1 /*
2  * Copyright (c) 2007, 2016, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "asm/macroAssembler.hpp"
27 #include "interpreter/bytecodeHistogram.hpp"
28 #include "interpreter/cppInterpreter.hpp"
29 #include "interpreter/interpreter.hpp"
30 #include "interpreter/interpreterGenerator.hpp"
31 #include "interpreter/interpreterRuntime.hpp"
32 #include "oops/arrayOop.hpp"
33 #include "oops/methodData.hpp"
34 #include "oops/method.hpp"
35 #include "oops/oop.inline.hpp"
36 #include "prims/jvmtiExport.hpp"
37 #include "prims/jvmtiThreadState.hpp"
38 #include "runtime/arguments.hpp"
39 #include "runtime/deoptimization.hpp"
40 #include "runtime/frame.inline.hpp"
41 #include "runtime/interfaceSupport.hpp"
42 #include "runtime/sharedRuntime.hpp"
43 #include "runtime/stubRoutines.hpp"
44 #include "runtime/synchronizer.hpp"
45 #include "runtime/timer.hpp"
46 #include "runtime/vframeArray.hpp"
47 #include "utilities/debug.hpp"
48 #include "utilities/macros.hpp"
49 #ifdef SHARK
50 #include "shark/shark_globals.hpp"
51 #endif
52 
53 #ifdef CC_INTERP
54 
55 // Routine exists to make tracebacks look decent in debugger
56 // while we are recursed in the frame manager/c++ interpreter.
57 // We could use an address in the frame manager but having
58 // frames look natural in the debugger is a plus.
RecursiveInterpreterActivation(interpreterState istate)59 extern "C" void RecursiveInterpreterActivation(interpreterState istate )
60 {
61   //
62   ShouldNotReachHere();
63 }
64 
65 
66 #define __ _masm->
67 #define STATE(field_name) (Address(state, byte_offset_of(BytecodeInterpreter, field_name)))
68 
69 Label fast_accessor_slow_entry_path;  // fast accessor methods need to be able to jmp to unsynchronized
70                                       // c++ interpreter entry point this holds that entry point label.
71 
72 // default registers for state and sender_sp
73 // state and sender_sp are the same on 32bit because we have no choice.
74 // state could be rsi on 64bit but it is an arg reg and not callee save
75 // so r13 is better choice.
76 
77 const Register state = NOT_LP64(rsi) LP64_ONLY(r13);
78 const Register sender_sp_on_entry = NOT_LP64(rsi) LP64_ONLY(r13);
79 
80 // NEEDED for JVMTI?
81 // address AbstractInterpreter::_remove_activation_preserving_args_entry;
82 
83 static address unctrap_frame_manager_entry  = NULL;
84 
85 static address deopt_frame_manager_return_atos  = NULL;
86 static address deopt_frame_manager_return_btos  = NULL;
87 static address deopt_frame_manager_return_itos  = NULL;
88 static address deopt_frame_manager_return_ltos  = NULL;
89 static address deopt_frame_manager_return_ftos  = NULL;
90 static address deopt_frame_manager_return_dtos  = NULL;
91 static address deopt_frame_manager_return_vtos  = NULL;
92 
BasicType_as_index(BasicType type)93 int AbstractInterpreter::BasicType_as_index(BasicType type) {
94   int i = 0;
95   switch (type) {
96     case T_BOOLEAN: i = 0; break;
97     case T_CHAR   : i = 1; break;
98     case T_BYTE   : i = 2; break;
99     case T_SHORT  : i = 3; break;
100     case T_INT    : i = 4; break;
101     case T_VOID   : i = 5; break;
102     case T_FLOAT  : i = 8; break;
103     case T_LONG   : i = 9; break;
104     case T_DOUBLE : i = 6; break;
105     case T_OBJECT : // fall through
106     case T_ARRAY  : i = 7; break;
107     default       : ShouldNotReachHere();
108   }
109   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
110   return i;
111 }
112 
113 // Is this pc anywhere within code owned by the interpreter?
114 // This only works for pc that might possibly be exposed to frame
115 // walkers. It clearly misses all of the actual c++ interpreter
116 // implementation
contains(address pc)117 bool CppInterpreter::contains(address pc)            {
118     return (_code->contains(pc) ||
119             pc == CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
120 }
121 
122 
generate_result_handler_for(BasicType type)123 address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
124   address entry = __ pc();
125   switch (type) {
126     case T_BOOLEAN: __ c2bool(rax);            break;
127     case T_CHAR   : __ andl(rax, 0xFFFF);      break;
128     case T_BYTE   : __ sign_extend_byte (rax); break;
129     case T_SHORT  : __ sign_extend_short(rax); break;
130     case T_VOID   : // fall thru
131     case T_LONG   : // fall thru
132     case T_INT    : /* nothing to do */        break;
133 
134     case T_DOUBLE :
135     case T_FLOAT  :
136       {
137         const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
138         __ pop(t);                            // remove return address first
139         // Must return a result for interpreter or compiler. In SSE
140         // mode, results are returned in xmm0 and the FPU stack must
141         // be empty.
142         if (type == T_FLOAT && UseSSE >= 1) {
143 #ifndef _LP64
144           // Load ST0
145           __ fld_d(Address(rsp, 0));
146           // Store as float and empty fpu stack
147           __ fstp_s(Address(rsp, 0));
148 #endif // !_LP64
149           // and reload
150           __ movflt(xmm0, Address(rsp, 0));
151         } else if (type == T_DOUBLE && UseSSE >= 2 ) {
152           __ movdbl(xmm0, Address(rsp, 0));
153         } else {
154           // restore ST0
155           __ fld_d(Address(rsp, 0));
156         }
157         // and pop the temp
158         __ addptr(rsp, 2 * wordSize);
159         __ push(t);                            // restore return address
160       }
161       break;
162     case T_OBJECT :
163       // retrieve result from frame
164       __ movptr(rax, STATE(_oop_temp));
165       // and verify it
166       __ verify_oop(rax);
167       break;
168     default       : ShouldNotReachHere();
169   }
170   __ ret(0);                                   // return from result handler
171   return entry;
172 }
173 
174 // tosca based result to c++ interpreter stack based result.
175 // Result goes to top of native stack.
176 
177 #undef EXTEND  // SHOULD NOT BE NEEDED
generate_tosca_to_stack_converter(BasicType type)178 address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
179   // A result is in the tosca (abi result) from either a native method call or compiled
180   // code. Place this result on the java expression stack so C++ interpreter can use it.
181   address entry = __ pc();
182 
183   const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
184   __ pop(t);                            // remove return address first
185   switch (type) {
186     case T_VOID:
187        break;
188     case T_BOOLEAN:
189 #ifdef EXTEND
190       __ c2bool(rax);
191 #endif
192       __ push(rax);
193       break;
194     case T_CHAR   :
195 #ifdef EXTEND
196       __ andl(rax, 0xFFFF);
197 #endif
198       __ push(rax);
199       break;
200     case T_BYTE   :
201 #ifdef EXTEND
202       __ sign_extend_byte (rax);
203 #endif
204       __ push(rax);
205       break;
206     case T_SHORT  :
207 #ifdef EXTEND
208       __ sign_extend_short(rax);
209 #endif
210       __ push(rax);
211       break;
212     case T_LONG    :
213       __ push(rdx);                             // pushes useless junk on 64bit
214       __ push(rax);
215       break;
216     case T_INT    :
217       __ push(rax);
218       break;
219     case T_FLOAT  :
220       // Result is in ST(0)/xmm0
221       __ subptr(rsp, wordSize);
222       if ( UseSSE < 1) {
223         __ fstp_s(Address(rsp, 0));
224       } else {
225         __ movflt(Address(rsp, 0), xmm0);
226       }
227       break;
228     case T_DOUBLE  :
229       __ subptr(rsp, 2*wordSize);
230       if ( UseSSE < 2 ) {
231         __ fstp_d(Address(rsp, 0));
232       } else {
233         __ movdbl(Address(rsp, 0), xmm0);
234       }
235       break;
236     case T_OBJECT :
237       __ verify_oop(rax);                      // verify it
238       __ push(rax);
239       break;
240     default       : ShouldNotReachHere();
241   }
242   __ jmp(t);                                   // return from result handler
243   return entry;
244 }
245 
generate_stack_to_stack_converter(BasicType type)246 address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
247   // A result is in the java expression stack of the interpreted method that has just
248   // returned. Place this result on the java expression stack of the caller.
249   //
250   // The current interpreter activation in rsi/r13 is for the method just returning its
251   // result. So we know that the result of this method is on the top of the current
252   // execution stack (which is pre-pushed) and will be return to the top of the caller
253   // stack. The top of the callers stack is the bottom of the locals of the current
254   // activation.
255   // Because of the way activation are managed by the frame manager the value of rsp is
256   // below both the stack top of the current activation and naturally the stack top
257   // of the calling activation. This enable this routine to leave the return address
258   // to the frame manager on the stack and do a vanilla return.
259   //
260   // On entry: rsi/r13 - interpreter state of activation returning a (potential) result
261   // On Return: rsi/r13 - unchanged
262   //            rax - new stack top for caller activation (i.e. activation in _prev_link)
263   //
264   // Can destroy rdx, rcx.
265   //
266 
267   address entry = __ pc();
268   const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
269   switch (type) {
270     case T_VOID:
271       __ movptr(rax, STATE(_locals));                                   // pop parameters get new stack value
272       __ addptr(rax, wordSize);                                         // account for prepush before we return
273       break;
274     case T_FLOAT  :
275     case T_BOOLEAN:
276     case T_CHAR   :
277     case T_BYTE   :
278     case T_SHORT  :
279     case T_INT    :
280       // 1 word result
281       __ movptr(rdx, STATE(_stack));
282       __ movptr(rax, STATE(_locals));                                   // address for result
283       __ movl(rdx, Address(rdx, wordSize));                             // get result
284       __ movptr(Address(rax, 0), rdx);                                  // and store it
285       break;
286     case T_LONG    :
287     case T_DOUBLE  :
288       // return top two words on current expression stack to caller's expression stack
289       // The caller's expression stack is adjacent to the current frame manager's intepretState
290       // except we allocated one extra word for this intepretState so we won't overwrite it
291       // when we return a two word result.
292 
293       __ movptr(rax, STATE(_locals));                                   // address for result
294       __ movptr(rcx, STATE(_stack));
295       __ subptr(rax, wordSize);                                         // need addition word besides locals[0]
296       __ movptr(rdx, Address(rcx, 2*wordSize));                         // get result word (junk in 64bit)
297       __ movptr(Address(rax, wordSize), rdx);                           // and store it
298       __ movptr(rdx, Address(rcx, wordSize));                           // get result word
299       __ movptr(Address(rax, 0), rdx);                                  // and store it
300       break;
301     case T_OBJECT :
302       __ movptr(rdx, STATE(_stack));
303       __ movptr(rax, STATE(_locals));                                   // address for result
304       __ movptr(rdx, Address(rdx, wordSize));                           // get result
305       __ verify_oop(rdx);                                               // verify it
306       __ movptr(Address(rax, 0), rdx);                                  // and store it
307       break;
308     default       : ShouldNotReachHere();
309   }
310   __ ret(0);
311   return entry;
312 }
313 
generate_stack_to_native_abi_converter(BasicType type)314 address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
315   // A result is in the java expression stack of the interpreted method that has just
316   // returned. Place this result in the native abi that the caller expects.
317   //
318   // Similar to generate_stack_to_stack_converter above. Called at a similar time from the
319   // frame manager execept in this situation the caller is native code (c1/c2/call_stub)
320   // and so rather than return result onto caller's java expression stack we return the
321   // result in the expected location based on the native abi.
