1 /*
2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "runtime/os.hpp"
27 #include "utilities/globalDefinitions.hpp"
28 #include "utilities/top.hpp"
29 
30 // Basic error support
31 
32 // Info for oops within a java object.  Defaults are zero so
33 // things will break badly if incorrectly initialized.
34 int heapOopSize        = 0;
35 int LogBytesPerHeapOop = 0;
36 int LogBitsPerHeapOop  = 0;
37 int BytesPerHeapOop    = 0;
38 int BitsPerHeapOop     = 0;
39 
40 // Object alignment, in units of HeapWords.
41 // Defaults are -1 so things will break badly if incorrectly initialized.
42 int MinObjAlignment            = -1;
43 int MinObjAlignmentInBytes     = -1;
44 int MinObjAlignmentInBytesMask = 0;
45 
46 int LogMinObjAlignment         = -1;
47 int LogMinObjAlignmentInBytes  = -1;
48 
49 // Oop encoding heap max
50 uint64_t OopEncodingHeapMax = 0;
51 
basic_fatal(const char * msg)52 void basic_fatal(const char* msg) {
53   fatal(msg);
54 }
55 
56 // Something to help porters sleep at night
57 
basic_types_init()58 void basic_types_init() {
59 #ifdef ASSERT
60 #ifdef _LP64
61   assert(min_intx ==  (intx)CONST64(0x8000000000000000), "correct constant");
62   assert(max_intx ==  CONST64(0x7FFFFFFFFFFFFFFF), "correct constant");
63   assert(max_uintx == CONST64(0xFFFFFFFFFFFFFFFF), "correct constant");
64   assert( 8 == sizeof( intx),      "wrong size for basic type");
65   assert( 8 == sizeof( jobject),   "wrong size for basic type");
66 #else
67   assert(min_intx ==  (intx)0x80000000,  "correct constant");
68   assert(max_intx ==  0x7FFFFFFF,  "correct constant");
69   assert(max_uintx == 0xFFFFFFFF,  "correct constant");
70   assert( 4 == sizeof( intx),      "wrong size for basic type");
71   assert( 4 == sizeof( jobject),   "wrong size for basic type");
72 #endif
73   assert( (~max_juint) == 0,  "max_juint has all its bits");
74   assert( (~max_uintx) == 0,  "max_uintx has all its bits");
75   assert( (~max_julong) == 0, "max_julong has all its bits");
76   assert( 1 == sizeof( jbyte),     "wrong size for basic type");
77   assert( 2 == sizeof( jchar),     "wrong size for basic type");
78   assert( 2 == sizeof( jshort),    "wrong size for basic type");
79   assert( 4 == sizeof( juint),     "wrong size for basic type");
80   assert( 4 == sizeof( jint),      "wrong size for basic type");
81   assert( 1 == sizeof( jboolean),  "wrong size for basic type");
82   assert( 8 == sizeof( jlong),     "wrong size for basic type");
83   assert( 4 == sizeof( jfloat),    "wrong size for basic type");
84   assert( 8 == sizeof( jdouble),   "wrong size for basic type");
85   assert( 1 == sizeof( u1),        "wrong size for basic type");
86   assert( 2 == sizeof( u2),        "wrong size for basic type");
87   assert( 4 == sizeof( u4),        "wrong size for basic type");
88 
89   int num_type_chars = 0;
90   for (int i = 0; i < 99; i++) {
91     if (type2char((BasicType)i) != 0) {
92       assert(char2type(type2char((BasicType)i)) == i, "proper inverses");
93       num_type_chars++;
94     }
95   }
96   assert(num_type_chars == 11, "must have tested the right number of mappings");
97   assert(char2type(0) == T_ILLEGAL, "correct illegality");
98 
99   {
100     for (int i = T_BOOLEAN; i <= T_CONFLICT; i++) {
101       BasicType vt = (BasicType)i;
102       BasicType ft = type2field[vt];
103       switch (vt) {
104       // the following types might plausibly show up in memory layouts:
105       case T_BOOLEAN:
106       case T_BYTE:
107       case T_CHAR:
108       case T_SHORT:
109       case T_INT:
110       case T_FLOAT:
111       case T_DOUBLE:
112       case T_LONG:
113       case T_OBJECT:
114       case T_ADDRESS:     // random raw pointer
115       case T_METADATA:    // metadata pointer
116       case T_NARROWOOP:   // compressed pointer
117       case T_NARROWKLASS: // compressed klass pointer
118       case T_CONFLICT:    // might as well support a bottom type
119       case T_VOID:        // padding or other unaddressed word
120         // layout type must map to itself
121         assert(vt == ft, "");
122         break;
123       default:
124         // non-layout type must map to a (different) layout type
125         assert(vt != ft, "");
126         assert(ft == type2field[ft], "");
127       }
128       // every type must map to same-sized layout type:
129       assert(type2size[vt] == type2size[ft], "");
130     }
131   }
132   // These are assumed, e.g., when filling HeapWords with juints.
