1 /*
2 * Copyright (c) 2013, Red Hat Inc.
3 * Copyright (c) 1997, 2012, Oracle and/or its affiliates.
4 * All rights reserved.
5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
6 *
7 * This code is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 only, as
9 * published by the Free Software Foundation.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 *
25 */
26
27 #include <sys/types.h>
28
29 #include "precompiled.hpp"
30 #include "asm/assembler.hpp"
31 #include "asm/assembler.inline.hpp"
32 #include "interpreter/interpreter.hpp"
33
34 #include "compiler/disassembler.hpp"
35 #include "memory/resourceArea.hpp"
36 #include "runtime/biasedLocking.hpp"
37 #include "runtime/interfaceSupport.hpp"
38 #include "runtime/sharedRuntime.hpp"
39
40 // #include "gc_interface/collectedHeap.inline.hpp"
41 // #include "interpreter/interpreter.hpp"
42 // #include "memory/cardTableModRefBS.hpp"
43 // #include "prims/methodHandles.hpp"
44 // #include "runtime/biasedLocking.hpp"
45 // #include "runtime/interfaceSupport.hpp"
46 // #include "runtime/objectMonitor.hpp"
47 // #include "runtime/os.hpp"
48 // #include "runtime/sharedRuntime.hpp"
49 // #include "runtime/stubRoutines.hpp"
50
51 #if INCLUDE_ALL_GCS
52 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
53 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
54 #include "gc_implementation/g1/heapRegion.hpp"
55 #endif
56
57 #ifdef COMPILER2
58 #include "opto/node.hpp"
59 #include "opto/compile.hpp"
60 #endif
61
62 #ifdef PRODUCT
63 #define BLOCK_COMMENT(str) /* nothing */
64 #define STOP(error) stop(error)
65 #else
66 #define BLOCK_COMMENT(str) block_comment(str)
67 #define STOP(error) block_comment(error); stop(error)
68 #endif
69
70 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
71
72 // Patch any kind of instruction; there may be several instructions.
73 // Return the total length (in bytes) of the instructions.
pd_patch_instruction_size(address branch,address target)74 int MacroAssembler::pd_patch_instruction_size(address branch, address target) {
75 int instructions = 1;
76 assert((uint64_t)target < (1ul << 48), "48-bit overflow in address constant");
77 long offset = (target - branch) >> 2;
78 unsigned insn = *(unsigned*)branch;
79 if ((Instruction_aarch64::extract(insn, 29, 24) & 0b111011) == 0b011000) {
80 // Load register (literal)
81 Instruction_aarch64::spatch(branch, 23, 5, offset);
82 } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) {
83 // Unconditional branch (immediate)
84 Instruction_aarch64::spatch(branch, 25, 0, offset);
85 } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) {
86 // Conditional branch (immediate)
87 Instruction_aarch64::spatch(branch, 23, 5, offset);
88 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) {
89 // Compare & branch (immediate)
90 Instruction_aarch64::spatch(branch, 23, 5, offset);
91 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) {
92 // Test & branch (immediate)
93 Instruction_aarch64::spatch(branch, 18, 5, offset);
94 } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) {
95 // PC-rel. addressing
96 offset = target-branch;
97 int shift = Instruction_aarch64::extract(insn, 31, 31);
98 if (shift) {
99 u_int64_t dest = (u_int64_t)target;
100 uint64_t pc_page = (uint64_t)branch >> 12;
101 uint64_t adr_page = (uint64_t)target >> 12;
102 unsigned offset_lo = dest & 0xfff;
103 offset = adr_page - pc_page;
104
105 // We handle 4 types of PC relative addressing
106 // 1 - adrp Rx, target_page
107 // ldr/str Ry, [Rx, #offset_in_page]
108 // 2 - adrp Rx, target_page
109 // add Ry, Rx, #offset_in_page
110 // 3 - adrp Rx, target_page (page aligned reloc, offset == 0)
111 // movk Rx, #imm16<<32
112 // 4 - adrp Rx, target_page (page aligned reloc, offset == 0)
113 // In the first 3 cases we must check that Rx is the same in the adrp and the
114 // subsequent ldr/str, add or movk instruction. Otherwise we could accidentally end
115 // up treating a type 4 relocation as a type 1, 2 or 3 just because it happened
116 // to be followed by a random unrelated ldr/str, add or movk instruction.
117 //
118 unsigned insn2 = ((unsigned*)branch)[1];
119 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
120 Instruction_aarch64::extract(insn, 4, 0) ==
121 Instruction_aarch64::extract(insn2, 9, 5)) {
122 // Load/store register (unsigned immediate)
123 unsigned size = Instruction_aarch64::extract(insn2, 31, 30);
124 Instruction_aarch64::patch(branch + sizeof (unsigned),
125 21, 10, offset_lo >> size);
126 guarantee(((dest >> size) << size) == dest, "misaligned target");
127 instructions = 2;
128 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
129 Instruction_aarch64::extract(insn, 4, 0) ==
130 Instruction_aarch64::extract(insn2, 4, 0)) {
131 // add (immediate)
132 Instruction_aarch64::patch(branch + sizeof (unsigned),
133 21, 10, offset_lo);
134 instructions = 2;
135 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 &&
136 Instruction_aarch64::extract(insn, 4, 0) ==
137 Instruction_aarch64::extract(insn2, 4, 0)) {
138 // movk #imm16<<32
139 Instruction_aarch64::patch(branch + 4, 20, 5, (uint64_t)target >> 32);
140 long dest = ((long)target & 0xffffffffL) | ((long)branch & 0xffff00000000L);
141 long pc_page = (long)branch >> 12;
142 long adr_page = (long)dest >> 12;
143 offset = adr_page - pc_page;
144 instructions = 2;
145 }
146 }
147 int offset_lo = offset & 3;
148 offset >>= 2;
149 Instruction_aarch64::spatch(branch, 23, 5, offset);
150 Instruction_aarch64::patch(branch, 30, 29, offset_lo);
151 } else if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010100) {
152 u_int64_t dest = (u_int64_t)target;
153 // Move wide constant
154 assert(nativeInstruction_at(branch+4)->is_movk(), "wrong insns in patch");
155 assert(nativeInstruction_at(branch+8)->is_movk(), "wrong insns in patch");
156 Instruction_aarch64::patch(branch, 20, 5, dest & 0xffff);
157 Instruction_aarch64::patch(branch+4, 20, 5, (dest >>= 16) & 0xffff);
158 Instruction_aarch64::patch(branch+8, 20, 5, (dest >>= 16) & 0xffff);
159 assert(target_addr_for_insn(branch) == target, "should be");
160 instructions = 3;
161 } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 &&
162 Instruction_aarch64::extract(insn, 4, 0) == 0b11111) {
163 // nothing to do
164 assert(target == 0, "did not expect to relocate target for polling page load");
165 } else {
166 ShouldNotReachHere();
167 }
168 return instructions * NativeInstruction::instruction_size;
169 }
170
patch_oop(address insn_addr,address o)171 int MacroAssembler::patch_oop(address insn_addr, address o) {
172 int instructions;
173 unsigned insn = *(unsigned*)insn_addr;
174 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
175
176 // OOPs are either narrow (32 bits) or wide (48 bits). We encode
177 // narrow OOPs by setting the upper 16 bits in the first
178 // instruction.
179 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) {
180 // Move narrow OOP
181 narrowOop n = oopDesc::encode_heap_oop((oop)o);
182 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16);
183 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff);
184 instructions = 2;
185 } else {
186 // Move wide OOP
187 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch");
188 uintptr_t dest = (uintptr_t)o;
189 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff);
190 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff);
191 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff);
192 instructions = 3;
193 }
194 return instructions * NativeInstruction::instruction_size;
195 }
196
target_addr_for_insn(address insn_addr,unsigned insn)197 address MacroAssembler::target_addr_for_insn(address insn_addr, unsigned insn) {
198 long offset = 0;
199 if ((Instruction_aarch64::extract(insn, 29, 24) & 0b011011) == 0b00011000) {
200 // Load register (literal)
201 offset = Instruction_aarch64::sextract(insn, 23, 5);
202 return address(((uint64_t)insn_addr + (offset << 2)));
203 } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) {
204 // Unconditional branch (immediate)
205 offset = Instruction_aarch64::sextract(insn, 25, 0);
206 } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) {
207 // Conditional branch (immediate)
208 offset = Instruction_aarch64::sextract(insn, 23, 5);
209 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) {
210 // Compare & branch (immediate)
211 offset = Instruction_aarch64::sextract(insn, 23, 5);
212 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) {
213 // Test & branch (immediate)
214 offset = Instruction_aarch64::sextract(insn, 18, 5);
215 } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) {
216 // PC-rel. addressing
217 offset = Instruction_aarch64::extract(insn, 30, 29);
218 offset |= Instruction_aarch64::sextract(insn, 23, 5) << 2;
219 int shift = Instruction_aarch64::extract(insn, 31, 31) ? 12 : 0;
220 if (shift) {
221 offset <<= shift;
222 uint64_t target_page = ((uint64_t)insn_addr) + offset;
223 target_page &= ((uint64_t)-1) << shift;
224 // Return the target address for the following sequences
225 // 1 - adrp Rx, target_page
226 // ldr/str Ry, [Rx, #offset_in_page]
227 // 2 - adrp Rx, target_page
228 // add Ry, Rx, #offset_in_page
229 // 3 - adrp Rx, target_page (page aligned reloc, offset == 0)
230 // movk Rx, #imm12<<32
231 // 4 - adrp Rx, target_page (page aligned reloc, offset == 0)
232 //
233 // In the first two cases we check that the register is the same and
234 // return the target_page + the offset within the page.
235 // Otherwise we assume it is a page aligned relocation and return
236 // the target page only.
237 //
238 unsigned insn2 = ((unsigned*)insn_addr)[1];
239 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
240 Instruction_aarch64::extract(insn, 4, 0) ==
241 Instruction_aarch64::extract(insn2, 9, 5)) {
242 // Load/store register (unsigned immediate)
243 unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
244 unsigned int size = Instruction_aarch64::extract(insn2, 31, 30);
245 return address(target_page + (byte_offset << size));
246 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
247 Instruction_aarch64::extract(insn, 4, 0) ==
248 Instruction_aarch64::extract(insn2, 4, 0)) {
249 // add (immediate)
250 unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
251 return address(target_page + byte_offset);
252 } else {
253 if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 &&
254 Instruction_aarch64::extract(insn, 4, 0) ==
255 Instruction_aarch64::extract(insn2, 4, 0)) {
256 target_page = (target_page & 0xffffffff) |
257 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32);
258 }
259 return (address)target_page;
260 }
261 } else {
262 ShouldNotReachHere();
263 }
264 } else if (Instruction_aarch64::extract(insn, 31, 23) == 0b110100101) {
265 u_int32_t *insns = (u_int32_t *)insn_addr;
266 // Move wide constant: movz, movk, movk. See movptr().
267 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch");
268 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch");
269 return address(u_int64_t(Instruction_aarch64::extract(insns[0], 20, 5))
270 + (u_int64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16)
271 + (u_int64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32));
272 } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 &&
273 Instruction_aarch64::extract(insn, 4, 0) == 0b11111) {
274 return 0;
275 } else {
276 ShouldNotReachHere();
277 }
278 return address(((uint64_t)insn_addr + (offset << 2)));
279 }
280
serialize_memory(Register thread,Register tmp)281 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
282 dsb(Assembler::SY);
283 }
284
285
reset_last_Java_frame(bool clear_fp)286 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
287 // we must set sp to zero to clear frame
288 str(zr, Address(rthread, JavaThread::last_Java_sp_offset()));
289
290 // must clear fp, so that compiled frames are not confused; it is
291 // possible that we need it only for debugging
292 if (clear_fp) {
293 str(zr, Address(rthread, JavaThread::last_Java_fp_offset()));
294 }
295
296 // Always clear the pc because it could have been set by make_walkable()
297 str(zr, Address(rthread, JavaThread::last_Java_pc_offset()));
298 }
299
300 // Calls to C land
301 //
302 // When entering C land, the rfp, & resp of the last Java frame have to be recorded
303 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
304 // has to be reset to 0. This is required to allow proper stack traversal.
set_last_Java_frame(Register last_java_sp,Register last_java_fp,Register last_java_pc,Register scratch)305 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
306 Register last_java_fp,
307 Register last_java_pc,
308 Register scratch) {
309
310 if (last_java_pc->is_valid()) {
311 str(last_java_pc, Address(rthread,
312 JavaThread::frame_anchor_offset()
313 + JavaFrameAnchor::last_Java_pc_offset()));
314 }
315
316 // determine last_java_sp register
317 if (last_java_sp == sp) {
318 mov(scratch, sp);
319 last_java_sp = scratch;
320 } else if (!last_java_sp->is_valid()) {
321 last_java_sp = esp;
322 }
323
324 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset()));
325
326 // last_java_fp is optional
327 if (last_java_fp->is_valid()) {
328 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset()));
329 }
330 }
331
set_last_Java_frame(Register last_java_sp,Register last_java_fp,address last_java_pc,Register scratch)332 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
333 Register last_java_fp,
334 address last_java_pc,
335 Register scratch) {
336 if (last_java_pc != NULL) {
337 adr(scratch, last_java_pc);
338 } else {
339 // FIXME: This is almost never correct. We should delete all
340 // cases of set_last_Java_frame with last_java_pc=NULL and use the
341 // correct return address instead.
342 adr(scratch, pc());
343 }
344
345 str(scratch, Address(rthread,
346 JavaThread::frame_anchor_offset()
347 + JavaFrameAnchor::last_Java_pc_offset()));
348
349 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch);
350 }
351
set_last_Java_frame(Register last_java_sp,Register last_java_fp,Label & L,Register scratch)352 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
353 Register last_java_fp,
354 Label &L,
355 Register scratch) {
356 if (L.is_bound()) {
357 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch);
358 } else {
359 InstructionMark im(this);
360 L.add_patch_at(code(), locator());
361 set_last_Java_frame(last_java_sp, last_java_fp, (address)NULL, scratch);
362 }
363 }
364
far_call(Address entry,CodeBuffer * cbuf,Register tmp)365 void MacroAssembler::far_call(Address entry, CodeBuffer *cbuf, Register tmp) {
366 assert(ReservedCodeCacheSize < 4*G, "branch out of range");
367 assert(CodeCache::find_blob(entry.target()) != NULL,
368 "destination of far call not found in code cache");
369 if (far_branches()) {
370 unsigned long offset;
371 // We can use ADRP here because we know that the total size of
372 // the code cache cannot exceed 2Gb.
373 adrp(tmp, entry, offset);
374 add(tmp, tmp, offset);
375 if (cbuf) cbuf->set_insts_mark();
376 blr(tmp);
377 } else {
378 if (cbuf) cbuf->set_insts_mark();
379 bl(entry);
380 }
381 }
382
far_jump(Address entry,CodeBuffer * cbuf,Register tmp)383 void MacroAssembler::far_jump(Address entry, CodeBuffer *cbuf, Register tmp) {
384 assert(ReservedCodeCacheSize < 4*G, "branch out of range");
385 assert(CodeCache::find_blob(entry.target()) != NULL,
386 "destination of far call not found in code cache");
387 if (far_branches()) {
388 unsigned long offset;
389 // We can use ADRP here because we know that the total size of
390 // the code cache cannot exceed 2Gb.
391 adrp(tmp, entry, offset);
392 add(tmp, tmp, offset);
393 if (cbuf) cbuf->set_insts_mark();
394 br(tmp);
395 } else {
396 if (cbuf) cbuf->set_insts_mark();
397 b(entry);
398 }
399 }
400
biased_locking_enter(Register lock_reg,Register obj_reg,Register swap_reg,Register tmp_reg,bool swap_reg_contains_mark,Label & done,Label * slow_case,BiasedLockingCounters * counters)401 int MacroAssembler::biased_locking_enter(Register lock_reg,
402 Register obj_reg,
403 Register swap_reg,
404 Register tmp_reg,
405 bool swap_reg_contains_mark,
406 Label& done,
407 Label* slow_case,
408 BiasedLockingCounters* counters) {
409 assert(UseBiasedLocking, "why call this otherwise?");
410 assert_different_registers(lock_reg, obj_reg, swap_reg);
411
412 if (PrintBiasedLockingStatistics && counters == NULL)
413 counters = BiasedLocking::counters();
414
415 assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg, rscratch1, rscratch2, noreg);
416 assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
417 Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes());
418 Address klass_addr (obj_reg, oopDesc::klass_offset_in_bytes());
419 Address saved_mark_addr(lock_reg, 0);
420
421 // Biased locking
422 // See whether the lock is currently biased toward our thread and
423 // whether the epoch is still valid
424 // Note that the runtime guarantees sufficient alignment of JavaThread
425 // pointers to allow age to be placed into low bits
426 // First check to see whether biasing is even enabled for this object
427 Label cas_label;
428 int null_check_offset = -1;
429 if (!swap_reg_contains_mark) {
430 null_check_offset = offset();
431 ldr(swap_reg, mark_addr);
432 }
433 andr(tmp_reg, swap_reg, markOopDesc::biased_lock_mask_in_place);
434 cmp(tmp_reg, markOopDesc::biased_lock_pattern);
435 br(Assembler::NE, cas_label);
436 // The bias pattern is present in the object's header. Need to check
437 // whether the bias owner and the epoch are both still current.
438 load_prototype_header(tmp_reg, obj_reg);
439 orr(tmp_reg, tmp_reg, rthread);
440 eor(tmp_reg, swap_reg, tmp_reg);
441 andr(tmp_reg, tmp_reg, ~((int) markOopDesc::age_mask_in_place));
442 if (counters != NULL) {
443 Label around;
444 cbnz(tmp_reg, around);
445 atomic_incw(Address((address)counters->biased_lock_entry_count_addr()), tmp_reg, rscratch1, rscratch2);
446 b(done);
447 bind(around);
448 } else {
449 cbz(tmp_reg, done);
450 }
451
452 Label try_revoke_bias;
453 Label try_rebias;
454
455 // At this point we know that the header has the bias pattern and
456 // that we are not the bias owner in the current epoch. We need to
457 // figure out more details about the state of the header in order to
458 // know what operations can be legally performed on the object's
459 // header.
460
461 // If the low three bits in the xor result aren't clear, that means
462 // the prototype header is no longer biased and we have to revoke
463 // the bias on this object.
464 andr(rscratch1, tmp_reg, markOopDesc::biased_lock_mask_in_place);
465 cbnz(rscratch1, try_revoke_bias);
466
467 // Biasing is still enabled for this data type. See whether the
468 // epoch of the current bias is still valid, meaning that the epoch
469 // bits of the mark word are equal to the epoch bits of the
470 // prototype header. (Note that the prototype header's epoch bits
471 // only change at a safepoint.) If not, attempt to rebias the object
472 // toward the current thread. Note that we must be absolutely sure
473 // that the current epoch is invalid in order to do this because
474 // otherwise the manipulations it performs on the mark word are
475 // illegal.
476 andr(rscratch1, tmp_reg, markOopDesc::epoch_mask_in_place);
477 cbnz(rscratch1, try_rebias);
478
479 // The epoch of the current bias is still valid but we know nothing
480 // about the owner; it might be set or it might be clear. Try to
481 // acquire the bias of the object using an atomic operation. If this
482 // fails we will go in to the runtime to revoke the object's bias.
483 // Note that we first construct the presumed unbiased header so we
484 // don't accidentally blow away another thread's valid bias.
485 {
486 Label here;
487 mov(rscratch1, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
488 andr(swap_reg, swap_reg, rscratch1);
489 orr(tmp_reg, swap_reg, rthread);
490 cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case);
491 // If the biasing toward our thread failed, this means that
492 // another thread succeeded in biasing it toward itself and we
493 // need to revoke that bias. The revocation will occur in the
494 // interpreter runtime in the slow case.
495 bind(here);
496 if (counters != NULL) {
497 atomic_incw(Address((address)counters->anonymously_biased_lock_entry_count_addr()),
498 tmp_reg, rscratch1, rscratch2);
499 }
500 }
501 b(done);
502
503 bind(try_rebias);
504 // At this point we know the epoch has expired, meaning that the
505 // current "bias owner", if any, is actually invalid. Under these
506 // circumstances _only_, we are allowed to use the current header's
507 // value as the comparison value when doing the cas to acquire the
508 // bias in the current epoch. In other words, we allow transfer of
509 // the bias from one thread to another directly in this situation.
510 //
511 // FIXME: due to a lack of registers we currently blow away the age
512 // bits in this situation. Should attempt to preserve them.
513 {
514 Label here;
515 load_prototype_header(tmp_reg, obj_reg);
516 orr(tmp_reg, rthread, tmp_reg);
517 cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case);
518 // If the biasing toward our thread failed, then another thread
519 // succeeded in biasing it toward itself and we need to revoke that
520 // bias. The revocation will occur in the runtime in the slow case.
521 bind(here);
522 if (counters != NULL) {
523 atomic_incw(Address((address)counters->rebiased_lock_entry_count_addr()),
524 tmp_reg, rscratch1, rscratch2);
525 }
526 }
527 b(done);
528
529 bind(try_revoke_bias);
530 // The prototype mark in the klass doesn't have the bias bit set any
531 // more, indicating that objects of this data type are not supposed
532 // to be biased any more. We are going to try to reset the mark of
533 // this object to the prototype value and fall through to the
534 // CAS-based locking scheme. Note that if our CAS fails, it means
535 // that another thread raced us for the privilege of revoking the
536 // bias of this particular object, so it's okay to continue in the
537 // normal locking code.
538 //
539 // FIXME: due to a lack of registers we currently blow away the age
540 // bits in this situation. Should attempt to preserve them.
541 {
542 Label here, nope;
543 load_prototype_header(tmp_reg, obj_reg);
544 cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, &nope);
545 bind(here);
546
547 // Fall through to the normal CAS-based lock, because no matter what
548 // the result of the above CAS, some thread must have succeeded in
549 // removing the bias bit from the object's header.
550 if (counters != NULL) {
551 atomic_incw(Address((address)counters->revoked_lock_entry_count_addr()), tmp_reg,
552 rscratch1, rscratch2);
553 }
554 bind(nope);
555 }
556
557 bind(cas_label);
558
559 return null_check_offset;
560 }
561
biased_locking_exit(Register obj_reg,Register temp_reg,Label & done)562 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
563 assert(UseBiasedLocking, "why call this otherwise?");
564
565 // Check for biased locking unlock case, which is a no-op
566 // Note: we do not have to check the thread ID for two reasons.
567 // First, the interpreter checks for IllegalMonitorStateException at
568 // a higher level. Second, if the bias was revoked while we held the
569 // lock, the object could not be rebiased toward another thread, so
570 // the bias bit would be clear.