322   // On entry: rsi/r13 - interpreter state of activation returning a (potential) result
323   // On Return: rsi/r13 - unchanged
324   // Other registers changed [rax/rdx/ST(0) as needed for the result returned]
325 
326   address entry = __ pc();
327   switch (type) {
328     case T_VOID:
329        break;
330     case T_BOOLEAN:
331     case T_CHAR   :
332     case T_BYTE   :
333     case T_SHORT  :
334     case T_INT    :
335       __ movptr(rdx, STATE(_stack));                                    // get top of stack
336       __ movl(rax, Address(rdx, wordSize));                             // get result word 1
337       break;
338     case T_LONG    :
339       __ movptr(rdx, STATE(_stack));                                    // get top of stack
340       __ movptr(rax, Address(rdx, wordSize));                           // get result low word
341       NOT_LP64(__ movl(rdx, Address(rdx, 2*wordSize));)                 // get result high word
342       break;
343     case T_FLOAT  :
344       __ movptr(rdx, STATE(_stack));                                    // get top of stack
345       if ( UseSSE >= 1) {
346         __ movflt(xmm0, Address(rdx, wordSize));
347       } else {
348         __ fld_s(Address(rdx, wordSize));                               // pushd float result
349       }
350       break;
351     case T_DOUBLE  :
352       __ movptr(rdx, STATE(_stack));                                    // get top of stack
353       if ( UseSSE > 1) {
354         __ movdbl(xmm0, Address(rdx, wordSize));
355       } else {
356         __ fld_d(Address(rdx, wordSize));                               // push double result
357       }
358       break;
359     case T_OBJECT :
360       __ movptr(rdx, STATE(_stack));                                    // get top of stack
361       __ movptr(rax, Address(rdx, wordSize));                           // get result word 1
362       __ verify_oop(rax);                                               // verify it
363       break;
364     default       : ShouldNotReachHere();
365   }
366   __ ret(0);
367   return entry;
368 }
369 
return_entry(TosState state,int length,Bytecodes::Code code)370 address CppInterpreter::return_entry(TosState state, int length, Bytecodes::Code code) {
371   // make it look good in the debugger
372   return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation);
373 }
374 
deopt_entry(TosState state,int length)375 address CppInterpreter::deopt_entry(TosState state, int length) {
376   address ret = NULL;
377   if (length != 0) {
378     switch (state) {
379       case atos: ret = deopt_frame_manager_return_atos; break;
380       case btos: ret = deopt_frame_manager_return_btos; break;
381       case ctos:
382       case stos:
383       case itos: ret = deopt_frame_manager_return_itos; break;
384       case ltos: ret = deopt_frame_manager_return_ltos; break;
385       case ftos: ret = deopt_frame_manager_return_ftos; break;
386       case dtos: ret = deopt_frame_manager_return_dtos; break;
387       case vtos: ret = deopt_frame_manager_return_vtos; break;
388     }
389   } else {
390     ret = unctrap_frame_manager_entry;  // re-execute the bytecode ( e.g. uncommon trap)
391   }
392   assert(ret != NULL, "Not initialized");
393   return ret;
394 }
395 
396 // C++ Interpreter
generate_compute_interpreter_state(const Register state,const Register locals,const Register sender_sp,bool native)397 void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
398                                                                  const Register locals,
399                                                                  const Register sender_sp,
400                                                                  bool native) {
401 
402   // On entry the "locals" argument points to locals[0] (or where it would be in case no locals in
403   // a static method). "state" contains any previous frame manager state which we must save a link
404   // to in the newly generated state object. On return "state" is a pointer to the newly allocated
405   // state object. We must allocate and initialize a new interpretState object and the method
406   // expression stack. Because the returned result (if any) of the method will be placed on the caller's
407   // expression stack and this will overlap with locals[0] (and locals[1] if double/long) we must
408   // be sure to leave space on the caller's stack so that this result will not overwrite values when
409   // locals[0] and locals[1] do not exist (and in fact are return address and saved rbp). So when
410   // we are non-native we in essence ensure that locals[0-1] exist. We play an extra trick in
411   // non-product builds and initialize this last local with the previous interpreterState as
412   // this makes things look real nice in the debugger.
413 
414   // State on entry
415   // Assumes locals == &locals[0]
416   // Assumes state == any previous frame manager state (assuming call path from c++ interpreter)
417   // Assumes rax = return address
418   // rcx == senders_sp
419   // rbx == method
420   // Modifies rcx, rdx, rax
421   // Returns:
422   // state == address of new interpreterState
423   // rsp == bottom of method's expression stack.
424 
425   const Address const_offset      (rbx, Method::const_offset());
426 
427 
428   // On entry sp is the sender's sp. This includes the space for the arguments
429   // that the sender pushed. If the sender pushed no args (a static) and the
430   // caller returns a long then we need two words on the sender's stack which
431   // are not present (although when we return a restore full size stack the
432   // space will be present). If we didn't allocate two words here then when
433   // we "push" the result of the caller's stack we would overwrite the return
434   // address and the saved rbp. Not good. So simply allocate 2 words now
435   // just to be safe. This is the "static long no_params() method" issue.
436   // See Lo.java for a testcase.
437   // We don't need this for native calls because they return result in
438   // register and the stack is expanded in the caller before we store
439   // the results on the stack.
440 
441   if (!native) {
442 #ifdef PRODUCT
443     __ subptr(rsp, 2*wordSize);
444 #else /* PRODUCT */
445     __ push((int32_t)NULL_WORD);
446     __ push(state);                         // make it look like a real argument
447 #endif /* PRODUCT */
448   }
449 
450   // Now that we are assure of space for stack result, setup typical linkage
451 
452   __ push(rax);
453   __ enter();
454 
455   __ mov(rax, state);                                  // save current state
456 
457   __ lea(rsp, Address(rsp, -(int)sizeof(BytecodeInterpreter)));
458   __ mov(state, rsp);
459 
460   // rsi/r13 == state/locals rax == prevstate
461 
462   // initialize the "shadow" frame so that use since C++ interpreter not directly
463   // recursive. Simpler to recurse but we can't trim expression stack as we call
464   // new methods.
465   __ movptr(STATE(_locals), locals);                    // state->_locals = locals()
466   __ movptr(STATE(_self_link), state);                  // point to self
467   __ movptr(STATE(_prev_link), rax);                    // state->_link = state on entry (NULL or previous state)
468   __ movptr(STATE(_sender_sp), sender_sp);              // state->_sender_sp = sender_sp
469 #ifdef _LP64
470   __ movptr(STATE(_thread), r15_thread);                // state->_bcp = codes()
471 #else
472   __ get_thread(rax);                                   // get vm's javathread*
473   __ movptr(STATE(_thread), rax);                       // state->_bcp = codes()
474 #endif // _LP64
475   __ movptr(rdx, Address(rbx, Method::const_offset())); // get constantMethodOop
476   __ lea(rdx, Address(rdx, ConstMethod::codes_offset())); // get code base
477   if (native) {
478     __ movptr(STATE(_bcp), (int32_t)NULL_WORD);         // state->_bcp = NULL
479   } else {
480     __ movptr(STATE(_bcp), rdx);                        // state->_bcp = codes()
481   }
482   __ xorptr(rdx, rdx);
483   __ movptr(STATE(_oop_temp), rdx);                     // state->_oop_temp = NULL (only really needed for native)
484   __ movptr(STATE(_mdx), rdx);                          // state->_mdx = NULL
485   __ movptr(rdx, Address(rbx, Method::const_offset()));
486   __ movptr(rdx, Address(rdx, ConstMethod::constants_offset()));
487   __ movptr(rdx, Address(rdx, ConstantPool::cache_offset_in_bytes()));
488   __ movptr(STATE(_constants), rdx);                    // state->_constants = constants()
489 
490   __ movptr(STATE(_method), rbx);                       // state->_method = method()
491   __ movl(STATE(_msg), (int32_t) BytecodeInterpreter::method_entry);   // state->_msg = initial method entry
492   __ movptr(STATE(_result._to_call._callee), (int32_t) NULL_WORD); // state->_result._to_call._callee_callee = NULL
493 
494 
495   __ movptr(STATE(_monitor_base), rsp);                 // set monitor block bottom (grows down) this would point to entry [0]
496                                                         // entries run from -1..x where &monitor[x] ==
497 
498   {
499     // Must not attempt to lock method until we enter interpreter as gc won't be able to find the
500     // initial frame. However we allocate a free monitor so we don't have to shuffle the expression stack
501     // immediately.
502 
503     // synchronize method
504     const Address access_flags      (rbx, Method::access_flags_offset());
505     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
506     Label not_synced;
507 
508     __ movl(rax, access_flags);
509     __ testl(rax, JVM_ACC_SYNCHRONIZED);
510     __ jcc(Assembler::zero, not_synced);
511 
512     // Allocate initial monitor and pre initialize it
513     // get synchronization object
514 
515     Label done;
516     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
517     __ movl(rax, access_flags);
518     __ testl(rax, JVM_ACC_STATIC);
519     __ movptr(rax, Address(locals, 0));                   // get receiver (assume this is frequent case)
520     __ jcc(Assembler::zero, done);
521     __ movptr(rax, Address(rbx, Method::const_offset()));
522     __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
523     __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes()));
524     __ movptr(rax, Address(rax, mirror_offset));
525     __ bind(done);
526     // add space for monitor & lock
527     __ subptr(rsp, entry_size);                                           // add space for a monitor entry
528     __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
529     __ bind(not_synced);
530   }
531 
532   __ movptr(STATE(_stack_base), rsp);                                     // set expression stack base ( == &monitors[-count])
533   if (native) {
534     __ movptr(STATE(_stack), rsp);                                        // set current expression stack tos
535     __ movptr(STATE(_stack_limit), rsp);
536   } else {
537     __ subptr(rsp, wordSize);                                             // pre-push stack
538     __ movptr(STATE(_stack), rsp);                                        // set current expression stack tos
539 
540     // compute full expression stack limit
541 
542     __ movptr(rdx, Address(rbx, Method::const_offset()));
543     __ load_unsigned_short(rdx, Address(rdx, ConstMethod::max_stack_offset())); // get size of expression stack in words
544     __ negptr(rdx);                                                       // so we can subtract in next step
545     // Allocate expression stack
546     __ lea(rsp, Address(rsp, rdx, Address::times_ptr, -Method::extra_stack_words()));
547     __ movptr(STATE(_stack_limit), rsp);
548   }
549 
550 #ifdef _LP64
551   // Make sure stack is properly aligned and sized for the abi
552   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
553   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
554 #endif // _LP64
555 
556 
557 
558 }
559 
560 // Helpers for commoning out cases in the various type of method entries.
561 //
562 
563 // increment invocation count & check for overflow
564 //
565 // Note: checking for negative value instead of overflow
566 //       so we have a 'sticky' overflow test
567 //
568 // rbx,: method
569 // rcx: invocation counter
570 //
generate_counter_incr(Label * overflow,Label * profile_method,Label * profile_method_continue)571 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
572   Label done;
573   const Address invocation_counter(rax,
574                 MethodCounters::invocation_counter_offset() +
575                 InvocationCounter::counter_offset());
576   const Address backedge_counter  (rax,
577                 MethodCounter::backedge_counter_offset() +
578                 InvocationCounter::counter_offset());
579 
580   __ get_method_counters(rbx, rax, done);
581 
582   if (ProfileInterpreter) {
583     __ incrementl(Address(rax,
584             MethodCounters::interpreter_invocation_counter_offset()));
585   }
586   // Update standard invocation counters
587   __ movl(rcx, invocation_counter);
588   __ increment(rcx, InvocationCounter::count_increment);
589   __ movl(invocation_counter, rcx);             // save invocation count
590 
591   __ movl(rax, backedge_counter);               // load backedge counter
592   __ andl(rax, InvocationCounter::count_mask_value);  // mask out the status bits
593 
594   __ addl(rcx, rax);                            // add both counters
595 
596   // profile_method is non-null only for interpreted method so
597   // profile_method != NULL == !native_call
598   // BytecodeInterpreter only calls for native so code is elided.
599 
600   __ cmp32(rcx,
601            ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
602   __ jcc(Assembler::aboveEqual, *overflow);
603   __ bind(done);
604 }
605 
generate_counter_overflow(Label * do_continue)606 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
607 
608   // C++ interpreter on entry
609   // rsi/r13 - new interpreter state pointer
610   // rbp - interpreter frame pointer
611   // rbx - method
612 
613   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
614   // rbx, - method
615   // rcx - rcvr (assuming there is one)
616   // top of stack return address of interpreter caller
617   // rsp - sender_sp
618 
619   // C++ interpreter only
620   // rsi/r13 - previous interpreter state pointer
621 
622   // InterpreterRuntime::frequency_counter_overflow takes one argument
623   // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
624   // The call returns the address of the verified entry point for the method or NULL
625   // if the compilation did not complete (either went background or bailed out).