133   assert(is_power_of_2(sizeof(juint)), "juint must be power of 2");
134   assert(is_power_of_2(HeapWordSize), "HeapWordSize must be power of 2");
135   assert((size_t)HeapWordSize >= sizeof(juint),
136          "HeapWord should be at least as large as juint");
137   assert(sizeof(NULL) == sizeof(char*), "NULL must be same size as pointer");
138 #endif
139 
140   if( JavaPriority1_To_OSPriority != -1 )
141     os::java_to_os_priority[1] = JavaPriority1_To_OSPriority;
142   if( JavaPriority2_To_OSPriority != -1 )
143     os::java_to_os_priority[2] = JavaPriority2_To_OSPriority;
144   if( JavaPriority3_To_OSPriority != -1 )
145     os::java_to_os_priority[3] = JavaPriority3_To_OSPriority;
146   if( JavaPriority4_To_OSPriority != -1 )
147     os::java_to_os_priority[4] = JavaPriority4_To_OSPriority;
148   if( JavaPriority5_To_OSPriority != -1 )
149     os::java_to_os_priority[5] = JavaPriority5_To_OSPriority;
150   if( JavaPriority6_To_OSPriority != -1 )
151     os::java_to_os_priority[6] = JavaPriority6_To_OSPriority;
152   if( JavaPriority7_To_OSPriority != -1 )
153     os::java_to_os_priority[7] = JavaPriority7_To_OSPriority;
154   if( JavaPriority8_To_OSPriority != -1 )
155     os::java_to_os_priority[8] = JavaPriority8_To_OSPriority;
156   if( JavaPriority9_To_OSPriority != -1 )
157     os::java_to_os_priority[9] = JavaPriority9_To_OSPriority;
158   if(JavaPriority10_To_OSPriority != -1 )
159     os::java_to_os_priority[10] = JavaPriority10_To_OSPriority;
160 
161   // Set the size of basic types here (after argument parsing but before
162   // stub generation).
