360 
2361   // If JNIEnv proxies are allowed, don't self-suspend if the target
2362   // thread is not the current thread. In older versions of jdbx, jdbx
2363   // threads could call into the VM with another thread's JNIEnv so we
2364   // can be here operating on behalf of a suspended thread (4432884).
2365   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2366     JavaThreadState state = thread->thread_state();
2367 
2368     // We mark this thread_blocked state as a suspend-equivalent so
2369     // that a caller to is_ext_suspend_completed() won't be confused.
2370     // The suspend-equivalent state is cleared by java_suspend_self().
2371     thread->set_suspend_equivalent();
2372 
2373     // If the safepoint code sees the _thread_in_native_trans state, it will
2374     // wait until the thread changes to other thread state. There is no
2375     // guarantee on how soon we can obtain the SR_lock and complete the
2376     // self-suspend request. It would be a bad idea to let safepoint wait for
2377     // too long. Temporarily change the state to _thread_blocked to
2378     // let the VM thread know that this thread is ready for GC. The problem
2379     // of changing thread state is that safepoint could happen just after
2380     // java_suspend_self() returns after being resumed, and VM thread will
2381     // see the _thread_blocked state. We must check for safepoint
2382     // after restoring the state and make sure we won't leave while a safepoint
2383     // is in progress.
2384     thread->set_thread_state(_thread_blocked);
2385     thread->java_suspend_self();
2386     thread->set_thread_state(state);
2387     // Make sure new state is seen by VM thread
2388     if (os::is_MP()) {
2389       if (UseMembar) {
2390         // Force a fence between the write above and read below
2391         OrderAccess::fence();
2392       } else {
2393         // Must use this rather than serialization page in particular on Windows
2394         InterfaceSupport::serialize_memory(thread);
2395       }
2396     }
2397   }
2398 
2399   if (SafepointSynchronize::do_call_back()) {
2400     // If we are safepointing, then block the caller which may not be
2401     // the same as the target thread (see above).
2402     SafepointSynchronize::block(curJT);
2403   }
2404 
2405   if (thread->is_deopt_suspend()) {
2406     thread->clear_deopt_suspend();
2407     RegisterMap map(thread, false);
2408     frame f = thread->last_frame();
2409     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2410       f = f.sender(&map);
2411     }
2412     if (f.id() == thread->must_deopt_id()) {
2413       thread->clear_must_deopt_id();
2414       f.deoptimize(thread);
2415     } else {
2416       fatal("missed deoptimization!");
2417     }
2418   }
2419 
2420   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2421 }
2422 
2423 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2424 // progress or when _suspend_flags is non-zero.
2425 // Current thread needs to self-suspend if there is a suspend request and/or
2426 // block if a safepoint is in progress.
2427 // Also check for pending async exception (not including unsafe access error).
2428 // Note only the native==>VM/Java barriers can call this function and when
2429 // thread state is _thread_in_native_trans.
check_special_condition_for_native_trans(JavaThread * thread)2430 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2431   check_safepoint_and_suspend_for_native_trans(thread);
2432 
2433   if (thread->has_async_exception()) {
2434     // We are in _thread_in_native_trans state, don't handle unsafe
2435     // access error since that may block.
2436     thread->check_and_handle_async_exceptions(false);
2437   }
2438 }
2439 
2440 // This is a variant of the normal
2441 // check_special_condition_for_native_trans with slightly different
2442 // semantics for use by critical native wrappers.  It does all the
2443 // normal checks but also performs the transition back into
2444 // thread_in_Java state.  This is required so that critical natives
2445 // can potentially block and perform a GC if they are the last thread
2446 // exiting the GC_locker.
check_special_condition_for_native_trans_and_transition(JavaThread * thread)2447 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2448   check_special_condition_for_native_trans(thread);
2449 
2450   // Finish the transition
2451   thread->set_thread_state(_thread_in_Java);
2452 
2453   if (thread->do_critical_native_unlock()) {
2454     ThreadInVMfromJavaNoAsyncException tiv(thread);
2455     GC_locker::unlock_critical(thread);
2456     thread->clear_critical_native_unlock();
2457   }
2458 }
2459 
2460 // We need to guarantee the Threads_lock here, since resumes are not
2461 // allowed during safepoint synchronization
2462 // Can only resume from an external suspension
java_resume()2463 void JavaThread::java_resume() {
2464   assert_locked_or_safepoint(Threads_lock);
2465 
2466   // Sanity check: thread is gone, has started exiting or the thread
2467   // was not externally suspended.
2468   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2469     return;
2470   }
2471 
2472   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2473 
2474   clear_external_suspend();
2475 
2476   if (is_ext_suspended()) {
2477     clear_ext_suspended();
2478     SR_lock()->notify_all();
2479   }
2480 }
2481 
create_stack_guard_pages()2482 void JavaThread::create_stack_guard_pages() {
2483   if (!os::uses_stack_guard_pages() ||
2484       _stack_guard_state != stack_guard_unused ||
2485       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2486       if (TraceThreadEvents) {
2487         tty->print_cr("Stack guard page creation for thread "
2488                       UINTX_FORMAT " disabled", os::current_thread_id());
2489       }
2490     return;
2491   }
2492   address low_addr = stack_base() - stack_size();
2493   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2494 
2495   int allocate = os::allocate_stack_guard_pages();
2496   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2497 
2498   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2499     warning("Attempt to allocate stack guard pages failed.");
2500     return;
2501   }
2502 
2503   if (os::guard_memory((char *) low_addr, len)) {
2504     _stack_guard_state = stack_guard_enabled;
2505   } else {
2506     warning("Attempt to protect stack guard pages failed.");
2507     if (os::uncommit_memory((char *) low_addr, len)) {
2508       warning("Attempt to deallocate stack guard pages failed.");
2509     }
2510   }
2511 }
2512 
remove_stack_guard_pages()2513 void JavaThread::remove_stack_guard_pages() {
2514   assert(Thread::current() == this, "from different thread");
2515   if (_stack_guard_state == stack_guard_unused) return;
2516   address low_addr = stack_base() - stack_size();
2517   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2518 
2519   if (os::allocate_stack_guard_pages()) {
2520     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2521       _stack_guard_state = stack_guard_unused;
2522     } else {
2523       warning("Attempt to deallocate stack guard pages failed.");
2524     }
2525   } else {
2526     if (_stack_guard_state == stack_guard_unused) return;
2527     if (os::unguard_memory((char *) low_addr, len)) {
2528       _stack_guard_state = stack_guard_unused;
2529     } else {
2530         warning("Attempt to unprotect stack guard pages failed.");
2531     }
2532   }
2533 }
2534 
enable_stack_yellow_zone()2535 void JavaThread::enable_stack_yellow_zone() {
2536   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2537   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2538 
2539   // The base notation is from the stacks point of view, growing downward.
2540   // We need to adjust it to work correctly with guard_memory()
2541   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2542 
2543   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2544   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2545 
2546   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2547     _stack_guard_state = stack_guard_enabled;
2548   } else {
2549     warning("Attempt to guard stack yellow zone failed.");
2550   }
2551   enable_register_stack_guard();
2552 }
2553 
disable_stack_yellow_zone()2554 void JavaThread::disable_stack_yellow_zone() {
2555   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2556   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2557 
2558   // Simply return if called for a thread that does not use guard pages.
2559   if (_stack_guard_state == stack_guard_unused) return;
2560 
2561   // The base notation is from the stacks point of view, growing downward.
2562   // We need to adjust it to work correctly with guard_memory()
2563   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2564 
2565   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2566     _stack_guard_state = stack_guard_yellow_disabled;
2567   } else {
2568     warning("Attempt to unguard stack yellow zone failed.");
2569   }
2570   disable_register_stack_guard();
2571 }
2572 
enable_stack_red_zone()2573 void JavaThread::enable_stack_red_zone() {
2574   // The base notation is from the stacks point of view, growing downward.
2575   // We need to adjust it to work correctly with guard_memory()
2576   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2577   address base = stack_red_zone_base() - stack_red_zone_size();
2578 
2579   guarantee(base < stack_base(),"Error calculating stack red zone");
2580   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2581 
2582   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2583     warning("Attempt to guard stack red zone failed.");
2584   }
2585 }
2586 
disable_stack_red_zone()2587 void JavaThread::disable_stack_red_zone() {
2588   // The base notation is from the stacks point of view, growing downward.
2589   // We need to adjust it to work correctly with guard_memory()
2590   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2591   address base = stack_red_zone_base() - stack_red_zone_size();
2592   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2593     warning("Attempt to unguard stack red zone failed.");
2594   }
2595 }
2596 
frames_do(void f (frame *,const RegisterMap * map))2597 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2598   // ignore is there is no stack
2599   if (!has_last_Java_frame()) return;
2600   // traverse the stack frames. Starts from top frame.
2601   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2602     frame* fr = fst.current();
2603     f(fr, fst.register_map());
2604   }
2605 }
2606 
2607 
2608 #ifndef PRODUCT
2609 // Deoptimization
2610 // Function for testing deoptimization
deoptimize()2611 void JavaThread::deoptimize() {
2612   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2613   StackFrameStream fst(this, UseBiasedLocking);
2614   bool deopt = false;           // Dump stack only if a deopt actually happens.
2615   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2616   // Iterate over all frames in the thread and deoptimize
2617   for(; !fst.is_done(); fst.next()) {
2618     if(fst.current()->can_be_deoptimized()) {
2619 
2620       if (only_at) {
2621         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2622         // consists of comma or carriage return separated numbers so
2623         // search for the current bci in that string.
2624         address pc = fst.current()->pc();
2625         nmethod* nm =  (nmethod*) fst.current()->cb();
2626         ScopeDesc* sd = nm->scope_desc_at( pc);
2627         char buffer[8];
2628         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2629         size_t len = strlen(buffer);
2630         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2631         while (found != NULL) {
2632           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2633               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2634             // Check that the bci found is bracketed by terminators.