626   __ movptr(rax, (int32_t)false);
627   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
628 
629   // for c++ interpreter can rsi really be munged?
630   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));                               // restore state
631   __ movptr(rbx, Address(state, byte_offset_of(BytecodeInterpreter, _method)));            // restore method
632   __ movptr(rdi, Address(state, byte_offset_of(BytecodeInterpreter, _locals)));            // get locals pointer
633 
634   __ jmp(*do_continue, relocInfo::none);
635 
636 }
637 
generate_stack_overflow_check(void)638 void InterpreterGenerator::generate_stack_overflow_check(void) {
639   // see if we've got enough room on the stack for locals plus overhead.
640   // the expression stack grows down incrementally, so the normal guard
641   // page mechanism will work for that.
642   //
643   // Registers live on entry:
644   //
645   // Asm interpreter
646   // rdx: number of additional locals this frame needs (what we must check)
647   // rbx,: Method*
648 
649   // C++ Interpreter
650   // rsi/r13: previous interpreter frame state object
651   // rdi: &locals[0]
652   // rcx: # of locals
653   // rdx: number of additional locals this frame needs (what we must check)
654   // rbx: Method*
655 
656   // destroyed on exit
657   // rax,
658 
659   // NOTE:  since the additional locals are also always pushed (wasn't obvious in
660   // generate_method_entry) so the guard should work for them too.
661   //
662 
663   // monitor entry size: see picture of stack set (generate_method_entry) and frame_i486.hpp
664   const int entry_size    = frame::interpreter_frame_monitor_size() * wordSize;
665 
666   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
667   // be sure to change this if you add/subtract anything to/from the overhead area
668   const int overhead_size = (int)sizeof(BytecodeInterpreter);
669 
670   const int page_size = os::vm_page_size();
671 
672   Label after_frame_check;
673 
674   // compute rsp as if this were going to be the last frame on
675   // the stack before the red zone
676 
677   Label after_frame_check_pop;
678 
679   // save rsi == caller's bytecode ptr (c++ previous interp. state)
680   // QQQ problem here?? rsi overload????
681   __ push(state);
682 
683   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rsi);
684 
685   NOT_LP64(__ get_thread(thread));
686 
687   const Address stack_base(thread, Thread::stack_base_offset());
688   const Address stack_size(thread, Thread::stack_size_offset());
689 
690   // locals + overhead, in bytes
691   // Always give one monitor to allow us to start interp if sync method.
692   // Any additional monitors need a check when moving the expression stack
693   const int one_monitor = frame::interpreter_frame_monitor_size() * wordSize;
694   __ movptr(rax, Address(rbx, Method::const_offset()));
695   __ load_unsigned_short(rax, Address(rax, ConstMethod::max_stack_offset())); // get size of expression stack in words
696   __ lea(rax, Address(noreg, rax, Interpreter::stackElementScale(), one_monitor+Method::extra_stack_words()));
697   __ lea(rax, Address(rax, rdx, Interpreter::stackElementScale(), overhead_size));
698 
699 #ifdef ASSERT
700   Label stack_base_okay, stack_size_okay;
701   // verify that thread stack base is non-zero
702   __ cmpptr(stack_base, (int32_t)0);
703   __ jcc(Assembler::notEqual, stack_base_okay);
704   __ stop("stack base is zero");
705   __ bind(stack_base_okay);
706   // verify that thread stack size is non-zero
707   __ cmpptr(stack_size, (int32_t)0);
708   __ jcc(Assembler::notEqual, stack_size_okay);
709   __ stop("stack size is zero");
710   __ bind(stack_size_okay);
711 #endif
712 
713   // Add stack base to locals and subtract stack size
714   __ addptr(rax, stack_base);
715   __ subptr(rax, stack_size);
716 
717   // We should have a magic number here for the size of the c++ interpreter frame.
718   // We can't actually tell this ahead of time. The debug version size is around 3k
719   // product is 1k and fastdebug is 4k
720   const int slop = 6 * K;
721 
722   // Use the maximum number of pages we might bang.
723   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
724                                                                               (StackRedPages+StackYellowPages);
725   // Only need this if we are stack banging which is temporary while
726   // we're debugging.
727   __ addptr(rax, slop + 2*max_pages * page_size);
728 
729   // check against the current stack bottom
730   __ cmpptr(rsp, rax);
731   __ jcc(Assembler::above, after_frame_check_pop);
732 
733   __ pop(state);  //  get c++ prev state.
734 
735      // throw exception return address becomes throwing pc
736   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
737 
738   // all done with frame size check
739   __ bind(after_frame_check_pop);
740   __ pop(state);
741 
742   __ bind(after_frame_check);
743 }
744 
745 // Find preallocated  monitor and lock method (C++ interpreter)
746 // rbx - Method*
747 //
lock_method(void)748 void InterpreterGenerator::lock_method(void) {
749   // assumes state == rsi/r13 == pointer to current interpreterState
750   // minimally destroys rax, rdx|c_rarg1, rdi
751   //
752   // synchronize method
753   const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
754   const Address access_flags      (rbx, Method::access_flags_offset());
755 
756   const Register monitor  = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
757 
758   // find initial monitor i.e. monitors[-1]
759   __ movptr(monitor, STATE(_monitor_base));                                   // get monitor bottom limit
760   __ subptr(monitor, entry_size);                                             // point to initial monitor
761 
762 #ifdef ASSERT
763   { Label L;
764     __ movl(rax, access_flags);
765     __ testl(rax, JVM_ACC_SYNCHRONIZED);
766     __ jcc(Assembler::notZero, L);
767     __ stop("method doesn't need synchronization");
768     __ bind(L);
769   }
770 #endif // ASSERT
771   // get synchronization object
772   { Label done;
773     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
774     __ movl(rax, access_flags);
775     __ movptr(rdi, STATE(_locals));                                     // prepare to get receiver (assume common case)
776     __ testl(rax, JVM_ACC_STATIC);
777     __ movptr(rax, Address(rdi, 0));                                    // get receiver (assume this is frequent case)
778     __ jcc(Assembler::zero, done);
779     __ movptr(rax, Address(rbx, Method::const_offset()));
780     __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
781     __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes()));
782     __ movptr(rax, Address(rax, mirror_offset));
783     __ bind(done);
784   }
785 #ifdef ASSERT
786   { Label L;
787     __ cmpptr(rax, Address(monitor, BasicObjectLock::obj_offset_in_bytes()));   // correct object?
788     __ jcc(Assembler::equal, L);
789     __ stop("wrong synchronization lobject");
790     __ bind(L);
791   }
792 #endif // ASSERT
793   // can destroy rax, rdx|c_rarg1, rcx, and (via call_VM) rdi!
794   __ lock_object(monitor);
795 }
796 
797 // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
798 
generate_accessor_entry(void)799 address InterpreterGenerator::generate_accessor_entry(void) {
800 
801   // rbx: Method*
802 
803   // rsi/r13: senderSP must preserved for slow path, set SP to it on fast path
804 
805   Label xreturn_path;
806 
807   // do fastpath for resolved accessor methods
808   if (UseFastAccessorMethods) {
809 
810     address entry_point = __ pc();
811 
812     Label slow_path;
813     // If we need a safepoint check, generate full interpreter entry.
814     ExternalAddress state(SafepointSynchronize::address_of_state());
815     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
816              SafepointSynchronize::_not_synchronized);
817 
818     __ jcc(Assembler::notEqual, slow_path);
819     // ASM/C++ Interpreter
820     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
821     // Note: We can only use this code if the getfield has been resolved
822     //       and if we don't have a null-pointer exception => check for
823     //       these conditions first and use slow path if necessary.
824     // rbx,: method
825     // rcx: receiver
826     __ movptr(rax, Address(rsp, wordSize));
827 
828     // check if local 0 != NULL and read field
829     __ testptr(rax, rax);
830     __ jcc(Assembler::zero, slow_path);
831 
832     // read first instruction word and extract bytecode @ 1 and index @ 2
833     __ movptr(rdx, Address(rbx, Method::const_offset()));
834     __ movptr(rdi, Address(rdx, ConstMethod::constants_offset()));
835     __ movl(rdx, Address(rdx, ConstMethod::codes_offset()));
836     // Shift codes right to get the index on the right.
837     // The bytecode fetched looks like <index><0xb4><0x2a>
838     __ shrl(rdx, 2*BitsPerByte);
839     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
840     __ movptr(rdi, Address(rdi, ConstantPool::cache_offset_in_bytes()));
841 
842     // rax,: local 0
843     // rbx,: method
844     // rcx: receiver - do not destroy since it is needed for slow path!
845     // rcx: scratch
846     // rdx: constant pool cache index
847     // rdi: constant pool cache
848     // rsi/r13: sender sp
849 
850     // check if getfield has been resolved and read constant pool cache entry
851     // check the validity of the cache entry by testing whether _indices field
852     // contains Bytecode::_getfield in b1 byte.
853     assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
854     __ movl(rcx,
855             Address(rdi,
856                     rdx,
857                     Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
858     __ shrl(rcx, 2*BitsPerByte);
859     __ andl(rcx, 0xFF);
860     __ cmpl(rcx, Bytecodes::_getfield);
861     __ jcc(Assembler::notEqual, slow_path);
862 
863     // Note: constant pool entry is not valid before bytecode is resolved
864     __ movptr(rcx,
865             Address(rdi,
866                     rdx,
867                     Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()));
868     __ movl(rdx,
869             Address(rdi,
870                     rdx,
871                     Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
872 
873     Label notByte, notBool, notShort, notChar;
874     const Address field_address (rax, rcx, Address::times_1);
875 
876     // Need to differentiate between igetfield, agetfield, bgetfield etc.
877     // because they are different sizes.
878     // Use the type from the constant pool cache
879     __ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift);
880     // Make sure we don't need to mask rdx after the above shift
881     ConstantPoolCacheEntry::verify_tos_state_shift();
882 #ifdef _LP64
883     Label notObj;
884     __ cmpl(rdx, atos);
885     __ jcc(Assembler::notEqual, notObj);
886     // atos
887     __ movptr(rax, field_address);
888     __ jmp(xreturn_path);
889 
890     __ bind(notObj);
891 #endif // _LP64
892     __ cmpl(rdx, ztos);
893     __ jcc(Assembler::notEqual, notBool);
894     __ load_signed_byte(rax, field_address);
895     __ jmp(xreturn_path);
896 
897     __ cmpl(rdx, btos);
898     __ jcc(Assembler::notEqual, notByte);
899     __ load_signed_byte(rax, field_address);
900     __ jmp(xreturn_path);
901 
902     __ bind(notByte);
903     __ cmpl(rdx, stos);
904     __ jcc(Assembler::notEqual, notShort);
905     __ load_signed_short(rax, field_address);
906     __ jmp(xreturn_path);
907 
908     __ bind(notShort);
909     __ cmpl(rdx, ctos);
910     __ jcc(Assembler::notEqual, notChar);
911     __ load_unsigned_short(rax, field_address);
912     __ jmp(xreturn_path);
913 
914     __ bind(notChar);
915 #ifdef ASSERT
916     Label okay;
917 #ifndef _LP64
918     __ cmpl(rdx, atos);
919     __ jcc(Assembler::equal, okay);
920 #endif // _LP64
921     __ cmpl(rdx, itos);
922     __ jcc(Assembler::equal, okay);
923     __ stop("what type is this?");
924     __ bind(okay);
925 #endif // ASSERT
926     // All the rest are a 32 bit wordsize
927     __ movl(rax, field_address);
928 
929     __ bind(xreturn_path);
930 
931     // _ireturn/_areturn
932     __ pop(rdi);                               // get return address
933     __ mov(rsp, sender_sp_on_entry);           // set sp to sender sp
934     __ jmp(rdi);
935 
936     // generate a vanilla interpreter entry as the slow path
937     __ bind(slow_path);
938     // We will enter c++ interpreter looking like it was
939     // called by the call_stub this will cause it to return
940     // a tosca result to the invoker which might have been
941     // the c++ interpreter itself.