571 ldr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
572 andr(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
573 cmp(temp_reg, markOopDesc::biased_lock_pattern);
574 br(Assembler::EQ, done);
575 }
576
577
578 // added to make this compile
579
580 REGISTER_DEFINITION(Register, noreg);
581
pass_arg0(MacroAssembler * masm,Register arg)582 static void pass_arg0(MacroAssembler* masm, Register arg) {
583 if (c_rarg0 != arg ) {
584 masm->mov(c_rarg0, arg);
585 }
586 }
587
pass_arg1(MacroAssembler * masm,Register arg)588 static void pass_arg1(MacroAssembler* masm, Register arg) {
589 if (c_rarg1 != arg ) {
590 masm->mov(c_rarg1, arg);
591 }
592 }
593
pass_arg2(MacroAssembler * masm,Register arg)594 static void pass_arg2(MacroAssembler* masm, Register arg) {
595 if (c_rarg2 != arg ) {
596 masm->mov(c_rarg2, arg);
597 }
598 }
599
pass_arg3(MacroAssembler * masm,Register arg)600 static void pass_arg3(MacroAssembler* masm, Register arg) {
601 if (c_rarg3 != arg ) {
602 masm->mov(c_rarg3, arg);
603 }
604 }
605
call_VM_base(Register oop_result,Register java_thread,Register last_java_sp,address entry_point,int number_of_arguments,bool check_exceptions)606 void MacroAssembler::call_VM_base(Register oop_result,
607 Register java_thread,
608 Register last_java_sp,
609 address entry_point,
610 int number_of_arguments,
611 bool check_exceptions) {
612 // determine java_thread register
613 if (!java_thread->is_valid()) {
614 java_thread = rthread;
615 }
616
617 // determine last_java_sp register
618 if (!last_java_sp->is_valid()) {
619 last_java_sp = esp;
620 }
621
622 // debugging support
623 assert(number_of_arguments >= 0 , "cannot have negative number of arguments");
624 assert(java_thread == rthread, "unexpected register");
625 #ifdef ASSERT
626 // TraceBytecodes does not use r12 but saves it over the call, so don't verify
627 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");
628 #endif // ASSERT
629
630 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result");
631 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
632
633 // push java thread (becomes first argument of C function)
634
635 mov(c_rarg0, java_thread);
636
637 // set last Java frame before call
638 assert(last_java_sp != rfp, "can't use rfp");
639
640 Label l;
641 set_last_Java_frame(last_java_sp, rfp, l, rscratch1);
642
643 // do the call, remove parameters
644 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l);
645
646 // lr could be poisoned with PAC signature during throw_pending_exception
647 // if it was tail-call optimized by compiler, since lr is not callee-saved
648 // reload it with proper value
649 adr(lr, l);
650
651 // reset last Java frame
652 // Only interpreter should have to clear fp
653 reset_last_Java_frame(true);
654
655 // C++ interp handles this in the interpreter
656 check_and_handle_popframe(java_thread);
657 check_and_handle_earlyret(java_thread);
658
659 if (check_exceptions) {
660 // check for pending exceptions (java_thread is set upon return)
661 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset())));
662 Label ok;
663 cbz(rscratch1, ok);
664 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry()));
665 br(rscratch1);
666 bind(ok);
667 }
668
669 // get oop result if there is one and reset the value in the thread
670 if (oop_result->is_valid()) {
671 get_vm_result(oop_result, java_thread);
672 }
673 }
674
call_VM_helper(Register oop_result,address entry_point,int number_of_arguments,bool check_exceptions)675 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
676 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
677 }
678
679 // Maybe emit a call via a trampoline. If the code cache is small
680 // trampolines won't be emitted.
681
trampoline_call(Address entry,CodeBuffer * cbuf)682 address MacroAssembler::trampoline_call(Address entry, CodeBuffer *cbuf) {
683 assert(entry.rspec().type() == relocInfo::runtime_call_type
684 || entry.rspec().type() == relocInfo::opt_virtual_call_type
685 || entry.rspec().type() == relocInfo::static_call_type
686 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type");
687
688 unsigned int start_offset = offset();
689 #ifdef COMPILER2
690 // We need a trampoline if branches are far.
691 if (far_branches()) {
692 // We don't want to emit a trampoline if C2 is generating dummy
693 // code during its branch shortening phase.
694 CompileTask* task = ciEnv::current()->task();
695 bool in_scratch_emit_size =
696 ((task != NULL) && is_c2_compile(task->comp_level())
697 && Compile::current()->in_scratch_emit_size());
698 if (! in_scratch_emit_size) {
699 address stub = emit_trampoline_stub(start_offset, entry.target());
700 if (stub == NULL) {
701 return NULL; // CodeCache is full
702 }
703 }
704 }
705 #endif
706
707 if (cbuf) cbuf->set_insts_mark();
708 relocate(entry.rspec());
709 #ifdef COMPILER2
710 if (!far_branches()) {
711 bl(entry.target());
712 } else {
713 bl(pc());
714 }
715 #else
716 bl(entry.target());
717 #endif
718 // just need to return a non-null address
719 return pc();
720 }
721
722
723 // Emit a trampoline stub for a call to a target which is too far away.
724 //
725 // code sequences:
726 //
727 // call-site:
728 // branch-and-link to <destination> or <trampoline stub>
729 //
730 // Related trampoline stub for this call site in the stub section:
731 // load the call target from the constant pool
732 // branch (LR still points to the call site above)
733
emit_trampoline_stub(int insts_call_instruction_offset,address dest)734 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset,
735 address dest) {
736 #ifdef COMPILER2
737 address stub = start_a_stub(Compile::MAX_stubs_size/2);
738 if (stub == NULL) {
739 return NULL; // CodeBuffer::expand failed
740 }
741
742 // Create a trampoline stub relocation which relates this trampoline stub
743 // with the call instruction at insts_call_instruction_offset in the
744 // instructions code-section.
745 align(wordSize);
746 relocate(trampoline_stub_Relocation::spec(code()->insts()->start()
747 + insts_call_instruction_offset));
748 const int stub_start_offset = offset();
749
750 // Now, create the trampoline stub's code:
751 // - load the call
752 // - call
753 Label target;
754 ldr(rscratch1, target);
755 br(rscratch1);
756 bind(target);
757 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset,
758 "should be");
759 emit_int64((int64_t)dest);
760
761 const address stub_start_addr = addr_at(stub_start_offset);
762
763 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
764
765 end_a_stub();
766 return stub;
767 #else
768 ShouldNotReachHere();
769 return NULL;
770 #endif
771 }
772
c2bool(Register x)773 void MacroAssembler::c2bool(Register x) {
774 // implements x == 0 ? 0 : 1
775 // note: must only look at least-significant byte of x
776 // since C-style booleans are stored in one byte
777 // only! (was bug)
778 tst(x, 0xff);
779 cset(x, Assembler::NE);
780 }
781
ic_call(address entry)782 address MacroAssembler::ic_call(address entry) {
783 RelocationHolder rh = virtual_call_Relocation::spec(pc());
784 // address const_ptr = long_constant((jlong)Universe::non_oop_word());
785 // unsigned long offset;
786 // ldr_constant(rscratch2, const_ptr);
787 movptr(rscratch2, (uintptr_t)Universe::non_oop_word());
788 return trampoline_call(Address(entry, rh));
789 }
790
791 // Implementation of call_VM versions
792
call_VM(Register oop_result,address entry_point,bool check_exceptions)793 void MacroAssembler::call_VM(Register oop_result,
794 address entry_point,
795 bool check_exceptions) {
796 call_VM_helper(oop_result, entry_point, 0, check_exceptions);
797 }
798
call_VM(Register oop_result,address entry_point,Register arg_1,bool check_exceptions)799 void MacroAssembler::call_VM(Register oop_result,
800 address entry_point,
801 Register arg_1,
802 bool check_exceptions) {
803 pass_arg1(this, arg_1);
804 call_VM_helper(oop_result, entry_point, 1, check_exceptions);
805 }
806
call_VM(Register oop_result,address entry_point,Register arg_1,Register arg_2,bool check_exceptions)807 void MacroAssembler::call_VM(Register oop_result,
808 address entry_point,
809 Register arg_1,
810 Register arg_2,
811 bool check_exceptions) {
812 assert(arg_1 != c_rarg2, "smashed arg");
813 pass_arg2(this, arg_2);
814 pass_arg1(this, arg_1);
815 call_VM_helper(oop_result, entry_point, 2, check_exceptions);
816 }
817
call_VM(Register oop_result,address entry_point,Register arg_1,Register arg_2,Register arg_3,bool check_exceptions)818 void MacroAssembler::call_VM(Register oop_result,
819 address entry_point,
820 Register arg_1,
821 Register arg_2,
822 Register arg_3,
823 bool check_exceptions) {
824 assert(arg_1 != c_rarg3, "smashed arg");
825 assert(arg_2 != c_rarg3, "smashed arg");
826 pass_arg3(this, arg_3);
827
828 assert(arg_1 != c_rarg2, "smashed arg");
829 pass_arg2(this, arg_2);
830
831 pass_arg1(this, arg_1);
832 call_VM_helper(oop_result, entry_point, 3, check_exceptions);
833 }
834
call_VM(Register oop_result,Register last_java_sp,address entry_point,int number_of_arguments,bool check_exceptions)835 void MacroAssembler::call_VM(Register oop_result,
836 Register last_java_sp,
837 address entry_point,
838 int number_of_arguments,
839 bool check_exceptions) {
840 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
841 }
842
call_VM(Register oop_result,Register last_java_sp,address entry_point,Register arg_1,bool check_exceptions)843 void MacroAssembler::call_VM(Register oop_result,
844 Register last_java_sp,
845 address entry_point,
846 Register arg_1,
847 bool check_exceptions) {
848 pass_arg1(this, arg_1);
849 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
850 }
851
call_VM(Register oop_result,Register last_java_sp,address entry_point,Register arg_1,Register arg_2,bool check_exceptions)852 void MacroAssembler::call_VM(Register oop_result,
853 Register last_java_sp,
854 address entry_point,
855 Register arg_1,
856 Register arg_2,
857 bool check_exceptions) {
858
859 assert(arg_1 != c_rarg2, "smashed arg");
860 pass_arg2(this, arg_2);
861 pass_arg1(this, arg_1);
862 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
863 }
864
call_VM(Register oop_result,Register last_java_sp,address entry_point,Register arg_1,Register arg_2,Register arg_3,bool check_exceptions)865 void MacroAssembler::call_VM(Register oop_result,
866 Register last_java_sp,
867 address entry_point,
868 Register arg_1,
869 Register arg_2,
870 Register arg_3,
871 bool check_exceptions) {
872 assert(arg_1 != c_rarg3, "smashed arg");
873 assert(arg_2 != c_rarg3, "smashed arg");
874 pass_arg3(this, arg_3);
875 assert(arg_1 != c_rarg2, "smashed arg");
876 pass_arg2(this, arg_2);
877 pass_arg1(this, arg_1);
878 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
879 }
880
881
get_vm_result(Register oop_result,Register java_thread)882 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
883 ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
884 str(zr, Address(java_thread, JavaThread::vm_result_offset()));
885 verify_oop(oop_result, "broken oop in call_VM_base");
886 }
887
get_vm_result_2(Register metadata_result,Register java_thread)888 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
889 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
890 str(zr, Address(java_thread, JavaThread::vm_result_2_offset()));
891 }
892
align(int modulus)893 void MacroAssembler::align(int modulus) {
894 while (offset() % modulus != 0) nop();
895 }
896
897 // these are no-ops overridden by InterpreterMacroAssembler
898
check_and_handle_earlyret(Register java_thread)899 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { }
900
check_and_handle_popframe(Register java_thread)901 void MacroAssembler::check_and_handle_popframe(Register java_thread) { }
902
903
delayed_value_impl(intptr_t * delayed_value_addr,Register tmp,int offset)904 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
905 Register tmp,
906 int offset) {
907 intptr_t value = *delayed_value_addr;
908 if (value != 0)
909 return RegisterOrConstant(value + offset);
910
911 // load indirectly to solve generation ordering problem
912 ldr(tmp, ExternalAddress((address) delayed_value_addr));
913
914 if (offset != 0)
915 add(tmp, tmp, offset);
916
917 return RegisterOrConstant(tmp);
918 }
919
920 // Look up the method for a megamorphic invokeinterface call.
921 // The target method is determined by <intf_klass, itable_index>.
922 // The receiver klass is in recv_klass.
923 // On success, the result will be in method_result, and execution falls through.
924 // On failure, execution transfers to the given label.
lookup_interface_method(Register recv_klass,Register intf_klass,RegisterOrConstant itable_index,Register method_result,Register scan_temp,Label & L_no_such_interface,bool return_method)925 void MacroAssembler::lookup_interface_method(Register recv_klass,
926 Register intf_klass,
927 RegisterOrConstant itable_index,
928 Register method_result,
929 Register scan_temp,
930 Label& L_no_such_interface,
931 bool return_method) {
932 assert_different_registers(recv_klass, intf_klass, scan_temp);
933 assert_different_registers(method_result, intf_klass, scan_temp);
934 assert(recv_klass != method_result || !return_method,
935 "recv_klass can be destroyed when method isn't needed");
936
937 assert(itable_index.is_constant() || itable_index.as_register() == method_result,
938 "caller must use same register for non-constant itable index as for method");
939
940 // Compute start of first itableOffsetEntry (which is at the end of the vtable)
941 int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
942 int itentry_off = itableMethodEntry::method_offset_in_bytes();
943 int scan_step = itableOffsetEntry::size() * wordSize;
944 int vte_size = vtableEntry::size() * wordSize;
945 assert(vte_size == wordSize, "else adjust times_vte_scale");
946
947 ldrw(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
948
949 // %%% Could store the aligned, prescaled offset in the klassoop.
950 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
951 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3)));
952 add(scan_temp, scan_temp, vtable_base);
953 if (HeapWordsPerLong > 1) {
954 // Round up to align_object_offset boundary
955 // see code for instanceKlass::start_of_itable!
956 round_to(scan_temp, BytesPerLong);
957 }
958
959 if (return_method) {
960 // Adjust recv_klass by scaled itable_index, so we can free itable_index.
961 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
962 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
963 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3)));
964 if (itentry_off)
965 add(recv_klass, recv_klass, itentry_off);
966 }
967
968 // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
969 // if (scan->interface() == intf) {
970 // result = (klass + scan->offset() + itable_index);
971 // }
972 // }
973 Label search, found_method;
974
975 for (int peel = 1; peel >= 0; peel--) {
976 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
977 cmp(intf_klass, method_result);
978
979 if (peel) {
980 br(Assembler::EQ, found_method);
981 } else {
982 br(Assembler::NE, search);
983 // (invert the test to fall through to found_method...)
984 }
985
986 if (!peel) break;
987
988 bind(search);
989
990 // Check that the previous entry is non-null. A null entry means that
991 // the receiver class doesn't implement the interface, and wasn't the
992 // same as when the caller was compiled.
993 cbz(method_result, L_no_such_interface);
994 add(scan_temp, scan_temp, scan_step);
995 }
996
997 bind(found_method);
998
999 if (return_method) {
1000 // Got a hit.
1001 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
1002 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0)));
1003 }
1004 }
1005
1006 // virtual method calling
lookup_virtual_method(Register recv_klass,RegisterOrConstant vtable_index,Register method_result)1007 void MacroAssembler::lookup_virtual_method(Register recv_klass,
1008 RegisterOrConstant vtable_index,
1009 Register method_result) {
1010 const int base = InstanceKlass::vtable_start_offset() * wordSize;
1011 assert(vtableEntry::size() * wordSize == 8,
1012 "adjust the scaling in the code below");
1013 int vtable_offset_in_bytes = base + vtableEntry::method_offset_in_bytes();
1014
1015 if (vtable_index.is_register()) {
1016 lea(method_result, Address(recv_klass,
1017 vtable_index.as_register(),
1018 Address::lsl(LogBytesPerWord)));
1019 ldr(method_result, Address(method_result, vtable_offset_in_bytes));
1020 } else {
1021 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize;
1022 ldr(method_result,
1023 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0));
1024 }
1025 }
1026
check_klass_subtype(Register sub_klass,Register super_klass,Register temp_reg,Label & L_success)1027 void MacroAssembler::check_klass_subtype(Register sub_klass,
1028 Register super_klass,
1029 Register temp_reg,
1030 Label& L_success) {
1031 Label L_failure;
1032 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, NULL);
1033 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
1034 bind(L_failure);
1035 }
1036
1037
check_klass_subtype_fast_path(Register sub_klass,Register super_klass,Register temp_reg,Label * L_success,Label * L_failure,Label * L_slow_path,RegisterOrConstant super_check_offset)1038 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
1039 Register super_klass,
1040 Register temp_reg,
1041 Label* L_success,
1042 Label* L_failure,
1043 Label* L_slow_path,
1044 RegisterOrConstant super_check_offset) {
1045 assert_different_registers(sub_klass, super_klass, temp_reg);
1046 bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
1047 if (super_check_offset.is_register()) {
1048 assert_different_registers(sub_klass, super_klass,
1049 super_check_offset.as_register());
1050 } else if (must_load_sco) {
1051 assert(temp_reg != noreg, "supply either a temp or a register offset");
1052 }
1053
1054 Label L_fallthrough;
1055 int label_nulls = 0;
1056 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
1057 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
1058 if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
1059 assert(label_nulls <= 1, "at most one NULL in the batch");
1060
1061 int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1062 int sco_offset = in_bytes(Klass::super_check_offset_offset());
1063 Address super_check_offset_addr(super_klass, sco_offset);
1064
1065 // Hacked jmp, which may only be used just before L_fallthrough.
1066 #define final_jmp(label) \
1067 if (&(label) == &L_fallthrough) { /*do nothing*/ } \
1068 else b(label) /*omit semi*/
1069
1070 // If the pointers are equal, we are done (e.g., String[] elements).
1071 // This self-check enables sharing of secondary supertype arrays among
1072 // non-primary types such as array-of-interface. Otherwise, each such
1073 // type would need its own customized SSA.
1074 // We move this check to the front of the fast path because many
1075 // type checks are in fact trivially successful in this manner,
1076 // so we get a nicely predicted branch right at the start of the check.
1077 cmp(sub_klass, super_klass);
1078 br(Assembler::EQ, *L_success);
1079
1080 // Check the supertype display:
1081 if (must_load_sco) {
1082 // Positive movl does right thing on LP64.
1083 ldrw(temp_reg, super_check_offset_addr);
1084 super_check_offset = RegisterOrConstant(temp_reg);
1085 }
1086 Address super_check_addr(sub_klass, super_check_offset);
1087 ldr(rscratch1, super_check_addr);
1088 cmp(super_klass, rscratch1); // load displayed supertype
1089
1090 // This check has worked decisively for primary supers.
1091 // Secondary supers are sought in the super_cache ('super_cache_addr').
1092 // (Secondary supers are interfaces and very deeply nested subtypes.)
1093 // This works in the same check above because of a tricky aliasing
1094 // between the super_cache and the primary super display elements.
1095 // (The 'super_check_addr' can address either, as the case requires.)
1096 // Note that the cache is updated below if it does not help us find
1097 // what we need immediately.
1098 // So if it was a primary super, we can just fail immediately.
1099 // Otherwise, it's the slow path for us (no success at this point).
1100
1101 if (super_check_offset.is_register()) {
1102 br(Assembler::EQ, *L_success);
1103 cmp(super_check_offset.as_register(), sc_offset);
1104 if (L_failure == &L_fallthrough) {
1105 br(Assembler::EQ, *L_slow_path);
1106 } else {
1107 br(Assembler::NE, *L_failure);
1108 final_jmp(*L_slow_path);
1109 }
1110 } else if (super_check_offset.as_constant() == sc_offset) {
1111 // Need a slow path; fast failure is impossible.
1112 if (L_slow_path == &L_fallthrough) {
1113 br(Assembler::EQ, *L_success);
1114 } else {
1115 br(Assembler::NE, *L_slow_path);
1116 final_jmp(*L_success);
1117 }
1118 } else {
1119 // No slow path; it's a fast decision.
1120 if (L_failure == &L_fallthrough) {
1121 br(Assembler::EQ, *L_success);
1122 } else {
1123 br(Assembler::NE, *L_failure);
1124 final_jmp(*L_success);
1125 }
1126 }
1127
1128 bind(L_fallthrough);
1129
1130 #undef final_jmp
1131 }
1132
1133 // These two are taken from x86, but they look generally useful
1134
1135 // scans count pointer sized words at [addr] for occurence of value,
1136 // generic
repne_scan(Register addr,Register value,Register count,Register scratch)1137 void MacroAssembler::repne_scan(Register addr, Register value, Register count,
1138 Register scratch) {
1139 Label Lloop, Lexit;
1140 cbz(count, Lexit);
1141 bind(Lloop);
1142 ldr(scratch, post(addr, wordSize));
1143 cmp(value, scratch);
1144 br(EQ, Lexit);
1145 sub(count, count, 1);
1146 cbnz(count, Lloop);
1147 bind(Lexit);
1148 }
1149
1150 // scans count 4 byte words at [addr] for occurence of value,
1151 // generic
repne_scanw(Register addr,Register value,Register count,Register scratch)1152 void MacroAssembler::repne_scanw(Register addr, Register value, Register count,
1153 Register scratch) {
1154 Label Lloop, Lexit;
1155 cbz(count, Lexit);
1156 bind(Lloop);
1157 ldrw(scratch, post(addr, wordSize));
1158 cmpw(value, scratch);
1159 br(EQ, Lexit);
1160 sub(count, count, 1);
1161 cbnz(count, Lloop);
1162 bind(Lexit);
1163 }
1164
check_klass_subtype_slow_path(Register sub_klass,Register super_klass,Register temp_reg,Register temp2_reg,Label * L_success,Label * L_failure,bool set_cond_codes)1165 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
1166 Register super_klass,
1167 Register temp_reg,
1168 Register temp2_reg,
1169 Label* L_success,
1170 Label* L_failure,
1171 bool set_cond_codes) {
1172 assert_different_registers(sub_klass, super_klass, temp_reg);
1173 if (temp2_reg != noreg)
1174 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1);
1175 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
1176
1177 Label L_fallthrough;
1178 int label_nulls = 0;
1179 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
1180 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
1181 assert(label_nulls <= 1, "at most one NULL in the batch");
1182
1183 // a couple of useful fields in sub_klass:
1184 int ss_offset = in_bytes(Klass::secondary_supers_offset());
1185 int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1186 Address secondary_supers_addr(sub_klass, ss_offset);
1187 Address super_cache_addr( sub_klass, sc_offset);
1188
1189 BLOCK_COMMENT("check_klass_subtype_slow_path");
1190
1191 // Do a linear scan of the secondary super-klass chain.
1192 // This code is rarely used, so simplicity is a virtue here.
1193 // The repne_scan instruction uses fixed registers, which we must spill.
1194 // Don't worry too much about pre-existing connections with the input regs.
1195
1196 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super)
1197 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter)
1198
1199 RegSet pushed_registers;
1200 if (!IS_A_TEMP(r2)) pushed_registers += r2;
1201 if (!IS_A_TEMP(r5)) pushed_registers += r5;
1202
1203 if (super_klass != r0 || UseCompressedOops) {
1204 if (!IS_A_TEMP(r0)) pushed_registers += r0;
1205 }
1206
1207 push(pushed_registers, sp);
1208
1209 // Get super_klass value into r0 (even if it was in r5 or r2).
1210 if (super_klass != r0) {
1211 mov(r0, super_klass);
1212 }
1213
1214 #ifndef PRODUCT
1215 mov(rscratch2, (address)&SharedRuntime::_partial_subtype_ctr);
1216 Address pst_counter_addr(rscratch2);
1217 ldr(rscratch1, pst_counter_addr);
1218 add(rscratch1, rscratch1, 1);
1219 str(rscratch1, pst_counter_addr);
1220 #endif //PRODUCT
1221
1222 // We will consult the secondary-super array.
1223 ldr(r5, secondary_supers_addr);
1224 // Load the array length. (Positive movl does right thing on LP64.)
1225 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes()));
1226 // Skip to start of data.
1227 add(r5, r5, Array<Klass*>::base_offset_in_bytes());
1228
1229 cmp(sp, zr); // Clear Z flag; SP is never zero
1230 // Scan R2 words at [R5] for an occurrence of R0.
1231 // Set NZ/Z based on last compare.
1232 repne_scan(r5, r0, r2, rscratch1);
1233
1234 // Unspill the temp. registers:
1235 pop(pushed_registers, sp);
1236
1237 br(Assembler::NE, *L_failure);
1238
1239 // Success. Cache the super we found and proceed in triumph.
