1 /*
2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 // no precompiled headers
26 #include "asm/macroAssembler.hpp"
27 #include "classfile/classLoader.hpp"
28 #include "classfile/systemDictionary.hpp"
29 #include "classfile/vmSymbols.hpp"
30 #include "code/icBuffer.hpp"
31 #include "code/vtableStubs.hpp"
32 #include "interpreter/interpreter.hpp"
33 #include "jvm_solaris.h"
34 #include "memory/allocation.inline.hpp"
35 #include "mutex_solaris.inline.hpp"
36 #include "os_share_solaris.hpp"
37 #include "prims/jniFastGetField.hpp"
38 #include "prims/jvm.h"
39 #include "prims/jvm_misc.hpp"
40 #include "runtime/arguments.hpp"
41 #include "runtime/extendedPC.hpp"
42 #include "runtime/frame.inline.hpp"
43 #include "runtime/interfaceSupport.hpp"
44 #include "runtime/java.hpp"
45 #include "runtime/javaCalls.hpp"
46 #include "runtime/mutexLocker.hpp"
47 #include "runtime/osThread.hpp"
48 #include "runtime/sharedRuntime.hpp"
49 #include "runtime/stubRoutines.hpp"
50 #include "runtime/thread.inline.hpp"
51 #include "runtime/timer.hpp"
52 #include "utilities/events.hpp"
53 #include "utilities/vmError.hpp"
54 
55 // put OS-includes here
56 # include <sys/types.h>
57 # include <sys/mman.h>
58 # include <pthread.h>
59 # include <signal.h>
60 # include <setjmp.h>
61 # include <errno.h>
62 # include <dlfcn.h>
63 # include <stdio.h>
64 # include <unistd.h>
65 # include <sys/resource.h>
66 # include <thread.h>
67 # include <sys/stat.h>
68 # include <sys/time.h>
69 # include <sys/filio.h>
70 # include <sys/utsname.h>
71 # include <sys/systeminfo.h>
72 # include <sys/socket.h>
73 # include <sys/trap.h>
74 # include <sys/lwp.h>
75 # include <pwd.h>
76 # include <poll.h>
77 # include <sys/lwp.h>
78 # include <procfs.h>     //  see comment in <sys/procfs.h>
79 
80 #ifndef AMD64
81 // QQQ seems useless at this point
82 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
83 #endif // AMD64
84 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
85 
86 
87 #define MAX_PATH (2 * K)
88 
89 // Minimum stack size for the VM.  It's easier to document a constant value
90 // but it's different for x86 and sparc because the page sizes are different.
91 #ifdef AMD64
92 size_t os::Solaris::min_stack_allowed = 224*K;
93 #define REG_SP REG_RSP
94 #define REG_PC REG_RIP
95 #define REG_FP REG_RBP
96 #else
97 size_t os::Solaris::min_stack_allowed = 64*K;
98 #define REG_SP UESP
99 #define REG_PC EIP
100 #define REG_FP EBP
101 // 4900493 counter to prevent runaway LDTR refresh attempt
102 
103 static volatile int ldtr_refresh = 0;
104 // the libthread instruction that faults because of the stale LDTR
105 
106 static const unsigned char movlfs[] = { 0x8e, 0xe0    // movl %eax,%fs
107                        };
108 #endif // AMD64
109 
non_memory_address_word()110 char* os::non_memory_address_word() {
111   // Must never look like an address returned by reserve_memory,
112   // even in its subfields (as defined by the CPU immediate fields,
113   // if the CPU splits constants across multiple instructions).
114   return (char*) -1;
115 }
116 
117 //
118 // Validate a ucontext retrieved from walking a uc_link of a ucontext.
119 // There are issues with libthread giving out uc_links for different threads
120 // on the same uc_link chain and bad or circular links.