163   if (UseCompressedOops) {
164     // Size info for oops within java objects is fixed
165     heapOopSize        = jintSize;
166     LogBytesPerHeapOop = LogBytesPerInt;
167     LogBitsPerHeapOop  = LogBitsPerInt;
168     BytesPerHeapOop    = BytesPerInt;
169     BitsPerHeapOop     = BitsPerInt;
170   } else {
171     heapOopSize        = oopSize;
172     LogBytesPerHeapOop = LogBytesPerWord;
173     LogBitsPerHeapOop  = LogBitsPerWord;
174     BytesPerHeapOop    = BytesPerWord;
175     BitsPerHeapOop     = BitsPerWord;
176   }
177   _type2aelembytes[T_OBJECT] = heapOopSize;
178   _type2aelembytes[T_ARRAY]  = heapOopSize;
179 }
180 
181 
182 // Map BasicType to signature character
183 char type2char_tab[T_CONFLICT+1]={ 0, 0, 0, 0, 'Z', 'C', 'F', 'D', 'B', 'S', 'I', 'J', 'L', '[', 'V', 0, 0, 0, 0, 0};
184 
185 // Map BasicType to Java type name
186 const char* type2name_tab[T_CONFLICT+1] = {
187   NULL, NULL, NULL, NULL,
188   "boolean",
189   "char",
190   "float",
191   "double",
192   "byte",
193   "short",
194   "int",
195   "long",
196   "object",
197   "array",
198   "void",
199   "*address*",
200   "*narrowoop*",
201   "*metadata*",
202   "*narrowklass*",
203   "*conflict*"
204 };
205 
206 
name2type(const char * name)207 BasicType name2type(const char* name) {
208   for (int i = T_BOOLEAN; i <= T_VOID; i++) {
209     BasicType t = (BasicType)i;
210     if (type2name_tab[t] != NULL && 0 == strcmp(type2name_tab[t], name))
211       return t;
212   }
213   return T_ILLEGAL;
214 }
215 
216 
217 // Map BasicType to size in words
218 int type2size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, -1};
219 
220 BasicType type2field[T_CONFLICT+1] = {
221   (BasicType)0,            // 0,
222   (BasicType)0,            // 1,
223   (BasicType)0,            // 2,
224   (BasicType)0,            // 3,
225   T_BOOLEAN,               // T_BOOLEAN  =  4,
226   T_CHAR,                  // T_CHAR     =  5,
227   T_FLOAT,                 // T_FLOAT    =  6,
228   T_DOUBLE,                // T_DOUBLE   =  7,
229   T_BYTE,                  // T_BYTE     =  8,
230   T_SHORT,                 // T_SHORT    =  9,
231   T_INT,                   // T_INT      = 10,
232   T_LONG,                  // T_LONG     = 11,
233   T_OBJECT,                // T_OBJECT   = 12,
234   T_OBJECT,                // T_ARRAY    = 13,
235   T_VOID,                  // T_VOID     = 14,
236   T_ADDRESS,               // T_ADDRESS  = 15,
237   T_NARROWOOP,             // T_NARROWOOP= 16,
238   T_METADATA,              // T_METADATA = 17,
239   T_NARROWKLASS,           // T_NARROWKLASS = 18,
240   T_CONFLICT               // T_CONFLICT = 19,
241 };
242 
243 
244 BasicType type2wfield[T_CONFLICT+1] = {
245   (BasicType)0,            // 0,
246   (BasicType)0,            // 1,
247   (BasicType)0,            // 2,
248   (BasicType)0,            // 3,
249   T_INT,     // T_BOOLEAN  =  4,
250   T_INT,     // T_CHAR     =  5,
251   T_FLOAT,   // T_FLOAT    =  6,
252   T_DOUBLE,  // T_DOUBLE   =  7,
253   T_INT,     // T_BYTE     =  8,
254   T_INT,     // T_SHORT    =  9,
255   T_INT,     // T_INT      = 10,
256   T_LONG,    // T_LONG     = 11,
257   T_OBJECT,  // T_OBJECT   = 12,
258   T_OBJECT,  // T_ARRAY    = 13,
259   T_VOID,    // T_VOID     = 14,
260   T_ADDRESS, // T_ADDRESS  = 15,
261   T_NARROWOOP, // T_NARROWOOP  = 16,
262   T_METADATA,  // T_METADATA   = 17,