1240 str(super_klass, super_cache_addr);
1241
1242 if (L_success != &L_fallthrough) {
1243 b(*L_success);
1244 }
1245
1246 #undef IS_A_TEMP
1247
1248 bind(L_fallthrough);
1249 }
1250
1251
verify_oop(Register reg,const char * s)1252 void MacroAssembler::verify_oop(Register reg, const char* s) {
1253 if (!VerifyOops) return;
1254
1255 // Pass register number to verify_oop_subroutine
1256 const char* b = NULL;
1257 {
1258 ResourceMark rm;
1259 stringStream ss;
1260 ss.print("verify_oop: %s: %s", reg->name(), s);
1261 b = code_string(ss.as_string());
1262 }
1263 BLOCK_COMMENT("verify_oop {");
1264
1265 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1266 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1267
1268 mov(r0, reg);
1269 movptr(rscratch1, (uintptr_t)(address)b);
1270
1271 // call indirectly to solve generation ordering problem
1272 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1273 ldr(rscratch2, Address(rscratch2));
1274 blr(rscratch2);
1275
1276 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1277 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1278
1279 BLOCK_COMMENT("} verify_oop");
1280 }
1281
verify_oop_addr(Address addr,const char * s)1282 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
1283 if (!VerifyOops) return;
1284
1285 const char* b = NULL;
1286 {
1287 ResourceMark rm;
1288 stringStream ss;
1289 ss.print("verify_oop_addr: %s", s);
1290 b = code_string(ss.as_string());
1291 }
1292 BLOCK_COMMENT("verify_oop_addr {");
1293
1294 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1295 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1296
1297 // addr may contain sp so we will have to adjust it based on the
1298 // pushes that we just did.
1299 if (addr.uses(sp)) {
1300 lea(r0, addr);
1301 ldr(r0, Address(r0, 4 * wordSize));
1302 } else {
1303 ldr(r0, addr);
1304 }
1305 movptr(rscratch1, (uintptr_t)(address)b);
1306
1307 // call indirectly to solve generation ordering problem
1308 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1309 ldr(rscratch2, Address(rscratch2));
1310 blr(rscratch2);
1311
1312 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1313 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1314
1315 BLOCK_COMMENT("} verify_oop_addr");
1316 }
1317
argument_address(RegisterOrConstant arg_slot,int extra_slot_offset)1318 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
1319 int extra_slot_offset) {
1320 // cf. TemplateTable::prepare_invoke(), if (load_receiver).
1321 int stackElementSize = Interpreter::stackElementSize;
1322 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
1323 #ifdef ASSERT
1324 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
1325 assert(offset1 - offset == stackElementSize, "correct arithmetic");
1326 #endif
1327 if (arg_slot.is_constant()) {
1328 return Address(esp, arg_slot.as_constant() * stackElementSize
1329 + offset);
1330 } else {
1331 add(rscratch1, esp, arg_slot.as_register(),
1332 ext::uxtx, exact_log2(stackElementSize));
1333 return Address(rscratch1, offset);
1334 }
1335 }
1336
call_VM_leaf_base(address entry_point,int number_of_arguments,Label * retaddr)1337 void MacroAssembler::call_VM_leaf_base(address entry_point,
1338 int number_of_arguments,
1339 Label *retaddr) {
1340 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize)));
1341
1342 // We add 1 to number_of_arguments because the thread in arg0 is
1343 // not counted
1344 mov(rscratch1, entry_point);
1345 blr(rscratch1);
1346 if (retaddr)
1347 bind(*retaddr);
1348
1349 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize)));
1350 maybe_isb();
1351 }
1352
call_VM_leaf(address entry_point,int number_of_arguments)1353 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
1354 call_VM_leaf_base(entry_point, number_of_arguments);
1355 }
1356
call_VM_leaf(address entry_point,Register arg_0)1357 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
1358 pass_arg0(this, arg_0);
1359 call_VM_leaf_base(entry_point, 1);
1360 }
1361
call_VM_leaf(address entry_point,Register arg_0,Register arg_1)1362 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1363 pass_arg0(this, arg_0);
1364 pass_arg1(this, arg_1);
1365 call_VM_leaf_base(entry_point, 2);
1366 }
1367
call_VM_leaf(address entry_point,Register arg_0,Register arg_1,Register arg_2)1368 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0,
1369 Register arg_1, Register arg_2) {
1370 pass_arg0(this, arg_0);
1371 pass_arg1(this, arg_1);
1372 pass_arg2(this, arg_2);
1373 call_VM_leaf_base(entry_point, 3);
1374 }
1375
super_call_VM_leaf(address entry_point,Register arg_0)1376 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
1377 pass_arg0(this, arg_0);
1378 MacroAssembler::call_VM_leaf_base(entry_point, 1);
1379 }
1380
super_call_VM_leaf(address entry_point,Register arg_0,Register arg_1)1381 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1382
1383 assert(arg_0 != c_rarg1, "smashed arg");
1384 pass_arg1(this, arg_1);
1385 pass_arg0(this, arg_0);
1386 MacroAssembler::call_VM_leaf_base(entry_point, 2);
1387 }
1388
super_call_VM_leaf(address entry_point,Register arg_0,Register arg_1,Register arg_2)1389 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
1390 assert(arg_0 != c_rarg2, "smashed arg");
1391 assert(arg_1 != c_rarg2, "smashed arg");
1392 pass_arg2(this, arg_2);
1393 assert(arg_0 != c_rarg1, "smashed arg");
1394 pass_arg1(this, arg_1);
1395 pass_arg0(this, arg_0);
1396 MacroAssembler::call_VM_leaf_base(entry_point, 3);
1397 }
1398
super_call_VM_leaf(address entry_point,Register arg_0,Register arg_1,Register arg_2,Register arg_3)1399 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
1400 assert(arg_0 != c_rarg3, "smashed arg");
1401 assert(arg_1 != c_rarg3, "smashed arg");
1402 assert(arg_2 != c_rarg3, "smashed arg");
1403 pass_arg3(this, arg_3);
1404 assert(arg_0 != c_rarg2, "smashed arg");
1405 assert(arg_1 != c_rarg2, "smashed arg");
1406 pass_arg2(this, arg_2);
1407 assert(arg_0 != c_rarg1, "smashed arg");
1408 pass_arg1(this, arg_1);
1409 pass_arg0(this, arg_0);
1410 MacroAssembler::call_VM_leaf_base(entry_point, 4);
1411 }
1412
null_check(Register reg,int offset)1413 void MacroAssembler::null_check(Register reg, int offset) {
1414 if (needs_explicit_null_check(offset)) {
1415 // provoke OS NULL exception if reg = NULL by
1416 // accessing M[reg] w/o changing any registers
1417 // NOTE: this is plenty to provoke a segv
1418 ldr(zr, Address(reg));
1419 } else {
1420 // nothing to do, (later) access of M[reg + offset]
1421 // will provoke OS NULL exception if reg = NULL
1422 }
1423 }
1424
1425 // MacroAssembler protected routines needed to implement
1426 // public methods
1427
mov(Register r,Address dest)1428 void MacroAssembler::mov(Register r, Address dest) {
1429 code_section()->relocate(pc(), dest.rspec());
1430 u_int64_t imm64 = (u_int64_t)dest.target();
1431 movptr(r, imm64);
1432 }
1433
1434 // Move a constant pointer into r. In AArch64 mode the virtual
1435 // address space is 48 bits in size, so we only need three
1436 // instructions to create a patchable instruction sequence that can
1437 // reach anywhere.
movptr(Register r,uintptr_t imm64)1438 void MacroAssembler::movptr(Register r, uintptr_t imm64) {
1439 #ifndef PRODUCT
1440 {
1441 char buffer[64];
1442 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64);
1443 block_comment(buffer);
1444 }
1445 #endif
1446 assert(imm64 < (1ul << 48), "48-bit overflow in address constant");
1447 movz(r, imm64 & 0xffff);
1448 imm64 >>= 16;
1449 movk(r, imm64 & 0xffff, 16);
1450 imm64 >>= 16;
1451 movk(r, imm64 & 0xffff, 32);
1452 }
1453
1454 // Macro to mov replicated immediate to vector register.
1455 // Vd will get the following values for different arrangements in T
1456 // imm32 == hex 000000gh T8B: Vd = ghghghghghghghgh
1457 // imm32 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh
1458 // imm32 == hex 0000efgh T4H: Vd = efghefghefghefgh
1459 // imm32 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh
1460 // imm32 == hex abcdefgh T2S: Vd = abcdefghabcdefgh
1461 // imm32 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh
1462 // T1D/T2D: invalid
mov(FloatRegister Vd,SIMD_Arrangement T,u_int32_t imm32)1463 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32) {
1464 assert(T != T1D && T != T2D, "invalid arrangement");
1465 if (T == T8B || T == T16B) {
1466 assert((imm32 & ~0xff) == 0, "extraneous bits in unsigned imm32 (T8B/T16B)");
1467 movi(Vd, T, imm32 & 0xff, 0);
1468 return;
1469 }
1470 u_int32_t nimm32 = ~imm32;
1471 if (T == T4H || T == T8H) {
1472 assert((imm32 & ~0xffff) == 0, "extraneous bits in unsigned imm32 (T4H/T8H)");
1473 imm32 &= 0xffff;
1474 nimm32 &= 0xffff;
1475 }
1476 u_int32_t x = imm32;
1477 int movi_cnt = 0;
1478 int movn_cnt = 0;
1479 while (x) { if (x & 0xff) movi_cnt++; x >>= 8; }
1480 x = nimm32;
1481 while (x) { if (x & 0xff) movn_cnt++; x >>= 8; }
1482 if (movn_cnt < movi_cnt) imm32 = nimm32;
1483 unsigned lsl = 0;
1484 while (imm32 && (imm32 & 0xff) == 0) { lsl += 8; imm32 >>= 8; }
1485 if (movn_cnt < movi_cnt)
1486 mvni(Vd, T, imm32 & 0xff, lsl);
1487 else
1488 movi(Vd, T, imm32 & 0xff, lsl);
1489 imm32 >>= 8; lsl += 8;
1490 while (imm32) {
1491 while ((imm32 & 0xff) == 0) { lsl += 8; imm32 >>= 8; }
1492 if (movn_cnt < movi_cnt)
1493 bici(Vd, T, imm32 & 0xff, lsl);
1494 else
1495 orri(Vd, T, imm32 & 0xff, lsl);
1496 lsl += 8; imm32 >>= 8;
1497 }
1498 }
1499
mov_immediate64(Register dst,u_int64_t imm64)1500 void MacroAssembler::mov_immediate64(Register dst, u_int64_t imm64)
1501 {
1502 #ifndef PRODUCT
1503 {
1504 char buffer[64];
1505 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64);
1506 block_comment(buffer);
1507 }
1508 #endif
1509 if (operand_valid_for_logical_immediate(false, imm64)) {
1510 orr(dst, zr, imm64);
1511 } else {
1512 // we can use a combination of MOVZ or MOVN with
1513 // MOVK to build up the constant
1514 u_int64_t imm_h[4];
1515 int zero_count = 0;
1516 int neg_count = 0;
1517 int i;
1518 for (i = 0; i < 4; i++) {
1519 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL);
1520 if (imm_h[i] == 0) {
1521 zero_count++;
1522 } else if (imm_h[i] == 0xffffL) {
1523 neg_count++;
1524 }
1525 }
1526 if (zero_count == 4) {
1527 // one MOVZ will do
1528 movz(dst, 0);
1529 } else if (neg_count == 4) {
1530 // one MOVN will do
1531 movn(dst, 0);
1532 } else if (zero_count == 3) {
1533 for (i = 0; i < 4; i++) {
1534 if (imm_h[i] != 0L) {
1535 movz(dst, (u_int32_t)imm_h[i], (i << 4));
1536 break;
1537 }
1538 }
1539 } else if (neg_count == 3) {
1540 // one MOVN will do
1541 for (int i = 0; i < 4; i++) {
1542 if (imm_h[i] != 0xffffL) {
1543 movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4));
1544 break;
1545 }
1546 }
1547 } else if (zero_count == 2) {
1548 // one MOVZ and one MOVK will do
1549 for (i = 0; i < 3; i++) {
1550 if (imm_h[i] != 0L) {
1551 movz(dst, (u_int32_t)imm_h[i], (i << 4));
1552 i++;
1553 break;
1554 }
1555 }
1556 for (;i < 4; i++) {
1557 if (imm_h[i] != 0L) {
1558 movk(dst, (u_int32_t)imm_h[i], (i << 4));
1559 }
1560 }
1561 } else if (neg_count == 2) {
1562 // one MOVN and one MOVK will do
1563 for (i = 0; i < 4; i++) {
1564 if (imm_h[i] != 0xffffL) {
1565 movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4));
1566 i++;
1567 break;
1568 }
1569 }
1570 for (;i < 4; i++) {
1571 if (imm_h[i] != 0xffffL) {
1572 movk(dst, (u_int32_t)imm_h[i], (i << 4));
1573 }
1574 }
1575 } else if (zero_count == 1) {
1576 // one MOVZ and two MOVKs will do
1577 for (i = 0; i < 4; i++) {
1578 if (imm_h[i] != 0L) {
1579 movz(dst, (u_int32_t)imm_h[i], (i << 4));
1580 i++;
1581 break;
1582 }
1583 }
1584 for (;i < 4; i++) {
1585 if (imm_h[i] != 0x0L) {
1586 movk(dst, (u_int32_t)imm_h[i], (i << 4));
1587 }
1588 }
1589 } else if (neg_count == 1) {
1590 // one MOVN and two MOVKs will do
1591 for (i = 0; i < 4; i++) {
1592 if (imm_h[i] != 0xffffL) {
1593 movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4));
1594 i++;
1595 break;
1596 }
1597 }
1598 for (;i < 4; i++) {
1599 if (imm_h[i] != 0xffffL) {
1600 movk(dst, (u_int32_t)imm_h[i], (i << 4));
1601 }
1602 }
1603 } else {
1604 // use a MOVZ and 3 MOVKs (makes it easier to debug)
1605 movz(dst, (u_int32_t)imm_h[0], 0);
1606 for (i = 1; i < 4; i++) {
1607 movk(dst, (u_int32_t)imm_h[i], (i << 4));
1608 }
1609 }
1610 }
1611 }
1612
mov_immediate32(Register dst,u_int32_t imm32)1613 void MacroAssembler::mov_immediate32(Register dst, u_int32_t imm32)
1614 {
1615 #ifndef PRODUCT
1616 {
1617 char buffer[64];
1618 snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32);
1619 block_comment(buffer);
1620 }
1621 #endif
1622 if (operand_valid_for_logical_immediate(true, imm32)) {
1623 orrw(dst, zr, imm32);
1624 } else {
1625 // we can use MOVZ, MOVN or two calls to MOVK to build up the
1626 // constant
1627 u_int32_t imm_h[2];
1628 imm_h[0] = imm32 & 0xffff;
1629 imm_h[1] = ((imm32 >> 16) & 0xffff);
1630 if (imm_h[0] == 0) {
1631 movzw(dst, imm_h[1], 16);
1632 } else if (imm_h[0] == 0xffff) {
1633 movnw(dst, imm_h[1] ^ 0xffff, 16);
1634 } else if (imm_h[1] == 0) {
1635 movzw(dst, imm_h[0], 0);
1636 } else if (imm_h[1] == 0xffff) {
1637 movnw(dst, imm_h[0] ^ 0xffff, 0);
1638 } else {
1639 // use a MOVZ and MOVK (makes it easier to debug)
1640 movzw(dst, imm_h[0], 0);
1641 movkw(dst, imm_h[1], 16);
1642 }
1643 }
1644 }
1645
1646 // Form an address from base + offset in Rd. Rd may or may
1647 // not actually be used: you must use the Address that is returned.
1648 // It is up to you to ensure that the shift provided matches the size
1649 // of your data.
form_address(Register Rd,Register base,long byte_offset,int shift)1650 Address MacroAssembler::form_address(Register Rd, Register base, long byte_offset, int shift) {
1651 if (Address::offset_ok_for_immed(byte_offset, shift))
1652 // It fits; no need for any heroics
1653 return Address(base, byte_offset);
1654
1655 // Don't do anything clever with negative or misaligned offsets
1656 unsigned mask = (1 << shift) - 1;
1657 if (byte_offset < 0 || byte_offset & mask) {
1658 mov(Rd, byte_offset);
1659 add(Rd, base, Rd);
1660 return Address(Rd);
1661 }
1662
1663 // See if we can do this with two 12-bit offsets
1664 {
1665 unsigned long word_offset = byte_offset >> shift;
1666 unsigned long masked_offset = word_offset & 0xfff000;
1667 if (Address::offset_ok_for_immed(word_offset - masked_offset)
1668 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) {
1669 add(Rd, base, masked_offset << shift);
1670 word_offset -= masked_offset;
1671 return Address(Rd, word_offset << shift);
1672 }
1673 }
1674
1675 // Do it the hard way
1676 mov(Rd, byte_offset);
1677 add(Rd, base, Rd);
1678 return Address(Rd);
1679 }
1680
atomic_incw(Register counter_addr,Register tmp,Register tmp2)1681 void MacroAssembler::atomic_incw(Register counter_addr, Register tmp, Register tmp2) {
1682 if (UseLSE) {
1683 mov(tmp, 1);
1684 ldadd(Assembler::word, tmp, zr, counter_addr);
1685 return;
1686 }
1687 Label retry_load;
1688 if ((VM_Version::cpu_cpuFeatures() & VM_Version::CPU_STXR_PREFETCH))
1689 prfm(Address(counter_addr), PSTL1STRM);
1690 bind(retry_load);
1691 // flush and load exclusive from the memory location
1692 ldxrw(tmp, counter_addr);
1693 addw(tmp, tmp, 1);
1694 // if we store+flush with no intervening write tmp wil be zero
1695 stxrw(tmp2, tmp, counter_addr);
1696 cbnzw(tmp2, retry_load);
1697 }
1698
1699
corrected_idivl(Register result,Register ra,Register rb,bool want_remainder,Register scratch)1700 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb,
1701 bool want_remainder, Register scratch)
1702 {
1703 // Full implementation of Java idiv and irem. The function
1704 // returns the (pc) offset of the div instruction - may be needed
1705 // for implicit exceptions.
1706 //
1707 // constraint : ra/rb =/= scratch
1708 // normal case
1709 //
1710 // input : ra: dividend
1711 // rb: divisor
1712 //
1713 // result: either
1714 // quotient (= ra idiv rb)
1715 // remainder (= ra irem rb)
1716
1717 assert(ra != scratch && rb != scratch, "reg cannot be scratch");
1718
1719 int idivl_offset = offset();
1720 if (! want_remainder) {
1721 sdivw(result, ra, rb);
1722 } else {
1723 sdivw(scratch, ra, rb);
1724 Assembler::msubw(result, scratch, rb, ra);
1725 }
1726
1727 return idivl_offset;
1728 }
1729
corrected_idivq(Register result,Register ra,Register rb,bool want_remainder,Register scratch)1730 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb,
1731 bool want_remainder, Register scratch)
1732 {
1733 // Full implementation of Java ldiv and lrem. The function
1734 // returns the (pc) offset of the div instruction - may be needed
1735 // for implicit exceptions.
1736 //
1737 // constraint : ra/rb =/= scratch
1738 // normal case
1739 //
1740 // input : ra: dividend
1741 // rb: divisor
1742 //
1743 // result: either
1744 // quotient (= ra idiv rb)
1745 // remainder (= ra irem rb)
1746
1747 assert(ra != scratch && rb != scratch, "reg cannot be scratch");
1748
1749 int idivq_offset = offset();
1750 if (! want_remainder) {
1751 sdiv(result, ra, rb);
1752 } else {
1753 sdiv(scratch, ra, rb);
1754 Assembler::msub(result, scratch, rb, ra);
1755 }
1756
1757 return idivq_offset;
1758 }
1759
1760 // MacroAssembler routines found actually to be needed
1761
push(Register src)1762 void MacroAssembler::push(Register src)
1763 {
1764 str(src, Address(pre(esp, -1 * wordSize)));
1765 }
1766
pop(Register dst)1767 void MacroAssembler::pop(Register dst)
1768 {
1769 ldr(dst, Address(post(esp, 1 * wordSize)));
1770 }
1771
1772 // Note: load_unsigned_short used to be called load_unsigned_word.
load_unsigned_short(Register dst,Address src)1773 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
1774 int off = offset();
1775 ldrh(dst, src);
1776 return off;
1777 }
1778
load_unsigned_byte(Register dst,Address src)1779 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
1780 int off = offset();
1781 ldrb(dst, src);
1782 return off;
1783 }
1784
load_signed_short(Register dst,Address src)1785 int MacroAssembler::load_signed_short(Register dst, Address src) {
1786 int off = offset();
1787 ldrsh(dst, src);
1788 return off;
1789 }
1790
load_signed_byte(Register dst,Address src)1791 int MacroAssembler::load_signed_byte(Register dst, Address src) {
1792 int off = offset();
1793 ldrsb(dst, src);
1794 return off;
1795 }
1796
load_signed_short32(Register dst,Address src)1797 int MacroAssembler::load_signed_short32(Register dst, Address src) {
1798 int off = offset();
1799 ldrshw(dst, src);
1800 return off;
1801 }
1802
load_signed_byte32(Register dst,Address src)1803 int MacroAssembler::load_signed_byte32(Register dst, Address src) {
1804 int off = offset();
1805 ldrsbw(dst, src);
1806 return off;
1807 }
1808
load_sized_value(Register dst,Address src,size_t size_in_bytes,bool is_signed,Register dst2)1809 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
1810 switch (size_in_bytes) {
1811 case 8: ldr(dst, src); break;
1812 case 4: ldrw(dst, src); break;
1813 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
1814 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
1815 default: ShouldNotReachHere();
1816 }
1817 }
1818
store_sized_value(Address dst,Register src,size_t size_in_bytes,Register src2)1819 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
1820 switch (size_in_bytes) {
1821 case 8: str(src, dst); break;
1822 case 4: strw(src, dst); break;
1823 case 2: strh(src, dst); break;
1824 case 1: strb(src, dst); break;
1825 default: ShouldNotReachHere();
1826 }
1827 }
1828
decrementw(Register reg,int value)1829 void MacroAssembler::decrementw(Register reg, int value)
1830 {
1831 if (value < 0) { incrementw(reg, -value); return; }
1832 if (value == 0) { return; }
1833 if (value < (1 << 12)) { subw(reg, reg, value); return; }
1834 /* else */ {
1835 guarantee(reg != rscratch2, "invalid dst for register decrement");
1836 movw(rscratch2, (unsigned)value);
1837 subw(reg, reg, rscratch2);
1838 }
1839 }
1840
decrement(Register reg,int value)1841 void MacroAssembler::decrement(Register reg, int value)
1842 {
1843 if (value < 0) { increment(reg, -value); return; }
1844 if (value == 0) { return; }
1845 if (value < (1 << 12)) { sub(reg, reg, value); return; }
1846 /* else */ {
1847 assert(reg != rscratch2, "invalid dst for register decrement");
1848 mov(rscratch2, (u_int64_t)value);
1849 sub(reg, reg, rscratch2);
1850 }
1851 }
1852
decrementw(Address dst,int value)1853 void MacroAssembler::decrementw(Address dst, int value)
1854 {
1855 assert(!dst.uses(rscratch1), "invalid dst for address decrement");
1856 ldrw(rscratch1, dst);
1857 decrementw(rscratch1, value);
1858 strw(rscratch1, dst);
1859 }
1860
decrement(Address dst,int value)1861 void MacroAssembler::decrement(Address dst, int value)
1862 {
1863 assert(!dst.uses(rscratch1), "invalid address for decrement");
1864 ldr(rscratch1, dst);
1865 decrement(rscratch1, value);
1866 str(rscratch1, dst);
1867 }
1868
incrementw(Register reg,int value)1869 void MacroAssembler::incrementw(Register reg, int value)
1870 {
1871 if (value < 0) { decrementw(reg, -value); return; }
1872 if (value == 0) { return; }
1873 if (value < (1 << 12)) { addw(reg, reg, value); return; }
1874 /* else */ {
1875 assert(reg != rscratch2, "invalid dst for register increment");
1876 movw(rscratch2, (unsigned)value);
1877 addw(reg, reg, rscratch2);
1878 }
1879 }
1880
increment(Register reg,int value)1881 void MacroAssembler::increment(Register reg, int value)
1882 {
1883 if (value < 0) { decrement(reg, -value); return; }
1884 if (value == 0) { return; }
1885 if (value < (1 << 12)) { add(reg, reg, value); return; }
1886 /* else */ {
1887 assert(reg != rscratch2, "invalid dst for register increment");
1888 movw(rscratch2, (unsigned)value);
1889 add(reg, reg, rscratch2);
1890 }
1891 }
1892
incrementw(Address dst,int value)1893 void MacroAssembler::incrementw(Address dst, int value)
1894 {
1895 assert(!dst.uses(rscratch1), "invalid dst for address increment");
1896 ldrw(rscratch1, dst);
1897 incrementw(rscratch1, value);
1898 strw(rscratch1, dst);
1899 }
1900
increment(Address dst,int value)1901 void MacroAssembler::increment(Address dst, int value)
1902 {
1903 assert(!dst.uses(rscratch1), "invalid dst for address increment");
1904 ldr(rscratch1, dst);
1905 increment(rscratch1, value);
1906 str(rscratch1, dst);
1907 }
1908
1909
pusha()1910 void MacroAssembler::pusha() {
1911 push(0x7fffffff, sp);
1912 }
1913
popa()1914 void MacroAssembler::popa() {
1915 pop(0x7fffffff, sp);
1916 }
1917
1918 // Push lots of registers in the bit set supplied. Don't push sp.