942 
943     __ jmp(fast_accessor_slow_entry_path);
944     return entry_point;
945 
946   } else {
947     return NULL;
948   }
949 
950 }
951 
generate_Reference_get_entry(void)952 address InterpreterGenerator::generate_Reference_get_entry(void) {
953 #if INCLUDE_ALL_GCS
954   if (UseG1GC) {
955     // We need to generate have a routine that generates code to:
956     //   * load the value in the referent field
957     //   * passes that value to the pre-barrier.
958     //
959     // In the case of G1 this will record the value of the
960     // referent in an SATB buffer if marking is active.
961     // This will cause concurrent marking to mark the referent
962     // field as live.
963     Unimplemented();
964   }
965 #endif // INCLUDE_ALL_GCS
966 
967   // If G1 is not enabled then attempt to go through the accessor entry point
968   // Reference.get is an accessor
969   return generate_accessor_entry();
970 }
971 
972 //
973 // C++ Interpreter stub for calling a native method.
974 // This sets up a somewhat different looking stack for calling the native method
975 // than the typical interpreter frame setup but still has the pointer to
976 // an interpreter state.
977 //
978 
generate_native_entry(bool synchronized)979 address InterpreterGenerator::generate_native_entry(bool synchronized) {
980   // determine code generation flags
981   bool inc_counter  = UseCompiler || CountCompiledCalls;
982 
983   // rbx: Method*
984   // rcx: receiver (unused)
985   // rsi/r13: previous interpreter state (if called from C++ interpreter) must preserve
986   //      in any case. If called via c1/c2/call_stub rsi/r13 is junk (to use) but harmless
987   //      to save/restore.
988   address entry_point = __ pc();
989 
990   const Address constMethod       (rbx, Method::const_offset());
991   const Address access_flags      (rbx, Method::access_flags_offset());
992   const Address size_of_parameters(rcx, ConstMethod::size_of_parameters_offset());
993 
994   // rsi/r13 == state/locals rdi == prevstate
995   const Register locals = rdi;
996 
997   // get parameter size (always needed)
998   __ movptr(rcx, constMethod);
999   __ load_unsigned_short(rcx, size_of_parameters);
1000 
1001   // rbx: Method*
1002   // rcx: size of parameters
1003   __ pop(rax);                                       // get return address
1004   // for natives the size of locals is zero
1005 
1006   // compute beginning of parameters /locals
1007 
1008   __ lea(locals, Address(rsp, rcx, Address::times_ptr, -wordSize));
1009 
1010   // initialize fixed part of activation frame
1011 
1012   // Assumes rax = return address
1013 
1014   // allocate and initialize new interpreterState and method expression stack
1015   // IN(locals) ->  locals
1016   // IN(state) -> previous frame manager state (NULL from stub/c1/c2)
1017   // destroys rax, rcx, rdx
1018   // OUT (state) -> new interpreterState
1019   // OUT(rsp) -> bottom of methods expression stack
1020 
1021   // save sender_sp
1022   __ mov(rcx, sender_sp_on_entry);
1023   // start with NULL previous state
1024   __ movptr(state, (int32_t)NULL_WORD);
1025   generate_compute_interpreter_state(state, locals, rcx, true);
1026 
1027 #ifdef ASSERT
1028   { Label L;
1029     __ movptr(rax, STATE(_stack_base));
1030 #ifdef _LP64
1031     // duplicate the alignment rsp got after setting stack_base
1032     __ subptr(rax, frame::arg_reg_save_area_bytes); // windows
1033     __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
1034 #endif // _LP64
1035     __ cmpptr(rax, rsp);
1036     __ jcc(Assembler::equal, L);
1037     __ stop("broken stack frame setup in interpreter");
1038     __ bind(L);
1039   }
1040 #endif
1041 
1042   const Register unlock_thread = LP64_ONLY(r15_thread) NOT_LP64(rax);
1043   NOT_LP64(__ movptr(unlock_thread, STATE(_thread));) // get thread
1044   // Since at this point in the method invocation the exception handler
1045   // would try to exit the monitor of synchronized methods which hasn't
1046   // been entered yet, we set the thread local variable
1047   // _do_not_unlock_if_synchronized to true. The remove_activation will
1048   // check this flag.
1049 
1050   const Address do_not_unlock_if_synchronized(unlock_thread,
1051         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1052   __ movbool(do_not_unlock_if_synchronized, true);
1053 
1054   // make sure method is native & not abstract
1055 #ifdef ASSERT
1056   __ movl(rax, access_flags);
1057   {
1058     Label L;
1059     __ testl(rax, JVM_ACC_NATIVE);
1060     __ jcc(Assembler::notZero, L);
1061     __ stop("tried to execute non-native method as native");
1062     __ bind(L);
1063   }
1064   { Label L;
1065     __ testl(rax, JVM_ACC_ABSTRACT);
1066     __ jcc(Assembler::zero, L);
1067     __ stop("tried to execute abstract method in interpreter");
1068     __ bind(L);
1069   }
1070 #endif
1071 
1072 
1073   // increment invocation count & check for overflow
1074   Label invocation_counter_overflow;
1075   if (inc_counter) {
1076     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1077   }
1078 
1079   Label continue_after_compile;
1080 
1081   __ bind(continue_after_compile);
1082 
1083   bang_stack_shadow_pages(true);
1084 
1085   // reset the _do_not_unlock_if_synchronized flag
1086   NOT_LP64(__ movl(rax, STATE(_thread));)                       // get thread
1087   __ movbool(do_not_unlock_if_synchronized, false);
1088 
1089 
1090   // check for synchronized native methods
1091   //
1092   // Note: This must happen *after* invocation counter check, since
1093   //       when overflow happens, the method should not be locked.
1094   if (synchronized) {
1095     // potentially kills rax, rcx, rdx, rdi
1096     lock_method();
1097   } else {
1098     // no synchronization necessary
1099 #ifdef ASSERT
1100       { Label L;
1101         __ movl(rax, access_flags);
1102         __ testl(rax, JVM_ACC_SYNCHRONIZED);
1103         __ jcc(Assembler::zero, L);
1104         __ stop("method needs synchronization");
1105         __ bind(L);
1106       }
1107 #endif
1108   }
1109 
1110   // start execution
1111 
1112   // jvmti support
1113   __ notify_method_entry();
1114 
1115   // work registers
1116   const Register method = rbx;
1117   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rdi);
1118   const Register t      = InterpreterRuntime::SignatureHandlerGenerator::temp();    // rcx|rscratch1
1119   const Address constMethod       (method, Method::const_offset());
1120   const Address size_of_parameters(t, ConstMethod::size_of_parameters_offset());
1121 
1122   // allocate space for parameters
1123   __ movptr(method, STATE(_method));
1124   __ verify_method_ptr(method);
1125   __ movptr(t, constMethod);
1126   __ load_unsigned_short(t, size_of_parameters);
1127   __ shll(t, 2);
1128 #ifdef _LP64
1129   __ subptr(rsp, t);
1130   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1131   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
1132 #else
1133   __ addptr(t, 2*wordSize);     // allocate two more slots for JNIEnv and possible mirror
1134   __ subptr(rsp, t);
1135   __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
1136 #endif // _LP64
1137 
1138   // get signature handler
1139     Label pending_exception_present;
1140 
1141   { Label L;
1142     __ movptr(t, Address(method, Method::signature_handler_offset()));
1143     __ testptr(t, t);
1144     __ jcc(Assembler::notZero, L);
1145     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method, false);
1146     __ movptr(method, STATE(_method));
1147     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1148     __ jcc(Assembler::notEqual, pending_exception_present);
1149     __ verify_method_ptr(method);
1150     __ movptr(t, Address(method, Method::signature_handler_offset()));
1151     __ bind(L);
1152   }
1153 #ifdef ASSERT
1154   {
1155     Label L;
1156     __ push(t);
1157     __ get_thread(t);                                   // get vm's javathread*
1158     __ cmpptr(t, STATE(_thread));
1159     __ jcc(Assembler::equal, L);
1160     __ int3();
1161     __ bind(L);
1162     __ pop(t);
1163   }
1164 #endif //
1165 
1166   const Register from_ptr = InterpreterRuntime::SignatureHandlerGenerator::from();
1167   // call signature handler
1168   assert(InterpreterRuntime::SignatureHandlerGenerator::to  () == rsp, "adjust this code");
1169 
1170   // The generated handlers do not touch RBX (the method oop).
1171   // However, large signatures cannot be cached and are generated
1172   // each time here.  The slow-path generator will blow RBX
1173   // sometime, so we must reload it after the call.
1174   __ movptr(from_ptr, STATE(_locals));  // get the from pointer
1175   __ call(t);
1176   __ movptr(method, STATE(_method));
1177   __ verify_method_ptr(method);
1178 
1179   // result handler is in rax
1180   // set result handler
1181   __ movptr(STATE(_result_handler), rax);
1182 
1183 
1184   // get native function entry point
1185   { Label L;
1186     __ movptr(rax, Address(method, Method::native_function_offset()));
1187     __ testptr(rax, rax);
1188     __ jcc(Assembler::notZero, L);
1189     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
1190     __ movptr(method, STATE(_method));
1191     __ verify_method_ptr(method);
1192     __ movptr(rax, Address(method, Method::native_function_offset()));
1193     __ bind(L);
1194   }
1195 
1196   // pass mirror handle if static call
1197   { Label L;
1198     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
1199     __ movl(t, Address(method, Method::access_flags_offset()));
1200     __ testl(t, JVM_ACC_STATIC);
1201     __ jcc(Assembler::zero, L);
1202     // get mirror
1203     __ movptr(t, Address(method, Method:: const_offset()));
1204     __ movptr(t, Address(t, ConstMethod::constants_offset()));
1205     __ movptr(t, Address(t, ConstantPool::pool_holder_offset_in_bytes()));
1206     __ movptr(t, Address(t, mirror_offset));
1207     // copy mirror into activation object
1208     __ movptr(STATE(_oop_temp), t);
1209     // pass handle to mirror
1210 #ifdef _LP64
1211     __ lea(c_rarg1, STATE(_oop_temp));
1212 #else
1213     __ lea(t, STATE(_oop_temp));
1214     __ movptr(Address(rsp, wordSize), t);
1215 #endif // _LP64
1216     __ bind(L);
1217   }
1218 #ifdef ASSERT
1219   {
1220     Label L;
1221     __ push(t);
1222     __ get_thread(t);                                   // get vm's javathread*
1223     __ cmpptr(t, STATE(_thread));
1224     __ jcc(Assembler::equal, L);
1225     __ int3();
1226     __ bind(L);
1227     __ pop(t);
1228   }
1229 #endif //
1230 
1231   // pass JNIEnv
1232 #ifdef _LP64
1233   __ lea(c_rarg0, Address(thread, JavaThread::jni_environment_offset()));
1234 #else
1235   __ movptr(thread, STATE(_thread));          // get thread
1236   __ lea(t, Address(thread, JavaThread::jni_environment_offset()));
1237 
1238   __ movptr(Address(rsp, 0), t);
1239 #endif // _LP64
1240 
1241 #ifdef ASSERT
1242   {
1243     Label L;
1244     __ push(t);
1245     __ get_thread(t);                                   // get vm's javathread*
1246     __ cmpptr(t, STATE(_thread));
1247     __ jcc(Assembler::equal, L);
1248     __ int3();
1249     __ bind(L);
1250     __ pop(t);
1251   }
1252 #endif //
1253 
1254 #ifdef ASSERT
1255   { Label L;
1256     __ movl(t, Address(thread, JavaThread::thread_state_offset()));
1257     __ cmpl(t, _thread_in_Java);
1258     __ jcc(Assembler::equal, L);
1259     __ stop("Wrong thread state in native stub");
1260     __ bind(L);
1261   }
1262 #endif
1263 
1264   // Change state to native (we save the return address in the thread, since it might not
1265   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1266   // points into the right code segment. It does not have to be the correct return pc.
1267 
1268   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
1269 
1270   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
1271 
1272   __ call(rax);
1273 
1274   // result potentially in rdx:rax or ST0
1275   __ movptr(method, STATE(_method));
1276   NOT_LP64(__ movptr(thread, STATE(_thread));)                  // get thread
1277 
1278   // The potential result is in ST(0) & rdx:rax
1279   // With C++ interpreter we leave any possible result in ST(0) until we are in result handler and then
1280   // we do the appropriate stuff for returning the result. rdx:rax must always be saved because just about
1281   // anything we do here will destroy it, st(0) is only saved if we re-enter the vm where it would
1282   // be destroyed.