2635             break;
2636           }
2637           found = strstr(found + 1, buffer);
2638         }
2639         if (!found) {
2640           continue;
2641         }
2642       }
2643 
2644       if (DebugDeoptimization && !deopt) {
2645         deopt = true; // One-time only print before deopt
2646         tty->print_cr("[BEFORE Deoptimization]");
2647         trace_frames();
2648         trace_stack();
2649       }
2650       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2651     }
2652   }
2653 
2654   if (DebugDeoptimization && deopt) {
2655     tty->print_cr("[AFTER Deoptimization]");
2656     trace_frames();
2657   }
2658 }
2659 
2660 
2661 // Make zombies
make_zombies()2662 void JavaThread::make_zombies() {
2663   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2664     if (fst.current()->can_be_deoptimized()) {
2665       // it is a Java nmethod
2666       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2667       nm->make_not_entrant();
2668     }
2669   }
2670 }
2671 #endif // PRODUCT
2672 
2673 
deoptimized_wrt_marked_nmethods()2674 void JavaThread::deoptimized_wrt_marked_nmethods() {
2675   if (!has_last_Java_frame()) return;
2676   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2677   StackFrameStream fst(this, UseBiasedLocking);
2678   for(; !fst.is_done(); fst.next()) {
2679     if (fst.current()->should_be_deoptimized()) {
2680       if (LogCompilation && xtty != NULL) {
2681         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2682         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2683                    this->name(), nm != NULL ? nm->compile_id() : -1);
2684       }
2685 
2686       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2687     }
2688   }
2689 }
2690 
2691 
2692 // GC support
frame_gc_epilogue(frame * f,const RegisterMap * map)2693 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2694 
gc_epilogue()2695 void JavaThread::gc_epilogue() {
2696   frames_do(frame_gc_epilogue);
2697 }
2698 
2699 
frame_gc_prologue(frame * f,const RegisterMap * map)2700 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2701 
gc_prologue()2702 void JavaThread::gc_prologue() {
2703   frames_do(frame_gc_prologue);
2704 }
2705 
2706 // If the caller is a NamedThread, then remember, in the current scope,
2707 // the given JavaThread in its _processed_thread field.
2708 class RememberProcessedThread: public StackObj {
2709   NamedThread* _cur_thr;
2710 public:
RememberProcessedThread(JavaThread * jthr)2711   RememberProcessedThread(JavaThread* jthr) {
2712     Thread* thread = Thread::current();
2713     if (thread->is_Named_thread()) {
2714       _cur_thr = (NamedThread *)thread;
2715       _cur_thr->set_processed_thread(jthr);
2716     } else {
2717       _cur_thr = NULL;
2718     }
2719   }
2720 
~RememberProcessedThread()2721   ~RememberProcessedThread() {
2722     if (_cur_thr) {
2723       _cur_thr->set_processed_thread(NULL);
2724     }
2725   }
2726 };
2727 
oops_do(OopClosure * f,CLDClosure * cld_f,CodeBlobClosure * cf)2728 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2729   // Verify that the deferred card marks have been flushed.
2730   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2731 
2732   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2733   // since there may be more than one thread using each ThreadProfiler.
2734 
2735   // Traverse the GCHandles
2736   Thread::oops_do(f, cld_f, cf);
2737 
2738   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2739           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2740 
2741   if (has_last_Java_frame()) {
2742     // Record JavaThread to GC thread
2743     RememberProcessedThread rpt(this);
2744 
2745     // Traverse the privileged stack
2746     if (_privileged_stack_top != NULL) {
2747       _privileged_stack_top->oops_do(f);
2748     }
2749 
2750     // traverse the registered growable array
2751     if (_array_for_gc != NULL) {
2752       for (int index = 0; index < _array_for_gc->length(); index++) {
2753         f->do_oop(_array_for_gc->adr_at(index));
2754       }
2755     }
2756 
2757     // Traverse the monitor chunks
2758     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2759       chunk->oops_do(f);
2760     }
2761 
2762     // Traverse the execution stack
2763     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2764       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2765     }
2766   }
2767 
2768   // callee_target is never live across a gc point so NULL it here should
2769   // it still contain a methdOop.
2770 
2771   set_callee_target(NULL);
2772 
2773   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2774   // If we have deferred set_locals there might be oops waiting to be
2775   // written
2776   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2777   if (list != NULL) {
2778     for (int i = 0; i < list->length(); i++) {
2779       list->at(i)->oops_do(f);
2780     }
2781   }
2782 
2783   // Traverse instance variables at the end since the GC may be moving things
2784   // around using this function
2785   f->do_oop((oop*) &_threadObj);
2786   f->do_oop((oop*) &_vm_result);
2787   f->do_oop((oop*) &_exception_oop);
2788   f->do_oop((oop*) &_pending_async_exception);
2789 
2790   if (jvmti_thread_state() != NULL) {
2791     jvmti_thread_state()->oops_do(f);
2792   }
2793 }
2794 
nmethods_do(CodeBlobClosure * cf)2795 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2796   Thread::nmethods_do(cf);  // (super method is a no-op)
2797 
2798   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2799           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2800 
2801   if (has_last_Java_frame()) {
2802     // Traverse the execution stack
2803     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2804       fst.current()->nmethods_do(cf);
2805     }
2806   }
2807 }
2808 
metadata_do(void f (Metadata *))2809 void JavaThread::metadata_do(void f(Metadata*)) {
2810   Thread::metadata_do(f);
2811   if (has_last_Java_frame()) {
2812     // Traverse the execution stack to call f() on the methods in the stack
2813     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2814       fst.current()->metadata_do(f);
2815     }
2816   } else if (is_Compiler_thread()) {
2817     // need to walk ciMetadata in current compile tasks to keep alive.
2818     CompilerThread* ct = (CompilerThread*)this;
2819     if (ct->env() != NULL) {
2820       ct->env()->metadata_do(f);
2821     }
2822   }
2823 }
2824 
2825 // Printing
_get_thread_state_name(JavaThreadState _thread_state)2826 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2827   switch (_thread_state) {
2828   case _thread_uninitialized:     return "_thread_uninitialized";
2829   case _thread_new:               return "_thread_new";
2830   case _thread_new_trans:         return "_thread_new_trans";
2831   case _thread_in_native:         return "_thread_in_native";
2832   case _thread_in_native_trans:   return "_thread_in_native_trans";
2833   case _thread_in_vm:             return "_thread_in_vm";
2834   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2835   case _thread_in_Java:           return "_thread_in_Java";
2836   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2837   case _thread_blocked:           return "_thread_blocked";
2838   case _thread_blocked_trans:     return "_thread_blocked_trans";
2839   default:                        return "unknown thread state";
2840   }
2841 }
2842 
2843 #ifndef PRODUCT
print_thread_state_on(outputStream * st) const2844 void JavaThread::print_thread_state_on(outputStream *st) const {
2845   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2846 };
print_thread_state() const2847 void JavaThread::print_thread_state() const {
2848   print_thread_state_on(tty);
2849 };
2850 #endif // PRODUCT
2851 
2852 // Called by Threads::print() for VM_PrintThreads operation
print_on(outputStream * st) const2853 void JavaThread::print_on(outputStream *st) const {
2854   st->print("\"%s\" ", get_thread_name());
2855   oop thread_oop = threadObj();
2856   if (thread_oop != NULL) {
2857     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2858     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2859     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2860   }
2861   Thread::print_on(st);
2862   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2863   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2864   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2865     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2866   }
2867 #ifndef PRODUCT
2868   print_thread_state_on(st);
2869   _safepoint_state->print_on(st);
2870 #endif // PRODUCT
2871 }
2872 
2873 // Called by fatal error handler. The difference between this and
2874 // JavaThread::print() is that we can't grab lock or allocate memory.
print_on_error(outputStream * st,char * buf,int buflen) const2875 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2876   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2877   oop thread_obj = threadObj();
2878   if (thread_obj != NULL) {
2879      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2880   }
2881   st->print(" [");
2882   st->print("%s", _get_thread_state_name(_thread_state));
2883   if (osthread()) {
2884     st->print(", id=%d", osthread()->thread_id());
2885   }
2886   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2887             _stack_base - _stack_size, _stack_base);
2888   st->print("]");
2889   return;
2890 }
2891 
2892 // Verification
2893 
frame_verify(frame * f,const RegisterMap * map)2894 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2895 
verify()2896 void JavaThread::verify() {
2897   // Verify oops in the thread.
2898   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2899 
2900   // Verify the stack frames.
2901   frames_do(frame_verify);
2902 }
2903 
2904 // CR 6300358 (sub-CR 2137150)
2905 // Most callers of this method assume that it can't return NULL but a
2906 // thread may not have a name whilst it is in the process of attaching to
2907 // the VM - see CR 6412693, and there are places where a JavaThread can be
2908 // seen prior to having it's threadObj set (eg JNI attaching threads and
2909 // if vm exit occurs during initialization). These cases can all be accounted
2910 // for such that this method never returns NULL.
get_thread_name() const2911 const char* JavaThread::get_thread_name() const {
2912 #ifdef ASSERT
2913   // early safepoints can hit while current thread does not yet have TLS
2914   if (!SafepointSynchronize::is_at_safepoint()) {
2915     Thread *cur = Thread::current();
2916     if (!(cur->is_Java_thread() && cur == this)) {
2917       // Current JavaThreads are allowed to get their own name without
2918       // the Threads_lock.