1919 // Return the number of words pushed
push(unsigned int bitset,Register stack)1920 int MacroAssembler::push(unsigned int bitset, Register stack) {
1921 int words_pushed = 0;
1922
1923 // Scan bitset to accumulate register pairs
1924 unsigned char regs[32];
1925 int count = 0;
1926 for (int reg = 0; reg <= 30; reg++) {
1927 if (1 & bitset)
1928 regs[count++] = reg;
1929 bitset >>= 1;
1930 }
1931 regs[count++] = zr->encoding_nocheck();
1932 count &= ~1; // Only push an even nuber of regs
1933
1934 if (count) {
1935 stp(as_Register(regs[0]), as_Register(regs[1]),
1936 Address(pre(stack, -count * wordSize)));
1937 words_pushed += 2;
1938 }
1939 for (int i = 2; i < count; i += 2) {
1940 stp(as_Register(regs[i]), as_Register(regs[i+1]),
1941 Address(stack, i * wordSize));
1942 words_pushed += 2;
1943 }
1944
1945 assert(words_pushed == count, "oops, pushed != count");
1946
1947 return count;
1948 }
1949
pop(unsigned int bitset,Register stack)1950 int MacroAssembler::pop(unsigned int bitset, Register stack) {
1951 int words_pushed = 0;
1952
1953 // Scan bitset to accumulate register pairs
1954 unsigned char regs[32];
1955 int count = 0;
1956 for (int reg = 0; reg <= 30; reg++) {
1957 if (1 & bitset)
1958 regs[count++] = reg;
1959 bitset >>= 1;
1960 }
1961 regs[count++] = zr->encoding_nocheck();
1962 count &= ~1;
1963
1964 for (int i = 2; i < count; i += 2) {
1965 ldp(as_Register(regs[i]), as_Register(regs[i+1]),
1966 Address(stack, i * wordSize));
1967 words_pushed += 2;
1968 }
1969 if (count) {
1970 ldp(as_Register(regs[0]), as_Register(regs[1]),
1971 Address(post(stack, count * wordSize)));
1972 words_pushed += 2;
1973 }
1974
1975 assert(words_pushed == count, "oops, pushed != count");
1976
1977 return count;
1978 }
1979 #ifdef ASSERT
verify_heapbase(const char * msg)1980 void MacroAssembler::verify_heapbase(const char* msg) {
1981 #if 0
1982 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed");
1983 assert (Universe::heap() != NULL, "java heap should be initialized");
1984 if (CheckCompressedOops) {
1985 Label ok;
1986 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1
1987 cmpptr(rheapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
1988 br(Assembler::EQ, ok);
1989 stop(msg);
1990 bind(ok);
1991 pop(1 << rscratch1->encoding(), sp);
1992 }
1993 #endif
1994 }
1995 #endif
1996
stop(const char * msg)1997 void MacroAssembler::stop(const char* msg) {
1998 address ip = pc();
1999 pusha();
2000 movptr(c_rarg0, (uintptr_t)(address)msg);
2001 movptr(c_rarg1, (uintptr_t)(address)ip);
2002 mov(c_rarg2, sp);
2003 mov(c_rarg3, CAST_FROM_FN_PTR(address, MacroAssembler::debug64));
2004 blr(c_rarg3);
2005 hlt(0);
2006 }
2007
warn(const char * msg)2008 void MacroAssembler::warn(const char* msg) {
2009 pusha();
2010 mov(c_rarg0, (address)msg);
2011 mov(lr, CAST_FROM_FN_PTR(address, warning));
2012 blr(lr);
2013 popa();
2014 }
2015
2016 // If a constant does not fit in an immediate field, generate some
2017 // number of MOV instructions and then perform the operation.
wrap_add_sub_imm_insn(Register Rd,Register Rn,unsigned imm,add_sub_imm_insn insn1,add_sub_reg_insn insn2)2018 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
2019 add_sub_imm_insn insn1,
2020 add_sub_reg_insn insn2) {
2021 assert(Rd != zr, "Rd = zr and not setting flags?");
2022 if (operand_valid_for_add_sub_immediate((int)imm)) {
2023 (this->*insn1)(Rd, Rn, imm);
2024 } else {
2025 if (uabs(imm) < (1 << 24)) {
2026 (this->*insn1)(Rd, Rn, imm & -(1 << 12));
2027 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1));
2028 } else {
2029 assert_different_registers(Rd, Rn);
2030 mov(Rd, (uint64_t)imm);
2031 (this->*insn2)(Rd, Rn, Rd, LSL, 0);
2032 }
2033 }
2034 }
2035
2036 // Seperate vsn which sets the flags. Optimisations are more restricted
2037 // because we must set the flags correctly.
wrap_adds_subs_imm_insn(Register Rd,Register Rn,unsigned imm,add_sub_imm_insn insn1,add_sub_reg_insn insn2)2038 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
2039 add_sub_imm_insn insn1,
2040 add_sub_reg_insn insn2) {
2041 if (operand_valid_for_add_sub_immediate((int)imm)) {
2042 (this->*insn1)(Rd, Rn, imm);
2043 } else {
2044 assert_different_registers(Rd, Rn);
2045 assert(Rd != zr, "overflow in immediate operand");
2046 mov(Rd, (uint64_t)imm);
2047 (this->*insn2)(Rd, Rn, Rd, LSL, 0);
2048 }
2049 }
2050
2051
add(Register Rd,Register Rn,RegisterOrConstant increment)2052 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) {
2053 if (increment.is_register()) {
2054 add(Rd, Rn, increment.as_register());
2055 } else {
2056 add(Rd, Rn, increment.as_constant());
2057 }
2058 }
2059
addw(Register Rd,Register Rn,RegisterOrConstant increment)2060 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) {
2061 if (increment.is_register()) {
2062 addw(Rd, Rn, increment.as_register());
2063 } else {
2064 addw(Rd, Rn, increment.as_constant());
2065 }
2066 }
2067
sub(Register Rd,Register Rn,RegisterOrConstant decrement)2068 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) {
2069 if (decrement.is_register()) {
2070 sub(Rd, Rn, decrement.as_register());
2071 } else {
2072 sub(Rd, Rn, decrement.as_constant());
2073 }
2074 }
2075
subw(Register Rd,Register Rn,RegisterOrConstant decrement)2076 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) {
2077 if (decrement.is_register()) {
2078 subw(Rd, Rn, decrement.as_register());
2079 } else {
2080 subw(Rd, Rn, decrement.as_constant());
2081 }
2082 }
2083
reinit_heapbase()2084 void MacroAssembler::reinit_heapbase()
2085 {
2086 if (UseCompressedOops) {
2087 if (Universe::is_fully_initialized()) {
2088 mov(rheapbase, Universe::narrow_ptrs_base());
2089 } else {
2090 lea(rheapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
2091 ldr(rheapbase, Address(rheapbase));
2092 }
2093 }
2094 }
2095
2096 // this simulates the behaviour of the x86 cmpxchg instruction using a
2097 // load linked/store conditional pair. we use the acquire/release
2098 // versions of these instructions so that we flush pending writes as
2099 // per Java semantics.
2100
2101 // n.b the x86 version assumes the old value to be compared against is
2102 // in rax and updates rax with the value located in memory if the
2103 // cmpxchg fails. we supply a register for the old value explicitly
2104
2105 // the aarch64 load linked/store conditional instructions do not
2106 // accept an offset. so, unlike x86, we must provide a plain register
2107 // to identify the memory word to be compared/exchanged rather than a
2108 // register+offset Address.
2109
cmpxchgptr(Register oldv,Register newv,Register addr,Register tmp,Label & succeed,Label * fail)2110 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
2111 Label &succeed, Label *fail) {
2112 // oldv holds comparison value
2113 // newv holds value to write in exchange
2114 // addr identifies memory word to compare against/update
2115 if (UseLSE) {
2116 mov(tmp, oldv);
2117 casal(Assembler::xword, oldv, newv, addr);
2118 cmp(tmp, oldv);
2119 br(Assembler::EQ, succeed);
2120 membar(AnyAny);
2121 } else {
2122 Label retry_load, nope;
2123 if ((VM_Version::cpu_cpuFeatures() & VM_Version::CPU_STXR_PREFETCH))
2124 prfm(Address(addr), PSTL1STRM);
2125 bind(retry_load);
2126 // flush and load exclusive from the memory location
2127 // and fail if it is not what we expect
2128 ldaxr(tmp, addr);
2129 cmp(tmp, oldv);
2130 br(Assembler::NE, nope);
2131 // if we store+flush with no intervening write tmp wil be zero
2132 stlxr(tmp, newv, addr);
2133 cbzw(tmp, succeed);
2134 // retry so we only ever return after a load fails to compare
2135 // ensures we don't return a stale value after a failed write.
2136 b(retry_load);
2137 // if the memory word differs we return it in oldv and signal a fail
2138 bind(nope);
2139 membar(AnyAny);
2140 mov(oldv, tmp);
2141 }
2142 if (fail)
2143 b(*fail);
2144 }
2145
cmpxchgw(Register oldv,Register newv,Register addr,Register tmp,Label & succeed,Label * fail)2146 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
2147 Label &succeed, Label *fail) {
2148 // oldv holds comparison value
2149 // newv holds value to write in exchange
2150 // addr identifies memory word to compare against/update
2151 // tmp returns 0/1 for success/failure
2152 if (UseLSE) {
2153 mov(tmp, oldv);
2154 casal(Assembler::word, oldv, newv, addr);
2155 cmp(tmp, oldv);
2156 br(Assembler::EQ, succeed);
2157 membar(AnyAny);
2158 } else {
2159 Label retry_load, nope;
2160 if ((VM_Version::cpu_cpuFeatures() & VM_Version::CPU_STXR_PREFETCH))
2161 prfm(Address(addr), PSTL1STRM);
2162 bind(retry_load);
2163 // flush and load exclusive from the memory location
2164 // and fail if it is not what we expect
2165 ldaxrw(tmp, addr);
2166 cmp(tmp, oldv);
2167 br(Assembler::NE, nope);
2168 // if we store+flush with no intervening write tmp wil be zero
2169 stlxrw(tmp, newv, addr);
2170 cbzw(tmp, succeed);
2171 // retry so we only ever return after a load fails to compare
2172 // ensures we don't return a stale value after a failed write.
2173 b(retry_load);
2174 // if the memory word differs we return it in oldv and signal a fail
2175 bind(nope);
2176 membar(AnyAny);
2177 mov(oldv, tmp);
2178 }
2179 if (fail)
2180 b(*fail);
2181 }
2182
2183 // A generic CAS; success or failure is in the EQ flag.
cmpxchg(Register addr,Register expected,Register new_val,enum operand_size size,bool acquire,bool release,Register tmp)2184 void MacroAssembler::cmpxchg(Register addr, Register expected,
2185 Register new_val,
2186 enum operand_size size,
2187 bool acquire, bool release,
2188 Register tmp) {
2189 if (UseLSE) {
2190 mov(tmp, expected);
2191 lse_cas(tmp, new_val, addr, size, acquire, release, /*not_pair*/ true);
2192 cmp(tmp, expected);
2193 } else {
2194 BLOCK_COMMENT("cmpxchg {");
2195 Label retry_load, done;
2196 if ((VM_Version::cpu_cpuFeatures() & VM_Version::CPU_STXR_PREFETCH))
2197 prfm(Address(addr), PSTL1STRM);
2198 bind(retry_load);
2199 load_exclusive(tmp, addr, size, acquire);
2200 if (size == xword)
2201 cmp(tmp, expected);
2202 else
2203 cmpw(tmp, expected);
2204 br(Assembler::NE, done);
2205 store_exclusive(tmp, new_val, addr, size, release);
2206 cbnzw(tmp, retry_load);
2207 bind(done);
2208 BLOCK_COMMENT("} cmpxchg");
2209 }
2210 }
2211
different(Register a,RegisterOrConstant b,Register c)2212 static bool different(Register a, RegisterOrConstant b, Register c) {
2213 if (b.is_constant())
2214 return a != c;
2215 else
2216 return a != b.as_register() && a != c && b.as_register() != c;
2217 }
2218
2219 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \
2220 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \
2221 if (UseLSE) { \
2222 prev = prev->is_valid() ? prev : zr; \
2223 if (incr.is_register()) { \
2224 AOP(sz, incr.as_register(), prev, addr); \
2225 } else { \
2226 mov(rscratch2, incr.as_constant()); \
2227 AOP(sz, rscratch2, prev, addr); \
2228 } \
2229 return; \
2230 } \
2231 Register result = rscratch2; \
2232 if (prev->is_valid()) \
2233 result = different(prev, incr, addr) ? prev : rscratch2; \
2234 \
2235 Label retry_load; \
2236 if ((VM_Version::cpu_cpuFeatures() & VM_Version::CPU_STXR_PREFETCH)) \
2237 prfm(Address(addr), PSTL1STRM); \
2238 bind(retry_load); \
2239 LDXR(result, addr); \
2240 OP(rscratch1, result, incr); \
2241 STXR(rscratch2, rscratch1, addr); \
2242 cbnzw(rscratch2, retry_load); \
2243 if (prev->is_valid() && prev != result) { \
2244 IOP(prev, rscratch1, incr); \
2245 } \
2246 }
2247
ATOMIC_OP(add,ldxr,add,sub,ldadd,stxr,Assembler::xword)2248 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword)
2249 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word)
2250 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword)
2251 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word)
2252
2253 #undef ATOMIC_OP
2254
2255 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \
2256 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \
2257 if (UseLSE) { \
2258 prev = prev->is_valid() ? prev : zr; \
2259 AOP(sz, newv, prev, addr); \
2260 return; \
2261 } \
2262 Register result = rscratch2; \
2263 if (prev->is_valid()) \
2264 result = different(prev, newv, addr) ? prev : rscratch2; \
2265 \
2266 Label retry_load; \
2267 if ((VM_Version::cpu_cpuFeatures() & VM_Version::CPU_STXR_PREFETCH)) \
2268 prfm(Address(addr), PSTL1STRM); \
2269 bind(retry_load); \
2270 LDXR(result, addr); \
2271 STXR(rscratch1, newv, addr); \
2272 cbnzw(rscratch1, retry_load); \
2273 if (prev->is_valid() && prev != result) \
2274 mov(prev, result); \
2275 }
2276
2277 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword)
2278 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word)
2279 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword)
2280 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word)
2281
2282 #undef ATOMIC_XCHG
2283
2284 void MacroAssembler::incr_allocated_bytes(Register thread,
2285 Register var_size_in_bytes,
2286 int con_size_in_bytes,
2287 Register t1) {
2288 if (!thread->is_valid()) {
2289 thread = rthread;
2290 }
2291 assert(t1->is_valid(), "need temp reg");
2292
2293 ldr(t1, Address(thread, in_bytes(JavaThread::allocated_bytes_offset())));
2294 if (var_size_in_bytes->is_valid()) {
2295 add(t1, t1, var_size_in_bytes);
2296 } else {
2297 add(t1, t1, con_size_in_bytes);
2298 }
2299 str(t1, Address(thread, in_bytes(JavaThread::allocated_bytes_offset())));
2300 }
2301
2302 #ifndef PRODUCT
2303 extern "C" void findpc(intptr_t x);
2304 #endif
2305
debug64(char * msg,int64_t pc,int64_t regs[])2306 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[])
2307 {
2308 // In order to get locks to work, we need to fake a in_VM state
2309 if (ShowMessageBoxOnError ) {
2310 JavaThread* thread = JavaThread::current();
2311 JavaThreadState saved_state = thread->thread_state();
2312 thread->set_thread_state(_thread_in_vm);
2313 #ifndef PRODUCT
2314 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
2315 ttyLocker ttyl;
2316 BytecodeCounter::print();
2317 }
2318 #endif
2319 if (os::message_box(msg, "Execution stopped, print registers?")) {
2320 ttyLocker ttyl;
2321 tty->print_cr(" pc = 0x%016lx", pc);
2322 #ifndef PRODUCT
2323 tty->cr();
2324 findpc(pc);
2325 tty->cr();
2326 #endif
2327 tty->print_cr(" r0 = 0x%016lx", regs[0]);
2328 tty->print_cr(" r1 = 0x%016lx", regs[1]);
2329 tty->print_cr(" r2 = 0x%016lx", regs[2]);
2330 tty->print_cr(" r3 = 0x%016lx", regs[3]);
2331 tty->print_cr(" r4 = 0x%016lx", regs[4]);
2332 tty->print_cr(" r5 = 0x%016lx", regs[5]);
2333 tty->print_cr(" r6 = 0x%016lx", regs[6]);
2334 tty->print_cr(" r7 = 0x%016lx", regs[7]);
2335 tty->print_cr(" r8 = 0x%016lx", regs[8]);
2336 tty->print_cr(" r9 = 0x%016lx", regs[9]);
2337 tty->print_cr("r10 = 0x%016lx", regs[10]);
2338 tty->print_cr("r11 = 0x%016lx", regs[11]);
2339 tty->print_cr("r12 = 0x%016lx", regs[12]);
2340 tty->print_cr("r13 = 0x%016lx", regs[13]);
2341 tty->print_cr("r14 = 0x%016lx", regs[14]);
2342 tty->print_cr("r15 = 0x%016lx", regs[15]);
2343 tty->print_cr("r16 = 0x%016lx", regs[16]);
2344 tty->print_cr("r17 = 0x%016lx", regs[17]);
2345 tty->print_cr("r18 = 0x%016lx", regs[18]);
2346 tty->print_cr("r19 = 0x%016lx", regs[19]);
2347 tty->print_cr("r20 = 0x%016lx", regs[20]);
2348 tty->print_cr("r21 = 0x%016lx", regs[21]);
2349 tty->print_cr("r22 = 0x%016lx", regs[22]);
2350 tty->print_cr("r23 = 0x%016lx", regs[23]);
2351 tty->print_cr("r24 = 0x%016lx", regs[24]);
2352 tty->print_cr("r25 = 0x%016lx", regs[25]);
2353 tty->print_cr("r26 = 0x%016lx", regs[26]);
2354 tty->print_cr("r27 = 0x%016lx", regs[27]);
2355 tty->print_cr("r28 = 0x%016lx", regs[28]);
2356 tty->print_cr("r30 = 0x%016lx", regs[30]);
2357 tty->print_cr("r31 = 0x%016lx", regs[31]);
2358 BREAKPOINT;
2359 }
2360 ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
2361 } else {
2362 ttyLocker ttyl;
2363 ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
2364 msg);
2365 assert(false, err_msg("DEBUG MESSAGE: %s", msg));
2366 }
2367 }
2368
push_call_clobbered_registers()2369 void MacroAssembler::push_call_clobbered_registers() {
2370 push(RegSet::range(r0, r18) - RegSet::of(rscratch1, rscratch2), sp);
2371
2372 // Push v0-v7, v16-v31.
2373 for (int i = 30; i >= 0; i -= 2) {
2374 if (i <= v7->encoding() || i >= v16->encoding()) {
2375 stpd(as_FloatRegister(i), as_FloatRegister(i+1),
2376 Address(pre(sp, -2 * wordSize)));
2377 }
2378 }
2379 }
2380
pop_call_clobbered_registers()2381 void MacroAssembler::pop_call_clobbered_registers() {
2382
2383 for (int i = 0; i < 32; i += 2) {
2384 if (i <= v7->encoding() || i >= v16->encoding()) {
2385 ldpd(as_FloatRegister(i), as_FloatRegister(i+1),
2386 Address(post(sp, 2 * wordSize)));
2387 }
2388 }
2389
2390 pop(RegSet::range(r0, r18) - RegSet::of(rscratch1, rscratch2), sp);
2391 }
2392
push_CPU_state(bool save_vectors)2393 void MacroAssembler::push_CPU_state(bool save_vectors) {
2394 push(0x3fffffff, sp); // integer registers except lr & sp
2395
2396 if (!save_vectors) {
2397 for (int i = 30; i >= 0; i -= 2)
2398 stpd(as_FloatRegister(i), as_FloatRegister(i+1),
2399 Address(pre(sp, -2 * wordSize)));
2400 } else {
2401 for (int i = 30; i >= 0; i -= 2)
2402 stpq(as_FloatRegister(i), as_FloatRegister(i+1),
2403 Address(pre(sp, -4 * wordSize)));
2404 }
2405 }
2406
pop_CPU_state(bool restore_vectors)2407 void MacroAssembler::pop_CPU_state(bool restore_vectors) {
2408 if (!restore_vectors) {
2409 for (int i = 0; i < 32; i += 2)
2410 ldpd(as_FloatRegister(i), as_FloatRegister(i+1),
2411 Address(post(sp, 2 * wordSize)));
2412 } else {
2413 for (int i = 0; i < 32; i += 2)
2414 ldpq(as_FloatRegister(i), as_FloatRegister(i+1),
2415 Address(post(sp, 4 * wordSize)));
2416 }
2417
2418 pop(0x3fffffff, sp); // integer registers except lr & sp
2419 }
2420
2421 /**
2422 * Helpers for multiply_to_len().