1283   // It is safe to do these pushes because state is _thread_in_native and return address will be found
1284   // via _last_native_pc and not via _last_jave_sp
1285 
1286     // Must save the value of ST(0)/xmm0 since it could be destroyed before we get to result handler
1287     { Label Lpush, Lskip;
1288       ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
1289       ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
1290       __ cmpptr(STATE(_result_handler), float_handler.addr());
1291       __ jcc(Assembler::equal, Lpush);
1292       __ cmpptr(STATE(_result_handler), double_handler.addr());
1293       __ jcc(Assembler::notEqual, Lskip);
1294       __ bind(Lpush);
1295       __ subptr(rsp, 2*wordSize);
1296       if ( UseSSE < 2 ) {
1297         __ fstp_d(Address(rsp, 0));
1298       } else {
1299         __ movdbl(Address(rsp, 0), xmm0);
1300       }
1301       __ bind(Lskip);
1302     }
1303 
1304   // save rax:rdx for potential use by result handler.
1305   __ push(rax);
1306 #ifndef _LP64
1307   __ push(rdx);
1308 #endif // _LP64
1309 
1310   // Verify or restore cpu control state after JNI call
1311   __ restore_cpu_control_state_after_jni();
1312 
1313   // change thread state
1314   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1315   if(os::is_MP()) {
1316     // Write serialization page so VM thread can do a pseudo remote membar.
1317     // We use the current thread pointer to calculate a thread specific
1318     // offset to write to within the page. This minimizes bus traffic
1319     // due to cache line collision.
1320     __ serialize_memory(thread, rcx);
1321   }
1322 
1323   // check for safepoint operation in progress and/or pending suspend requests
1324   { Label Continue;
1325 
1326     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
1327              SafepointSynchronize::_not_synchronized);
1328 
1329     // threads running native code and they are expected to self-suspend
1330     // when leaving the _thread_in_native state. We need to check for
1331     // pending suspend requests here.
1332     Label L;
1333     __ jcc(Assembler::notEqual, L);
1334     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
1335     __ jcc(Assembler::equal, Continue);
1336     __ bind(L);
1337 
1338     // Don't use call_VM as it will see a possible pending exception and forward it
1339     // and never return here preventing us from clearing _last_native_pc down below.
1340     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1341     // preserved and correspond to the bcp/locals pointers.
1342     //
1343 
1344     ((MacroAssembler*)_masm)->call_VM_leaf(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1345                           thread);
1346     __ increment(rsp, wordSize);
1347 
1348     __ movptr(method, STATE(_method));
1349     __ verify_method_ptr(method);
1350     __ movptr(thread, STATE(_thread));                       // get thread
1351 
1352     __ bind(Continue);
1353   }
1354 
1355   // change thread state
1356   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
1357 
1358   __ reset_last_Java_frame(thread, true, true);
1359 
1360   // reset handle block
1361   __ movptr(t, Address(thread, JavaThread::active_handles_offset()));
1362   __ movl(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
1363 
1364   // If result was an oop then unbox and save it in the frame
1365   { Label L;
1366     Label no_oop, store_result;
1367       ExternalAddress oop_handler(AbstractInterpreter::result_handler(T_OBJECT));
1368     __ cmpptr(STATE(_result_handler), oop_handler.addr());
1369     __ jcc(Assembler::notEqual, no_oop);
1370 #ifndef _LP64
1371     __ pop(rdx);
1372 #endif // _LP64
1373     __ pop(rax);
1374     __ testptr(rax, rax);
1375     __ jcc(Assembler::zero, store_result);
1376     // unbox
1377     __ movptr(rax, Address(rax, 0));
1378     __ bind(store_result);
1379     __ movptr(STATE(_oop_temp), rax);
1380     // keep stack depth as expected by pushing oop which will eventually be discarded
1381     __ push(rax);
1382 #ifndef _LP64
1383     __ push(rdx);
1384 #endif // _LP64
1385     __ bind(no_oop);
1386   }
1387 
1388   {
1389      Label no_reguard;
1390      __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
1391      __ jcc(Assembler::notEqual, no_reguard);
1392 
1393      __ pusha();
1394      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1395      __ popa();
1396 
1397      __ bind(no_reguard);
1398    }
1399 
1400 
1401   // QQQ Seems like for native methods we simply return and the caller will see the pending
1402   // exception and do the right thing. Certainly the interpreter will, don't know about
1403   // compiled methods.
1404   // Seems that the answer to above is no this is wrong. The old code would see the exception
1405   // and forward it before doing the unlocking and notifying jvmdi that method has exited.
1406   // This seems wrong need to investigate the spec.
1407 
1408   // handle exceptions (exception handling will handle unlocking!)
1409   { Label L;
1410     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1411     __ jcc(Assembler::zero, L);
1412     __ bind(pending_exception_present);
1413 
1414     // There are potential results on the stack (rax/rdx, ST(0)) we ignore these and simply
1415     // return and let caller deal with exception. This skips the unlocking here which
1416     // seems wrong but seems to be what asm interpreter did. Can't find this in the spec.
1417     // Note: must preverve method in rbx
1418     //
1419 
1420     // remove activation
1421 
1422     __ movptr(t, STATE(_sender_sp));
1423     __ leave();                                  // remove frame anchor
1424     __ pop(rdi);                                 // get return address
1425     __ movptr(state, STATE(_prev_link));         // get previous state for return
1426     __ mov(rsp, t);                              // set sp to sender sp
1427     __ push(rdi);                                // push throwing pc
1428     // The skips unlocking!! This seems to be what asm interpreter does but seems
1429     // very wrong. Not clear if this violates the spec.
1430     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1431     __ bind(L);
1432   }
1433 
1434   // do unlocking if necessary
1435   { Label L;
1436     __ movl(t, Address(method, Method::access_flags_offset()));
1437     __ testl(t, JVM_ACC_SYNCHRONIZED);
1438     __ jcc(Assembler::zero, L);
1439     // the code below should be shared with interpreter macro assembler implementation
1440     { Label unlock;
1441     const Register monitor = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
1442       // BasicObjectLock will be first in list, since this is a synchronized method. However, need
1443       // to check that the object has not been unlocked by an explicit monitorexit bytecode.
1444       __ movptr(monitor, STATE(_monitor_base));
1445       __ subptr(monitor, frame::interpreter_frame_monitor_size() * wordSize);  // address of initial monitor
1446 
1447       __ movptr(t, Address(monitor, BasicObjectLock::obj_offset_in_bytes()));
1448       __ testptr(t, t);
1449       __ jcc(Assembler::notZero, unlock);
1450 
1451       // Entry already unlocked, need to throw exception
1452       __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1453       __ should_not_reach_here();
1454 
1455       __ bind(unlock);
1456       __ unlock_object(monitor);
1457       // unlock can blow rbx so restore it for path that needs it below
1458       __ movptr(method, STATE(_method));
1459     }
1460     __ bind(L);
1461   }
1462 
1463   // jvmti support
1464   // Note: This must happen _after_ handling/throwing any exceptions since
1465   //       the exception handler code notifies the runtime of method exits
1466   //       too. If this happens before, method entry/exit notifications are
1467   //       not properly paired (was bug - gri 11/22/99).
1468   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1469 
1470   // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
1471 #ifndef _LP64
1472   __ pop(rdx);
1473 #endif // _LP64
1474   __ pop(rax);
1475   __ movptr(t, STATE(_result_handler));       // get result handler
1476   __ call(t);                                 // call result handler to convert to tosca form
1477 
1478   // remove activation
1479 
1480   __ movptr(t, STATE(_sender_sp));
1481 
1482   __ leave();                                  // remove frame anchor
1483   __ pop(rdi);                                 // get return address
1484   __ movptr(state, STATE(_prev_link));         // get previous state for return (if c++ interpreter was caller)
1485   __ mov(rsp, t);                              // set sp to sender sp
1486   __ jmp(rdi);
1487 
1488   // invocation counter overflow
1489   if (inc_counter) {
1490     // Handle overflow of counter and compile method
1491     __ bind(invocation_counter_overflow);
1492     generate_counter_overflow(&continue_after_compile);
1493   }
1494 
1495   return entry_point;
1496 }
1497 
1498 // Generate entries that will put a result type index into rcx
generate_deopt_handling()1499 void CppInterpreterGenerator::generate_deopt_handling() {
1500 
1501   Label return_from_deopt_common;
1502 
1503   // Generate entries that will put a result type index into rcx
1504   // deopt needs to jump to here to enter the interpreter (return a result)
1505   deopt_frame_manager_return_atos  = __ pc();
1506 
1507   // rax is live here
1508   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_OBJECT));    // Result stub address array index
1509   __ jmp(return_from_deopt_common);
1510 
1511 
1512   // deopt needs to jump to here to enter the interpreter (return a result)
1513   deopt_frame_manager_return_btos  = __ pc();
1514 
1515   // rax is live here
1516   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_BOOLEAN));    // Result stub address array index
1517   __ jmp(return_from_deopt_common);
1518 
1519   // deopt needs to jump to here to enter the interpreter (return a result)
1520   deopt_frame_manager_return_itos  = __ pc();
1521 
1522   // rax is live here
1523   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_INT));    // Result stub address array index
1524   __ jmp(return_from_deopt_common);
1525 
1526   // deopt needs to jump to here to enter the interpreter (return a result)
1527 
1528   deopt_frame_manager_return_ltos  = __ pc();
1529   // rax,rdx are live here
1530   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_LONG));    // Result stub address array index
1531   __ jmp(return_from_deopt_common);
1532 
1533   // deopt needs to jump to here to enter the interpreter (return a result)
1534 
1535   deopt_frame_manager_return_ftos  = __ pc();
1536   // st(0) is live here
1537   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT));    // Result stub address array index
1538   __ jmp(return_from_deopt_common);
1539 
1540   // deopt needs to jump to here to enter the interpreter (return a result)
1541   deopt_frame_manager_return_dtos  = __ pc();
1542 
1543   // st(0) is live here
1544   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE));    // Result stub address array index
1545   __ jmp(return_from_deopt_common);
1546 
1547   // deopt needs to jump to here to enter the interpreter (return a result)
1548   deopt_frame_manager_return_vtos  = __ pc();
1549 
1550   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_VOID));
1551 
1552   // Deopt return common
1553   // an index is present in rcx that lets us move any possible result being
1554   // return to the interpreter's stack
1555   //
1556   // Because we have a full sized interpreter frame on the youngest
1557   // activation the stack is pushed too deep to share the tosca to
1558   // stack converters directly. We shrink the stack to the desired
1559   // amount and then push result and then re-extend the stack.
1560   // We could have the code in size_activation layout a short
1561   // frame for the top activation but that would look different
1562   // than say sparc (which needs a full size activation because
1563   // the windows are in the way. Really it could be short? QQQ
1564   //
1565   __ bind(return_from_deopt_common);
1566 
1567   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
1568 
1569   // setup rsp so we can push the "result" as needed.
1570   __ movptr(rsp, STATE(_stack));                                   // trim stack (is prepushed)
1571   __ addptr(rsp, wordSize);                                        // undo prepush
1572 
1573   ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
1574   // Address index(noreg, rcx, Address::times_ptr);
1575   __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
1576   // __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
1577   __ call(rcx);                                                   // call result converter
1578 
1579   __ movl(STATE(_msg), (int)BytecodeInterpreter::deopt_resume);
1580   __ lea(rsp, Address(rsp, -wordSize));                            // prepush stack (result if any already present)
1581   __ movptr(STATE(_stack), rsp);                                   // inform interpreter of new stack depth (parameters removed,
1582                                                                    // result if any on stack already )
1583   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
1584 }
1585 
1586 // Generate the code to handle a more_monitors message from the c++ interpreter
generate_more_monitors()1587 void CppInterpreterGenerator::generate_more_monitors() {
1588 
1589 
1590   Label entry, loop;
1591   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
1592   // 1. compute new pointers                     // rsp: old expression stack top
1593   __ movptr(rdx, STATE(_stack_base));            // rdx: old expression stack bottom
1594   __ subptr(rsp, entry_size);                    // move expression stack top limit
1595   __ subptr(STATE(_stack), entry_size);          // update interpreter stack top
1596   __ subptr(STATE(_stack_limit), entry_size);    // inform interpreter
1597   __ subptr(rdx, entry_size);                    // move expression stack bottom
1598   __ movptr(STATE(_stack_base), rdx);            // inform interpreter
1599   __ movptr(rcx, STATE(_stack));                 // set start value for copy loop
1600   __ jmp(entry);
1601   // 2. move expression stack contents
1602   __ bind(loop);
1603   __ movptr(rbx, Address(rcx, entry_size));      // load expression stack word from old location
1604   __ movptr(Address(rcx, 0), rbx);               // and store it at new location
1605   __ addptr(rcx, wordSize);                      // advance to next word
1606   __ bind(entry);
1607   __ cmpptr(rcx, rdx);                           // check if bottom reached
1608   __ jcc(Assembler::notEqual, loop);             // if not at bottom then copy next word
1609   // now zero the slot so we can find it.