121 //
valid_ucontext(Thread * thread,ucontext_t * valid,ucontext_t * suspect)122 bool os::Solaris::valid_ucontext(Thread* thread, ucontext_t* valid, ucontext_t* suspect) {
123   if (valid >= suspect ||
124       valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
125       valid->uc_stack.ss_sp    != suspect->uc_stack.ss_sp    ||
126       valid->uc_stack.ss_size  != suspect->uc_stack.ss_size) {
127     DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
128     return false;
129   }
130 
131   if (thread->is_Java_thread()) {
132     if (!valid_stack_address(thread, (address)suspect)) {
133       DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
134       return false;
135     }
136     if (!valid_stack_address(thread,  (address) suspect->uc_mcontext.gregs[REG_SP])) {
137       DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
138       return false;
139     }
140   }
141   return true;
142 }
143 
144 // We will only follow one level of uc_link since there are libthread
145 // issues with ucontext linking and it is better to be safe and just
146 // let caller retry later.
get_valid_uc_in_signal_handler(Thread * thread,ucontext_t * uc)147 ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
148   ucontext_t *uc) {
149 
150   ucontext_t *retuc = NULL;
151 
152   if (uc != NULL) {
153     if (uc->uc_link == NULL) {
154       // cannot validate without uc_link so accept current ucontext
155       retuc = uc;
156     } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
157       // first ucontext is valid so try the next one
158       uc = uc->uc_link;
159       if (uc->uc_link == NULL) {
160         // cannot validate without uc_link so accept current ucontext
161         retuc = uc;
162       } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
163         // the ucontext one level down is also valid so return it
164         retuc = uc;
165       }
166     }
167   }
168   return retuc;
169 }
170 
171 // Assumes ucontext is valid
ucontext_get_ExtendedPC(ucontext_t * uc)172 ExtendedPC os::Solaris::ucontext_get_ExtendedPC(ucontext_t *uc) {
173   return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
174 }
175 
176 // Assumes ucontext is valid
ucontext_get_sp(ucontext_t * uc)177 intptr_t* os::Solaris::ucontext_get_sp(ucontext_t *uc) {
178   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
179 }
180 
181 // Assumes ucontext is valid
ucontext_get_fp(ucontext_t * uc)182 intptr_t* os::Solaris::ucontext_get_fp(ucontext_t *uc) {
183   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
184 }
185 
ucontext_get_pc(ucontext_t * uc)186 address os::Solaris::ucontext_get_pc(ucontext_t *uc) {
187   return (address) uc->uc_mcontext.gregs[REG_PC];
188 }
189 
190 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
191 // is currently interrupted by SIGPROF.
192 //
193 // The difference between this and os::fetch_frame_from_context() is that
194 // here we try to skip nested signal frames.
fetch_frame_from_ucontext(Thread * thread,ucontext_t * uc,intptr_t ** ret_sp,intptr_t ** ret_fp)195 ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
196   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
197 
198   assert(thread != NULL, "just checking");
199   assert(ret_sp != NULL, "just checking");
200   assert(ret_fp != NULL, "just checking");
201 
202   ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
203   return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
204 }
205 
fetch_frame_from_context(void * ucVoid,intptr_t ** ret_sp,intptr_t ** ret_fp)206 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
207                     intptr_t** ret_sp, intptr_t** ret_fp) {
208 
209   ExtendedPC  epc;
210   ucontext_t *uc = (ucontext_t*)ucVoid;
211 
212   if (uc != NULL) {
213     epc = os::Solaris::ucontext_get_ExtendedPC(uc);
214     if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
215     if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
216   } else {
217     // construct empty ExtendedPC for return value checking
218     epc = ExtendedPC(NULL);
219     if (ret_sp) *ret_sp = (intptr_t *)NULL;
220     if (ret_fp) *ret_fp = (intptr_t *)NULL;
221   }
222 
223   return epc;
224 }
225 
fetch_frame_from_context(void * ucVoid)226 frame os::fetch_frame_from_context(void* ucVoid) {