2423 */
add2_with_carry(Register final_dest_hi,Register dest_hi,Register dest_lo,Register src1,Register src2)2424 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
2425 Register src1, Register src2) {
2426 adds(dest_lo, dest_lo, src1);
2427 adc(dest_hi, dest_hi, zr);
2428 adds(dest_lo, dest_lo, src2);
2429 adc(final_dest_hi, dest_hi, zr);
2430 }
2431
2432 // Generate an address from (r + r1 extend offset). "size" is the
2433 // size of the operand. The result may be in rscratch2.
offsetted_address(Register r,Register r1,Address::extend ext,int offset,int size)2434 Address MacroAssembler::offsetted_address(Register r, Register r1,
2435 Address::extend ext, int offset, int size) {
2436 if (offset || (ext.shift() % size != 0)) {
2437 lea(rscratch2, Address(r, r1, ext));
2438 return Address(rscratch2, offset);
2439 } else {
2440 return Address(r, r1, ext);
2441 }
2442 }
2443
spill_address(int size,int offset,Register tmp)2444 Address MacroAssembler::spill_address(int size, int offset, Register tmp)
2445 {
2446 assert(offset >= 0, "spill to negative address?");
2447 // Offset reachable ?
2448 // Not aligned - 9 bits signed offset
2449 // Aligned - 12 bits unsigned offset shifted
2450 Register base = sp;
2451 if ((offset & (size-1)) && offset >= (1<<8)) {
2452 add(tmp, base, offset & ((1<<12)-1));
2453 base = tmp;
2454 offset &= -1u<<12;
2455 }
2456
2457 if (offset >= (1<<12) * size) {
2458 add(tmp, base, offset & (((1<<12)-1)<<12));
2459 base = tmp;
2460 offset &= ~(((1<<12)-1)<<12);
2461 }
2462
2463 return Address(base, offset);
2464 }
2465
2466 /**
2467 * Multiply 64 bit by 64 bit first loop.
2468 */
multiply_64_x_64_loop(Register x,Register xstart,Register x_xstart,Register y,Register y_idx,Register z,Register carry,Register product,Register idx,Register kdx)2469 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
2470 Register y, Register y_idx, Register z,
2471 Register carry, Register product,
2472 Register idx, Register kdx) {
2473 //
2474 // jlong carry, x[], y[], z[];
2475 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
2476 // huge_128 product = y[idx] * x[xstart] + carry;
2477 // z[kdx] = (jlong)product;
2478 // carry = (jlong)(product >>> 64);
2479 // }
2480 // z[xstart] = carry;
2481 //
2482
2483 Label L_first_loop, L_first_loop_exit;
2484 Label L_one_x, L_one_y, L_multiply;
2485
2486 subsw(xstart, xstart, 1);
2487 br(Assembler::MI, L_one_x);
2488
2489 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt)));
2490 ldr(x_xstart, Address(rscratch1));
2491 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian
2492
2493 bind(L_first_loop);
2494 subsw(idx, idx, 1);
2495 br(Assembler::MI, L_first_loop_exit);
2496 subsw(idx, idx, 1);
2497 br(Assembler::MI, L_one_y);
2498 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2499 ldr(y_idx, Address(rscratch1));
2500 ror(y_idx, y_idx, 32); // convert big-endian to little-endian
2501 bind(L_multiply);
2502
2503 // AArch64 has a multiply-accumulate instruction that we can't use
2504 // here because it has no way to process carries, so we have to use
2505 // separate add and adc instructions. Bah.
2506 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product
2507 mul(product, x_xstart, y_idx);
2508 adds(product, product, carry);
2509 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product
2510
2511 subw(kdx, kdx, 2);
2512 ror(product, product, 32); // back to big-endian
2513 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong));
2514
2515 b(L_first_loop);
2516
2517 bind(L_one_y);
2518 ldrw(y_idx, Address(y, 0));
2519 b(L_multiply);
2520
2521 bind(L_one_x);
2522 ldrw(x_xstart, Address(x, 0));
2523 b(L_first_loop);
2524
2525 bind(L_first_loop_exit);
2526 }
2527
2528 /**
2529 * Multiply 128 bit by 128. Unrolled inner loop.
2530 *
2531 */
multiply_128_x_128_loop(Register y,Register z,Register carry,Register carry2,Register idx,Register jdx,Register yz_idx1,Register yz_idx2,Register tmp,Register tmp3,Register tmp4,Register tmp6,Register product_hi)2532 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z,
2533 Register carry, Register carry2,
2534 Register idx, Register jdx,
2535 Register yz_idx1, Register yz_idx2,
2536 Register tmp, Register tmp3, Register tmp4,
2537 Register tmp6, Register product_hi) {
2538
2539 // jlong carry, x[], y[], z[];
2540 // int kdx = ystart+1;
2541 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
2542 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry;
2543 // jlong carry2 = (jlong)(tmp3 >>> 64);
2544 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2;
2545 // carry = (jlong)(tmp4 >>> 64);
2546 // z[kdx+idx+1] = (jlong)tmp3;
2547 // z[kdx+idx] = (jlong)tmp4;
2548 // }
2549 // idx += 2;
2550 // if (idx > 0) {
2551 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry;
2552 // z[kdx+idx] = (jlong)yz_idx1;
2553 // carry = (jlong)(yz_idx1 >>> 64);
2554 // }
2555 //
2556
2557 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
2558
2559 lsrw(jdx, idx, 2);
2560
2561 bind(L_third_loop);
2562
2563 subsw(jdx, jdx, 1);
2564 br(Assembler::MI, L_third_loop_exit);
2565 subw(idx, idx, 4);
2566
2567 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2568
2569 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0));
2570
2571 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2572
2573 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
2574 ror(yz_idx2, yz_idx2, 32);
2575
2576 ldp(rscratch2, rscratch1, Address(tmp6, 0));
2577
2578 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3
2579 umulh(tmp4, product_hi, yz_idx1);
2580
2581 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian
2582 ror(rscratch2, rscratch2, 32);
2583
2584 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp
2585 umulh(carry2, product_hi, yz_idx2);
2586
2587 // propagate sum of both multiplications into carry:tmp4:tmp3
2588 adds(tmp3, tmp3, carry);
2589 adc(tmp4, tmp4, zr);
2590 adds(tmp3, tmp3, rscratch1);
2591 adcs(tmp4, tmp4, tmp);
2592 adc(carry, carry2, zr);
2593 adds(tmp4, tmp4, rscratch2);
2594 adc(carry, carry, zr);
2595
2596 ror(tmp3, tmp3, 32); // convert little-endian to big-endian
2597 ror(tmp4, tmp4, 32);
2598 stp(tmp4, tmp3, Address(tmp6, 0));
2599
2600 b(L_third_loop);
2601 bind (L_third_loop_exit);
2602
2603 andw (idx, idx, 0x3);
2604 cbz(idx, L_post_third_loop_done);
2605
2606 Label L_check_1;
2607 subsw(idx, idx, 2);
2608 br(Assembler::MI, L_check_1);
2609
2610 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2611 ldr(yz_idx1, Address(rscratch1, 0));
2612 ror(yz_idx1, yz_idx1, 32);
2613 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3
2614 umulh(tmp4, product_hi, yz_idx1);
2615 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2616 ldr(yz_idx2, Address(rscratch1, 0));
2617 ror(yz_idx2, yz_idx2, 32);
2618
2619 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2);
2620
2621 ror(tmp3, tmp3, 32);
2622 str(tmp3, Address(rscratch1, 0));
2623
2624 bind (L_check_1);
2625
2626 andw (idx, idx, 0x1);
2627 subsw(idx, idx, 1);
2628 br(Assembler::MI, L_post_third_loop_done);
2629 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2630 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3
2631 umulh(carry2, tmp4, product_hi);
2632 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2633
2634 add2_with_carry(carry2, tmp3, tmp4, carry);
2635
2636 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2637 extr(carry, carry2, tmp3, 32);
2638
2639 bind(L_post_third_loop_done);
2640 }
2641
2642 /**
2643 * Code for BigInteger::multiplyToLen() instrinsic.
2644 *
2645 * r0: x
2646 * r1: xlen
2647 * r2: y
2648 * r3: ylen
2649 * r4: z
2650 * r5: zlen
2651 * r10: tmp1
2652 * r11: tmp2
2653 * r12: tmp3
2654 * r13: tmp4
2655 * r14: tmp5
2656 * r15: tmp6
2657 * r16: tmp7
2658 *
2659 */
multiply_to_len(Register x,Register xlen,Register y,Register ylen,Register z,Register zlen,Register tmp1,Register tmp2,Register tmp3,Register tmp4,Register tmp5,Register tmp6,Register product_hi)2660 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen,
2661 Register z, Register zlen,
2662 Register tmp1, Register tmp2, Register tmp3, Register tmp4,
2663 Register tmp5, Register tmp6, Register product_hi) {
2664
2665 assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6);
2666
2667 const Register idx = tmp1;
2668 const Register kdx = tmp2;
2669 const Register xstart = tmp3;
2670
2671 const Register y_idx = tmp4;
2672 const Register carry = tmp5;
2673 const Register product = xlen;
2674 const Register x_xstart = zlen; // reuse register
2675
2676 // First Loop.
2677 //
2678 // final static long LONG_MASK = 0xffffffffL;
2679 // int xstart = xlen - 1;
2680 // int ystart = ylen - 1;
2681 // long carry = 0;
2682 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
2683 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
2684 // z[kdx] = (int)product;
2685 // carry = product >>> 32;
2686 // }
2687 // z[xstart] = (int)carry;
2688 //
2689
2690 movw(idx, ylen); // idx = ylen;
2691 movw(kdx, zlen); // kdx = xlen+ylen;
2692 mov(carry, zr); // carry = 0;
2693
2694 Label L_done;
2695
2696 movw(xstart, xlen);
2697 subsw(xstart, xstart, 1);
2698 br(Assembler::MI, L_done);
2699
2700 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
2701
2702 Label L_second_loop;
2703 cbzw(kdx, L_second_loop);
2704
2705 Label L_carry;
2706 subw(kdx, kdx, 1);
2707 cbzw(kdx, L_carry);
2708
2709 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
2710 lsr(carry, carry, 32);
2711 subw(kdx, kdx, 1);
2712
2713 bind(L_carry);
2714 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
2715
2716 // Second and third (nested) loops.
2717 //
2718 // for (int i = xstart-1; i >= 0; i--) { // Second loop
2719 // carry = 0;
2720 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
2721 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
2722 // (z[k] & LONG_MASK) + carry;
2723 // z[k] = (int)product;
2724 // carry = product >>> 32;
2725 // }
2726 // z[i] = (int)carry;
2727 // }
2728 //
2729 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi
2730
2731 const Register jdx = tmp1;
2732
2733 bind(L_second_loop);
2734 mov(carry, zr); // carry = 0;
2735 movw(jdx, ylen); // j = ystart+1
2736
2737 subsw(xstart, xstart, 1); // i = xstart-1;
2738 br(Assembler::MI, L_done);
2739
2740 str(z, Address(pre(sp, -4 * wordSize)));
2741
2742 Label L_last_x;
2743 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j
2744 subsw(xstart, xstart, 1); // i = xstart-1;
2745 br(Assembler::MI, L_last_x);
2746
2747 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt)));
2748 ldr(product_hi, Address(rscratch1));
2749 ror(product_hi, product_hi, 32); // convert big-endian to little-endian
2750
2751 Label L_third_loop_prologue;
2752 bind(L_third_loop_prologue);
2753
2754 str(ylen, Address(sp, wordSize));
2755 stp(x, xstart, Address(sp, 2 * wordSize));
2756 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product,
2757 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi);
2758 ldp(z, ylen, Address(post(sp, 2 * wordSize)));
2759 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen
2760
2761 addw(tmp3, xlen, 1);
2762 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
2763 subsw(tmp3, tmp3, 1);
2764 br(Assembler::MI, L_done);
2765
2766 lsr(carry, carry, 32);
2767 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
2768 b(L_second_loop);
2769
2770 // Next infrequent code is moved outside loops.
2771 bind(L_last_x);
2772 ldrw(product_hi, Address(x, 0));
2773 b(L_third_loop_prologue);
2774
2775 bind(L_done);
2776 }
2777
2778 /**
2779 * Emits code to update CRC-32 with a byte value according to constants in table
2780 *
2781 * @param [in,out]crc Register containing the crc.
2782 * @param [in]val Register containing the byte to fold into the CRC.
2783 * @param [in]table Register containing the table of crc constants.
2784 *
2785 * uint32_t crc;
2786 * val = crc_table[(val ^ crc) & 0xFF];
2787 * crc = val ^ (crc >> 8);
2788 *
2789 */
update_byte_crc32(Register crc,Register val,Register table)2790 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
2791 eor(val, val, crc);
2792 andr(val, val, 0xff);
2793 ldrw(val, Address(table, val, Address::lsl(2)));
2794 eor(crc, val, crc, Assembler::LSR, 8);
2795 }
2796
2797 /**
2798 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3
2799 *
2800 * @param [in,out]crc Register containing the crc.
2801 * @param [in]v Register containing the 32-bit to fold into the CRC.
2802 * @param [in]table0 Register containing table 0 of crc constants.
2803 * @param [in]table1 Register containing table 1 of crc constants.
2804 * @param [in]table2 Register containing table 2 of crc constants.
2805 * @param [in]table3 Register containing table 3 of crc constants.
2806 *
2807 * uint32_t crc;
2808 * v = crc ^ v
2809 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24]
2810 *
2811 */
update_word_crc32(Register crc,Register v,Register tmp,Register table0,Register table1,Register table2,Register table3,bool upper)2812 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp,
2813 Register table0, Register table1, Register table2, Register table3,
2814 bool upper) {
2815 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0);
2816 uxtb(tmp, v);
2817 ldrw(crc, Address(table3, tmp, Address::lsl(2)));
2818 ubfx(tmp, v, 8, 8);
2819 ldrw(tmp, Address(table2, tmp, Address::lsl(2)));
2820 eor(crc, crc, tmp);
2821 ubfx(tmp, v, 16, 8);
2822 ldrw(tmp, Address(table1, tmp, Address::lsl(2)));
2823 eor(crc, crc, tmp);
2824 ubfx(tmp, v, 24, 8);
2825 ldrw(tmp, Address(table0, tmp, Address::lsl(2)));
2826 eor(crc, crc, tmp);
2827 }
2828
2829 /**
2830 * @param crc register containing existing CRC (32-bit)
2831 * @param buf register pointing to input byte buffer (byte*)
2832 * @param len register containing number of bytes
2833 * @param table register that will contain address of CRC table
2834 * @param tmp scratch register
2835 */
kernel_crc32(Register crc,Register buf,Register len,Register table0,Register table1,Register table2,Register table3,Register tmp,Register tmp2,Register tmp3)2836 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len,
2837 Register table0, Register table1, Register table2, Register table3,
2838 Register tmp, Register tmp2, Register tmp3) {
2839 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit;
2840 unsigned long offset;
2841
2842 ornw(crc, zr, crc);
2843
2844 if (UseCRC32) {
2845 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop;
2846
2847 subs(len, len, 64);
2848 br(Assembler::GE, CRC_by64_loop);
2849 adds(len, len, 64-4);
2850 br(Assembler::GE, CRC_by4_loop);
2851 adds(len, len, 4);
2852 br(Assembler::GT, CRC_by1_loop);
2853 b(L_exit);
2854
2855 BIND(CRC_by4_loop);
2856 ldrw(tmp, Address(post(buf, 4)));
2857 subs(len, len, 4);
2858 crc32w(crc, crc, tmp);
2859 br(Assembler::GE, CRC_by4_loop);
2860 adds(len, len, 4);
2861 br(Assembler::LE, L_exit);
2862 BIND(CRC_by1_loop);
2863 ldrb(tmp, Address(post(buf, 1)));
2864 subs(len, len, 1);
2865 crc32b(crc, crc, tmp);
2866 br(Assembler::GT, CRC_by1_loop);
2867 b(L_exit);
2868
2869 align(CodeEntryAlignment);
2870 BIND(CRC_by64_loop);
2871 subs(len, len, 64);
2872 ldp(tmp, tmp3, Address(post(buf, 16)));
2873 crc32x(crc, crc, tmp);
2874 crc32x(crc, crc, tmp3);
2875 ldp(tmp, tmp3, Address(post(buf, 16)));
2876 crc32x(crc, crc, tmp);
2877 crc32x(crc, crc, tmp3);
2878 ldp(tmp, tmp3, Address(post(buf, 16)));
2879 crc32x(crc, crc, tmp);
2880 crc32x(crc, crc, tmp3);
2881 ldp(tmp, tmp3, Address(post(buf, 16)));
2882 crc32x(crc, crc, tmp);
2883 crc32x(crc, crc, tmp3);
2884 br(Assembler::GE, CRC_by64_loop);
2885 adds(len, len, 64-4);
2886 br(Assembler::GE, CRC_by4_loop);
2887 adds(len, len, 4);
2888 br(Assembler::GT, CRC_by1_loop);
2889 BIND(L_exit);
2890 ornw(crc, zr, crc);
2891 return;
2892 }
2893
2894 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset);
2895 if (offset) add(table0, table0, offset);
2896 add(table1, table0, 1*256*sizeof(juint));
2897 add(table2, table0, 2*256*sizeof(juint));
2898 add(table3, table0, 3*256*sizeof(juint));
2899
2900 if (UseNeon) {
2901 cmp(len, 64);
2902 br(Assembler::LT, L_by16);
2903 eor(v16, T16B, v16, v16);
2904
2905 Label L_fold;
2906
2907 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants
2908
2909 ld1(v0, v1, T2D, post(buf, 32));
2910 ld1r(v4, T2D, post(tmp, 8));
2911 ld1r(v5, T2D, post(tmp, 8));
2912 ld1r(v6, T2D, post(tmp, 8));
2913 ld1r(v7, T2D, post(tmp, 8));
2914 mov(v16, T4S, 0, crc);
2915
2916 eor(v0, T16B, v0, v16);
2917 sub(len, len, 64);
2918
2919 BIND(L_fold);
2920 pmull(v22, T8H, v0, v5, T8B);
2921 pmull(v20, T8H, v0, v7, T8B);
2922 pmull(v23, T8H, v0, v4, T8B);
2923 pmull(v21, T8H, v0, v6, T8B);
2924
2925 pmull2(v18, T8H, v0, v5, T16B);
2926 pmull2(v16, T8H, v0, v7, T16B);
2927 pmull2(v19, T8H, v0, v4, T16B);
2928 pmull2(v17, T8H, v0, v6, T16B);
2929
2930 uzp1(v24, v20, v22, T8H);
2931 uzp2(v25, v20, v22, T8H);
2932 eor(v20, T16B, v24, v25);
2933
2934 uzp1(v26, v16, v18, T8H);
2935 uzp2(v27, v16, v18, T8H);
2936 eor(v16, T16B, v26, v27);
2937
2938 ushll2(v22, T4S, v20, T8H, 8);
2939 ushll(v20, T4S, v20, T4H, 8);
2940
2941 ushll2(v18, T4S, v16, T8H, 8);
2942 ushll(v16, T4S, v16, T4H, 8);
2943
2944 eor(v22, T16B, v23, v22);
2945 eor(v18, T16B, v19, v18);
2946 eor(v20, T16B, v21, v20);
2947 eor(v16, T16B, v17, v16);
2948
2949 uzp1(v17, v16, v20, T2D);
2950 uzp2(v21, v16, v20, T2D);
2951 eor(v17, T16B, v17, v21);
2952
2953 ushll2(v20, T2D, v17, T4S, 16);
2954 ushll(v16, T2D, v17, T2S, 16);
2955
2956 eor(v20, T16B, v20, v22);
2957 eor(v16, T16B, v16, v18);
2958
2959 uzp1(v17, v20, v16, T2D);
2960 uzp2(v21, v20, v16, T2D);
2961 eor(v28, T16B, v17, v21);
2962
2963 pmull(v22, T8H, v1, v5, T8B);
2964 pmull(v20, T8H, v1, v7, T8B);
2965 pmull(v23, T8H, v1, v4, T8B);
2966 pmull(v21, T8H, v1, v6, T8B);
2967
2968 pmull2(v18, T8H, v1, v5, T16B);
2969 pmull2(v16, T8H, v1, v7, T16B);
2970 pmull2(v19, T8H, v1, v4, T16B);
2971 pmull2(v17, T8H, v1, v6, T16B);
2972
2973 ld1(v0, v1, T2D, post(buf, 32));
2974
2975 uzp1(v24, v20, v22, T8H);
2976 uzp2(v25, v20, v22, T8H);
2977 eor(v20, T16B, v24, v25);
2978
2979 uzp1(v26, v16, v18, T8H);
2980 uzp2(v27, v16, v18, T8H);
2981 eor(v16, T16B, v26, v27);
2982
2983 ushll2(v22, T4S, v20, T8H, 8);
2984 ushll(v20, T4S, v20, T4H, 8);
2985
2986 ushll2(v18, T4S, v16, T8H, 8);
2987 ushll(v16, T4S, v16, T4H, 8);
2988
2989 eor(v22, T16B, v23, v22);
2990 eor(v18, T16B, v19, v18);
2991 eor(v20, T16B, v21, v20);
2992 eor(v16, T16B, v17, v16);
2993
2994 uzp1(v17, v16, v20, T2D);
2995 uzp2(v21, v16, v20, T2D);
2996 eor(v16, T16B, v17, v21);
2997
2998 ushll2(v20, T2D, v16, T4S, 16);
2999 ushll(v16, T2D, v16, T2S, 16);
3000
3001 eor(v20, T16B, v22, v20);
3002 eor(v16, T16B, v16, v18);
3003
3004 uzp1(v17, v20, v16, T2D);
3005 uzp2(v21, v20, v16, T2D);
3006 eor(v20, T16B, v17, v21);
3007
3008 shl(v16, T2D, v28, 1);
3009 shl(v17, T2D, v20, 1);
3010
3011 eor(v0, T16B, v0, v16);
3012 eor(v1, T16B, v1, v17);
3013
3014 subs(len, len, 32);
3015 br(Assembler::GE, L_fold);
3016
3017 mov(crc, 0);
3018 mov(tmp, v0, T1D, 0);
3019 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3020 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3021 mov(tmp, v0, T1D, 1);
3022 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3023 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3024 mov(tmp, v1, T1D, 0);
3025 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3026 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3027 mov(tmp, v1, T1D, 1);
3028 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3029 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3030
3031 add(len, len, 32);
3032 }
3033
3034 BIND(L_by16);
3035 subs(len, len, 16);
3036 br(Assembler::GE, L_by16_loop);
3037 adds(len, len, 16-4);
3038 br(Assembler::GE, L_by4_loop);
3039 adds(len, len, 4);
3040 br(Assembler::GT, L_by1_loop);
3041 b(L_exit);
3042
3043 BIND(L_by4_loop);
3044 ldrw(tmp, Address(post(buf, 4)));
3045 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3);
3046 subs(len, len, 4);
3047 br(Assembler::GE, L_by4_loop);
3048 adds(len, len, 4);
3049 br(Assembler::LE, L_exit);
3050 BIND(L_by1_loop);
3051 subs(len, len, 1);
3052 ldrb(tmp, Address(post(buf, 1)));
3053 update_byte_crc32(crc, tmp, table0);
3054 br(Assembler::GT, L_by1_loop);
3055 b(L_exit);
3056
3057 align(CodeEntryAlignment);
3058 BIND(L_by16_loop);
3059 subs(len, len, 16);
3060 ldp(tmp, tmp3, Address(post(buf, 16)));
3061 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3062 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3063 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false);
3064 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true);
3065 br(Assembler::GE, L_by16_loop);
3066 adds(len, len, 16-4);
3067 br(Assembler::GE, L_by4_loop);
3068 adds(len, len, 4);
3069 br(Assembler::GT, L_by1_loop);
3070 BIND(L_exit);
3071 ornw(crc, zr, crc);
3072 }
3073
SkipIfEqual(MacroAssembler * masm,const bool * flag_addr,bool value)3074 SkipIfEqual::SkipIfEqual(
3075 MacroAssembler* masm, const bool* flag_addr, bool value) {
3076 _masm = masm;
3077 unsigned long offset;
3078 _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset);
3079 _masm->ldrb(rscratch1, Address(rscratch1, offset));
3080 _masm->cbzw(rscratch1, _label);
3081 }
3082
~SkipIfEqual()3083 SkipIfEqual::~SkipIfEqual() {
3084 _masm->bind(_label);
3085 }
3086
addptr(const Address & dst,int32_t src)3087 void MacroAssembler::addptr(const Address &dst, int32_t src) {
3088 Address adr;
3089 switch(dst.getMode()) {
3090 case Address::base_plus_offset:
3091 // This is the expected mode, although we allow all the other
3092 // forms below.