1610   __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
1611   __ movl(STATE(_msg), (int)BytecodeInterpreter::got_monitors);
1612 }
1613 
1614 
1615 // Initial entry to C++ interpreter from the call_stub.
1616 // This entry point is called the frame manager since it handles the generation
1617 // of interpreter activation frames via requests directly from the vm (via call_stub)
1618 // and via requests from the interpreter. The requests from the call_stub happen
1619 // directly thru the entry point. Requests from the interpreter happen via returning
1620 // from the interpreter and examining the message the interpreter has returned to
1621 // the frame manager. The frame manager can take the following requests:
1622 
1623 // NO_REQUEST - error, should never happen.
1624 // MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
1625 //                 allocate a new monitor.
1626 // CALL_METHOD - setup a new activation to call a new method. Very similar to what
1627 //               happens during entry during the entry via the call stub.
1628 // RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
1629 //
1630 // Arguments:
1631 //
1632 // rbx: Method*
1633 // rcx: receiver - unused (retrieved from stack as needed)
1634 // rsi/r13: previous frame manager state (NULL from the call_stub/c1/c2)
1635 //
1636 //
1637 // Stack layout at entry
1638 //
1639 // [ return address     ] <--- rsp
1640 // [ parameter n        ]
1641 //   ...
1642 // [ parameter 1        ]
1643 // [ expression stack   ]
1644 //
1645 //
1646 // We are free to blow any registers we like because the call_stub which brought us here
1647 // initially has preserved the callee save registers already.
1648 //
1649 //
1650 
1651 static address interpreter_frame_manager = NULL;
1652 
generate_normal_entry(bool synchronized)1653 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1654 
1655   // rbx: Method*
1656   // rsi/r13: sender sp
1657 
1658   // Because we redispatch "recursive" interpreter entries thru this same entry point
1659   // the "input" register usage is a little strange and not what you expect coming
1660   // from the call_stub. From the call stub rsi/rdi (current/previous) interpreter
1661   // state are NULL but on "recursive" dispatches they are what you'd expect.
1662   // rsi: current interpreter state (C++ interpreter) must preserve (null from call_stub/c1/c2)
1663 
1664 
1665   // A single frame manager is plenty as we don't specialize for synchronized. We could and
1666   // the code is pretty much ready. Would need to change the test below and for good measure
1667   // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
1668   // routines. Not clear this is worth it yet.
1669 
1670   if (interpreter_frame_manager) return interpreter_frame_manager;
1671 
1672   address entry_point = __ pc();
1673 
1674   // Fast accessor methods share this entry point.
1675   // This works because frame manager is in the same codelet
1676   if (UseFastAccessorMethods && !synchronized) __ bind(fast_accessor_slow_entry_path);
1677 
1678   Label dispatch_entry_2;
1679   __ movptr(rcx, sender_sp_on_entry);
1680   __ movptr(state, (int32_t)NULL_WORD);                              // no current activation
1681 
1682   __ jmp(dispatch_entry_2);
1683 
1684   const Register locals  = rdi;
1685 
1686   Label re_dispatch;
1687 
1688   __ bind(re_dispatch);
1689 
1690   // save sender sp (doesn't include return address
1691   __ lea(rcx, Address(rsp, wordSize));
1692 
1693   __ bind(dispatch_entry_2);
1694 
1695   // save sender sp
1696   __ push(rcx);
1697 
1698   const Address constMethod       (rbx, Method::const_offset());
1699   const Address access_flags      (rbx, Method::access_flags_offset());
1700   const Address size_of_parameters(rdx, ConstMethod::size_of_parameters_offset());
1701   const Address size_of_locals    (rdx, ConstMethod::size_of_locals_offset());
1702 
1703   // const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
1704   // const Address monitor_block_bot (rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
1705   // const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
1706 
1707   // get parameter size (always needed)
1708   __ movptr(rdx, constMethod);
1709   __ load_unsigned_short(rcx, size_of_parameters);
1710 
1711   // rbx: Method*
1712   // rcx: size of parameters
1713   __ load_unsigned_short(rdx, size_of_locals);                     // get size of locals in words
1714 
1715   __ subptr(rdx, rcx);                                             // rdx = no. of additional locals
1716 
1717   // see if we've got enough room on the stack for locals plus overhead.
1718   generate_stack_overflow_check();                                 // C++
1719 
1720   // c++ interpreter does not use stack banging or any implicit exceptions
1721   // leave for now to verify that check is proper.
1722   bang_stack_shadow_pages(false);
1723 
1724 
1725 
1726   // compute beginning of parameters (rdi)
1727   __ lea(locals, Address(rsp, rcx, Address::times_ptr, wordSize));
1728 
1729   // save sender's sp
1730   // __ movl(rcx, rsp);
1731 
1732   // get sender's sp
1733   __ pop(rcx);
1734 
1735   // get return address
1736   __ pop(rax);
1737 
1738   // rdx - # of additional locals
1739   // allocate space for locals
1740   // explicitly initialize locals
1741   {
1742     Label exit, loop;
1743     __ testl(rdx, rdx);                               // (32bit ok)
1744     __ jcc(Assembler::lessEqual, exit);               // do nothing if rdx <= 0
1745     __ bind(loop);
1746     __ push((int32_t)NULL_WORD);                      // initialize local variables
1747     __ decrement(rdx);                                // until everything initialized
1748     __ jcc(Assembler::greater, loop);
1749     __ bind(exit);
1750   }
1751 
1752 
1753   // Assumes rax = return address
1754 
1755   // allocate and initialize new interpreterState and method expression stack
1756   // IN(locals) ->  locals
1757   // IN(state) -> any current interpreter activation
1758   // destroys rax, rcx, rdx, rdi
1759   // OUT (state) -> new interpreterState
1760   // OUT(rsp) -> bottom of methods expression stack
1761 
1762   generate_compute_interpreter_state(state, locals, rcx, false);
1763 
1764   // Call interpreter
1765 
1766   Label call_interpreter;
1767   __ bind(call_interpreter);
1768 
1769   // c++ interpreter does not use stack banging or any implicit exceptions
1770   // leave for now to verify that check is proper.
1771   bang_stack_shadow_pages(false);
1772 
1773 
1774   // Call interpreter enter here if message is
1775   // set and we know stack size is valid
1776 
1777   Label call_interpreter_2;
1778 
1779   __ bind(call_interpreter_2);
1780 
1781   {
1782     const Register thread  = NOT_LP64(rcx) LP64_ONLY(r15_thread);
1783 
1784 #ifdef _LP64
1785     __ mov(c_rarg0, state);
1786 #else
1787     __ push(state);                                                 // push arg to interpreter
1788     __ movptr(thread, STATE(_thread));
1789 #endif // _LP64
1790 
1791     // We can setup the frame anchor with everything we want at this point
1792     // as we are thread_in_Java and no safepoints can occur until we go to
1793     // vm mode. We do have to clear flags on return from vm but that is it
1794     //
1795     __ movptr(Address(thread, JavaThread::last_Java_fp_offset()), rbp);
1796     __ movptr(Address(thread, JavaThread::last_Java_sp_offset()), rsp);
1797 
1798     // Call the interpreter
1799 
1800     RuntimeAddress normal(CAST_FROM_FN_PTR(address, BytecodeInterpreter::run));
1801     RuntimeAddress checking(CAST_FROM_FN_PTR(address, BytecodeInterpreter::runWithChecks));
1802 
1803     __ call(JvmtiExport::can_post_interpreter_events() ? checking : normal);
1804     NOT_LP64(__ pop(rax);)                                          // discard parameter to run
1805     //
1806     // state is preserved since it is callee saved
1807     //
1808 
1809     // reset_last_Java_frame
1810 
1811     NOT_LP64(__ movl(thread, STATE(_thread));)
1812     __ reset_last_Java_frame(thread, true, true);
1813   }
1814 
1815   // examine msg from interpreter to determine next action
1816 
1817   __ movl(rdx, STATE(_msg));                                       // Get new message
1818 
1819   Label call_method;
1820   Label return_from_interpreted_method;
1821   Label throw_exception;
1822   Label bad_msg;
1823   Label do_OSR;
1824 
1825   __ cmpl(rdx, (int32_t)BytecodeInterpreter::call_method);
1826   __ jcc(Assembler::equal, call_method);
1827   __ cmpl(rdx, (int32_t)BytecodeInterpreter::return_from_method);
1828   __ jcc(Assembler::equal, return_from_interpreted_method);
1829   __ cmpl(rdx, (int32_t)BytecodeInterpreter::do_osr);
1830   __ jcc(Assembler::equal, do_OSR);
1831   __ cmpl(rdx, (int32_t)BytecodeInterpreter::throwing_exception);
1832   __ jcc(Assembler::equal, throw_exception);
1833   __ cmpl(rdx, (int32_t)BytecodeInterpreter::more_monitors);
1834   __ jcc(Assembler::notEqual, bad_msg);
1835 
1836   // Allocate more monitor space, shuffle expression stack....
1837 
1838   generate_more_monitors();
1839 
1840   __ jmp(call_interpreter);
1841 
1842   // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
1843   unctrap_frame_manager_entry  = __ pc();
1844   //
1845   // Load the registers we need.
1846   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
1847   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
1848   __ jmp(call_interpreter_2);
1849 
1850 
1851 
1852   //=============================================================================
1853   // Returning from a compiled method into a deopted method. The bytecode at the
1854   // bcp has completed. The result of the bytecode is in the native abi (the tosca
1855   // for the template based interpreter). Any stack space that was used by the
1856   // bytecode that has completed has been removed (e.g. parameters for an invoke)
1857   // so all that we have to do is place any pending result on the expression stack
1858   // and resume execution on the next bytecode.
1859 
1860 
1861   generate_deopt_handling();
1862   __ jmp(call_interpreter);
1863 
1864 
1865   // Current frame has caught an exception we need to dispatch to the
1866   // handler. We can get here because a native interpreter frame caught
1867   // an exception in which case there is no handler and we must rethrow
1868   // If it is a vanilla interpreted frame the we simply drop into the
1869   // interpreter and let it do the lookup.
1870 
1871   Interpreter::_rethrow_exception_entry = __ pc();
1872   // rax: exception
1873   // rdx: return address/pc that threw exception
1874 
1875   Label return_with_exception;
1876   Label unwind_and_forward;
1877 
1878   // restore state pointer.
1879   __ lea(state, Address(rbp,  -(int)sizeof(BytecodeInterpreter)));
1880 
1881   __ movptr(rbx, STATE(_method));                       // get method
1882 #ifdef _LP64
1883   __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
1884 #else
1885   __ movl(rcx, STATE(_thread));                       // get thread
1886 
1887   // Store exception with interpreter will expect it
1888   __ movptr(Address(rcx, Thread::pending_exception_offset()), rax);
1889 #endif // _LP64
1890 
1891   // is current frame vanilla or native?
1892 
1893   __ movl(rdx, access_flags);
1894   __ testl(rdx, JVM_ACC_NATIVE);
1895   __ jcc(Assembler::zero, return_with_exception);     // vanilla interpreted frame, handle directly
1896 
1897   // We drop thru to unwind a native interpreted frame with a pending exception
1898   // We jump here for the initial interpreter frame with exception pending
1899   // We unwind the current acivation and forward it to our caller.