2919       assert_locked_or_safepoint(Threads_lock);
2920     }
2921   }
2922 #endif // ASSERT
2923     return get_thread_name_string();
2924 }
2925 
2926 // Returns a non-NULL representation of this thread's name, or a suitable
2927 // descriptive string if there is no set name
get_thread_name_string(char * buf,int buflen) const2928 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2929   const char* name_str;
2930   oop thread_obj = threadObj();
2931   if (thread_obj != NULL) {
2932     oop name = java_lang_Thread::name(thread_obj);
2933     if (name != NULL) {
2934       if (buf == NULL) {
2935         name_str = java_lang_String::as_utf8_string(name);
2936       }
2937       else {
2938         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2939       }
2940     }
2941     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2942       name_str = "<no-name - thread is attaching>";
2943     }
2944     else {
2945       name_str = Thread::name();
2946     }
2947   }
2948   else {
2949     name_str = Thread::name();
2950   }
2951   assert(name_str != NULL, "unexpected NULL thread name");
2952   return name_str;
2953 }
2954 
2955 
get_threadgroup_name() const2956 const char* JavaThread::get_threadgroup_name() const {
2957   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2958   oop thread_obj = threadObj();
2959   if (thread_obj != NULL) {
2960     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2961     if (thread_group != NULL) {
2962       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2963       // ThreadGroup.name can be null
2964       if (name != NULL) {
2965         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2966         return str;
2967       }
2968     }
2969   }
2970   return NULL;
2971 }
2972 
get_parent_name() const2973 const char* JavaThread::get_parent_name() const {
2974   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2975   oop thread_obj = threadObj();
2976   if (thread_obj != NULL) {
2977     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2978     if (thread_group != NULL) {
2979       oop parent = java_lang_ThreadGroup::parent(thread_group);
2980       if (parent != NULL) {
2981         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2982         // ThreadGroup.name can be null
2983         if (name != NULL) {
2984           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2985           return str;
2986         }
2987       }
2988     }
2989   }
2990   return NULL;
2991 }
2992 
java_priority() const2993 ThreadPriority JavaThread::java_priority() const {
2994   oop thr_oop = threadObj();
2995   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2996   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2997   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2998   return priority;
2999 }
3000 
prepare(jobject jni_thread,ThreadPriority prio)3001 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3002 
3003   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3004   // Link Java Thread object <-> C++ Thread
3005 
3006   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3007   // and put it into a new Handle.  The Handle "thread_oop" can then
3008   // be used to pass the C++ thread object to other methods.
3009 
3010   // Set the Java level thread object (jthread) field of the
3011   // new thread (a JavaThread *) to C++ thread object using the
3012   // "thread_oop" handle.
3013 
3014   // Set the thread field (a JavaThread *) of the
3015   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3016 
3017   Handle thread_oop(Thread::current(),
3018                     JNIHandles::resolve_non_null(jni_thread));
3019   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3020     "must be initialized");
3021   set_threadObj(thread_oop());
3022   java_lang_Thread::set_thread(thread_oop(), this);
3023 
3024   if (prio == NoPriority) {
3025     prio = java_lang_Thread::priority(thread_oop());
3026     assert(prio != NoPriority, "A valid priority should be present");
3027   }
3028 
3029   // Push the Java priority down to the native thread; needs Threads_lock
3030   Thread::set_priority(this, prio);
3031 
3032   prepare_ext();
3033 
3034   // Add the new thread to the Threads list and set it in motion.
3035   // We must have threads lock in order to call Threads::add.
3036   // It is crucial that we do not block before the thread is
3037   // added to the Threads list for if a GC happens, then the java_thread oop
3038   // will not be visited by GC.
3039   Threads::add(this);
3040 }
3041 
current_park_blocker()3042 oop JavaThread::current_park_blocker() {
3043   // Support for JSR-166 locks
3044   oop thread_oop = threadObj();
3045   if (thread_oop != NULL &&
3046       JDK_Version::current().supports_thread_park_blocker()) {
3047     return java_lang_Thread::park_blocker(thread_oop);
3048   }
3049   return NULL;
3050 }
3051 
3052 
print_stack_on(outputStream * st)3053 void JavaThread::print_stack_on(outputStream* st) {
3054   if (!has_last_Java_frame()) return;
3055   ResourceMark rm;
3056   HandleMark   hm;
3057 
3058   RegisterMap reg_map(this);
3059   vframe* start_vf = last_java_vframe(&reg_map);
3060   int count = 0;
3061   for (vframe* f = start_vf; f; f = f->sender() ) {
3062     if (f->is_java_frame()) {
3063       javaVFrame* jvf = javaVFrame::cast(f);
3064       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3065 
3066       // Print out lock information
3067       if (JavaMonitorsInStackTrace) {
3068         jvf->print_lock_info_on(st, count);
3069       }
3070     } else {
3071       // Ignore non-Java frames
3072     }
3073 
3074     // Bail-out case for too deep stacks
3075     count++;
3076     if (MaxJavaStackTraceDepth == count) return;
3077   }
3078 }
3079 
3080 
3081 // JVMTI PopFrame support
popframe_preserve_args(ByteSize size_in_bytes,void * start)3082 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3083   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3084   if (in_bytes(size_in_bytes) != 0) {
3085     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3086     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3087     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3088   }
3089 }
3090 
popframe_preserved_args()3091 void* JavaThread::popframe_preserved_args() {
3092   return _popframe_preserved_args;
3093 }
3094 
popframe_preserved_args_size()3095 ByteSize JavaThread::popframe_preserved_args_size() {
3096   return in_ByteSize(_popframe_preserved_args_size);
3097 }
3098 
popframe_preserved_args_size_in_words()3099 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3100   int sz = in_bytes(popframe_preserved_args_size());
3101   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3102   return in_WordSize(sz / wordSize);
3103 }
3104 
popframe_free_preserved_args()3105 void JavaThread::popframe_free_preserved_args() {
3106   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3107   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3108   _popframe_preserved_args = NULL;
3109   _popframe_preserved_args_size = 0;
3110 }
3111 
3112 #ifndef PRODUCT
3113 
trace_frames()3114 void JavaThread::trace_frames() {
3115   tty->print_cr("[Describe stack]");
3116   int frame_no = 1;
3117   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3118     tty->print("  %d. ", frame_no++);
3119     fst.current()->print_value_on(tty,this);
3120     tty->cr();
3121   }
3122 }
3123 
3124 class PrintAndVerifyOopClosure: public OopClosure {
3125  protected:
do_oop_work(T * p)3126   template <class T> inline void do_oop_work(T* p) {
3127     oop obj = oopDesc::load_decode_heap_oop(p);
3128     if (obj == NULL) return;
3129     tty->print(INTPTR_FORMAT ": ", p);
3130     if (obj->is_oop_or_null()) {
3131       if (obj->is_objArray()) {
3132         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3133       } else {
3134         obj->print();
3135       }
3136     } else {
3137       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3138     }
3139     tty->cr();
3140   }
3141  public:
do_oop(oop * p)3142   virtual void do_oop(oop* p) { do_oop_work(p); }
do_oop(narrowOop * p)3143   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3144 };
3145 
3146 
oops_print(frame * f,const RegisterMap * map)3147 static void oops_print(frame* f, const RegisterMap *map) {
3148   PrintAndVerifyOopClosure print;
3149   f->print_value();
3150   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3151 }
3152 
3153 // Print our all the locations that contain oops and whether they are
3154 // valid or not.  This useful when trying to find the oldest frame
3155 // where an oop has gone bad since the frame walk is from youngest to
3156 // oldest.
trace_oops()3157 void JavaThread::trace_oops() {
3158   tty->print_cr("[Trace oops]");
3159   frames_do(oops_print);
3160 }
3161 
3162 
3163 #ifdef ASSERT
3164 // Print or validate the layout of stack frames
print_frame_layout(int depth,bool validate_only)3165 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3166   ResourceMark rm;
3167   PRESERVE_EXCEPTION_MARK;
3168   FrameValues values;
3169   int frame_no = 0;
3170   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3171     fst.current()->describe(values, ++frame_no);
3172     if (depth == frame_no) break;
3173   }
3174   if (validate_only) {
3175     values.validate();
3176   } else {
3177     tty->print_cr("[Describe stack layout]");
3178     values.print(this);
3179   }
3180 }
3181 #endif
3182 
trace_stack_from(vframe * start_vf)3183 void JavaThread::trace_stack_from(vframe* start_vf) {
3184   ResourceMark rm;
3185   int vframe_no = 1;
3186   for (vframe* f = start_vf; f; f = f->sender() ) {
3187     if (f->is_java_frame()) {
3188       javaVFrame::cast(f)->print_activation(vframe_no++);
3189     } else {
3190       f->print();
3191     }
3192     if (vframe_no > StackPrintLimit) {
3193       tty->print_cr("...<more frames>...");
3194       return;
3195     }
3196   }
3197 }
3198 
3199 
trace_stack()3200 void JavaThread::trace_stack() {
3201   if (!has_last_Java_frame()) return;
3202   ResourceMark rm;
3203   HandleMark   hm;
3204   RegisterMap reg_map(this);
3205   trace_stack_from(last_java_vframe(&reg_map));
3206 }
3207 
3208 
3209 #endif // PRODUCT
3210 
3211 
last_java_vframe(RegisterMap * reg_map)3212 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3213   assert(reg_map != NULL, "a map must be given");
3214   frame f = last_frame();
3215   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3216     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3217   }
3218   return NULL;
3219 }
3220 
3221 
security_get_caller_class(int depth)3222 Klass* JavaThread::security_get_caller_class(int depth) {
3223   vframeStream vfst(this);
3224   vfst.security_get_caller_frame(depth);
3225   if (!vfst.at_end()) {
3226     return vfst.method()->method_holder();
3227   }
3228   return NULL;
3229 }
3230 
compiler_thread_entry(JavaThread * thread,TRAPS)3231 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3232   assert(thread->is_Compiler_thread(), "must be compiler thread");
3233   CompileBroker::compiler_thread_loop();
3234 }
3235 
3236 // Create a CompilerThread
CompilerThread(CompileQueue * queue,CompilerCounters * counters)3237 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3238 : JavaThread(&compiler_thread_entry) {
3239   _env   = NULL;
3240   _log   = NULL;
3241   _task  = NULL;
3242   _queue = queue;
3243   _counters = counters;
3244   _buffer_blob = NULL;
3245   _scanned_nmethod = NULL;
3246   _compiler = NULL;
3247 
3248   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3249   resource_area()->bias_to(mtCompiler);
3250 
3251 #ifndef PRODUCT
3252   _ideal_graph_printer = NULL;
3253 #endif
3254 }
3255 
oops_do(OopClosure * f,CLDClosure * cld_f,CodeBlobClosure * cf)3256 void CompilerThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3257   JavaThread::oops_do(f, cld_f, cf);
3258   if (_scanned_nmethod != NULL && cf != NULL) {
3259     // Safepoints can occur when the sweeper is scanning an nmethod so
3260     // process it here to make sure it isn't unloaded in the middle of
3261     // a scan.