3093 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord);
3094 break;
3095 default:
3096 lea(rscratch2, dst);
3097 adr = Address(rscratch2);
3098 break;
3099 }
3100 ldr(rscratch1, adr);
3101 add(rscratch1, rscratch1, src);
3102 str(rscratch1, adr);
3103 }
3104
cmpptr(Register src1,Address src2)3105 void MacroAssembler::cmpptr(Register src1, Address src2) {
3106 unsigned long offset;
3107 adrp(rscratch1, src2, offset);
3108 ldr(rscratch1, Address(rscratch1, offset));
3109 cmp(src1, rscratch1);
3110 }
3111
store_check(Register obj)3112 void MacroAssembler::store_check(Register obj) {
3113 // Does a store check for the oop in register obj. The content of
3114 // register obj is destroyed afterwards.
3115 store_check_part_1(obj);
3116 store_check_part_2(obj);
3117 }
3118
store_check(Register obj,Address dst)3119 void MacroAssembler::store_check(Register obj, Address dst) {
3120 store_check(obj);
3121 }
3122
3123
3124 // split the store check operation so that other instructions can be scheduled inbetween
store_check_part_1(Register obj)3125 void MacroAssembler::store_check_part_1(Register obj) {
3126 BarrierSet* bs = Universe::heap()->barrier_set();
3127 assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
3128 lsr(obj, obj, CardTableModRefBS::card_shift);
3129 }
3130
store_check_part_2(Register obj)3131 void MacroAssembler::store_check_part_2(Register obj) {
3132 BarrierSet* bs = Universe::heap()->barrier_set();
3133 assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
3134 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
3135 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
3136
3137 // The calculation for byte_map_base is as follows:
3138 // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
3139 // So this essentially converts an address to a displacement and
3140 // it will never need to be relocated.
3141
3142 // FIXME: It's not likely that disp will fit into an offset so we
3143 // don't bother to check, but it could save an instruction.
3144 intptr_t disp = (intptr_t) ct->byte_map_base;
3145 load_byte_map_base(rscratch1);
3146
3147 if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
3148 membar(StoreStore);
3149 }
3150 strb(zr, Address(obj, rscratch1));
3151 }
3152
load_klass(Register dst,Register src)3153 void MacroAssembler::load_klass(Register dst, Register src) {
3154 if (UseCompressedClassPointers) {
3155 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes()));
3156 decode_klass_not_null(dst);
3157 } else {
3158 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
3159 }
3160 }
3161
cmp_klass(Register oop,Register trial_klass,Register tmp)3162 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) {
3163 if (UseCompressedClassPointers) {
3164 ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
3165 if (Universe::narrow_klass_base() == NULL) {
3166 cmp(trial_klass, tmp, LSL, Universe::narrow_klass_shift());
3167 return;
3168 } else if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0
3169 && Universe::narrow_klass_shift() == 0) {
3170 // Only the bottom 32 bits matter
3171 cmpw(trial_klass, tmp);
3172 return;
3173 }
3174 decode_klass_not_null(tmp);
3175 } else {
3176 ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
3177 }
3178 cmp(trial_klass, tmp);
3179 }
3180
load_prototype_header(Register dst,Register src)3181 void MacroAssembler::load_prototype_header(Register dst, Register src) {
3182 load_klass(dst, src);
3183 ldr(dst, Address(dst, Klass::prototype_header_offset()));
3184 }
3185
store_klass(Register dst,Register src)3186 void MacroAssembler::store_klass(Register dst, Register src) {
3187 // FIXME: Should this be a store release? concurrent gcs assumes
3188 // klass length is valid if klass field is not null.
3189 if (UseCompressedClassPointers) {
3190 encode_klass_not_null(src);
3191 strw(src, Address(dst, oopDesc::klass_offset_in_bytes()));
3192 } else {
3193 str(src, Address(dst, oopDesc::klass_offset_in_bytes()));
3194 }
3195 }
3196
store_klass_gap(Register dst,Register src)3197 void MacroAssembler::store_klass_gap(Register dst, Register src) {
3198 if (UseCompressedClassPointers) {
3199 // Store to klass gap in destination
3200 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes()));
3201 }
3202 }
3203
3204 // Algorithm must match oop.inline.hpp encode_heap_oop.
encode_heap_oop(Register d,Register s)3205 void MacroAssembler::encode_heap_oop(Register d, Register s) {
3206 #ifdef ASSERT
3207 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
3208 #endif
3209 verify_oop(s, "broken oop in encode_heap_oop");
3210 if (Universe::narrow_oop_base() == NULL) {
3211 if (Universe::narrow_oop_shift() != 0) {
3212 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3213 lsr(d, s, LogMinObjAlignmentInBytes);
3214 } else {
3215 mov(d, s);
3216 }
3217 } else {
3218 subs(d, s, rheapbase);
3219 csel(d, d, zr, Assembler::HS);
3220 lsr(d, d, LogMinObjAlignmentInBytes);
3221
3222 /* Old algorithm: is this any worse?
3223 Label nonnull;
3224 cbnz(r, nonnull);
3225 sub(r, r, rheapbase);
3226 bind(nonnull);
3227 lsr(r, r, LogMinObjAlignmentInBytes);
3228 */
3229 }
3230 }
3231
encode_heap_oop_not_null(Register r)3232 void MacroAssembler::encode_heap_oop_not_null(Register r) {
3233 #ifdef ASSERT
3234 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
3235 if (CheckCompressedOops) {
3236 Label ok;
3237 cbnz(r, ok);
3238 stop("null oop passed to encode_heap_oop_not_null");
3239 bind(ok);
3240 }
3241 #endif
3242 verify_oop(r, "broken oop in encode_heap_oop_not_null");
3243 if (Universe::narrow_oop_base() != NULL) {
3244 sub(r, r, rheapbase);
3245 }
3246 if (Universe::narrow_oop_shift() != 0) {
3247 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3248 lsr(r, r, LogMinObjAlignmentInBytes);
3249 }
3250 }
3251
encode_heap_oop_not_null(Register dst,Register src)3252 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
3253 #ifdef ASSERT
3254 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
3255 if (CheckCompressedOops) {
3256 Label ok;
3257 cbnz(src, ok);
3258 stop("null oop passed to encode_heap_oop_not_null2");
3259 bind(ok);
3260 }
3261 #endif
3262 verify_oop(src, "broken oop in encode_heap_oop_not_null2");
3263
3264 Register data = src;
3265 if (Universe::narrow_oop_base() != NULL) {
3266 sub(dst, src, rheapbase);
3267 data = dst;
3268 }
3269 if (Universe::narrow_oop_shift() != 0) {
3270 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3271 lsr(dst, data, LogMinObjAlignmentInBytes);
3272 data = dst;
3273 }
3274 if (data == src)
3275 mov(dst, src);
3276 }
3277
decode_heap_oop(Register d,Register s)3278 void MacroAssembler::decode_heap_oop(Register d, Register s) {
3279 #ifdef ASSERT
3280 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
3281 #endif
3282 if (Universe::narrow_oop_base() == NULL) {
3283 if (Universe::narrow_oop_shift() != 0 || d != s) {
3284 lsl(d, s, Universe::narrow_oop_shift());
3285 }
3286 } else {
3287 Label done;
3288 if (d != s)
3289 mov(d, s);
3290 cbz(s, done);
3291 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes);
3292 bind(done);
3293 }
3294 verify_oop(d, "broken oop in decode_heap_oop");
3295 }
3296
decode_heap_oop_not_null(Register r)3297 void MacroAssembler::decode_heap_oop_not_null(Register r) {
3298 assert (UseCompressedOops, "should only be used for compressed headers");
3299 assert (Universe::heap() != NULL, "java heap should be initialized");
3300 // Cannot assert, unverified entry point counts instructions (see .ad file)
3301 // vtableStubs also counts instructions in pd_code_size_limit.
3302 // Also do not verify_oop as this is called by verify_oop.
3303 if (Universe::narrow_oop_shift() != 0) {
3304 assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3305 if (Universe::narrow_oop_base() != NULL) {
3306 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes);
3307 } else {
3308 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes);
3309 }
3310 } else {
3311 assert (Universe::narrow_oop_base() == NULL, "sanity");
3312 }
3313 }
3314
decode_heap_oop_not_null(Register dst,Register src)3315 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
3316 assert (UseCompressedOops, "should only be used for compressed headers");
3317 assert (Universe::heap() != NULL, "java heap should be initialized");
3318 // Cannot assert, unverified entry point counts instructions (see .ad file)
3319 // vtableStubs also counts instructions in pd_code_size_limit.
3320 // Also do not verify_oop as this is called by verify_oop.
3321 if (Universe::narrow_oop_shift() != 0) {
3322 assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3323 if (Universe::narrow_oop_base() != NULL) {
3324 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes);
3325 } else {
3326 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes);
3327 }
3328 } else {
3329 assert (Universe::narrow_oop_base() == NULL, "sanity");
3330 if (dst != src) {
3331 mov(dst, src);
3332 }
3333 }
3334 }
3335
encode_klass_not_null(Register dst,Register src)3336 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
3337 if (Universe::narrow_klass_base() == NULL) {
3338 if (Universe::narrow_klass_shift() != 0) {
3339 assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3340 lsr(dst, src, LogKlassAlignmentInBytes);
3341 } else {
3342 if (dst != src) mov(dst, src);
3343 }
3344 return;
3345 }
3346
3347 if (use_XOR_for_compressed_class_base) {
3348 if (Universe::narrow_klass_shift() != 0) {
3349 eor(dst, src, (uint64_t)Universe::narrow_klass_base());
3350 lsr(dst, dst, LogKlassAlignmentInBytes);
3351 } else {
3352 eor(dst, src, (uint64_t)Universe::narrow_klass_base());
3353 }
3354 return;
3355 }
3356
3357 if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0
3358 && Universe::narrow_klass_shift() == 0) {
3359 movw(dst, src);
3360 return;
3361 }
3362
3363 #ifdef ASSERT
3364 verify_heapbase("MacroAssembler::encode_klass_not_null2: heap base corrupted?");
3365 #endif
3366
3367 Register rbase = dst;
3368 if (dst == src) rbase = rheapbase;
3369 mov(rbase, (uint64_t)Universe::narrow_klass_base());
3370 sub(dst, src, rbase);
3371 if (Universe::narrow_klass_shift() != 0) {
3372 assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3373 lsr(dst, dst, LogKlassAlignmentInBytes);
3374 }
3375 if (dst == src) reinit_heapbase();
3376 }
3377
encode_klass_not_null(Register r)3378 void MacroAssembler::encode_klass_not_null(Register r) {
3379 encode_klass_not_null(r, r);
3380 }
3381
decode_klass_not_null(Register dst,Register src)3382 void MacroAssembler::decode_klass_not_null(Register dst, Register src) {
3383 Register rbase = dst;
3384 assert (UseCompressedClassPointers, "should only be used for compressed headers");
3385
3386 if (Universe::narrow_klass_base() == NULL) {
3387 if (Universe::narrow_klass_shift() != 0) {
3388 assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3389 lsl(dst, src, LogKlassAlignmentInBytes);
3390 } else {
3391 if (dst != src) mov(dst, src);
3392 }
3393 return;
3394 }
3395
3396 if (use_XOR_for_compressed_class_base) {
3397 if (Universe::narrow_klass_shift() != 0) {
3398 lsl(dst, src, LogKlassAlignmentInBytes);
3399 eor(dst, dst, (uint64_t)Universe::narrow_klass_base());
3400 } else {
3401 eor(dst, src, (uint64_t)Universe::narrow_klass_base());
3402 }
3403 return;
3404 }
3405
3406 if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0
3407 && Universe::narrow_klass_shift() == 0) {
3408 if (dst != src)
3409 movw(dst, src);
3410 movk(dst, (uint64_t)Universe::narrow_klass_base() >> 32, 32);
3411 return;
3412 }
3413
3414 // Cannot assert, unverified entry point counts instructions (see .ad file)
3415 // vtableStubs also counts instructions in pd_code_size_limit.
3416 // Also do not verify_oop as this is called by verify_oop.
3417 if (dst == src) rbase = rheapbase;
3418 mov(rbase, (uint64_t)Universe::narrow_klass_base());
3419 if (Universe::narrow_klass_shift() != 0) {
3420 assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3421 add(dst, rbase, src, Assembler::LSL, LogKlassAlignmentInBytes);
3422 } else {
3423 add(dst, rbase, src);
3424 }
3425 if (dst == src) reinit_heapbase();
3426 }
3427
decode_klass_not_null(Register r)3428 void MacroAssembler::decode_klass_not_null(Register r) {
3429 decode_klass_not_null(r, r);
3430 }
3431
set_narrow_oop(Register dst,jobject obj)3432 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
3433 assert (UseCompressedOops, "should only be used for compressed oops");
3434 assert (Universe::heap() != NULL, "java heap should be initialized");
3435 assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
3436
3437 int oop_index = oop_recorder()->find_index(obj);
3438 assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "should be real oop");
3439
3440 InstructionMark im(this);
3441 RelocationHolder rspec = oop_Relocation::spec(oop_index);
3442 code_section()->relocate(inst_mark(), rspec);
3443 movz(dst, 0xDEAD, 16);
3444 movk(dst, 0xBEEF);
3445 }
3446
set_narrow_klass(Register dst,Klass * k)3447 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
3448 assert (UseCompressedClassPointers, "should only be used for compressed headers");
3449 assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
3450 int index = oop_recorder()->find_index(k);
3451 assert(! Universe::heap()->is_in_reserved(k), "should not be an oop");
3452
3453 InstructionMark im(this);
3454 RelocationHolder rspec = metadata_Relocation::spec(index);
3455 code_section()->relocate(inst_mark(), rspec);
3456 narrowKlass nk = Klass::encode_klass(k);
3457 movz(dst, (nk >> 16), 16);
3458 movk(dst, nk & 0xffff);
3459 }
3460
load_heap_oop(Register dst,Address src)3461 void MacroAssembler::load_heap_oop(Register dst, Address src)
3462 {
3463 if (UseCompressedOops) {
3464 ldrw(dst, src);
3465 decode_heap_oop(dst);
3466 } else {
3467 ldr(dst, src);
3468 }
3469 }
3470
load_heap_oop_not_null(Register dst,Address src)3471 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src)
3472 {
3473 if (UseCompressedOops) {
3474 ldrw(dst, src);
3475 decode_heap_oop_not_null(dst);
3476 } else {
3477 ldr(dst, src);
3478 }
3479 }
3480
store_heap_oop(Address dst,Register src)3481 void MacroAssembler::store_heap_oop(Address dst, Register src) {
3482 if (UseCompressedOops) {
3483 assert(!dst.uses(src), "not enough registers");
3484 encode_heap_oop(src);
3485 strw(src, dst);
3486 } else
3487 str(src, dst);
3488 }
3489
3490 // Used for storing NULLs.
store_heap_oop_null(Address dst)3491 void MacroAssembler::store_heap_oop_null(Address dst) {
3492 if (UseCompressedOops) {
3493 strw(zr, dst);
3494 } else
3495 str(zr, dst);
3496 }
3497
3498 #if INCLUDE_ALL_GCS
3499 /*
3500 * g1_write_barrier_pre -- G1GC pre-write barrier for store of new_val at
3501 * store_addr.
3502 *
3503 * Allocates rscratch1
3504 */
g1_write_barrier_pre(Register obj,Register pre_val,Register thread,Register tmp,bool tosca_live,bool expand_call)3505 void MacroAssembler::g1_write_barrier_pre(Register obj,
3506 Register pre_val,
3507 Register thread,
3508 Register tmp,
3509 bool tosca_live,
3510 bool expand_call) {
3511 // If expand_call is true then we expand the call_VM_leaf macro
3512 // directly to skip generating the check by
3513 // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
3514
3515 #ifdef _LP64
3516 assert(thread == rthread, "must be");
3517 #endif // _LP64
3518
3519 Label done;
3520 Label runtime;
3521
3522 assert_different_registers(obj, pre_val, tmp, rscratch1);
3523 assert(pre_val != noreg && tmp != noreg, "expecting a register");
3524
3525 Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
3526 PtrQueue::byte_offset_of_active()));
3527 Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
3528 PtrQueue::byte_offset_of_index()));
3529 Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
3530 PtrQueue::byte_offset_of_buf()));
3531
3532
3533 // Is marking active?
3534 if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
3535 ldrw(tmp, in_progress);
3536 } else {
3537 assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
3538 ldrb(tmp, in_progress);
3539 }
3540 cbzw(tmp, done);
3541
3542 // Do we need to load the previous value?
3543 if (obj != noreg) {
3544 load_heap_oop(pre_val, Address(obj, 0));
3545 }
3546
3547 // Is the previous value null?
3548 cbz(pre_val, done);
3549
3550 // Can we store original value in the thread's buffer?
3551 // Is index == 0?
3552 // (The index field is typed as size_t.)
3553
3554 ldr(tmp, index); // tmp := *index_adr
3555 cbz(tmp, runtime); // tmp == 0?
3556 // If yes, goto runtime
3557
3558 sub(tmp, tmp, wordSize); // tmp := tmp - wordSize
3559 str(tmp, index); // *index_adr := tmp
3560 ldr(rscratch1, buffer);
3561 add(tmp, tmp, rscratch1); // tmp := tmp + *buffer_adr
3562
3563 // Record the previous value
3564 str(pre_val, Address(tmp, 0));
3565 b(done);
3566
3567 bind(runtime);
3568 // save the live input values
3569 push(r0->bit(tosca_live) | obj->bit(obj != noreg) | pre_val->bit(true), sp);
3570
3571 // Calling the runtime using the regular call_VM_leaf mechanism generates
3572 // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
3573 // that checks that the *(rfp+frame::interpreter_frame_last_sp) == NULL.
3574 //
3575 // If we care generating the pre-barrier without a frame (e.g. in the
3576 // intrinsified Reference.get() routine) then ebp might be pointing to
3577 // the caller frame and so this check will most likely fail at runtime.
3578 //
3579 // Expanding the call directly bypasses the generation of the check.
3580 // So when we do not have have a full interpreter frame on the stack
3581 // expand_call should be passed true.
3582
3583 if (expand_call) {
3584 LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
3585 pass_arg1(this, thread);
3586 pass_arg0(this, pre_val);
3587 MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
3588 } else {
3589 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
3590 }
3591
3592 pop(r0->bit(tosca_live) | obj->bit(obj != noreg) | pre_val->bit(true), sp);
3593
3594 bind(done);
3595 }
3596
3597 /*
3598 * g1_write_barrier_post -- G1GC post-write barrier for store of new_val at
3599 * store_addr
3600 *
3601 * Allocates rscratch1
3602 */
g1_write_barrier_post(Register store_addr,Register new_val,Register thread,Register tmp,Register tmp2)3603 void MacroAssembler::g1_write_barrier_post(Register store_addr,
3604 Register new_val,
3605 Register thread,
3606 Register tmp,
3607 Register tmp2) {
3608 #ifdef _LP64
3609 assert(thread == rthread, "must be");
3610 #endif // _LP64
3611 assert_different_registers(store_addr, new_val, thread, tmp, tmp2,
3612 rscratch1);
3613 assert(store_addr != noreg && new_val != noreg && tmp != noreg
3614 && tmp2 != noreg, "expecting a register");
3615
3616 Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
3617 PtrQueue::byte_offset_of_index()));
3618 Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
3619 PtrQueue::byte_offset_of_buf()));
3620
3621 BarrierSet* bs = Universe::heap()->barrier_set();
3622 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
3623 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
3624
3625 Label done;
3626 Label runtime;
3627
3628 // Does store cross heap regions?
3629
3630 eor(tmp, store_addr, new_val);
3631 lsr(tmp, tmp, HeapRegion::LogOfHRGrainBytes);
3632 cbz(tmp, done);
3633
3634 // crosses regions, storing NULL?
3635
3636 cbz(new_val, done);
3637
3638 // storing region crossing non-NULL, is card already dirty?
3639
3640 ExternalAddress cardtable((address) ct->byte_map_base);
3641 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
3642 const Register card_addr = tmp;
3643
3644 lsr(card_addr, store_addr, CardTableModRefBS::card_shift);
3645
3646 // get the address of the card
3647 load_byte_map_base(tmp2);
3648 add(card_addr, card_addr, tmp2);
3649 ldrb(tmp2, Address(card_addr));
3650 cmpw(tmp2, (int)G1SATBCardTableModRefBS::g1_young_card_val());
3651 br(Assembler::EQ, done);
3652
3653 assert((int)CardTableModRefBS::dirty_card_val() == 0, "must be 0");
3654
3655 membar(Assembler::Assembler::StoreLoad);
3656
3657 ldrb(tmp2, Address(card_addr));
3658 cbzw(tmp2, done);
3659
3660 // storing a region crossing, non-NULL oop, card is clean.
3661 // dirty card and log.
3662
3663 strb(zr, Address(card_addr));
3664
3665 ldr(rscratch1, queue_index);
3666 cbz(rscratch1, runtime);
3667 sub(rscratch1, rscratch1, wordSize);
3668 str(rscratch1, queue_index);
3669
3670 ldr(tmp2, buffer);
3671 str(card_addr, Address(tmp2, rscratch1));
3672 b(done);
3673
3674 bind(runtime);
3675 // save the live input values
3676 push(store_addr->bit(true) | new_val->bit(true), sp);
3677 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
3678 pop(store_addr->bit(true) | new_val->bit(true), sp);
3679
3680 bind(done);
3681 }
3682
3683 #endif // INCLUDE_ALL_GCS
3684
allocate_metadata_address(Metadata * obj)3685 Address MacroAssembler::allocate_metadata_address(Metadata* obj) {
3686 assert(oop_recorder() != NULL, "this assembler needs a Recorder");
3687 int index = oop_recorder()->allocate_metadata_index(obj);
3688 RelocationHolder rspec = metadata_Relocation::spec(index);
3689 return Address((address)obj, rspec);
3690 }
3691
3692 // Move an oop into a register. immediate is true if we want
3693 // immediate instrcutions, i.e. we are not going to patch this
3694 // instruction while the code is being executed by another thread. In
3695 // that case we can use move immediates rather than the constant pool.
movoop(Register dst,jobject obj,bool immediate)3696 void MacroAssembler::movoop(Register dst, jobject obj, bool immediate) {
3697 int oop_index;
3698 if (obj == NULL) {
3699 oop_index = oop_recorder()->allocate_oop_index(obj);
3700 } else {
3701 oop_index = oop_recorder()->find_index(obj);
3702 assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "should be real oop");
3703 }
3704 RelocationHolder rspec = oop_Relocation::spec(oop_index);
3705 if (! immediate) {
3706 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address
3707 ldr_constant(dst, Address(dummy, rspec));
3708 } else
3709 mov(dst, Address((address)obj, rspec));
3710 }
3711
3712 // Move a metadata address into a register.
mov_metadata(Register dst,Metadata * obj)3713 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
3714 int oop_index;
3715 if (obj == NULL) {
3716 oop_index = oop_recorder()->allocate_metadata_index(obj);
3717 } else {
3718 oop_index = oop_recorder()->find_index(obj);
3719 }
3720 RelocationHolder rspec = metadata_Relocation::spec(oop_index);
3721 mov(dst, Address((address)obj, rspec));
3722 }
3723
constant_oop_address(jobject obj)3724 Address MacroAssembler::constant_oop_address(jobject obj) {
3725 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
3726 assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop");
3727 int oop_index = oop_recorder()->find_index(obj);
3728 return Address((address)obj, oop_Relocation::spec(oop_index));
3729 }
3730
3731 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
tlab_allocate(Register obj,Register var_size_in_bytes,int con_size_in_bytes,Register t1,Register t2,Label & slow_case)3732 void MacroAssembler::tlab_allocate(Register obj,
3733 Register var_size_in_bytes,
3734 int con_size_in_bytes,
3735 Register t1,
3736 Register t2,
3737 Label& slow_case) {
3738 assert_different_registers(obj, t2);
3739 assert_different_registers(obj, var_size_in_bytes);
3740 Register end = t2;
3741
3742 // verify_tlab();
3743
3744 ldr(obj, Address(rthread, JavaThread::tlab_top_offset()));
3745 if (var_size_in_bytes == noreg) {
3746 lea(end, Address(obj, con_size_in_bytes));
3747 } else {
3748 lea(end, Address(obj, var_size_in_bytes));
3749 }
3750 ldr(rscratch1, Address(rthread, JavaThread::tlab_end_offset()));
3751 cmp(end, rscratch1);
3752 br(Assembler::HI, slow_case);
3753
3754 // update the tlab top pointer
3755 str(end, Address(rthread, JavaThread::tlab_top_offset()));
3756
3757 // recover var_size_in_bytes if necessary
3758 if (var_size_in_bytes == end) {
3759 sub(var_size_in_bytes, var_size_in_bytes, obj);
3760 }
3761 // verify_tlab();
3762 }
3763
3764 // Preserves r19, and r3.
tlab_refill(Label & retry,Label & try_eden,Label & slow_case)3765 Register MacroAssembler::tlab_refill(Label& retry,
3766 Label& try_eden,
3767 Label& slow_case) {
3768 Register top = r0;
3769 Register t1 = r2;
3770 Register t2 = r4;
3771 assert_different_registers(top, rthread, t1, t2, /* preserve: */ r19, r3);
3772 Label do_refill, discard_tlab;
3773
3774 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
3775 // No allocation in the shared eden.