1900 
1901   __ bind(unwind_and_forward);
1902 
1903   // unwind rbp, return stack to unextended value and re-push return address
1904 
1905   __ movptr(rcx, STATE(_sender_sp));
1906   __ leave();
1907   __ pop(rdx);
1908   __ mov(rsp, rcx);
1909   __ push(rdx);
1910   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1911 
1912   // Return point from a call which returns a result in the native abi
1913   // (c1/c2/jni-native). This result must be processed onto the java
1914   // expression stack.
1915   //
1916   // A pending exception may be present in which case there is no result present
1917 
1918   Label resume_interpreter;
1919   Label do_float;
1920   Label do_double;
1921   Label done_conv;
1922 
1923   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
1924   if (UseSSE < 2) {
1925     __ lea(state, Address(rbp,  -(int)sizeof(BytecodeInterpreter)));
1926     __ movptr(rbx, STATE(_result._to_call._callee));                   // get method just executed
1927     __ movl(rcx, Address(rbx, Method::result_index_offset()));
1928     __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT));    // Result stub address array index
1929     __ jcc(Assembler::equal, do_float);
1930     __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE));    // Result stub address array index
1931     __ jcc(Assembler::equal, do_double);
1932 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
1933     __ empty_FPU_stack();
1934 #endif // COMPILER2
1935     __ jmp(done_conv);
1936 
1937     __ bind(do_float);
1938 #ifdef COMPILER2
1939     for (int i = 1; i < 8; i++) {
1940       __ ffree(i);
1941     }
1942 #endif // COMPILER2
1943     __ jmp(done_conv);
1944     __ bind(do_double);
1945 #ifdef COMPILER2
1946     for (int i = 1; i < 8; i++) {
1947       __ ffree(i);
1948     }
1949 #endif // COMPILER2
1950     __ jmp(done_conv);
1951   } else {
1952     __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
1953     __ jmp(done_conv);
1954   }
1955 
1956   // Return point to interpreter from compiled/native method
1957   InternalAddress return_from_native_method(__ pc());
1958 
1959   __ bind(done_conv);
1960 
1961 
1962   // Result if any is in tosca. The java expression stack is in the state that the
1963   // calling convention left it (i.e. params may or may not be present)
1964   // Copy the result from tosca and place it on java expression stack.
1965 
1966   // Restore rsi/r13 as compiled code may not preserve it
1967 
1968   __ lea(state, Address(rbp,  -(int)sizeof(BytecodeInterpreter)));
1969 
1970   // restore stack to what we had when we left (in case i2c extended it)
1971 
1972   __ movptr(rsp, STATE(_stack));
1973   __ lea(rsp, Address(rsp, wordSize));
1974 
1975   // If there is a pending exception then we don't really have a result to process
1976 
1977 #ifdef _LP64
1978   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1979 #else
1980   __ movptr(rcx, STATE(_thread));                       // get thread
1981   __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1982 #endif // _LP64
1983   __ jcc(Assembler::notZero, return_with_exception);
1984 
1985   // get method just executed
1986   __ movptr(rbx, STATE(_result._to_call._callee));
1987 
1988   // callee left args on top of expression stack, remove them
1989   __ movptr(rcx, constMethod);
1990   __ load_unsigned_short(rcx, Address(rcx, ConstMethod::size_of_parameters_offset()));
1991 
1992   __ lea(rsp, Address(rsp, rcx, Address::times_ptr));
1993 
1994   __ movl(rcx, Address(rbx, Method::result_index_offset()));
1995   ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
1996   // Address index(noreg, rax, Address::times_ptr);
1997   __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
1998   // __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
1999   __ call(rcx);                                               // call result converter
2000   __ jmp(resume_interpreter);
2001 
2002   // An exception is being caught on return to a vanilla interpreter frame.
2003   // Empty the stack and resume interpreter
2004 
2005   __ bind(return_with_exception);
2006 
2007   // Exception present, empty stack
2008   __ movptr(rsp, STATE(_stack_base));
2009   __ jmp(resume_interpreter);
2010 
2011   // Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
2012   // interpreter call, or native) and unwind this interpreter activation.
2013   // All monitors should be unlocked.
2014 
2015   __ bind(return_from_interpreted_method);
2016 
2017   Label return_to_initial_caller;
2018 
2019   __ movptr(rbx, STATE(_method));                                   // get method just executed
2020   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);                 // returning from "recursive" interpreter call?
2021   __ movl(rax, Address(rbx, Method::result_index_offset())); // get result type index
2022   __ jcc(Assembler::equal, return_to_initial_caller);               // back to native code (call_stub/c1/c2)
2023 
2024   // Copy result to callers java stack
2025   ExternalAddress stack_to_stack((address)CppInterpreter::_stack_to_stack);
2026   // Address index(noreg, rax, Address::times_ptr);
2027 
2028   __ movptr(rax, ArrayAddress(stack_to_stack, Address(noreg, rax, Address::times_ptr)));
2029   // __ movl(rax, Address(noreg, rax, Address::times_ptr, int(AbstractInterpreter::_stack_to_stack)));
2030   __ call(rax);                                                     // call result converter
2031 
2032   Label unwind_recursive_activation;
2033   __ bind(unwind_recursive_activation);
2034 
2035   // returning to interpreter method from "recursive" interpreter call
2036   // result converter left rax pointing to top of the java stack for method we are returning
2037   // to. Now all we must do is unwind the state from the completed call
2038 
2039   __ movptr(state, STATE(_prev_link));                              // unwind state
2040   __ leave();                                                       // pop the frame
2041   __ mov(rsp, rax);                                                 // unwind stack to remove args
2042 
2043   // Resume the interpreter. The current frame contains the current interpreter
2044   // state object.
2045   //
2046 
2047   __ bind(resume_interpreter);
2048 
2049   // state == interpreterState object for method we are resuming
2050 
2051   __ movl(STATE(_msg), (int)BytecodeInterpreter::method_resume);
2052   __ lea(rsp, Address(rsp, -wordSize));                            // prepush stack (result if any already present)
2053   __ movptr(STATE(_stack), rsp);                                   // inform interpreter of new stack depth (parameters removed,
2054                                                                    // result if any on stack already )
2055   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
2056   __ jmp(call_interpreter_2);                                      // No need to bang
2057 
2058   // interpreter returning to native code (call_stub/c1/c2)
2059   // convert result and unwind initial activation
2060   // rax - result index
2061 
2062   __ bind(return_to_initial_caller);
2063   ExternalAddress stack_to_native((address)CppInterpreter::_stack_to_native_abi);
2064   // Address index(noreg, rax, Address::times_ptr);
2065 
2066   __ movptr(rax, ArrayAddress(stack_to_native, Address(noreg, rax, Address::times_ptr)));
2067   __ call(rax);                                                    // call result converter
2068 
2069   Label unwind_initial_activation;
2070   __ bind(unwind_initial_activation);
2071 
2072   // RETURN TO CALL_STUB/C1/C2 code (result if any in rax/rdx ST(0))
2073 
2074   /* Current stack picture
2075 
2076         [ incoming parameters ]
2077         [ extra locals ]
2078         [ return address to CALL_STUB/C1/C2]
2079   fp -> [ CALL_STUB/C1/C2 fp ]
2080         BytecodeInterpreter object
2081         expression stack
2082   sp ->
2083 
2084   */
2085 
2086   // return restoring the stack to the original sender_sp value
2087 
2088   __ movptr(rcx, STATE(_sender_sp));
2089   __ leave();
2090   __ pop(rdi);                                                        // get return address
2091   // set stack to sender's sp
2092   __ mov(rsp, rcx);
2093   __ jmp(rdi);                                                        // return to call_stub
2094 
2095   // OSR request, adjust return address to make current frame into adapter frame
2096   // and enter OSR nmethod
2097 
2098   __ bind(do_OSR);
2099 
2100   Label remove_initial_frame;
2101 
2102   // We are going to pop this frame. Is there another interpreter frame underneath
2103   // it or is it callstub/compiled?
2104 
2105   // Move buffer to the expected parameter location
2106   __ movptr(rcx, STATE(_result._osr._osr_buf));
2107 
2108   __ movptr(rax, STATE(_result._osr._osr_entry));
2109 
2110   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);            // returning from "recursive" interpreter call?
2111   __ jcc(Assembler::equal, remove_initial_frame);              // back to native code (call_stub/c1/c2)
2112 
2113   __ movptr(sender_sp_on_entry, STATE(_sender_sp));            // get sender's sp in expected register
2114   __ leave();                                                  // pop the frame
2115   __ mov(rsp, sender_sp_on_entry);                             // trim any stack expansion
2116 
2117 
2118   // We know we are calling compiled so push specialized return
2119   // method uses specialized entry, push a return so we look like call stub setup
2120   // this path will handle fact that result is returned in registers and not
2121   // on the java stack.
2122 
2123   __ pushptr(return_from_native_method.addr());
2124 
2125   __ jmp(rax);
2126 
2127   __ bind(remove_initial_frame);
2128 
2129   __ movptr(rdx, STATE(_sender_sp));
2130   __ leave();
2131   // get real return
2132   __ pop(rsi);
2133   // set stack to sender's sp
2134   __ mov(rsp, rdx);
2135   // repush real return
2136   __ push(rsi);
2137   // Enter OSR nmethod
2138   __ jmp(rax);
2139 
2140 
2141 
2142 
2143   // Call a new method. All we do is (temporarily) trim the expression stack
2144   // push a return address to bring us back to here and leap to the new entry.
2145 
2146   __ bind(call_method);
2147 
2148   // stack points to next free location and not top element on expression stack
2149   // method expects sp to be pointing to topmost element
2150 
2151   __ movptr(rsp, STATE(_stack));                                     // pop args to c++ interpreter, set sp to java stack top
2152   __ lea(rsp, Address(rsp, wordSize));
2153 
2154   __ movptr(rbx, STATE(_result._to_call._callee));                   // get method to execute
2155 
2156   // don't need a return address if reinvoking interpreter
2157 
2158   // Make it look like call_stub calling conventions
2159 
2160   // Get (potential) receiver
2161   // get size of parameters in words
2162   __ movptr(rcx, constMethod);
2163   __ load_unsigned_short(rcx, Address(rcx, ConstMethod::size_of_parameters_offset()));
2164 
2165   ExternalAddress recursive(CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
2166   __ pushptr(recursive.addr());                                      // make it look good in the debugger
2167 
2168   InternalAddress entry(entry_point);
2169   __ cmpptr(STATE(_result._to_call._callee_entry_point), entry.addr()); // returning to interpreter?
2170   __ jcc(Assembler::equal, re_dispatch);                             // yes
2171 
2172   __ pop(rax);                                                       // pop dummy address
2173 
2174 
2175   // get specialized entry
2176   __ movptr(rax, STATE(_result._to_call._callee_entry_point));
2177   // set sender SP
2178   __ mov(sender_sp_on_entry, rsp);
2179 
2180   // method uses specialized entry, push a return so we look like call stub setup
2181   // this path will handle fact that result is returned in registers and not
2182   // on the java stack.
2183 
2184   __ pushptr(return_from_native_method.addr());
2185 
2186   __ jmp(rax);
2187 
2188   __ bind(bad_msg);
2189   __ stop("Bad message from interpreter");
2190 
2191   // Interpreted method "returned" with an exception pass it on...
2192   // Pass result, unwind activation and continue/return to interpreter/call_stub
2193   // We handle result (if any) differently based on return to interpreter or call_stub
2194 
2195   Label unwind_initial_with_pending_exception;
2196 
2197   __ bind(throw_exception);
2198   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);                 // returning from recursive interpreter call?
2199   __ jcc(Assembler::equal, unwind_initial_with_pending_exception);  // no, back to native code (call_stub/c1/c2)
2200   __ movptr(rax, STATE(_locals));                                   // pop parameters get new stack value
2201   __ addptr(rax, wordSize);                                         // account for prepush before we return
2202   __ jmp(unwind_recursive_activation);
2203 
2204   __ bind(unwind_initial_with_pending_exception);
2205 
2206   // We will unwind the current (initial) interpreter frame and forward
2207   // the exception to the caller. We must put the exception in the
2208   // expected register and clear pending exception and then forward.