3262     cf->do_code_blob(_scanned_nmethod);
3263   }
3264 }
3265 
3266 
3267 // ======= Threads ========
3268 
3269 // The Threads class links together all active threads, and provides
3270 // operations over all threads.  It is protected by its own Mutex
3271 // lock, which is also used in other contexts to protect thread
3272 // operations from having the thread being operated on from exiting
3273 // and going away unexpectedly (e.g., safepoint synchronization)
3274 
3275 JavaThread* Threads::_thread_list = NULL;
3276 int         Threads::_number_of_threads = 0;
3277 int         Threads::_number_of_non_daemon_threads = 0;
3278 int         Threads::_return_code = 0;
3279 size_t      JavaThread::_stack_size_at_create = 0;
3280 #ifdef ASSERT
3281 bool        Threads::_vm_complete = false;
3282 #endif
3283 
3284 // All JavaThreads
3285 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3286 
3287 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
threads_do(ThreadClosure * tc)3288 void Threads::threads_do(ThreadClosure* tc) {
3289   assert_locked_or_safepoint(Threads_lock);
3290   // ALL_JAVA_THREADS iterates through all JavaThreads
3291   ALL_JAVA_THREADS(p) {
3292     tc->do_thread(p);
3293   }
3294   // Someday we could have a table or list of all non-JavaThreads.
3295   // For now, just manually iterate through them.
3296   tc->do_thread(VMThread::vm_thread());
3297   Universe::heap()->gc_threads_do(tc);
3298   WatcherThread *wt = WatcherThread::watcher_thread();
3299   // Strictly speaking, the following NULL check isn't sufficient to make sure
3300   // the data for WatcherThread is still valid upon being examined. However,
3301   // considering that WatchThread terminates when the VM is on the way to
3302   // exit at safepoint, the chance of the above is extremely small. The right
3303   // way to prevent termination of WatcherThread would be to acquire
3304   // Terminator_lock, but we can't do that without violating the lock rank
3305   // checking in some cases.
3306   if (wt != NULL)
3307     tc->do_thread(wt);
3308 
3309 #if INCLUDE_JFR
3310   Thread* sampler_thread = Jfr::sampler_thread();
3311   if (sampler_thread != NULL) {
3312     tc->do_thread(sampler_thread);
3313   }
3314 
3315 #endif
3316 
3317   // If CompilerThreads ever become non-JavaThreads, add them here
3318 }
3319 
create_vm(JavaVMInitArgs * args,bool * canTryAgain)3320 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3321 
3322   extern void JDK_Version_init();
3323 
3324   // Preinitialize version info.
3325   VM_Version::early_initialize();
3326 
3327   // Check version
3328   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3329 
3330   // Initialize the output stream module
3331   ostream_init();
3332 
3333   // Process java launcher properties.
3334   Arguments::process_sun_java_launcher_properties(args);
3335 
3336   // Initialize the os module before using TLS
3337   os::init();
3338 
3339   // Initialize system properties.
3340   Arguments::init_system_properties();
3341 
3342   // So that JDK version can be used as a discrimintor when parsing arguments
3343   JDK_Version_init();
3344 
3345   // Update/Initialize System properties after JDK version number is known
3346   Arguments::init_version_specific_system_properties();
3347 
3348   // Parse arguments
3349   // Note: this internally calls os::init_container_support()
3350   jint parse_result = Arguments::parse(args);
3351   if (parse_result != JNI_OK) return parse_result;
3352 
3353   os::init_before_ergo();
3354 
3355   jint ergo_result = Arguments::apply_ergo();
3356   if (ergo_result != JNI_OK) return ergo_result;
3357 
3358   if (PauseAtStartup) {
3359     os::pause();
3360   }
3361 
3362 #ifndef USDT2
3363   HS_DTRACE_PROBE(hotspot, vm__init__begin);
3364 #else /* USDT2 */
3365   HOTSPOT_VM_INIT_BEGIN();
3366 #endif /* USDT2 */
3367 
3368   // Record VM creation timing statistics
3369   TraceVmCreationTime create_vm_timer;
3370   create_vm_timer.start();
3371 
3372   // Timing (must come after argument parsing)
3373   TraceTime timer("Create VM", TraceStartupTime);
3374 
3375   // Initialize the os module after parsing the args
3376   jint os_init_2_result = os::init_2();
3377   if (os_init_2_result != JNI_OK) return os_init_2_result;
3378 
3379   jint adjust_after_os_result = Arguments::adjust_after_os();
3380   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3381 
3382   // intialize TLS
3383   ThreadLocalStorage::init();
3384 
3385   // Initialize output stream logging
3386   ostream_init_log();
3387 
3388   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3389   // Must be before create_vm_init_agents()
3390   if (Arguments::init_libraries_at_startup()) {
3391     convert_vm_init_libraries_to_agents();
3392   }
3393 
3394   // Launch -agentlib/-agentpath and converted -Xrun agents
3395   if (Arguments::init_agents_at_startup()) {
3396     create_vm_init_agents();
3397   }
3398 
3399   // Initialize Threads state
3400   _thread_list = NULL;
3401   _number_of_threads = 0;
3402   _number_of_non_daemon_threads = 0;
3403 
3404   // Initialize global data structures and create system classes in heap
3405   vm_init_globals();
3406 
3407   // Attach the main thread to this os thread
3408   JavaThread* main_thread = new JavaThread();
3409   main_thread->set_thread_state(_thread_in_vm);
3410   // must do this before set_active_handles and initialize_thread_local_storage
3411   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3412   // change the stack size recorded here to one based on the java thread
3413   // stacksize. This adjusted size is what is used to figure the placement
3414   // of the guard pages.
3415   main_thread->record_stack_base_and_size();
3416   main_thread->initialize_thread_local_storage();
3417 
3418   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3419 
3420   if (!main_thread->set_as_starting_thread()) {
3421     vm_shutdown_during_initialization(
3422       "Failed necessary internal allocation. Out of swap space");
3423     delete main_thread;
3424     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3425     return JNI_ENOMEM;
3426   }
3427 
3428   // Enable guard page *after* os::create_main_thread(), otherwise it would
3429   // crash Linux VM, see notes in os_linux.cpp.
3430   main_thread->create_stack_guard_pages();
3431 
3432   // Initialize Java-Level synchronization subsystem
3433   ObjectMonitor::Initialize() ;
3434 
3435   // Initialize global modules
3436   jint status = init_globals();
3437   if (status != JNI_OK) {
3438     delete main_thread;
3439     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3440     return status;
3441   }
3442 
3443   JFR_ONLY(Jfr::on_vm_init();)
3444 
3445   // Should be done after the heap is fully created
3446   main_thread->cache_global_variables();
3447 
3448   HandleMark hm;
3449 
3450   { MutexLocker mu(Threads_lock);
3451     Threads::add(main_thread);
3452   }
3453 
3454   // Any JVMTI raw monitors entered in onload will transition into
3455   // real raw monitor. VM is setup enough here for raw monitor enter.
3456   JvmtiExport::transition_pending_onload_raw_monitors();
3457 
3458   // Create the VMThread
3459   { TraceTime timer("Start VMThread", TraceStartupTime);
3460     VMThread::create();
3461     Thread* vmthread = VMThread::vm_thread();
3462 
3463     if (!os::create_thread(vmthread, os::vm_thread))
3464       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3465 
3466     // Wait for the VM thread to become ready, and VMThread::run to initialize
3467     // Monitors can have spurious returns, must always check another state flag
3468     {
3469       MutexLocker ml(Notify_lock);
3470       os::start_thread(vmthread);
3471       while (vmthread->active_handles() == NULL) {
3472         Notify_lock->wait();
3473       }
3474     }
3475   }
3476 
3477   assert (Universe::is_fully_initialized(), "not initialized");
3478   if (VerifyDuringStartup) {
3479     // Make sure we're starting with a clean slate.
3480     VM_Verify verify_op;
3481     VMThread::execute(&verify_op);
3482   }
3483 
3484   EXCEPTION_MARK;
3485 
3486   // At this point, the Universe is initialized, but we have not executed
3487   // any byte code.  Now is a good time (the only time) to dump out the
3488   // internal state of the JVM for sharing.
3489   if (DumpSharedSpaces) {
3490     MetaspaceShared::preload_and_dump(CHECK_0);
3491     ShouldNotReachHere();
3492   }
3493 
3494   // Always call even when there are not JVMTI environments yet, since environments
3495   // may be attached late and JVMTI must track phases of VM execution
3496   JvmtiExport::enter_start_phase();
3497 
3498   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3499   JvmtiExport::post_vm_start();
3500 
3501   {
3502     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3503 
3504     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3505       create_vm_init_libraries();
3506     }
3507 
3508     initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3509 
3510     // Initialize java_lang.System (needed before creating the thread)
3511     initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3512     initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3513     Handle thread_group = create_initial_thread_group(CHECK_0);
3514     Universe::set_main_thread_group(thread_group());
3515     initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3516     oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3517     main_thread->set_threadObj(thread_object);
3518     // Set thread status to running since main thread has
3519     // been started and running.
3520     java_lang_Thread::set_thread_status(thread_object,
3521                                         java_lang_Thread::RUNNABLE);
3522 
3523     // The VM creates & returns objects of this class. Make sure it's initialized.