263   T_NARROWKLASS, // T_NARROWKLASS  = 18,
264   T_CONFLICT // T_CONFLICT = 19,
265 };
266 
267 
268 int _type2aelembytes[T_CONFLICT+1] = {
269   0,                         // 0
270   0,                         // 1
271   0,                         // 2
272   0,                         // 3
273   T_BOOLEAN_aelem_bytes,     // T_BOOLEAN  =  4,
274   T_CHAR_aelem_bytes,        // T_CHAR     =  5,
275   T_FLOAT_aelem_bytes,       // T_FLOAT    =  6,
276   T_DOUBLE_aelem_bytes,      // T_DOUBLE   =  7,
277   T_BYTE_aelem_bytes,        // T_BYTE     =  8,
278   T_SHORT_aelem_bytes,       // T_SHORT    =  9,
279   T_INT_aelem_bytes,         // T_INT      = 10,
280   T_LONG_aelem_bytes,        // T_LONG     = 11,
281   T_OBJECT_aelem_bytes,      // T_OBJECT   = 12,
282   T_ARRAY_aelem_bytes,       // T_ARRAY    = 13,
283   0,                         // T_VOID     = 14,
284   T_OBJECT_aelem_bytes,      // T_ADDRESS  = 15,
285   T_NARROWOOP_aelem_bytes,   // T_NARROWOOP= 16,
286   T_OBJECT_aelem_bytes,      // T_METADATA = 17,
287   T_NARROWKLASS_aelem_bytes, // T_NARROWKLASS= 18,
288   0                          // T_CONFLICT = 19,
289 };
290 
291 #ifdef ASSERT
type2aelembytes(BasicType t,bool allow_address)292 int type2aelembytes(BasicType t, bool allow_address) {
293   assert(allow_address || t != T_ADDRESS, " ");
294   return _type2aelembytes[t];
295 }
296 #endif
297 
298 // Support for 64-bit integer arithmetic
299 
300 // The following code is mostly taken from JVM typedefs_md.h and system_md.c
301 
302 static const jlong high_bit   = (jlong)1 << (jlong)63;
303 static const jlong other_bits = ~high_bit;
304 
float2long(jfloat f)305 jlong float2long(jfloat f) {
306   jlong tmp = (jlong) f;
307   if (tmp != high_bit) {
308     return tmp;
309   } else {
310     if (g_isnan((jdouble)f)) {
311       return 0;
312     }
313     if (f < 0) {
314       return high_bit;
315     } else {
316       return other_bits;
317     }
318   }
319 }
320 
321 
double2long(jdouble f)322 jlong double2long(jdouble f) {
323   jlong tmp = (jlong) f;
324   if (tmp != high_bit) {
325     return tmp;
326   } else {
327     if (g_isnan(f)) {
328       return 0;
329     }
330     if (f < 0) {
331       return high_bit;
332     } else {
333       return other_bits;
334     }
335   }
336 }
337 
338 // least common multiple
lcm(size_t a,size_t b)339 size_t lcm(size_t a, size_t b) {
340     size_t cur, div, next;
341 
342     cur = MAX2(a, b);
343     div = MIN2(a, b);
344 
345     assert(div != 0, "lcm requires positive arguments");
346 
347 
348     while ((next = cur % div) != 0) {
349         cur = div; div = next;
350     }
351 
352 
353     julong result = julong(a) * b / div;
354     assert(result <= (size_t)max_uintx, "Integer overflow in lcm");
355 
356     return size_t(result);
357 }
358 
359 #ifndef PRODUCT
360 
test_globals()361 void GlobalDefinitions::test_globals() {
362   intptr_t page_sizes[] = { os::vm_page_size(), 4096, 8192, 65536, 2*1024*1024 };
363   const int num_page_sizes = sizeof(page_sizes) / sizeof(page_sizes[0]);
364 
365   for (int i = 0; i < num_page_sizes; i++) {
366     intptr_t page_size = page_sizes[i];
367 
368     address a_page = (address)(10*page_size);
369 
370     // Check that address within page is returned as is
371     assert(clamp_address_in_page(a_page, a_page, page_size) == a_page, "incorrect");
372     assert(clamp_address_in_page(a_page + 128, a_page, page_size) == a_page + 128, "incorrect");