3776 b(slow_case);
3777 }
3778
3779 ldr(top, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
3780 ldr(t1, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
3781
3782 // calculate amount of free space
3783 sub(t1, t1, top);
3784 lsr(t1, t1, LogHeapWordSize);
3785
3786 // Retain tlab and allocate object in shared space if
3787 // the amount free in the tlab is too large to discard.
3788
3789 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
3790 cmp(t1, rscratch1);
3791 br(Assembler::LE, discard_tlab);
3792
3793 // Retain
3794 // ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
3795 mov(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
3796 add(rscratch1, rscratch1, t2);
3797 str(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
3798
3799 if (TLABStats) {
3800 // increment number of slow_allocations
3801 addmw(Address(rthread, in_bytes(JavaThread::tlab_slow_allocations_offset())),
3802 1, rscratch1);
3803 }
3804 b(try_eden);
3805
3806 bind(discard_tlab);
3807 if (TLABStats) {
3808 // increment number of refills
3809 addmw(Address(rthread, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1,
3810 rscratch1);
3811 // accumulate wastage -- t1 is amount free in tlab
3812 addmw(Address(rthread, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1,
3813 rscratch1);
3814 }
3815
3816 // if tlab is currently allocated (top or end != null) then
3817 // fill [top, end + alignment_reserve) with array object
3818 cbz(top, do_refill);
3819
3820 // set up the mark word
3821 mov(rscratch1, (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
3822 str(rscratch1, Address(top, oopDesc::mark_offset_in_bytes()));
3823 // set the length to the remaining space
3824 sub(t1, t1, typeArrayOopDesc::header_size(T_INT));
3825 add(t1, t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
3826 lsl(t1, t1, log2_intptr(HeapWordSize/sizeof(jint)));
3827 strw(t1, Address(top, arrayOopDesc::length_offset_in_bytes()));
3828 // set klass to intArrayKlass
3829 {
3830 unsigned long offset;
3831 // dubious reloc why not an oop reloc?
3832 adrp(rscratch1, ExternalAddress((address)Universe::intArrayKlassObj_addr()),
3833 offset);
3834 ldr(t1, Address(rscratch1, offset));
3835 }
3836 // store klass last. concurrent gcs assumes klass length is valid if
3837 // klass field is not null.
3838 store_klass(top, t1);
3839
3840 mov(t1, top);
3841 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
3842 sub(t1, t1, rscratch1);
3843 incr_allocated_bytes(rthread, t1, 0, rscratch1);
3844
3845 // refill the tlab with an eden allocation
3846 bind(do_refill);
3847 ldr(t1, Address(rthread, in_bytes(JavaThread::tlab_size_offset())));
3848 lsl(t1, t1, LogHeapWordSize);
3849 // allocate new tlab, address returned in top
3850 eden_allocate(top, t1, 0, t2, slow_case);
3851
3852 // Check that t1 was preserved in eden_allocate.
3853 #ifdef ASSERT
3854 if (UseTLAB) {
3855 Label ok;
3856 Register tsize = r4;
3857 assert_different_registers(tsize, rthread, t1);
3858 str(tsize, Address(pre(sp, -16)));
3859 ldr(tsize, Address(rthread, in_bytes(JavaThread::tlab_size_offset())));
3860 lsl(tsize, tsize, LogHeapWordSize);
3861 cmp(t1, tsize);
3862 br(Assembler::EQ, ok);
3863 STOP("assert(t1 != tlab size)");
3864 should_not_reach_here();
3865
3866 bind(ok);
3867 ldr(tsize, Address(post(sp, 16)));
3868 }
3869 #endif
3870 str(top, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
3871 str(top, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
3872 add(top, top, t1);
3873 sub(top, top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
3874 str(top, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
3875 verify_tlab();
3876 b(retry);
3877
3878 return rthread; // for use by caller
3879 }
3880
3881 // Defines obj, preserves var_size_in_bytes
eden_allocate(Register obj,Register var_size_in_bytes,int con_size_in_bytes,Register t1,Label & slow_case)3882 void MacroAssembler::eden_allocate(Register obj,
3883 Register var_size_in_bytes,
3884 int con_size_in_bytes,
3885 Register t1,
3886 Label& slow_case) {
3887 assert_different_registers(obj, var_size_in_bytes, t1);
3888 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
3889 b(slow_case);
3890 } else {
3891 Register end = t1;
3892 Register heap_end = rscratch2;
3893 Label retry;
3894 bind(retry);
3895 {
3896 unsigned long offset;
3897 adrp(rscratch1, ExternalAddress((address) Universe::heap()->end_addr()), offset);
3898 ldr(heap_end, Address(rscratch1, offset));
3899 }
3900
3901 ExternalAddress heap_top((address) Universe::heap()->top_addr());
3902
3903 // Get the current top of the heap
3904 {
3905 unsigned long offset;
3906 adrp(rscratch1, heap_top, offset);
3907 // Use add() here after ARDP, rather than lea().
3908 // lea() does not generate anything if its offset is zero.
3909 // However, relocs expect to find either an ADD or a load/store
3910 // insn after an ADRP. add() always generates an ADD insn, even
3911 // for add(Rn, Rn, 0).
3912 add(rscratch1, rscratch1, offset);
3913 ldaxr(obj, rscratch1);
3914 }
3915
3916 // Adjust it my the size of our new object
3917 if (var_size_in_bytes == noreg) {
3918 lea(end, Address(obj, con_size_in_bytes));
3919 } else {
3920 lea(end, Address(obj, var_size_in_bytes));
3921 }
3922
3923 // if end < obj then we wrapped around high memory
3924 cmp(end, obj);
3925 br(Assembler::LO, slow_case);
3926
3927 cmp(end, heap_end);
3928 br(Assembler::HI, slow_case);
3929
3930 // If heap_top hasn't been changed by some other thread, update it.
3931 stlxr(rscratch2, end, rscratch1);
3932 cbnzw(rscratch2, retry);
3933 }
3934 }
3935
verify_tlab()3936 void MacroAssembler::verify_tlab() {
3937 #ifdef ASSERT
3938 if (UseTLAB && VerifyOops) {
3939 Label next, ok;
3940
3941 stp(rscratch2, rscratch1, Address(pre(sp, -16)));
3942
3943 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
3944 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
3945 cmp(rscratch2, rscratch1);
3946 br(Assembler::HS, next);
3947 STOP("assert(top >= start)");
3948 should_not_reach_here();
3949
3950 bind(next);
3951 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
3952 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
3953 cmp(rscratch2, rscratch1);
3954 br(Assembler::HS, ok);
3955 STOP("assert(top <= end)");
3956 should_not_reach_here();
3957
3958 bind(ok);
3959 ldp(rscratch2, rscratch1, Address(post(sp, 16)));
3960 }
3961 #endif
3962 }
3963
3964 // Writes to stack successive pages until offset reached to check for
3965 // stack overflow + shadow pages. This clobbers tmp.
bang_stack_size(Register size,Register tmp)3966 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
3967 assert_different_registers(tmp, size, rscratch1);
3968 mov(tmp, sp);
3969 // Bang stack for total size given plus shadow page size.
3970 // Bang one page at a time because large size can bang beyond yellow and
3971 // red zones.
3972 Label loop;
3973 mov(rscratch1, os::vm_page_size());
3974 bind(loop);
3975 lea(tmp, Address(tmp, -os::vm_page_size()));
3976 subsw(size, size, rscratch1);
3977 str(size, Address(tmp));
3978 br(Assembler::GT, loop);
3979
3980 // Bang down shadow pages too.
3981 // The -1 because we already subtracted 1 page.
3982 for (int i = 0; i< StackShadowPages-1; i++) {
3983 // this could be any sized move but this is can be a debugging crumb
3984 // so the bigger the better.
3985 lea(tmp, Address(tmp, -os::vm_page_size()));
3986 str(size, Address(tmp));
3987 }
3988 }
3989
3990
read_polling_page(Register r,address page,relocInfo::relocType rtype)3991 address MacroAssembler::read_polling_page(Register r, address page, relocInfo::relocType rtype) {
3992 unsigned long off;
3993 adrp(r, Address(page, rtype), off);
3994 InstructionMark im(this);
3995 code_section()->relocate(inst_mark(), rtype);
3996 ldrw(zr, Address(r, off));
3997 return inst_mark();
3998 }
3999
read_polling_page(Register r,relocInfo::relocType rtype)4000 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) {
4001 InstructionMark im(this);
4002 code_section()->relocate(inst_mark(), rtype);
4003 ldrw(zr, Address(r, 0));
4004 return inst_mark();
4005 }
4006
adrp(Register reg1,const Address & dest,unsigned long & byte_offset)4007 void MacroAssembler::adrp(Register reg1, const Address &dest, unsigned long &byte_offset) {
4008 relocInfo::relocType rtype = dest.rspec().reloc()->type();
4009 unsigned long low_page = (unsigned long)CodeCache::low_bound() >> 12;
4010 unsigned long high_page = (unsigned long)(CodeCache::high_bound()-1) >> 12;
4011 unsigned long dest_page = (unsigned long)dest.target() >> 12;
4012 long offset_low = dest_page - low_page;
4013 long offset_high = dest_page - high_page;
4014
4015 assert(is_valid_AArch64_address(dest.target()), "bad address");
4016 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address");
4017
4018 InstructionMark im(this);
4019 code_section()->relocate(inst_mark(), dest.rspec());
4020 // 8143067: Ensure that the adrp can reach the dest from anywhere within
4021 // the code cache so that if it is relocated we know it will still reach
4022 if (offset_high >= -(1<<20) && offset_low < (1<<20)) {
4023 _adrp(reg1, dest.target());
4024 } else {
4025 unsigned long target = (unsigned long)dest.target();
4026 unsigned long adrp_target
4027 = (target & 0xffffffffUL) | ((unsigned long)pc() & 0xffff00000000UL);
4028
4029 _adrp(reg1, (address)adrp_target);
4030 movk(reg1, target >> 32, 32);
4031 }
4032 byte_offset = (unsigned long)dest.target() & 0xfff;
4033 }
4034
load_byte_map_base(Register reg)4035 void MacroAssembler::load_byte_map_base(Register reg) {
4036 jbyte *byte_map_base =
4037 ((CardTableModRefBS*)(Universe::heap()->barrier_set()))->byte_map_base;
4038
4039 if (is_valid_AArch64_address((address)byte_map_base)) {
4040 // Strictly speaking the byte_map_base isn't an address at all,
4041 // and it might even be negative.
4042 unsigned long offset;
4043 adrp(reg, ExternalAddress((address)byte_map_base), offset);
4044 // We expect offset to be zero with most collectors.
4045 if (offset != 0) {
4046 add(reg, reg, offset);
4047 }
4048 } else {
4049 mov(reg, (uint64_t)byte_map_base);
4050 }
4051 }
4052
build_frame(int framesize)4053 void MacroAssembler::build_frame(int framesize) {
4054 if (framesize == 0) {
4055 // Is this even possible?
4056 stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
4057 } else if (framesize < ((1 << 9) + 2 * wordSize)) {
4058 sub(sp, sp, framesize);
4059 stp(rfp, lr, Address(sp, framesize - 2 * wordSize));
4060 } else {
4061 stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
4062 if (framesize < ((1 << 12) + 2 * wordSize))
4063 sub(sp, sp, framesize - 2 * wordSize);
4064 else {
4065 mov(rscratch1, framesize - 2 * wordSize);
4066 sub(sp, sp, rscratch1);
4067 }
4068 }
4069 }
4070
remove_frame(int framesize)4071 void MacroAssembler::remove_frame(int framesize) {
4072 if (framesize == 0) {
4073 ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
4074 } else if (framesize < ((1 << 9) + 2 * wordSize)) {
4075 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize));
4076 add(sp, sp, framesize);
4077 } else {
4078 if (framesize < ((1 << 12) + 2 * wordSize))
4079 add(sp, sp, framesize - 2 * wordSize);
4080 else {
4081 mov(rscratch1, framesize - 2 * wordSize);
4082 add(sp, sp, rscratch1);
4083 }
4084 ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
4085 }
4086 }
4087
4088 // Search for str1 in str2 and return index or -1
string_indexof(Register str2,Register str1,Register cnt2,Register cnt1,Register tmp1,Register tmp2,Register tmp3,Register tmp4,int icnt1,Register result)4089 void MacroAssembler::string_indexof(Register str2, Register str1,
4090 Register cnt2, Register cnt1,
4091 Register tmp1, Register tmp2,
4092 Register tmp3, Register tmp4,
4093 int icnt1, Register result) {
4094 Label BM, LINEARSEARCH, DONE, NOMATCH, MATCH;
4095
4096 Register ch1 = rscratch1;
4097 Register ch2 = rscratch2;
4098 Register cnt1tmp = tmp1;
4099 Register cnt2tmp = tmp2;
4100 Register cnt1_neg = cnt1;
4101 Register cnt2_neg = cnt2;
4102 Register result_tmp = tmp4;
4103
4104 // Note, inline_string_indexOf() generates checks:
4105 // if (substr.count > string.count) return -1;
4106 // if (substr.count == 0) return 0;
4107
4108 // We have two strings, a source string in str2, cnt2 and a pattern string
4109 // in str1, cnt1. Find the 1st occurence of pattern in source or return -1.
4110
4111 // For larger pattern and source we use a simplified Boyer Moore algorithm.
4112 // With a small pattern and source we use linear scan.
4113
4114 if (icnt1 == -1) {
4115 cmp(cnt1, 256); // Use Linear Scan if cnt1 < 8 || cnt1 >= 256
4116 ccmp(cnt1, 8, 0b0000, LO); // Can't handle skip >= 256 because we use
4117 br(LO, LINEARSEARCH); // a byte array.
4118 cmp(cnt1, cnt2, LSR, 2); // Source must be 4 * pattern for BM
4119 br(HS, LINEARSEARCH);
4120 }
4121
4122 // The Boyer Moore alogorithm is based on the description here:-
4123 //
4124 // http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm
4125 //
4126 // This describes and algorithm with 2 shift rules. The 'Bad Character' rule
4127 // and the 'Good Suffix' rule.
4128 //
4129 // These rules are essentially heuristics for how far we can shift the
4130 // pattern along the search string.
4131 //
4132 // The implementation here uses the 'Bad Character' rule only because of the
4133 // complexity of initialisation for the 'Good Suffix' rule.
4134 //
4135 // This is also known as the Boyer-Moore-Horspool algorithm:-
4136 //
4137 // http://en.wikipedia.org/wiki/Boyer-Moore-Horspool_algorithm
4138 //
4139 // #define ASIZE 128
4140 //
4141 // int bm(unsigned char *x, int m, unsigned char *y, int n) {
4142 // int i, j;
4143 // unsigned c;
4144 // unsigned char bc[ASIZE];
4145 //
4146 // /* Preprocessing */
4147 // for (i = 0; i < ASIZE; ++i)
4148 // bc[i] = 0;
4149 // for (i = 0; i < m - 1; ) {
4150 // c = x[i];
4151 // ++i;
4152 // if (c < ASIZE) bc[c] = i;
4153 // }
4154 //
4155 // /* Searching */
4156 // j = 0;
4157 // while (j <= n - m) {
4158 // c = y[i+j];
4159 // if (x[m-1] == c)
4160 // for (i = m - 2; i >= 0 && x[i] == y[i + j]; --i);
4161 // if (i < 0) return j;
4162 // if (c < ASIZE)
4163 // j = j - bc[y[j+m-1]] + m;
4164 // else
4165 // j += 1; // Advance by 1 only if char >= ASIZE
4166 // }
4167 // }
4168
4169 if (icnt1 == -1) {
4170 BIND(BM);
4171
4172 Label ZLOOP, BCLOOP, BCSKIP, BMLOOPSTR2, BMLOOPSTR1, BMSKIP;
4173 Label BMADV, BMMATCH, BMCHECKEND;
4174
4175 Register cnt1end = tmp2;
4176 Register str2end = cnt2;
4177 Register skipch = tmp2;
4178
4179 // Restrict ASIZE to 128 to reduce stack space/initialisation.
4180 // The presence of chars >= ASIZE in the target string does not affect
4181 // performance, but we must be careful not to initialise them in the stack
4182 // array.
4183 // The presence of chars >= ASIZE in the source string may adversely affect
4184 // performance since we can only advance by one when we encounter one.
4185
4186 stp(zr, zr, pre(sp, -128));
4187 for (int i = 1; i < 8; i++)
4188 stp(zr, zr, Address(sp, i*16));
4189
4190 mov(cnt1tmp, 0);
4191 sub(cnt1end, cnt1, 1);
4192 BIND(BCLOOP);
4193 ldrh(ch1, Address(str1, cnt1tmp, Address::lsl(1)));
4194 cmp(ch1, 128);
4195 add(cnt1tmp, cnt1tmp, 1);
4196 br(HS, BCSKIP);
4197 strb(cnt1tmp, Address(sp, ch1));
4198 BIND(BCSKIP);
4199 cmp(cnt1tmp, cnt1end);
4200 br(LT, BCLOOP);
4201
4202 mov(result_tmp, str2);
4203
4204 sub(cnt2, cnt2, cnt1);
4205 add(str2end, str2, cnt2, LSL, 1);
4206 BIND(BMLOOPSTR2);
4207 sub(cnt1tmp, cnt1, 1);
4208 ldrh(ch1, Address(str1, cnt1tmp, Address::lsl(1)));
4209 ldrh(skipch, Address(str2, cnt1tmp, Address::lsl(1)));
4210 cmp(ch1, skipch);
4211 br(NE, BMSKIP);
4212 subs(cnt1tmp, cnt1tmp, 1);
4213 br(LT, BMMATCH);
4214 BIND(BMLOOPSTR1);
4215 ldrh(ch1, Address(str1, cnt1tmp, Address::lsl(1)));
4216 ldrh(ch2, Address(str2, cnt1tmp, Address::lsl(1)));
4217 cmp(ch1, ch2);
4218 br(NE, BMSKIP);
4219 subs(cnt1tmp, cnt1tmp, 1);
4220 br(GE, BMLOOPSTR1);
4221 BIND(BMMATCH);
4222 sub(result_tmp, str2, result_tmp);
4223 lsr(result, result_tmp, 1);
4224 add(sp, sp, 128);
4225 b(DONE);
4226 BIND(BMADV);
4227 add(str2, str2, 2);
4228 b(BMCHECKEND);
4229 BIND(BMSKIP);
4230 cmp(skipch, 128);
4231 br(HS, BMADV);
4232 ldrb(ch2, Address(sp, skipch));
4233 add(str2, str2, cnt1, LSL, 1);
4234 sub(str2, str2, ch2, LSL, 1);
4235 BIND(BMCHECKEND);
4236 cmp(str2, str2end);
4237 br(LE, BMLOOPSTR2);
4238 add(sp, sp, 128);
4239 b(NOMATCH);
4240 }
4241
4242 BIND(LINEARSEARCH);
4243 {
4244 Label DO1, DO2, DO3;
4245
4246 Register str2tmp = tmp2;
4247 Register first = tmp3;
4248
4249 if (icnt1 == -1)
4250 {
4251 Label DOSHORT, FIRST_LOOP, STR2_NEXT, STR1_LOOP, STR1_NEXT, LAST_WORD;
4252
4253 cmp(cnt1, 4);
4254 br(LT, DOSHORT);
4255
4256 sub(cnt2, cnt2, cnt1);
4257 sub(cnt1, cnt1, 4);
4258 mov(result_tmp, cnt2);
4259
4260 lea(str1, Address(str1, cnt1, Address::uxtw(1)));
4261 lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4262 sub(cnt1_neg, zr, cnt1, LSL, 1);
4263 sub(cnt2_neg, zr, cnt2, LSL, 1);
4264 ldr(first, Address(str1, cnt1_neg));
4265
4266 BIND(FIRST_LOOP);
4267 ldr(ch2, Address(str2, cnt2_neg));
4268 cmp(first, ch2);
4269 br(EQ, STR1_LOOP);
4270 BIND(STR2_NEXT);
4271 adds(cnt2_neg, cnt2_neg, 2);
4272 br(LE, FIRST_LOOP);
4273 b(NOMATCH);
4274
4275 BIND(STR1_LOOP);
4276 adds(cnt1tmp, cnt1_neg, 8);
4277 add(cnt2tmp, cnt2_neg, 8);
4278 br(GE, LAST_WORD);
4279
4280 BIND(STR1_NEXT);
4281 ldr(ch1, Address(str1, cnt1tmp));
4282 ldr(ch2, Address(str2, cnt2tmp));
4283 cmp(ch1, ch2);
4284 br(NE, STR2_NEXT);
4285 adds(cnt1tmp, cnt1tmp, 8);
4286 add(cnt2tmp, cnt2tmp, 8);
4287 br(LT, STR1_NEXT);
4288
4289 BIND(LAST_WORD);
4290 ldr(ch1, Address(str1));
4291 sub(str2tmp, str2, cnt1_neg); // adjust to corresponding
4292 ldr(ch2, Address(str2tmp, cnt2_neg)); // word in str2
4293 cmp(ch1, ch2);
4294 br(NE, STR2_NEXT);
4295 b(MATCH);
4296
4297 BIND(DOSHORT);
4298 cmp(cnt1, 2);
4299 br(LT, DO1);
4300 br(GT, DO3);
4301 }
4302
4303 if (icnt1 == 4) {
4304 Label CH1_LOOP;
4305
4306 ldr(ch1, str1);
4307 sub(cnt2, cnt2, 4);
4308 mov(result_tmp, cnt2);
4309 lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4310 sub(cnt2_neg, zr, cnt2, LSL, 1);
4311
4312 BIND(CH1_LOOP);
4313 ldr(ch2, Address(str2, cnt2_neg));
4314 cmp(ch1, ch2);
4315 br(EQ, MATCH);
4316 adds(cnt2_neg, cnt2_neg, 2);
4317 br(LE, CH1_LOOP);
4318 b(NOMATCH);
4319 }
4320
4321 if (icnt1 == -1 || icnt1 == 2) {
4322 Label CH1_LOOP;
4323
4324 BIND(DO2);
4325 ldrw(ch1, str1);
4326 sub(cnt2, cnt2, 2);
4327 mov(result_tmp, cnt2);
4328 lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4329 sub(cnt2_neg, zr, cnt2, LSL, 1);
4330
4331 BIND(CH1_LOOP);
4332 ldrw(ch2, Address(str2, cnt2_neg));
4333 cmp(ch1, ch2);
4334 br(EQ, MATCH);
4335 adds(cnt2_neg, cnt2_neg, 2);
4336 br(LE, CH1_LOOP);
4337 b(NOMATCH);
4338 }
4339
4340 if (icnt1 == -1 || icnt1 == 3) {
4341 Label FIRST_LOOP, STR2_NEXT, STR1_LOOP;
4342
4343 BIND(DO3);
4344 ldrw(first, str1);
4345 ldrh(ch1, Address(str1, 4));
4346
4347 sub(cnt2, cnt2, 3);
4348 mov(result_tmp, cnt2);
4349 lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4350 sub(cnt2_neg, zr, cnt2, LSL, 1);
4351
4352 BIND(FIRST_LOOP);
4353 ldrw(ch2, Address(str2, cnt2_neg));
4354 cmpw(first, ch2);
4355 br(EQ, STR1_LOOP);
4356 BIND(STR2_NEXT);
4357 adds(cnt2_neg, cnt2_neg, 2);
4358 br(LE, FIRST_LOOP);
4359 b(NOMATCH);
4360
4361 BIND(STR1_LOOP);
4362 add(cnt2tmp, cnt2_neg, 4);
4363 ldrh(ch2, Address(str2, cnt2tmp));
4364 cmp(ch1, ch2);
4365 br(NE, STR2_NEXT);
4366 b(MATCH);
4367 }
4368
4369 if (icnt1 == -1 || icnt1 == 1) {
4370 Label CH1_LOOP, HAS_ZERO;
4371 Label DO1_SHORT, DO1_LOOP;
4372
4373 BIND(DO1);
4374 ldrh(ch1, str1);
4375 cmp(cnt2, 4);
4376 br(LT, DO1_SHORT);
4377
4378 orr(ch1, ch1, ch1, LSL, 16);
4379 orr(ch1, ch1, ch1, LSL, 32);
4380
4381 sub(cnt2, cnt2, 4);
4382 mov(result_tmp, cnt2);
4383 lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4384 sub(cnt2_neg, zr, cnt2, LSL, 1);
4385
4386 mov(tmp3, 0x0001000100010001);
4387 BIND(CH1_LOOP);
4388 ldr(ch2, Address(str2, cnt2_neg));
4389 eor(ch2, ch1, ch2);
4390 sub(tmp1, ch2, tmp3);
4391 orr(tmp2, ch2, 0x7fff7fff7fff7fff);
4392 bics(tmp1, tmp1, tmp2);
4393 br(NE, HAS_ZERO);
4394 adds(cnt2_neg, cnt2_neg, 8);
4395 br(LT, CH1_LOOP);
4396
4397 cmp(cnt2_neg, 8);
4398 mov(cnt2_neg, 0);
4399 br(LT, CH1_LOOP);
4400 b(NOMATCH);
4401
4402 BIND(HAS_ZERO);
4403 rev(tmp1, tmp1);
4404 clz(tmp1, tmp1);
4405 add(cnt2_neg, cnt2_neg, tmp1, LSR, 3);
4406 b(MATCH);
4407
4408 BIND(DO1_SHORT);
4409 mov(result_tmp, cnt2);
4410 lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4411 sub(cnt2_neg, zr, cnt2, LSL, 1);
4412 BIND(DO1_LOOP);
4413 ldrh(ch2, Address(str2, cnt2_neg));
4414 cmpw(ch1, ch2);
4415 br(EQ, MATCH);
4416 adds(cnt2_neg, cnt2_neg, 2);
4417 br(LT, DO1_LOOP);
4418 }
4419 }
4420 BIND(NOMATCH);
4421 mov(result, -1);
4422 b(DONE);
4423 BIND(MATCH);
4424 add(result, result_tmp, cnt2_neg, ASR, 1);
4425 BIND(DONE);
4426 }
4427
4428 // Compare strings.