3524     initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3525 
3526     // The VM preresolves methods to these classes. Make sure that they get initialized
3527     initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3528     initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3529     call_initializeSystemClass(CHECK_0);
3530 
3531     // get the Java runtime name after java.lang.System is initialized
3532     JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3533     JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3534 
3535     // an instance of OutOfMemory exception has been allocated earlier
3536     initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3537     initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3538     initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3539     initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3540     initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3541     initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3542     initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3543     initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3544   }
3545 
3546   // See        : bugid 4211085.
3547   // Background : the static initializer of java.lang.Compiler tries to read
3548   //              property"java.compiler" and read & write property "java.vm.info".
3549   //              When a security manager is installed through the command line
3550   //              option "-Djava.security.manager", the above properties are not
3551   //              readable and the static initializer for java.lang.Compiler fails
3552   //              resulting in a NoClassDefFoundError.  This can happen in any
3553   //              user code which calls methods in java.lang.Compiler.
3554   // Hack :       the hack is to pre-load and initialize this class, so that only
3555   //              system domains are on the stack when the properties are read.
3556   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3557   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3558   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3559   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3560   //              Once that is done, we should remove this hack.
3561   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3562 
3563   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3564   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3565   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3566   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3567   // This should also be taken out as soon as 4211383 gets fixed.
3568   reset_vm_info_property(CHECK_0);
3569 
3570   quicken_jni_functions();
3571 
3572   // Set flag that basic initialization has completed. Used by exceptions and various
3573   // debug stuff, that does not work until all basic classes have been initialized.
3574   set_init_completed();
3575 
3576   Metaspace::post_initialize();
3577 
3578 #ifndef USDT2
3579   HS_DTRACE_PROBE(hotspot, vm__init__end);
3580 #else /* USDT2 */
3581   HOTSPOT_VM_INIT_END();
3582 #endif /* USDT2 */
3583 
3584   // record VM initialization completion time
3585 #if INCLUDE_MANAGEMENT
3586   Management::record_vm_init_completed();
3587 #endif // INCLUDE_MANAGEMENT
3588 
3589   // Compute system loader. Note that this has to occur after set_init_completed, since
3590   // valid exceptions may be thrown in the process.
3591   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3592   // set_init_completed has just been called, causing exceptions not to be shortcut
3593   // anymore. We call vm_exit_during_initialization directly instead.
3594   SystemDictionary::compute_java_system_loader(THREAD);
3595   if (HAS_PENDING_EXCEPTION) {
3596     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3597   }
3598 
3599 #if INCLUDE_ALL_GCS
3600   // Support for ConcurrentMarkSweep. This should be cleaned up
3601   // and better encapsulated. The ugly nested if test would go away
3602   // once things are properly refactored. XXX YSR
3603   if (UseConcMarkSweepGC || UseG1GC) {
3604     if (UseConcMarkSweepGC) {
3605       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3606     } else {
3607       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3608     }
3609     if (HAS_PENDING_EXCEPTION) {
3610       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3611     }
3612   }
3613 #endif // INCLUDE_ALL_GCS
3614 
3615   // Always call even when there are not JVMTI environments yet, since environments
3616   // may be attached late and JVMTI must track phases of VM execution
3617   JvmtiExport::enter_live_phase();
3618 
3619   // Signal Dispatcher needs to be started before VMInit event is posted
3620   os::signal_init();
3621 
3622   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3623   if (!DisableAttachMechanism) {
3624     AttachListener::vm_start();
3625     if (StartAttachListener || AttachListener::init_at_startup()) {
3626       AttachListener::init();
3627     }
3628   }
3629 
3630   // Launch -Xrun agents
3631   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3632   // back-end can launch with -Xdebug -Xrunjdwp.
3633   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3634     create_vm_init_libraries();
3635   }
3636 
3637   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3638   JvmtiExport::post_vm_initialized();
3639 
3640   JFR_ONLY(Jfr::on_vm_start();)
3641 
3642   if (CleanChunkPoolAsync) {
3643     Chunk::start_chunk_pool_cleaner_task();
3644   }
3645 
3646   // initialize compiler(s)
3647 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3648   CompileBroker::compilation_init();
3649 #endif
3650 
3651   if (EnableInvokeDynamic) {
3652     // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3653     // It is done after compilers are initialized, because otherwise compilations of
3654     // signature polymorphic MH intrinsics can be missed
3655     // (see SystemDictionary::find_method_handle_intrinsic).
3656     initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK_0);
3657     initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK_0);
3658     initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK_0);
3659   }
3660 
3661 #if INCLUDE_MANAGEMENT
3662   Management::initialize(THREAD);
3663 #endif // INCLUDE_MANAGEMENT
3664 
3665   if (HAS_PENDING_EXCEPTION) {
3666     // management agent fails to start possibly due to
3667     // configuration problem and is responsible for printing
3668     // stack trace if appropriate. Simply exit VM.
3669     vm_exit(1);
3670   }
3671 
3672   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3673   if (MemProfiling)                   MemProfiler::engage();
3674   StatSampler::engage();
3675   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3676 
3677   BiasedLocking::init();
3678 
3679 #if INCLUDE_RTM_OPT
3680   RTMLockingCounters::init();
3681 #endif
3682 
3683   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3684     call_postVMInitHook(THREAD);
3685     // The Java side of PostVMInitHook.run must deal with all
3686     // exceptions and provide means of diagnosis.
3687     if (HAS_PENDING_EXCEPTION) {
3688       CLEAR_PENDING_EXCEPTION;
3689     }
3690   }
3691 
3692   {
3693       MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3694       // Make sure the watcher thread can be started by WatcherThread::start()
3695       // or by dynamic enrollment.
3696       WatcherThread::make_startable();
3697       // Start up the WatcherThread if there are any periodic tasks
3698       // NOTE:  All PeriodicTasks should be registered by now. If they
3699       //   aren't, late joiners might appear to start slowly (we might
3700       //   take a while to process their first tick).
3701       if (PeriodicTask::num_tasks() > 0) {
3702           WatcherThread::start();
3703       }
3704   }
3705 
3706   create_vm_timer.end();
3707 #ifdef ASSERT
3708   _vm_complete = true;
3709 #endif
3710   return JNI_OK;
3711 }
3712 
3713 // type for the Agent_OnLoad and JVM_OnLoad entry points
3714 extern "C" {
3715   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3716 }
3717 // Find a command line agent library and return its entry point for
3718 //         -agentlib:  -agentpath:   -Xrun
3719 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
lookup_on_load(AgentLibrary * agent,const char * on_load_symbols[],size_t num_symbol_entries)3720 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3721   OnLoadEntry_t on_load_entry = NULL;
3722   void *library = NULL;
3723 
3724   if (!agent->valid()) {
3725     char buffer[JVM_MAXPATHLEN];
3726     char ebuf[1024];
3727     const char *name = agent->name();
3728     const char *msg = "Could not find agent library ";
3729 
3730     // First check to see if agent is statically linked into executable
3731     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3732       library = agent->os_lib();
3733     } else if (agent->is_absolute_path()) {
3734       library = os::dll_load(name, ebuf, sizeof ebuf);
3735       if (library == NULL) {
3736         const char *sub_msg = " in absolute path, with error: ";
3737         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3738         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3739         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3740         // If we can't find the agent, exit.
3741         vm_exit_during_initialization(buf, NULL);
3742         FREE_C_HEAP_ARRAY(char, buf, mtThread);
3743       }
3744     } else {
3745       // Try to load the agent from the standard dll directory
3746       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3747                              name)) {
3748         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3749       }
3750       if (library == NULL) { // Try the local directory
3751         char ns[1] = {0};
3752         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3753           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3754         }
3755         if (library == NULL) {
3756           const char *sub_msg = " on the library path, with error: ";
3757           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3758           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3759           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3760           // If we can't find the agent, exit.
3761           vm_exit_during_initialization(buf, NULL);
3762           FREE_C_HEAP_ARRAY(char, buf, mtThread);
3763         }
3764       }
3765     }
3766     agent->set_os_lib(library);
3767     agent->set_valid();
3768   }
3769 
3770   // Find the OnLoad function.
3771   on_load_entry =
3772     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3773                                                           false,
3774                                                           on_load_symbols,
3775                                                           num_symbol_entries));
3776   return on_load_entry;
3777 }
3778 
3779 // Find the JVM_OnLoad entry point
lookup_jvm_on_load(AgentLibrary * agent)3780 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3781   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3782   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3783 }
3784 
3785 // Find the Agent_OnLoad entry point
lookup_agent_on_load(AgentLibrary * agent)3786 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3787   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3788   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3789 }
3790 
3791 // For backwards compatibility with -Xrun
3792 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3793 // treated like -agentpath:
3794 // Must be called before agent libraries are created
convert_vm_init_libraries_to_agents()3795 void Threads::convert_vm_init_libraries_to_agents() {
3796   AgentLibrary* agent;
3797   AgentLibrary* next;
3798 
3799   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3800     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3801     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3802 
3803     // If there is an JVM_OnLoad function it will get called later,
3804     // otherwise see if there is an Agent_OnLoad
3805     if (on_load_entry == NULL) {
3806       on_load_entry = lookup_agent_on_load(agent);
3807       if (on_load_entry != NULL) {
3808         // switch it to the agent list -- so that Agent_OnLoad will be called,
3809         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3810         Arguments::convert_library_to_agent(agent);
3811       } else {
3812         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3813       }
3814     }
3815   }
3816 }
3817 
3818 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3819 // Invokes Agent_OnLoad
3820 // Called very early -- before JavaThreads exist
create_vm_init_agents()3821 void Threads::create_vm_init_agents() {
3822   extern struct JavaVM_ main_vm;
3823   AgentLibrary* agent;
3824 
3825   JvmtiExport::enter_onload_phase();
3826 
3827   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3828     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3829 
3830     if (on_load_entry != NULL) {
3831       // Invoke the Agent_OnLoad function
3832       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3833       if (err != JNI_OK) {
3834         vm_exit_during_initialization("agent library failed to init", agent->name());
3835       }
3836     } else {
3837       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3838     }
3839   }
3840   JvmtiExport::enter_primordial_phase();
3841 }
3842 
3843 extern "C" {
3844   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3845 }
3846 
shutdown_vm_agents()3847 void Threads::shutdown_vm_agents() {
3848   // Send any Agent_OnUnload notifications
3849   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3850   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3851   extern struct JavaVM_ main_vm;
3852   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3853 
3854     // Find the Agent_OnUnload function.