227   intptr_t* sp;
228   intptr_t* fp;
229   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
230   return frame(sp, fp, epc.pc());
231 }
232 
get_sender_for_C_frame(frame * fr)233 frame os::get_sender_for_C_frame(frame* fr) {
234   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
235 }
236 
237 extern "C" intptr_t *_get_current_sp();  // in .il file
238 
current_stack_pointer()239 address os::current_stack_pointer() {
240   return (address)_get_current_sp();
241 }
242 
243 extern "C" intptr_t *_get_current_fp();  // in .il file
244 
current_frame()245 frame os::current_frame() {
246   intptr_t* fp = _get_current_fp();  // it's inlined so want current fp
247   frame myframe((intptr_t*)os::current_stack_pointer(),
248                 (intptr_t*)fp,
249                 CAST_FROM_FN_PTR(address, os::current_frame));
250   if (os::is_first_C_frame(&myframe)) {
251     // stack is not walkable
252     frame ret; // This will be a null useless frame
253     return ret;
254   } else {
255     return os::get_sender_for_C_frame(&myframe);
256   }
257 }
258 
threadgetstate(thread_t tid,int * flags,lwpid_t * lwp,stack_t * ss,gregset_t rs,lwpstatus_t * lwpstatus)259 static int threadgetstate(thread_t tid, int *flags, lwpid_t *lwp, stack_t *ss, gregset_t rs, lwpstatus_t *lwpstatus) {
260   char lwpstatusfile[PROCFILE_LENGTH];
261   int lwpfd, err;
262 
263   if (err = os::Solaris::thr_getstate(tid, flags, lwp, ss, rs))
264     return (err);
265   if (*flags == TRS_LWPID) {
266     sprintf(lwpstatusfile, "/proc/%d/lwp/%d/lwpstatus", getpid(),
267             *lwp);
268     if ((lwpfd = open(lwpstatusfile, O_RDONLY)) < 0) {
269       perror("thr_mutator_status: open lwpstatus");
270       return (EINVAL);
271     }
272     if (pread(lwpfd, lwpstatus, sizeof (lwpstatus_t), (off_t)0) !=
273         sizeof (lwpstatus_t)) {
274       perror("thr_mutator_status: read lwpstatus");
275       (void) close(lwpfd);
276       return (EINVAL);
277     }
278     (void) close(lwpfd);
279   }
280   return (0);
281 }
282 
283 #ifndef AMD64
284 
285 // Detecting SSE support by OS
286 // From solaris_i486.s
287 extern "C" bool sse_check();
288 extern "C" bool sse_unavailable();
289 
290 enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
291 static int sse_status = SSE_UNKNOWN;
292 
293 
check_for_sse_support()294 static void  check_for_sse_support() {
295   if (!VM_Version::supports_sse()) {
296     sse_status = SSE_NOT_SUPPORTED;
297     return;
298   }
299   // looking for _sse_hw in libc.so, if it does not exist or
300   // the value (int) is 0, OS has no support for SSE
301   int *sse_hwp;
302   void *h;
303 
304   if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
305     //open failed, presume no support for SSE
306     sse_status = SSE_NOT_SUPPORTED;
307     return;
308   }
309   if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
310     sse_status = SSE_NOT_SUPPORTED;
311   } else if (*sse_hwp == 0) {
312     sse_status = SSE_NOT_SUPPORTED;
313   }
314   dlclose(h);
315 
316   if (sse_status == SSE_UNKNOWN) {
317     bool (*try_sse)() = (bool (*)())sse_check;
318     sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
319   }
320 
321 }
322 
323 #endif // AMD64
324 
supports_sse()325 bool os::supports_sse() {
326 #ifdef AMD64
327   return true;
328 #else
329   if (sse_status == SSE_UNKNOWN)
330     check_for_sse_support();
331   return sse_status == SSE_SUPPORTED;
332 #endif // AMD64
333 }
334 
is_allocatable(size_t bytes)335 bool os::is_allocatable(size_t bytes) {
336 #ifdef AMD64
337   return true;
338 #else
339 
340   if (bytes < 2 * G) {
341     return true;
342   }
343 
344   char* addr = reserve_memory(bytes, NULL);
345 
346   if (addr != NULL) {
347     release_memory(addr, bytes);
348   }
349 
350   return addr != NULL;
351 #endif // AMD64
352 
353 }
354 
355 extern "C" JNIEXPORT int
JVM_handle_solaris_signal(int sig,siginfo_t * info,void * ucVoid,int abort_if_unrecognized)356 JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
357                           int abort_if_unrecognized) {
358   ucontext_t* uc = (ucontext_t*) ucVoid;
359 
360 #ifndef AMD64
361   if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
362     // the SSE instruction faulted. supports_sse() need return false.