373     assert(clamp_address_in_page(a_page + page_size - 1, a_page, page_size) == a_page + page_size - 1, "incorrect");
374 
375     // Check that address above page returns start of next page
376     assert(clamp_address_in_page(a_page + page_size, a_page, page_size) == a_page + page_size, "incorrect");
377     assert(clamp_address_in_page(a_page + page_size + 1, a_page, page_size) == a_page + page_size, "incorrect");
378     assert(clamp_address_in_page(a_page + page_size*5 + 1, a_page, page_size) == a_page + page_size, "incorrect");
379 
380     // Check that address below page returns start of page
381     assert(clamp_address_in_page(a_page - 1, a_page, page_size) == a_page, "incorrect");
382     assert(clamp_address_in_page(a_page - 2*page_size - 1, a_page, page_size) == a_page, "incorrect");
383     assert(clamp_address_in_page(a_page - 5*page_size - 1, a_page, page_size) == a_page, "incorrect");
384   }
385 }
386 
387 #define EXPECT_EQ(expected, actual) \
388         assert(expected == actual, "Test failed");
389 #define EXPECT_STREQ(expected, actual) \
390         assert(strcmp(expected, actual) == 0, "Test failed");
391 
test_proper_unit()392 void GlobalDefinitions::test_proper_unit() {
393   EXPECT_EQ(0ul,     byte_size_in_proper_unit(0ul));
394   EXPECT_STREQ("B", proper_unit_for_byte_size(0u));
395 
396   EXPECT_EQ(1ul,     byte_size_in_proper_unit(1ul));
397   EXPECT_STREQ("B", proper_unit_for_byte_size(1u));
398 
399   EXPECT_EQ(1023u,  byte_size_in_proper_unit(K - 1));
400   EXPECT_STREQ("B", proper_unit_for_byte_size(K - 1));
401 
402   EXPECT_EQ(1024u,  byte_size_in_proper_unit(K));
403   EXPECT_STREQ("B", proper_unit_for_byte_size(K));
404 
405   EXPECT_EQ(1025u,  byte_size_in_proper_unit(K + 1));
406   EXPECT_STREQ("B", proper_unit_for_byte_size(K + 1));
407 
408   EXPECT_EQ(51200u, byte_size_in_proper_unit(50*K));
409   EXPECT_STREQ("B", proper_unit_for_byte_size(50*K));
410 
411   EXPECT_EQ(1023u,  byte_size_in_proper_unit(M - 1));
412   EXPECT_STREQ("K", proper_unit_for_byte_size(M - 1));
413 
414   EXPECT_EQ(1024u,  byte_size_in_proper_unit(M));
415   EXPECT_STREQ("K", proper_unit_for_byte_size(M));
416 
417   EXPECT_EQ(1024u,  byte_size_in_proper_unit(M + 1));
418   EXPECT_STREQ("K", proper_unit_for_byte_size(M + 1));
419 
420   EXPECT_EQ(1025u,  byte_size_in_proper_unit(M + K));
421   EXPECT_STREQ("K", proper_unit_for_byte_size(M + K));
422 
423   EXPECT_EQ(51200u, byte_size_in_proper_unit(50*M));
424   EXPECT_STREQ("K", proper_unit_for_byte_size(50*M));
425 
426 #ifdef _LP64
427   EXPECT_EQ(1023u,  byte_size_in_proper_unit(G - 1));
428   EXPECT_STREQ("M", proper_unit_for_byte_size(G - 1));
429 
430   EXPECT_EQ(1024u,  byte_size_in_proper_unit(G));
431   EXPECT_STREQ("M", proper_unit_for_byte_size(G));
432 
433   EXPECT_EQ(1024u,  byte_size_in_proper_unit(G + 1));
434   EXPECT_STREQ("M", proper_unit_for_byte_size(G + 1));
435 
436   EXPECT_EQ(1024u,  byte_size_in_proper_unit(G + K));
437   EXPECT_STREQ("M", proper_unit_for_byte_size(G + K));
438 
439   EXPECT_EQ(1025u,  byte_size_in_proper_unit(G + M));
440   EXPECT_STREQ("M", proper_unit_for_byte_size(G + M));
441 
442   EXPECT_EQ(51200u, byte_size_in_proper_unit(50*G));
443   EXPECT_STREQ("M", proper_unit_for_byte_size(50*G));
444 #endif
445 }
446 
447 #undef EXPECT_EQ
448 #undef EXPECT_STREQ
449 
450 #endif // PRODUCT
451