3855     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3856       os::find_agent_function(agent,
3857       false,
3858       on_unload_symbols,
3859       num_symbol_entries));
3860 
3861     // Invoke the Agent_OnUnload function
3862     if (unload_entry != NULL) {
3863       JavaThread* thread = JavaThread::current();
3864       ThreadToNativeFromVM ttn(thread);
3865       HandleMark hm(thread);
3866       (*unload_entry)(&main_vm);
3867     }
3868   }
3869 }
3870 
3871 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3872 // Invokes JVM_OnLoad
create_vm_init_libraries()3873 void Threads::create_vm_init_libraries() {
3874   extern struct JavaVM_ main_vm;
3875   AgentLibrary* agent;
3876 
3877   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3878     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3879 
3880     if (on_load_entry != NULL) {
3881       // Invoke the JVM_OnLoad function
3882       JavaThread* thread = JavaThread::current();
3883       ThreadToNativeFromVM ttn(thread);
3884       HandleMark hm(thread);
3885       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3886       if (err != JNI_OK) {
3887         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3888       }
3889     } else {
3890       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3891     }
3892   }
3893 }
3894 
find_java_thread_from_java_tid(jlong java_tid)3895 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3896   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3897 
3898   JavaThread* java_thread = NULL;
3899   // Sequential search for now.  Need to do better optimization later.
3900   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3901     oop tobj = thread->threadObj();
3902     if (!thread->is_exiting() &&
3903         tobj != NULL &&
3904         java_tid == java_lang_Thread::thread_id(tobj)) {
3905       java_thread = thread;
3906       break;
3907     }
3908   }
3909   return java_thread;
3910 }
3911 
3912 
3913 // Last thread running calls java.lang.Shutdown.shutdown()
invoke_shutdown_hooks()3914 void JavaThread::invoke_shutdown_hooks() {
3915   HandleMark hm(this);
3916 
3917   // We could get here with a pending exception, if so clear it now.
3918   if (this->has_pending_exception()) {
3919     this->clear_pending_exception();
3920   }
3921 
3922   EXCEPTION_MARK;
3923   Klass* k =
3924     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3925                                       THREAD);
3926   if (k != NULL) {
3927     // SystemDictionary::resolve_or_null will return null if there was
3928     // an exception.  If we cannot load the Shutdown class, just don't
3929     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3930     // and finalizers (if runFinalizersOnExit is set) won't be run.
3931     // Note that if a shutdown hook was registered or runFinalizersOnExit
3932     // was called, the Shutdown class would have already been loaded
3933     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3934     instanceKlassHandle shutdown_klass (THREAD, k);
3935     JavaValue result(T_VOID);
3936     JavaCalls::call_static(&result,
3937                            shutdown_klass,
3938                            vmSymbols::shutdown_method_name(),
3939                            vmSymbols::void_method_signature(),
3940                            THREAD);
3941   }
3942   CLEAR_PENDING_EXCEPTION;
3943 }
3944 
3945 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3946 // the program falls off the end of main(). Another VM exit path is through
3947 // vm_exit() when the program calls System.exit() to return a value or when
3948 // there is a serious error in VM. The two shutdown paths are not exactly
3949 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3950 // and VM_Exit op at VM level.
3951 //
3952 // Shutdown sequence:
3953 //   + Shutdown native memory tracking if it is on
3954 //   + Wait until we are the last non-daemon thread to execute
3955 //     <-- every thing is still working at this moment -->
3956 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3957 //        shutdown hooks, run finalizers if finalization-on-exit
3958 //   + Call before_exit(), prepare for VM exit
3959 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3960 //        currently the only user of this mechanism is File.deleteOnExit())
3961 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3962 //        post thread end and vm death events to JVMTI,
3963 //        stop signal thread
3964 //   + Call JavaThread::exit(), it will:
3965 //      > release JNI handle blocks, remove stack guard pages
3966 //      > remove this thread from Threads list
3967 //     <-- no more Java code from this thread after this point -->
3968 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3969 //     the compiler threads at safepoint
3970 //     <-- do not use anything that could get blocked by Safepoint -->
3971 //   + Disable tracing at JNI/JVM barriers
3972 //   + Set _vm_exited flag for threads that are still running native code
3973 //   + Delete this thread
3974 //   + Call exit_globals()
3975 //      > deletes tty
3976 //      > deletes PerfMemory resources
3977 //   + Return to caller
3978 
destroy_vm()3979 bool Threads::destroy_vm() {
3980   JavaThread* thread = JavaThread::current();
3981 
3982 #ifdef ASSERT
3983   _vm_complete = false;
3984 #endif
3985   // Wait until we are the last non-daemon thread to execute
3986   { MutexLocker nu(Threads_lock);
3987     while (Threads::number_of_non_daemon_threads() > 1 )
3988       // This wait should make safepoint checks, wait without a timeout,
3989       // and wait as a suspend-equivalent condition.
3990       //
3991       // Note: If the FlatProfiler is running and this thread is waiting
3992       // for another non-daemon thread to finish, then the FlatProfiler
3993       // is waiting for the external suspend request on this thread to
3994       // complete. wait_for_ext_suspend_completion() will eventually
3995       // timeout, but that takes time. Making this wait a suspend-
3996       // equivalent condition solves that timeout problem.
3997       //
3998       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3999                          Mutex::_as_suspend_equivalent_flag);
4000   }
4001 
4002   EventShutdown e;
4003   if (e.should_commit()) {
4004     e.set_reason("No remaining non-daemon Java threads");
4005     e.commit();
4006   }
4007 
4008   // Hang forever on exit if we are reporting an error.
4009   if (ShowMessageBoxOnError && is_error_reported()) {
4010     os::infinite_sleep();
4011   }
4012   os::wait_for_keypress_at_exit();
4013 
4014   if (JDK_Version::is_jdk12x_version()) {
4015     // We are the last thread running, so check if finalizers should be run.
4016     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
4017     HandleMark rm(thread);
4018     Universe::run_finalizers_on_exit();
4019   } else {
4020     // run Java level shutdown hooks
4021     thread->invoke_shutdown_hooks();
4022   }
4023 
4024   before_exit(thread);
4025 
4026   thread->exit(true);
4027 
4028   // Stop VM thread.
4029   {
4030     // 4945125 The vm thread comes to a safepoint during exit.
4031     // GC vm_operations can get caught at the safepoint, and the
4032     // heap is unparseable if they are caught. Grab the Heap_lock
4033     // to prevent this. The GC vm_operations will not be able to
4034     // queue until after the vm thread is dead. After this point,
4035     // we'll never emerge out of the safepoint before the VM exits.
4036 
4037     MutexLocker ml(Heap_lock);
4038 
4039     VMThread::wait_for_vm_thread_exit();
4040     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4041     VMThread::destroy();
4042   }
4043 
4044   // clean up ideal graph printers
4045 #if defined(COMPILER2) && !defined(PRODUCT)
4046   IdealGraphPrinter::clean_up();
4047 #endif
4048 
4049   // Now, all Java threads are gone except daemon threads. Daemon threads
4050   // running Java code or in VM are stopped by the Safepoint. However,
4051   // daemon threads executing native code are still running.  But they
4052   // will be stopped at native=>Java/VM barriers. Note that we can't
4053   // simply kill or suspend them, as it is inherently deadlock-prone.
4054 
4055 #ifndef PRODUCT
4056   // disable function tracing at JNI/JVM barriers
4057   TraceJNICalls = false;
4058   TraceJVMCalls = false;
4059   TraceRuntimeCalls = false;
4060 #endif
4061 
4062   VM_Exit::set_vm_exited();
4063 
4064   notify_vm_shutdown();
4065 
4066   delete thread;
4067 
4068   // exit_globals() will delete tty
4069   exit_globals();
4070 
4071   return true;
4072 }
4073 
4074 
is_supported_jni_version_including_1_1(jint version)4075 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4076   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4077   return is_supported_jni_version(version);
4078 }
4079 
4080 
is_supported_jni_version(jint version)4081 jboolean Threads::is_supported_jni_version(jint version) {
4082   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4083   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4084   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4085   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4086   return JNI_FALSE;
4087 }
4088 
4089 
add(JavaThread * p,bool force_daemon)4090 void Threads::add(JavaThread* p, bool force_daemon) {
4091   // The threads lock must be owned at this point
4092   assert_locked_or_safepoint(Threads_lock);
4093 
4094   // See the comment for this method in thread.hpp for its purpose and
4095   // why it is called here.
4096   p->initialize_queues();
4097   p->set_next(_thread_list);
4098   _thread_list = p;
4099   _number_of_threads++;
4100   oop threadObj = p->threadObj();
4101   bool daemon = true;
4102   // Bootstrapping problem: threadObj can be null for initial
4103   // JavaThread (or for threads attached via JNI)
4104   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4105     _number_of_non_daemon_threads++;
4106     daemon = false;
4107   }
4108 
4109   ThreadService::add_thread(p, daemon);
4110 
4111   // Possible GC point.
4112   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4113 }
4114 
remove(JavaThread * p)4115 void Threads::remove(JavaThread* p) {
4116   // Extra scope needed for Thread_lock, so we can check
4117   // that we do not remove thread without safepoint code notice
4118   { MutexLocker ml(Threads_lock);
4119 
4120     assert(includes(p), "p must be present");
4121 
4122     JavaThread* current = _thread_list;
4123     JavaThread* prev    = NULL;
4124 
4125     while (current != p) {
4126       prev    = current;
4127       current = current->next();
4128     }
4129 
4130     if (prev) {
4131       prev->set_next(current->next());
4132     } else {
4133       _thread_list = p->next();
4134     }
4135     _number_of_threads--;
4136     oop threadObj = p->threadObj();
4137     bool daemon = true;
4138     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4139       _number_of_non_daemon_threads--;
4140       daemon = false;
4141 
4142       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4143       // on destroy_vm will wake up.