363     uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
364     return true;
365   }
366 #endif // !AMD64
367 
368   Thread* t = ThreadLocalStorage::get_thread_slow();  // slow & steady
369 
370   // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
371   // (no destructors can be run)
372   os::ThreadCrashProtection::check_crash_protection(sig, t);
373 
374   SignalHandlerMark shm(t);
375 
376   if(sig == SIGPIPE || sig == SIGXFSZ) {
377     if (os::Solaris::chained_handler(sig, info, ucVoid)) {
378       return true;
379     } else {
380       if (PrintMiscellaneous && (WizardMode || Verbose)) {
381         char buf[64];
382         warning("Ignoring %s - see 4229104 or 6499219",
383                 os::exception_name(sig, buf, sizeof(buf)));
384 
385       }
386       return true;
387     }
388   }
389 
390   JavaThread* thread = NULL;
391   VMThread* vmthread = NULL;
392 
393   if (os::Solaris::signal_handlers_are_installed) {
394     if (t != NULL ){
395       if(t->is_Java_thread()) {
396         thread = (JavaThread*)t;
397       }
398       else if(t->is_VM_thread()){
399         vmthread = (VMThread *)t;
400       }
401     }
402   }
403 
404   guarantee(sig != os::Solaris::SIGinterrupt(), "Can not chain VM interrupt signal, try -XX:+UseAltSigs");
405 
406   if (sig == os::Solaris::SIGasync()) {
407     if(thread || vmthread){
408       OSThread::SR_handler(t, uc);
409       return true;
410     } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
411       return true;
412     } else {
413       // If os::Solaris::SIGasync not chained, and this is a non-vm and
414       // non-java thread
415       return true;
416     }
417   }
418 
419   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
420     // can't decode this kind of signal
421     info = NULL;
422   } else {
423     assert(sig == info->si_signo, "bad siginfo");
424   }
425 
426   // decide if this trap can be handled by a stub
427   address stub = NULL;
428 
429   address pc          = NULL;
430 
431   //%note os_trap_1
432   if (info != NULL && uc != NULL && thread != NULL) {
433     // factor me: getPCfromContext
434     pc = (address) uc->uc_mcontext.gregs[REG_PC];
435 
436     if (StubRoutines::is_safefetch_fault(pc)) {
437       uc->uc_mcontext.gregs[REG_PC] = intptr_t(StubRoutines::continuation_for_safefetch_fault(pc));
438       return true;
439     }
440 
441     // Handle ALL stack overflow variations here
442     if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
443       address addr = (address) info->si_addr;
444       if (thread->in_stack_yellow_zone(addr)) {
445         thread->disable_stack_yellow_zone();
446         if (thread->thread_state() == _thread_in_Java) {
447           // Throw a stack overflow exception.  Guard pages will be reenabled
448           // while unwinding the stack.
449           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
450         } else {
451           // Thread was in the vm or native code.  Return and try to finish.
452           return true;
453         }
454       } else if (thread->in_stack_red_zone(addr)) {
455         // Fatal red zone violation.  Disable the guard pages and fall through
456         // to handle_unexpected_exception way down below.
457         thread->disable_stack_red_zone();
458         tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
459       }
460     }
461 
462     if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
463       // Verify that OS save/restore AVX registers.
464       stub = VM_Version::cpuinfo_cont_addr();
465     }
466 
467     if (thread->thread_state() == _thread_in_vm) {
468       if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
469         stub = StubRoutines::handler_for_unsafe_access();
470       }
471     }
472 
473     if (thread->thread_state() == _thread_in_Java) {
474       // Support Safepoint Polling
475       if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
476         stub = SharedRuntime::get_poll_stub(pc);
477       }
478       else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
479         // BugId 4454115: A read from a MappedByteBuffer can fault
480         // here if the underlying file has been truncated.
481         // Do not crash the VM in such a case.