2209 
2210   __ jmp(unwind_and_forward);
2211 
2212   interpreter_frame_manager = entry_point;
2213   return entry_point;
2214 }
2215 
generate_method_entry(AbstractInterpreter::MethodKind kind)2216 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
2217   // determine code generation flags
2218   bool synchronized = false;
2219   address entry_point = NULL;
2220 
2221   switch (kind) {
2222     case Interpreter::zerolocals             :                                                                             break;
2223     case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
2224     case Interpreter::native                 : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false);  break;
2225     case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true);   break;
2226     case Interpreter::empty                  : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry();        break;
2227     case Interpreter::accessor               : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();     break;
2228     case Interpreter::abstract               : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();     break;
2229     case Interpreter::method_handle          : entry_point = ((InterpreterGenerator*)this)->generate_method_handle_entry(); break;
2230 
2231     case Interpreter::java_lang_math_sin     : // fall thru
2232     case Interpreter::java_lang_math_cos     : // fall thru
2233     case Interpreter::java_lang_math_tan     : // fall thru
2234     case Interpreter::java_lang_math_abs     : // fall thru
2235     case Interpreter::java_lang_math_log     : // fall thru
2236     case Interpreter::java_lang_math_log10   : // fall thru
2237     case Interpreter::java_lang_math_sqrt    : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind);     break;
2238     case Interpreter::java_lang_ref_reference_get
2239                                              : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
2240     default                                  : ShouldNotReachHere();                                                       break;
2241   }
2242 
2243   if (entry_point) return entry_point;
2244 
2245   return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
2246 
2247 }
2248 
InterpreterGenerator(StubQueue * code)2249 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
2250  : CppInterpreterGenerator(code) {
2251    generate_all(); // down here so it can be "virtual"
2252 }
2253 
2254 // Deoptimization helpers for C++ interpreter
2255 
2256 // How much stack a method activation needs in words.
size_top_interpreter_activation(Method * method)2257 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
2258 
2259   const int stub_code = 4;  // see generate_call_stub
2260   // Save space for one monitor to get into the interpreted method in case
2261   // the method is synchronized
2262   int monitor_size    = method->is_synchronized() ?
2263                                 1*frame::interpreter_frame_monitor_size() : 0;
2264 
2265   // total static overhead size. Account for interpreter state object, return
2266   // address, saved rbp and 2 words for a "static long no_params() method" issue.
2267 
2268   const int overhead_size = sizeof(BytecodeInterpreter)/wordSize +
2269     ( frame::sender_sp_offset - frame::link_offset) + 2;
2270 
2271   const int method_stack = (method->max_locals() + method->max_stack()) *
2272                            Interpreter::stackElementWords;
2273   return overhead_size + method_stack + stub_code;
2274 }
2275 
2276 // returns the activation size.
size_activation_helper(int extra_locals_size,int monitor_size)2277 static int size_activation_helper(int extra_locals_size, int monitor_size) {
2278   return (extra_locals_size +                  // the addition space for locals
2279           2*BytesPerWord +                     // return address and saved rbp
2280           2*BytesPerWord +                     // "static long no_params() method" issue
2281           sizeof(BytecodeInterpreter) +               // interpreterState
2282           monitor_size);                       // monitors
2283 }
2284 
layout_interpreterState(interpreterState to_fill,frame * caller,frame * current,Method * method,intptr_t * locals,intptr_t * stack,intptr_t * stack_base,intptr_t * monitor_base,intptr_t * frame_bottom,bool is_top_frame)2285 void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
2286                                            frame* caller,
2287                                            frame* current,
2288                                            Method* method,
2289                                            intptr_t* locals,
2290                                            intptr_t* stack,
2291                                            intptr_t* stack_base,
2292                                            intptr_t* monitor_base,
2293                                            intptr_t* frame_bottom,
2294                                            bool is_top_frame
2295                                            )
2296 {
2297   // What about any vtable?
2298   //
2299   to_fill->_thread = JavaThread::current();
2300   // This gets filled in later but make it something recognizable for now
2301   to_fill->_bcp = method->code_base();
2302   to_fill->_locals = locals;
2303   to_fill->_constants = method->constants()->cache();
2304   to_fill->_method = method;
2305   to_fill->_mdx = NULL;
2306   to_fill->_stack = stack;
2307   if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
2308     to_fill->_msg = deopt_resume2;
2309   } else {
2310     to_fill->_msg = method_resume;
2311   }
2312   to_fill->_result._to_call._bcp_advance = 0;
2313   to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
2314   to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
2315   to_fill->_prev_link = NULL;
2316 
2317   to_fill->_sender_sp = caller->unextended_sp();
2318 
2319   if (caller->is_interpreted_frame()) {
2320     interpreterState prev  = caller->get_interpreterState();
2321     to_fill->_prev_link = prev;
2322     // *current->register_addr(GR_Iprev_state) = (intptr_t) prev;
2323     // Make the prev callee look proper
2324     prev->_result._to_call._callee = method;
2325     if (*prev->_bcp == Bytecodes::_invokeinterface) {
2326       prev->_result._to_call._bcp_advance = 5;
2327     } else {
2328       prev->_result._to_call._bcp_advance = 3;
2329     }
2330   }
2331   to_fill->_oop_temp = NULL;
2332   to_fill->_stack_base = stack_base;
2333   // Need +1 here because stack_base points to the word just above the first expr stack entry
2334   // and stack_limit is supposed to point to the word just below the last expr stack entry.
2335   // See generate_compute_interpreter_state.
2336   to_fill->_stack_limit = stack_base - (method->max_stack() + 1);
2337   to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
2338 
2339   to_fill->_self_link = to_fill;
2340   assert(stack >= to_fill->_stack_limit && stack < to_fill->_stack_base,
2341          "Stack top out of range");
2342 }
2343 
2344 
frame_size_helper(int max_stack,int tempcount,int moncount,int callee_param_count,int callee_locals,bool is_top_frame,int & monitor_size,int & full_frame_size)2345 static int frame_size_helper(int max_stack,
2346                              int tempcount,
2347                              int moncount,
2348                              int callee_param_count,
2349                              int callee_locals,
2350                              bool is_top_frame,
2351                              int& monitor_size,
2352                              int& full_frame_size) {
2353   int extra_locals_size = (callee_locals - callee_param_count) * BytesPerWord;
2354   monitor_size = sizeof(BasicObjectLock) * moncount;
2355 
2356   // First calculate the frame size without any java expression stack
2357   int short_frame_size = size_activation_helper(extra_locals_size,
2358                                                 monitor_size);
2359 
2360   // Now with full size expression stack
2361   full_frame_size = short_frame_size + max_stack * BytesPerWord;
2362 
2363   // and now with only live portion of the expression stack
2364   short_frame_size = short_frame_size + tempcount * BytesPerWord;
2365 
2366   // the size the activation is right now. Only top frame is full size
2367   int frame_size = (is_top_frame ? full_frame_size : short_frame_size);
2368   return frame_size;
2369 }
2370 
size_activation(int max_stack,int tempcount,int extra_args,int moncount,int callee_param_count,int callee_locals,bool is_top_frame)2371 int AbstractInterpreter::size_activation(int max_stack,
2372                                          int tempcount,
2373                                          int extra_args,
2374                                          int moncount,
2375                                          int callee_param_count,
2376                                          int callee_locals,
2377                                          bool is_top_frame) {
2378   assert(extra_args == 0, "FIX ME");
2379   // NOTE: return size is in words not bytes
2380 
2381   // Calculate the amount our frame will be adjust by the callee. For top frame
2382   // this is zero.
2383 
2384   // NOTE: ia64 seems to do this wrong (or at least backwards) in that it
2385   // calculates the extra locals based on itself. Not what the callee does
2386   // to it. So it ignores last_frame_adjust value. Seems suspicious as far
2387   // as getting sender_sp correct.
2388 
2389   int unused_monitor_size = 0;
2390   int unused_full_frame_size = 0;
2391   return frame_size_helper(max_stack, tempcount, moncount, callee_param_count, callee_locals,
2392                            is_top_frame, unused_monitor_size, unused_full_frame_size)/BytesPerWord;
2393 }
2394 
layout_activation(Method * method,int tempcount,int popframe_extra_args,int moncount,int caller_actual_parameters,int callee_param_count,int callee_locals,frame * caller,frame * interpreter_frame,bool is_top_frame,bool is_bottom_frame)2395 void AbstractInterpreter::layout_activation(Method* method,
2396                                             int tempcount,  //
2397                                             int popframe_extra_args,
2398                                             int moncount,
2399                                             int caller_actual_parameters,
2400                                             int callee_param_count,
2401                                             int callee_locals,
2402                                             frame* caller,
2403                                             frame* interpreter_frame,
2404                                             bool is_top_frame,
2405                                             bool is_bottom_frame) {
2406 
2407   assert(popframe_extra_args == 0, "FIX ME");
2408   // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
2409   // does as far as allocating an interpreter frame.
2410   // Set up the method, locals, and monitors.
2411   // The frame interpreter_frame is guaranteed to be the right size,
2412   // as determined by a previous call to the size_activation() method.
2413   // It is also guaranteed to be walkable even though it is in a skeletal state
2414   // NOTE: tempcount is the current size of the java expression stack. For top most
2415   //       frames we will allocate a full sized expression stack and not the curback
2416   //       version that non-top frames have.
2417 
2418   int monitor_size = 0;
2419   int full_frame_size = 0;
2420   int frame_size = frame_size_helper(method->max_stack(), tempcount, moncount, callee_param_count, callee_locals,
2421                                      is_top_frame, monitor_size, full_frame_size);
2422 
2423 #ifdef ASSERT
2424   assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
2425 #endif
2426 
2427   // MUCHO HACK
2428 
2429   intptr_t* frame_bottom = (intptr_t*) ((intptr_t)interpreter_frame->sp() - (full_frame_size - frame_size));
2430 
2431   /* Now fillin the interpreterState object */
2432 
2433   // The state object is the first thing on the frame and easily located
2434 
2435   interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() - sizeof(BytecodeInterpreter));
2436 
2437 
2438   // Find the locals pointer. This is rather simple on x86 because there is no
2439   // confusing rounding at the callee to account for. We can trivially locate
2440   // our locals based on the current fp().
2441   // Note: the + 2 is for handling the "static long no_params() method" issue.
2442   // (too bad I don't really remember that issue well...)
2443 
2444   intptr_t* locals;
2445   // If the caller is interpreted we need to make sure that locals points to the first
2446   // argument that the caller passed and not in an area where the stack might have been extended.
2447   // because the stack to stack to converter needs a proper locals value in order to remove the
2448   // arguments from the caller and place the result in the proper location. Hmm maybe it'd be
2449   // simpler if we simply stored the result in the BytecodeInterpreter object and let the c++ code
2450   // adjust the stack?? HMMM QQQ
2451   //
2452   if (caller->is_interpreted_frame()) {
2453     // locals must agree with the caller because it will be used to set the
2454     // caller's tos when we return.
2455     interpreterState prev  = caller->get_interpreterState();
2456     // stack() is prepushed.
2457     locals = prev->stack() + method->size_of_parameters();
2458     // locals = caller->unextended_sp() + (method->size_of_parameters() - 1);
2459     if (locals != interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2) {
2460       // os::breakpoint();
2461     }
2462   } else {
2463     // this is where a c2i would have placed locals (except for the +2)
2464     locals = interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2;
2465   }
2466 
2467   intptr_t* monitor_base = (intptr_t*) cur_state;
2468   intptr_t* stack_base = (intptr_t*) ((intptr_t) monitor_base - monitor_size);
2469   /* +1 because stack is always prepushed */
2470   intptr_t* stack = (intptr_t*) ((intptr_t) stack_base - (tempcount + 1) * BytesPerWord);
2471 
2472 
2473   BytecodeInterpreter::layout_interpreterState(cur_state,
2474                                                caller,
2475                                                interpreter_frame,
2476                                                method,
2477                                                locals,
2478                                                stack,
2479                                                stack_base,
2480                                                monitor_base,
2481                                                frame_bottom,
2482                                                is_top_frame);
2483 
2484   // BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
2485 }
2486 
2487 #endif // CC_INTERP (all)
2488