4144       if (number_of_non_daemon_threads() == 1)
4145         Threads_lock->notify_all();
4146     }
4147     ThreadService::remove_thread(p, daemon);
4148 
4149     // Make sure that safepoint code disregard this thread. This is needed since
4150     // the thread might mess around with locks after this point. This can cause it
4151     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4152     // of this thread since it is removed from the queue.
4153     p->set_terminated_value();
4154   } // unlock Threads_lock
4155 
4156   // Since Events::log uses a lock, we grab it outside the Threads_lock
4157   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4158 }
4159 
4160 // Threads_lock must be held when this is called (or must be called during a safepoint)
includes(JavaThread * p)4161 bool Threads::includes(JavaThread* p) {
4162   assert(Threads_lock->is_locked(), "sanity check");
4163   ALL_JAVA_THREADS(q) {
4164     if (q == p ) {
4165       return true;
4166     }
4167   }
4168   return false;
4169 }
4170 
4171 // Operations on the Threads list for GC.  These are not explicitly locked,
4172 // but the garbage collector must provide a safe context for them to run.
4173 // In particular, these things should never be called when the Threads_lock
4174 // is held by some other thread. (Note: the Safepoint abstraction also
4175 // uses the Threads_lock to gurantee this property. It also makes sure that
4176 // all threads gets blocked when exiting or starting).
4177 
oops_do(OopClosure * f,CLDClosure * cld_f,CodeBlobClosure * cf)4178 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4179   ALL_JAVA_THREADS(p) {
4180     p->oops_do(f, cld_f, cf);
4181   }
4182   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4183 }
4184 
possibly_parallel_oops_do(OopClosure * f,CLDClosure * cld_f,CodeBlobClosure * cf)4185 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4186   // Introduce a mechanism allowing parallel threads to claim threads as
4187   // root groups.  Overhead should be small enough to use all the time,
4188   // even in sequential code.
4189   SharedHeap* sh = SharedHeap::heap();
4190   // Cannot yet substitute active_workers for n_par_threads
4191   // because of G1CollectedHeap::verify() use of
4192   // SharedHeap::process_roots().  n_par_threads == 0 will
4193   // turn off parallelism in process_roots while active_workers
4194   // is being used for parallelism elsewhere.
4195   bool is_par = sh->n_par_threads() > 0;
4196   assert(!is_par ||
4197          (SharedHeap::heap()->n_par_threads() ==
4198           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4199   int cp = SharedHeap::heap()->strong_roots_parity();
4200   ALL_JAVA_THREADS(p) {
4201     if (p->claim_oops_do(is_par, cp)) {
4202       p->oops_do(f, cld_f, cf);
4203     }
4204   }
4205   VMThread* vmt = VMThread::vm_thread();
4206   if (vmt->claim_oops_do(is_par, cp)) {
4207     vmt->oops_do(f, cld_f, cf);
4208   }
4209 }
4210 
4211 #if INCLUDE_ALL_GCS
4212 // Used by ParallelScavenge
create_thread_roots_tasks(GCTaskQueue * q)4213 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4214   ALL_JAVA_THREADS(p) {
4215     q->enqueue(new ThreadRootsTask(p));
4216   }
4217   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4218 }
4219 
4220 // Used by Parallel Old
create_thread_roots_marking_tasks(GCTaskQueue * q)4221 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4222   ALL_JAVA_THREADS(p) {
4223     q->enqueue(new ThreadRootsMarkingTask(p));
4224   }
4225   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4226 }
4227 #endif // INCLUDE_ALL_GCS
4228 
nmethods_do(CodeBlobClosure * cf)4229 void Threads::nmethods_do(CodeBlobClosure* cf) {
4230   ALL_JAVA_THREADS(p) {
4231     p->nmethods_do(cf);
4232   }
4233   VMThread::vm_thread()->nmethods_do(cf);
4234 }
4235 
metadata_do(void f (Metadata *))4236 void Threads::metadata_do(void f(Metadata*)) {
4237   ALL_JAVA_THREADS(p) {
4238     p->metadata_do(f);
4239   }
4240 }
4241 
gc_epilogue()4242 void Threads::gc_epilogue() {
4243   ALL_JAVA_THREADS(p) {
4244     p->gc_epilogue();
4245   }
4246 }
4247 
gc_prologue()4248 void Threads::gc_prologue() {
4249   ALL_JAVA_THREADS(p) {
4250     p->gc_prologue();
4251   }
4252 }
4253 
deoptimized_wrt_marked_nmethods()4254 void Threads::deoptimized_wrt_marked_nmethods() {
4255   ALL_JAVA_THREADS(p) {
4256     p->deoptimized_wrt_marked_nmethods();
4257   }
4258 }
4259 
4260 
4261 // Get count Java threads that are waiting to enter the specified monitor.
get_pending_threads(int count,address monitor,bool doLock)4262 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4263   address monitor, bool doLock) {
4264   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4265     "must grab Threads_lock or be at safepoint");
4266   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4267 
4268   int i = 0;
4269   {
4270     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4271     ALL_JAVA_THREADS(p) {
4272       if (p->is_Compiler_thread()) continue;
4273 
4274       address pending = (address)p->current_pending_monitor();
4275       if (pending == monitor) {             // found a match
4276         if (i < count) result->append(p);   // save the first count matches
4277         i++;
4278       }
4279     }
4280   }
4281   return result;
4282 }
4283 
4284 
owning_thread_from_monitor_owner(address owner,bool doLock)4285 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4286   assert(doLock ||
4287          Threads_lock->owned_by_self() ||
4288          SafepointSynchronize::is_at_safepoint(),
4289          "must grab Threads_lock or be at safepoint");
4290 
4291   // NULL owner means not locked so we can skip the search
4292   if (owner == NULL) return NULL;
4293 
4294   {
4295     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4296     ALL_JAVA_THREADS(p) {
4297       // first, see if owner is the address of a Java thread
4298       if (owner == (address)p) return p;
4299     }
4300   }
4301   // Cannot assert on lack of success here since this function may be
4302   // used by code that is trying to report useful problem information
4303   // like deadlock detection.
4304   if (UseHeavyMonitors) return NULL;
4305 
4306   //
4307   // If we didn't find a matching Java thread and we didn't force use of
4308   // heavyweight monitors, then the owner is the stack address of the
4309   // Lock Word in the owning Java thread's stack.
4310   //
4311   JavaThread* the_owner = NULL;
4312   {
4313     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4314     ALL_JAVA_THREADS(q) {
4315       if (q->is_lock_owned(owner)) {
4316         the_owner = q;
4317         break;
4318       }
4319     }
4320   }
4321   // cannot assert on lack of success here; see above comment
4322   return the_owner;
4323 }
4324 
4325 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
print_on(outputStream * st,bool print_stacks,bool internal_format,bool print_concurrent_locks)4326 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4327   char buf[32];
4328   st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4329 
4330   st->print_cr("Full thread dump %s (%s %s):",
4331                 Abstract_VM_Version::vm_name(),
4332                 Abstract_VM_Version::vm_release(),
4333                 Abstract_VM_Version::vm_info_string()
4334                );
4335   st->cr();
4336 
4337 #if INCLUDE_ALL_GCS
4338   // Dump concurrent locks
4339   ConcurrentLocksDump concurrent_locks;
4340   if (print_concurrent_locks) {
4341     concurrent_locks.dump_at_safepoint();
4342   }
4343 #endif // INCLUDE_ALL_GCS
4344 
4345   ALL_JAVA_THREADS(p) {
4346     ResourceMark rm;
4347     p->print_on(st);
4348     if (print_stacks) {
4349       if (internal_format) {
4350         p->trace_stack();
4351       } else {
4352         p->print_stack_on(st);
4353       }
4354     }
4355     st->cr();
4356 #if INCLUDE_ALL_GCS
4357     if (print_concurrent_locks) {
4358       concurrent_locks.print_locks_on(p, st);
4359     }
4360 #endif // INCLUDE_ALL_GCS
4361   }
4362 
4363   VMThread::vm_thread()->print_on(st);
4364   st->cr();
4365   Universe::heap()->print_gc_threads_on(st);
4366   WatcherThread* wt = WatcherThread::watcher_thread();
4367   if (wt != NULL) {
4368     wt->print_on(st);
4369     st->cr();
4370   }
4371   CompileBroker::print_compiler_threads_on(st);
4372   st->flush();
4373 }
4374 
4375 // Threads::print_on_error() is called by fatal error handler. It's possible
4376 // that VM is not at safepoint and/or current thread is inside signal handler.
4377 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4378 // memory (even in resource area), it might deadlock the error handler.
print_on_error(outputStream * st,Thread * current,char * buf,int buflen)4379 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4380   bool found_current = false;
4381   st->print_cr("Java Threads: ( => current thread )");
4382   ALL_JAVA_THREADS(thread) {
4383     bool is_current = (current == thread);
4384     found_current = found_current || is_current;
4385 
4386     st->print("%s", is_current ? "=>" : "  ");
4387 
4388     st->print(PTR_FORMAT, thread);
4389     st->print(" ");
4390     thread->print_on_error(st, buf, buflen);
4391     st->cr();
4392   }
4393   st->cr();
4394 
4395   st->print_cr("Other Threads:");
4396   if (VMThread::vm_thread()) {
4397     bool is_current = (current == VMThread::vm_thread());
4398     found_current = found_current || is_current;
4399     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4400 
4401     st->print(PTR_FORMAT, VMThread::vm_thread());
4402     st->print(" ");
4403     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4404     st->cr();
4405   }
4406   WatcherThread* wt = WatcherThread::watcher_thread();
4407   if (wt != NULL) {
4408     bool is_current = (current == wt);
4409     found_current = found_current || is_current;
4410     st->print("%s", is_current ? "=>" : "  ");
4411 
4412     st->print(PTR_FORMAT, wt);
4413     st->print(" ");
4414     wt->print_on_error(st, buf, buflen);
4415     st->cr();
4416   }
4417   if (!found_current) {
4418     st->cr();
4419     st->print("=>" PTR_FORMAT " (exited) ", current);
4420     current->print_on_error(st, buf, buflen);
4421     st->cr();
4422   }
4423 }
4424 
4425 // Internal SpinLock and Mutex
4426 // Based on ParkEvent
4427 
4428 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4429 //
4430 // We employ SpinLocks _only for low-contention, fixed-length
4431 // short-duration critical sections where we're concerned
4432 // about native mutex_t or HotSpot Mutex:: latency.