482         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
483         if (cb != NULL) {
484           nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
485           if (nm != NULL && nm->has_unsafe_access()) {
486             stub = StubRoutines::handler_for_unsafe_access();
487           }
488         }
489       }
490       else
491       if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
492         // integer divide by zero
493         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
494       }
495 #ifndef AMD64
496       else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
497         // floating-point divide by zero
498         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
499       }
500       else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
501         // The encoding of D2I in i486.ad can cause an exception prior
502         // to the fist instruction if there was an invalid operation
503         // pending. We want to dismiss that exception. From the win_32
504         // side it also seems that if it really was the fist causing
505         // the exception that we do the d2i by hand with different
506         // rounding. Seems kind of weird. QQQ TODO
507         // Note that we take the exception at the NEXT floating point instruction.
508         if (pc[0] == 0xDB) {
509             assert(pc[0] == 0xDB, "not a FIST opcode");
510             assert(pc[1] == 0x14, "not a FIST opcode");
511             assert(pc[2] == 0x24, "not a FIST opcode");
512             return true;
513         } else {
514             assert(pc[-3] == 0xDB, "not an flt invalid opcode");
515             assert(pc[-2] == 0x14, "not an flt invalid opcode");
516             assert(pc[-1] == 0x24, "not an flt invalid opcode");
517         }
518       }
519       else if (sig == SIGFPE ) {
520         tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
521       }
522 #endif // !AMD64
523 
524         // QQQ It doesn't seem that we need to do this on x86 because we should be able
525         // to return properly from the handler without this extra stuff on the back side.
526 
527       else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
528         // Determination of interpreter/vtable stub/compiled code null exception
529         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
530       }
531     }
532 
533     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
534     // and the heap gets shrunk before the field access.
535     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
536       address addr = JNI_FastGetField::find_slowcase_pc(pc);
537       if (addr != (address)-1) {
538         stub = addr;
539       }
540     }
541 
542     // Check to see if we caught the safepoint code in the
543     // process of write protecting the memory serialization page.
544     // It write enables the page immediately after protecting it
545     // so we can just return to retry the write.
546     if ((sig == SIGSEGV) &&
547         os::is_memory_serialize_page(thread, (address)info->si_addr)) {
548       // Block current thread until the memory serialize page permission restored.
549       os::block_on_serialize_page_trap();
550       return true;
551     }
552   }
553 
554   // Execution protection violation
555   //
556   // Preventative code for future versions of Solaris which may
557   // enable execution protection when running the 32-bit VM on AMD64.
558   //
559   // This should be kept as the last step in the triage.  We don't
560   // have a dedicated trap number for a no-execute fault, so be
561   // conservative and allow other handlers the first shot.
562   //
563   // Note: We don't test that info->si_code == SEGV_ACCERR here.
564   // this si_code is so generic that it is almost meaningless; and
565   // the si_code for this condition may change in the future.
566   // Furthermore, a false-positive should be harmless.
567   if (UnguardOnExecutionViolation > 0 &&
568       (sig == SIGSEGV || sig == SIGBUS) &&
569       uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) {  // page fault
570     int page_size = os::vm_page_size();
571     address addr = (address) info->si_addr;
572     address pc = (address) uc->uc_mcontext.gregs[REG_PC];
573     // Make sure the pc and the faulting address are sane.
574     //
575     // If an instruction spans a page boundary, and the page containing
576     // the beginning of the instruction is executable but the following
577     // page is not, the pc and the faulting address might be slightly
578     // different - we still want to unguard the 2nd page in this case.
579     //
580     // 15 bytes seems to be a (very) safe value for max instruction size.
581     bool pc_is_near_addr =
582       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
583     bool instr_spans_page_boundary =
584       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
585                        (intptr_t) page_size) > 0);
586 
587     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
588       static volatile address last_addr =
589         (address) os::non_memory_address_word();
590 
591       // In conservative mode, don't unguard unless the address is in the VM
592       if (addr != last_addr &&
593           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
594 
595         // Make memory rwx and retry
596         address page_start =
597           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
598         bool res = os::protect_memory((char*) page_start, page_size,
599                                       os::MEM_PROT_RWX);
600 
601         if (PrintMiscellaneous && Verbose) {
602           char buf[256];
603           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
604                        "at " INTPTR_FORMAT
605                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
606                        page_start, (res ? "success" : "failed"), errno);
607           tty->print_raw_cr(buf);
608         }
609         stub = pc;
610 
611         // Set last_addr so if we fault again at the same address, we don't end
612         // up in an endless loop.