string_compare(Register str1,Register str2,Register cnt1,Register cnt2,Register result,Register tmp1)4429 void MacroAssembler::string_compare(Register str1, Register str2,
4430 Register cnt1, Register cnt2, Register result,
4431 Register tmp1) {
4432 Label LENGTH_DIFF, DONE, SHORT_LOOP, SHORT_STRING,
4433 NEXT_WORD, DIFFERENCE;
4434
4435 BLOCK_COMMENT("string_compare {");
4436
4437 // Compute the minimum of the string lengths and save the difference.
4438 subsw(tmp1, cnt1, cnt2);
4439 cselw(cnt2, cnt1, cnt2, Assembler::LE); // min
4440
4441 // A very short string
4442 cmpw(cnt2, 4);
4443 br(Assembler::LT, SHORT_STRING);
4444
4445 // Check if the strings start at the same location.
4446 cmp(str1, str2);
4447 br(Assembler::EQ, LENGTH_DIFF);
4448
4449 // Compare longwords
4450 {
4451 subw(cnt2, cnt2, 4); // The last longword is a special case
4452
4453 // Move both string pointers to the last longword of their
4454 // strings, negate the remaining count, and convert it to bytes.
4455 lea(str1, Address(str1, cnt2, Address::uxtw(1)));
4456 lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4457 sub(cnt2, zr, cnt2, LSL, 1);
4458
4459 // Loop, loading longwords and comparing them into rscratch2.
4460 bind(NEXT_WORD);
4461 ldr(result, Address(str1, cnt2));
4462 ldr(cnt1, Address(str2, cnt2));
4463 adds(cnt2, cnt2, wordSize);
4464 eor(rscratch2, result, cnt1);
4465 cbnz(rscratch2, DIFFERENCE);
4466 br(Assembler::LT, NEXT_WORD);
4467
4468 // Last longword. In the case where length == 4 we compare the
4469 // same longword twice, but that's still faster than another
4470 // conditional branch.
4471
4472 ldr(result, Address(str1));
4473 ldr(cnt1, Address(str2));
4474 eor(rscratch2, result, cnt1);
4475 cbz(rscratch2, LENGTH_DIFF);
4476
4477 // Find the first different characters in the longwords and
4478 // compute their difference.
4479 bind(DIFFERENCE);
4480 rev(rscratch2, rscratch2);
4481 clz(rscratch2, rscratch2);
4482 andr(rscratch2, rscratch2, -16);
4483 lsrv(result, result, rscratch2);
4484 uxthw(result, result);
4485 lsrv(cnt1, cnt1, rscratch2);
4486 uxthw(cnt1, cnt1);
4487 subw(result, result, cnt1);
4488 b(DONE);
4489 }
4490
4491 bind(SHORT_STRING);
4492 // Is the minimum length zero?
4493 cbz(cnt2, LENGTH_DIFF);
4494
4495 bind(SHORT_LOOP);
4496 load_unsigned_short(result, Address(post(str1, 2)));
4497 load_unsigned_short(cnt1, Address(post(str2, 2)));
4498 subw(result, result, cnt1);
4499 cbnz(result, DONE);
4500 sub(cnt2, cnt2, 1);
4501 cbnz(cnt2, SHORT_LOOP);
4502
4503 // Strings are equal up to min length. Return the length difference.
4504 bind(LENGTH_DIFF);
4505 mov(result, tmp1);
4506
4507 // That's it
4508 bind(DONE);
4509
4510 BLOCK_COMMENT("} string_compare");
4511 }
4512
4513
4514 // base: Address of a buffer to be zeroed, 8 bytes aligned.
4515 // cnt: Count in HeapWords.
4516 // is_large: True when 'cnt' is known to be >= BlockZeroingLowLimit.
zero_words(Register base,Register cnt)4517 void MacroAssembler::zero_words(Register base, Register cnt)
4518 {
4519 if (UseBlockZeroing) {
4520 block_zero(base, cnt);
4521 } else {
4522 fill_words(base, cnt, zr);
4523 }
4524 }
4525
4526 // r10 = base: Address of a buffer to be zeroed, 8 bytes aligned.
4527 // cnt: Immediate count in HeapWords.
4528 // r11 = tmp: For use as cnt if we need to call out
4529 #define ShortArraySize (18 * BytesPerLong)
zero_words(Register base,u_int64_t cnt)4530 void MacroAssembler::zero_words(Register base, u_int64_t cnt)
4531 {
4532 Register tmp = r11;
4533 int i = cnt & 1; // store any odd word to start
4534 if (i) str(zr, Address(base));
4535
4536 if (cnt <= ShortArraySize / BytesPerLong) {
4537 for (; i < (int)cnt; i += 2)
4538 stp(zr, zr, Address(base, i * wordSize));
4539 } else if (UseBlockZeroing && cnt >= (u_int64_t)(BlockZeroingLowLimit >> LogBytesPerWord)) {
4540 mov(tmp, cnt);
4541 block_zero(base, tmp, true);
4542 } else {
4543 const int unroll = 4; // Number of stp(zr, zr) instructions we'll unroll
4544 int remainder = cnt % (2 * unroll);
4545 for (; i < remainder; i += 2)
4546 stp(zr, zr, Address(base, i * wordSize));
4547
4548 Label loop;
4549 Register cnt_reg = rscratch1;
4550 Register loop_base = rscratch2;
4551 cnt = cnt - remainder;
4552 mov(cnt_reg, cnt);
4553 // adjust base and prebias by -2 * wordSize so we can pre-increment
4554 add(loop_base, base, (remainder - 2) * wordSize);
4555 bind(loop);
4556 sub(cnt_reg, cnt_reg, 2 * unroll);
4557 for (i = 1; i < unroll; i++)
4558 stp(zr, zr, Address(loop_base, 2 * i * wordSize));
4559 stp(zr, zr, Address(pre(loop_base, 2 * unroll * wordSize)));
4560 cbnz(cnt_reg, loop);
4561 }
4562 }
4563
4564 // base: Address of a buffer to be filled, 8 bytes aligned.
4565 // cnt: Count in 8-byte unit.
4566 // value: Value to be filled with.
4567 // base will point to the end of the buffer after filling.
fill_words(Register base,Register cnt,Register value)4568 void MacroAssembler::fill_words(Register base, Register cnt, Register value)
4569 {
4570 // Algorithm:
4571 //
4572 // scratch1 = cnt & 7;
4573 // cnt -= scratch1;
4574 // p += scratch1;
4575 // switch (scratch1) {
4576 // do {
4577 // cnt -= 8;
4578 // p[-8] = v;
4579 // case 7:
4580 // p[-7] = v;
4581 // case 6:
4582 // p[-6] = v;
4583 // // ...
4584 // case 1:
4585 // p[-1] = v;
4586 // case 0:
4587 // p += 8;
4588 // } while (cnt);
4589 // }
4590
4591 assert_different_registers(base, cnt, value, rscratch1, rscratch2);
4592
4593 Label fini, skip, entry, loop;
4594 const int unroll = 8; // Number of stp instructions we'll unroll
4595
4596 cbz(cnt, fini);
4597 tbz(base, 3, skip);
4598 str(value, Address(post(base, 8)));
4599 sub(cnt, cnt, 1);
4600 bind(skip);
4601
4602 andr(rscratch1, cnt, (unroll-1) * 2);
4603 sub(cnt, cnt, rscratch1);
4604 add(base, base, rscratch1, Assembler::LSL, 3);
4605 adr(rscratch2, entry);
4606 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1);
4607 br(rscratch2);
4608
4609 bind(loop);
4610 add(base, base, unroll * 16);
4611 for (int i = -unroll; i < 0; i++)
4612 stp(value, value, Address(base, i * 16));
4613 bind(entry);
4614 subs(cnt, cnt, unroll * 2);
4615 br(Assembler::GE, loop);
4616
4617 tbz(cnt, 0, fini);
4618 str(value, Address(post(base, 8)));
4619 bind(fini);
4620 }
4621
4622 // Use DC ZVA to do fast zeroing.
4623 // base: Address of a buffer to be zeroed, 8 bytes aligned.
4624 // cnt: Count in HeapWords.
4625 // is_large: True when 'cnt' is known to be >= BlockZeroingLowLimit.
block_zero(Register base,Register cnt,bool is_large)4626 void MacroAssembler::block_zero(Register base, Register cnt, bool is_large)
4627 {
4628 Label small;
4629 Label store_pair, loop_store_pair, done;
4630 Label base_aligned;
4631
4632 assert_different_registers(base, cnt, rscratch1);
4633 guarantee(base == r10 && cnt == r11, "fix register usage");
4634
4635 Register tmp = rscratch1;
4636 Register tmp2 = rscratch2;
4637 int zva_length = VM_Version::zva_length();
4638
4639 // Ensure ZVA length can be divided by 16. This is required by
4640 // the subsequent operations.
4641 assert (zva_length % 16 == 0, "Unexpected ZVA Length");
4642
4643 if (!is_large) cbz(cnt, done);
4644 tbz(base, 3, base_aligned);
4645 str(zr, Address(post(base, 8)));
4646 sub(cnt, cnt, 1);
4647 bind(base_aligned);
4648
4649 // Ensure count >= zva_length * 2 so that it still deserves a zva after
4650 // alignment.
4651 if (!is_large || !(BlockZeroingLowLimit >= zva_length * 2)) {
4652 int low_limit = MAX2(zva_length * 2, (int)BlockZeroingLowLimit);
4653 subs(tmp, cnt, low_limit >> 3);
4654 br(Assembler::LT, small);
4655 }
4656
4657 far_call(StubRoutines::aarch64::get_zero_longs());
4658
4659 bind(small);
4660
4661 const int unroll = 8; // Number of stp instructions we'll unroll
4662 Label small_loop, small_table_end;
4663
4664 andr(tmp, cnt, (unroll-1) * 2);
4665 sub(cnt, cnt, tmp);
4666 add(base, base, tmp, Assembler::LSL, 3);
4667 adr(tmp2, small_table_end);
4668 sub(tmp2, tmp2, tmp, Assembler::LSL, 1);
4669 br(tmp2);
4670
4671 bind(small_loop);
4672 add(base, base, unroll * 16);
4673 for (int i = -unroll; i < 0; i++)
4674 stp(zr, zr, Address(base, i * 16));
4675 bind(small_table_end);
4676 subs(cnt, cnt, unroll * 2);
4677 br(Assembler::GE, small_loop);
4678
4679 tbz(cnt, 0, done);
4680 str(zr, Address(post(base, 8)));
4681
4682 bind(done);
4683 }
4684
string_equals(Register str1,Register str2,Register cnt,Register result,Register tmp1)4685 void MacroAssembler::string_equals(Register str1, Register str2,
4686 Register cnt, Register result,
4687 Register tmp1) {
4688 Label SAME_CHARS, DONE, SHORT_LOOP, SHORT_STRING,
4689 NEXT_WORD;
4690
4691 const Register tmp2 = rscratch1;
4692 assert_different_registers(str1, str2, cnt, result, tmp1, tmp2, rscratch2);
4693
4694 BLOCK_COMMENT("string_equals {");
4695
4696 // Start by assuming that the strings are not equal.
4697 mov(result, zr);
4698
4699 // A very short string
4700 cmpw(cnt, 4);
4701 br(Assembler::LT, SHORT_STRING);
4702
4703 // Check if the strings start at the same location.
4704 cmp(str1, str2);
4705 br(Assembler::EQ, SAME_CHARS);
4706
4707 // Compare longwords
4708 {
4709 subw(cnt, cnt, 4); // The last longword is a special case
4710
4711 // Move both string pointers to the last longword of their
4712 // strings, negate the remaining count, and convert it to bytes.
4713 lea(str1, Address(str1, cnt, Address::uxtw(1)));
4714 lea(str2, Address(str2, cnt, Address::uxtw(1)));
4715 sub(cnt, zr, cnt, LSL, 1);
4716
4717 // Loop, loading longwords and comparing them into rscratch2.
4718 bind(NEXT_WORD);
4719 ldr(tmp1, Address(str1, cnt));
4720 ldr(tmp2, Address(str2, cnt));
4721 adds(cnt, cnt, wordSize);
4722 eor(rscratch2, tmp1, tmp2);
4723 cbnz(rscratch2, DONE);
4724 br(Assembler::LT, NEXT_WORD);
4725
4726 // Last longword. In the case where length == 4 we compare the
4727 // same longword twice, but that's still faster than another
4728 // conditional branch.
4729
4730 ldr(tmp1, Address(str1));
4731 ldr(tmp2, Address(str2));
4732 eor(rscratch2, tmp1, tmp2);
4733 cbz(rscratch2, SAME_CHARS);
4734 b(DONE);
4735 }
4736
4737 bind(SHORT_STRING);
4738 // Is the length zero?
4739 cbz(cnt, SAME_CHARS);
4740
4741 bind(SHORT_LOOP);
4742 load_unsigned_short(tmp1, Address(post(str1, 2)));
4743 load_unsigned_short(tmp2, Address(post(str2, 2)));
4744 subw(tmp1, tmp1, tmp2);
4745 cbnz(tmp1, DONE);
4746 sub(cnt, cnt, 1);
4747 cbnz(cnt, SHORT_LOOP);
4748
4749 // Strings are equal.
4750 bind(SAME_CHARS);
4751 mov(result, true);
4752
4753 // That's it
4754 bind(DONE);
4755
4756 BLOCK_COMMENT("} string_equals");
4757 }
4758
4759 // Compare char[] arrays aligned to 4 bytes
char_arrays_equals(Register ary1,Register ary2,Register result,Register tmp1)4760 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
4761 Register result, Register tmp1)
4762 {
4763 Register cnt1 = rscratch1;
4764 Register cnt2 = rscratch2;
4765 Register tmp2 = rscratch2;
4766
4767 Label SAME, DIFFER, NEXT, TAIL03, TAIL01;
4768
4769 int length_offset = arrayOopDesc::length_offset_in_bytes();
4770 int base_offset = arrayOopDesc::base_offset_in_bytes(T_CHAR);
4771
4772 BLOCK_COMMENT("char_arrays_equals {");
4773
4774 // different until proven equal
4775 mov(result, false);
4776
4777 // same array?
4778 cmp(ary1, ary2);
4779 br(Assembler::EQ, SAME);
4780
4781 // ne if either null
4782 cbz(ary1, DIFFER);
4783 cbz(ary2, DIFFER);
4784
4785 // lengths ne?
4786 ldrw(cnt1, Address(ary1, length_offset));
4787 ldrw(cnt2, Address(ary2, length_offset));
4788 cmp(cnt1, cnt2);
4789 br(Assembler::NE, DIFFER);
4790
4791 lea(ary1, Address(ary1, base_offset));
4792 lea(ary2, Address(ary2, base_offset));
4793
4794 subs(cnt1, cnt1, 4);
4795 br(LT, TAIL03);
4796
4797 BIND(NEXT);
4798 ldr(tmp1, Address(post(ary1, 8)));
4799 ldr(tmp2, Address(post(ary2, 8)));
4800 subs(cnt1, cnt1, 4);
4801 eor(tmp1, tmp1, tmp2);
4802 cbnz(tmp1, DIFFER);
4803 br(GE, NEXT);
4804
4805 BIND(TAIL03); // 0-3 chars left, cnt1 = #chars left - 4
4806 tst(cnt1, 0b10);
4807 br(EQ, TAIL01);
4808 ldrw(tmp1, Address(post(ary1, 4)));
4809 ldrw(tmp2, Address(post(ary2, 4)));
4810 cmp(tmp1, tmp2);
4811 br(NE, DIFFER);
4812 BIND(TAIL01); // 0-1 chars left
4813 tst(cnt1, 0b01);
4814 br(EQ, SAME);
4815 ldrh(tmp1, ary1);
4816 ldrh(tmp2, ary2);
4817 cmp(tmp1, tmp2);
4818 br(NE, DIFFER);
4819
4820 BIND(SAME);
4821 mov(result, true);
4822 BIND(DIFFER); // result already set
4823
4824 BLOCK_COMMENT("} char_arrays_equals");
4825 }
4826
4827 // encode char[] to byte[] in ISO_8859_1
encode_iso_array(Register src,Register dst,Register len,Register result,FloatRegister Vtmp1,FloatRegister Vtmp2,FloatRegister Vtmp3,FloatRegister Vtmp4)4828 void MacroAssembler::encode_iso_array(Register src, Register dst,
4829 Register len, Register result,
4830 FloatRegister Vtmp1, FloatRegister Vtmp2,
4831 FloatRegister Vtmp3, FloatRegister Vtmp4)
4832 {
4833 Label DONE, NEXT_32, LOOP_8, NEXT_8, LOOP_1, NEXT_1;
4834 Register tmp1 = rscratch1;
4835
4836 mov(result, len); // Save initial len
4837
4838 subs(len, len, 32);
4839 br(LT, LOOP_8);
4840
4841 // The following code uses the SIMD 'uqxtn' and 'uqxtn2' instructions
4842 // to convert chars to bytes. These set the 'QC' bit in the FPSR if
4843 // any char could not fit in a byte, so clear the FPSR so we can test it.
4844 clear_fpsr();
4845
4846 BIND(NEXT_32);
4847 ld1(Vtmp1, Vtmp2, Vtmp3, Vtmp4, T8H, src);
4848 uqxtn(Vtmp1, T8B, Vtmp1, T8H); // uqxtn - write bottom half
4849 uqxtn(Vtmp1, T16B, Vtmp2, T8H); // uqxtn2 - write top half
4850 uqxtn(Vtmp2, T8B, Vtmp3, T8H);
4851 uqxtn(Vtmp2, T16B, Vtmp4, T8H); // uqxtn2
4852 get_fpsr(tmp1);
4853 cbnzw(tmp1, LOOP_8);
4854 st1(Vtmp1, Vtmp2, T16B, post(dst, 32));
4855 subs(len, len, 32);
4856 add(src, src, 64);
4857 br(GE, NEXT_32);
4858
4859 BIND(LOOP_8);
4860 adds(len, len, 32-8);
4861 br(LT, LOOP_1);
4862 clear_fpsr(); // QC may be set from loop above, clear again
4863 BIND(NEXT_8);
4864 ld1(Vtmp1, T8H, src);
4865 uqxtn(Vtmp1, T8B, Vtmp1, T8H);
4866 get_fpsr(tmp1);
4867 cbnzw(tmp1, LOOP_1);
4868 st1(Vtmp1, T8B, post(dst, 8));
4869 subs(len, len, 8);
4870 add(src, src, 16);
4871 br(GE, NEXT_8);
4872
4873 BIND(LOOP_1);
4874 adds(len, len, 8);
4875 br(LE, DONE);
4876
4877 BIND(NEXT_1);
4878 ldrh(tmp1, Address(post(src, 2)));
4879 tst(tmp1, 0xff00);
4880 br(NE, DONE);
4881 strb(tmp1, Address(post(dst, 1)));
4882 subs(len, len, 1);
4883 br(GT, NEXT_1);
4884
4885 BIND(DONE);
4886 sub(result, result, len); // Return index where we stopped
4887 }
4888