4433 // The mux construct provides a spin-then-block mutual exclusion
4434 // mechanism.
4435 //
4436 // Testing has shown that contention on the ListLock guarding gFreeList
4437 // is common.  If we implement ListLock as a simple SpinLock it's common
4438 // for the JVM to devolve to yielding with little progress.  This is true
4439 // despite the fact that the critical sections protected by ListLock are
4440 // extremely short.
4441 //
4442 // TODO-FIXME: ListLock should be of type SpinLock.
4443 // We should make this a 1st-class type, integrated into the lock
4444 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4445 // should have sufficient padding to avoid false-sharing and excessive
4446 // cache-coherency traffic.
4447 
4448 
4449 typedef volatile int SpinLockT ;
4450 
SpinAcquire(volatile int * adr,const char * LockName)4451 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4452   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4453      return ;   // normal fast-path return
4454   }
4455 
4456   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4457   TEVENT (SpinAcquire - ctx) ;
4458   int ctr = 0 ;
4459   int Yields = 0 ;
4460   for (;;) {
4461      while (*adr != 0) {
4462         ++ctr ;
4463         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4464            if (Yields > 5) {
4465              os::naked_short_sleep(1);
4466            } else {
4467              os::NakedYield() ;
4468              ++Yields ;
4469            }
4470         } else {
4471            SpinPause() ;
4472         }
4473      }
4474      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4475   }
4476 }
4477 
SpinRelease(volatile int * adr)4478 void Thread::SpinRelease (volatile int * adr) {
4479   assert (*adr != 0, "invariant") ;
4480   OrderAccess::fence() ;      // guarantee at least release consistency.
4481   // Roach-motel semantics.
4482   // It's safe if subsequent LDs and STs float "up" into the critical section,
4483   // but prior LDs and STs within the critical section can't be allowed
4484   // to reorder or float past the ST that releases the lock.
4485   *adr = 0 ;
4486 }
4487 
4488 // muxAcquire and muxRelease:
4489 //
4490 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4491 //    The LSB of the word is set IFF the lock is held.
4492 //    The remainder of the word points to the head of a singly-linked list
4493 //    of threads blocked on the lock.
4494 //
4495 // *  The current implementation of muxAcquire-muxRelease uses its own
4496 //    dedicated Thread._MuxEvent instance.  If we're interested in
4497 //    minimizing the peak number of extant ParkEvent instances then
4498 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4499 //    as certain invariants were satisfied.  Specifically, care would need
4500 //    to be taken with regards to consuming unpark() "permits".
4501 //    A safe rule of thumb is that a thread would never call muxAcquire()
4502 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4503 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4504 //    consume an unpark() permit intended for monitorenter, for instance.
4505 //    One way around this would be to widen the restricted-range semaphore
4506 //    implemented in park().  Another alternative would be to provide
4507 //    multiple instances of the PlatformEvent() for each thread.  One
4508 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4509 //
4510 // *  Usage:
4511 //    -- Only as leaf locks
4512 //    -- for short-term locking only as muxAcquire does not perform
4513 //       thread state transitions.
4514 //
4515 // Alternatives:
4516 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4517 //    but with parking or spin-then-park instead of pure spinning.
4518 // *  Use Taura-Oyama-Yonenzawa locks.
4519 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4520 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4521 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4522 //    acquiring threads use timers (ParkTimed) to detect and recover from
4523 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4524 //    boundaries by using placement-new.
4525 // *  Augment MCS with advisory back-link fields maintained with CAS().
4526 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4527 //    The validity of the backlinks must be ratified before we trust the value.
4528 //    If the backlinks are invalid the exiting thread must back-track through the
4529 //    the forward links, which are always trustworthy.
4530 // *  Add a successor indication.  The LockWord is currently encoded as
4531 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4532 //    to provide the usual futile-wakeup optimization.
4533 //    See RTStt for details.
4534 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4535 //
4536 
4537 
4538 typedef volatile intptr_t MutexT ;      // Mux Lock-word
4539 enum MuxBits { LOCKBIT = 1 } ;
4540 
muxAcquire(volatile intptr_t * Lock,const char * LockName)4541 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4542   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4543   if (w == 0) return ;
4544   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4545      return ;
4546   }
4547 
4548   TEVENT (muxAcquire - Contention) ;
4549   ParkEvent * const Self = Thread::current()->_MuxEvent ;
4550   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4551   for (;;) {
4552      int its = (os::is_MP() ? 100 : 0) + 1 ;
4553 
4554      // Optional spin phase: spin-then-park strategy
4555      while (--its >= 0) {
4556        w = *Lock ;
4557        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4558           return ;
4559        }
4560      }
4561 
4562      Self->reset() ;
4563      Self->OnList = intptr_t(Lock) ;
4564      // The following fence() isn't _strictly necessary as the subsequent
4565      // CAS() both serializes execution and ratifies the fetched *Lock value.
4566      OrderAccess::fence();
4567      for (;;) {
4568         w = *Lock ;
4569         if ((w & LOCKBIT) == 0) {
4570             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4571                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
4572                 return ;
4573             }
4574             continue ;      // Interference -- *Lock changed -- Just retry
4575         }
4576         assert (w & LOCKBIT, "invariant") ;
4577         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4578         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4579      }
4580 
4581      while (Self->OnList != 0) {
4582         Self->park() ;
4583      }
4584   }
4585 }
4586 
muxAcquireW(volatile intptr_t * Lock,ParkEvent * ev)4587 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4588   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4589   if (w == 0) return ;
4590   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4591     return ;
4592   }
4593 
4594   TEVENT (muxAcquire - Contention) ;
4595   ParkEvent * ReleaseAfter = NULL ;
4596   if (ev == NULL) {
4597     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4598   }
4599   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4600   for (;;) {
4601     guarantee (ev->OnList == 0, "invariant") ;
4602     int its = (os::is_MP() ? 100 : 0) + 1 ;
4603 
4604     // Optional spin phase: spin-then-park strategy
4605     while (--its >= 0) {
4606       w = *Lock ;
4607       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4608         if (ReleaseAfter != NULL) {
4609           ParkEvent::Release (ReleaseAfter) ;
4610         }
4611         return ;
4612       }
4613     }
4614 
4615     ev->reset() ;
4616     ev->OnList = intptr_t(Lock) ;
4617     // The following fence() isn't _strictly necessary as the subsequent
4618     // CAS() both serializes execution and ratifies the fetched *Lock value.
4619     OrderAccess::fence();
4620     for (;;) {
4621       w = *Lock ;
4622       if ((w & LOCKBIT) == 0) {
4623         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4624           ev->OnList = 0 ;
4625           // We call ::Release while holding the outer lock, thus
4626           // artificially lengthening the critical section.
4627           // Consider deferring the ::Release() until the subsequent unlock(),
4628           // after we've dropped the outer lock.
4629           if (ReleaseAfter != NULL) {
4630             ParkEvent::Release (ReleaseAfter) ;
4631           }
4632           return ;
4633         }
4634         continue ;      // Interference -- *Lock changed -- Just retry
4635       }
4636       assert (w & LOCKBIT, "invariant") ;
4637       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4638       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4639     }
4640 
4641     while (ev->OnList != 0) {
4642       ev->park() ;
4643     }
4644   }
4645 }
4646 
4647 // Release() must extract a successor from the list and then wake that thread.
4648 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4649 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4650 // Release() would :
4651 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4652 // (B) Extract a successor from the private list "in-hand"
4653 // (C) attempt to CAS() the residual back into *Lock over null.
4654 //     If there were any newly arrived threads and the CAS() would fail.
4655 //     In that case Release() would detach the RATs, re-merge the list in-hand
4656 //     with the RATs and repeat as needed.  Alternately, Release() might
4657 //     detach and extract a successor, but then pass the residual list to the wakee.
4658 //     The wakee would be responsible for reattaching and remerging before it
4659 //     competed for the lock.
4660 //
4661 // Both "pop" and DMR are immune from ABA corruption -- there can be
4662 // multiple concurrent pushers, but only one popper or detacher.
4663 // This implementation pops from the head of the list.  This is unfair,
4664 // but tends to provide excellent throughput as hot threads remain hot.
4665 // (We wake recently run threads first).
4666 
muxRelease(volatile intptr_t * Lock)4667 void Thread::muxRelease (volatile intptr_t * Lock)  {
4668   for (;;) {
4669     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4670     assert (w & LOCKBIT, "invariant") ;
4671     if (w == LOCKBIT) return ;
4672     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4673     assert (List != NULL, "invariant") ;
4674     assert (List->OnList == intptr_t(Lock), "invariant") ;
4675     ParkEvent * nxt = List->ListNext ;
4676 
4677     // The following CAS() releases the lock and pops the head element.
4678     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4679       continue ;
4680     }
4681     List->OnList = 0 ;
4682     OrderAccess::fence() ;
4683     List->unpark () ;
4684     return ;
4685   }
4686 }
4687 
4688 
verify()4689 void Threads::verify() {
4690   ALL_JAVA_THREADS(p) {
4691     p->verify();
4692   }
4693   VMThread* thread = VMThread::vm_thread();
4694   if (thread != NULL) thread->verify();
4695 }
4696