613         //
614         // There are two potential complications here.  Two threads trapping at
615         // the same address at the same time could cause one of the threads to
616         // think it already unguarded, and abort the VM.  Likely very rare.
617         //
618         // The other race involves two threads alternately trapping at
619         // different addresses and failing to unguard the page, resulting in
620         // an endless loop.  This condition is probably even more unlikely than
621         // the first.
622         //
623         // Although both cases could be avoided by using locks or thread local
624         // last_addr, these solutions are unnecessary complication: this
625         // handler is a best-effort safety net, not a complete solution.  It is
626         // disabled by default and should only be used as a workaround in case
627         // we missed any no-execute-unsafe VM code.
628 
629         last_addr = addr;
630       }
631     }
632   }
633 
634   if (stub != NULL) {
635     // save all thread context in case we need to restore it
636 
637     if (thread != NULL) thread->set_saved_exception_pc(pc);
638     // 12/02/99: On Sparc it appears that the full context is also saved
639     // but as yet, no one looks at or restores that saved context
640     // factor me: setPC
641     uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
642     return true;
643   }
644 
645   // signal-chaining
646   if (os::Solaris::chained_handler(sig, info, ucVoid)) {
647     return true;
648   }
649 
650 #ifndef AMD64
651   // Workaround (bug 4900493) for Solaris kernel bug 4966651.
652   // Handle an undefined selector caused by an attempt to assign
653   // fs in libthread getipriptr(). With the current libthread design every 512
654   // thread creations the LDT for a private thread data structure is extended
655   // and thre is a hazard that and another thread attempting a thread creation
656   // will use a stale LDTR that doesn't reflect the structure's growth,
657   // causing a GP fault.
658   // Enforce the probable limit of passes through here to guard against an
659   // infinite loop if some other move to fs caused the GP fault. Note that
660   // this loop counter is ultimately a heuristic as it is possible for
661   // more than one thread to generate this fault at a time in an MP system.
662   // In the case of the loop count being exceeded or if the poll fails
663   // just fall through to a fatal error.
664   // If there is some other source of T_GPFLT traps and the text at EIP is
665   // unreadable this code will loop infinitely until the stack is exausted.
666   // The key to diagnosis in this case is to look for the bottom signal handler
667   // frame.
668 
669   if(! IgnoreLibthreadGPFault) {
670     if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
671       const unsigned char *p =
672                         (unsigned const char *) uc->uc_mcontext.gregs[EIP];
673 
674       // Expected instruction?
675 
676       if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
677 
678         Atomic::inc(&ldtr_refresh);
679 
680         // Infinite loop?
681 
682         if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
683 
684           // No, force scheduling to get a fresh view of the LDTR
685 
686           if(poll(NULL, 0, 10) == 0) {
687 
688             // Retry the move
689 
690             return false;
691           }
692         }
693       }
694     }
695   }
696 #endif // !AMD64
697 
698   if (!abort_if_unrecognized) {
699     // caller wants another chance, so give it to him
700     return false;
701   }
702 
703   if (!os::Solaris::libjsig_is_loaded) {
704     struct sigaction oldAct;
705     sigaction(sig, (struct sigaction *)0, &oldAct);
706     if (oldAct.sa_sigaction != signalHandler) {
707       void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
708                                           : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
709       warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand);
710     }
711   }
712 
713   if (pc == NULL && uc != NULL) {
714     pc = (address) uc->uc_mcontext.gregs[REG_PC];
715   }
716 
717   // unmask current signal
718   sigset_t newset;
719   sigemptyset(&newset);
720   sigaddset(&newset, sig);
721   sigprocmask(SIG_UNBLOCK, &newset, NULL);
722 
723   // Determine which sort of error to throw.  Out of swap may signal
724   // on the thread stack, which could get a mapping error when touched.
725   address addr = (address) info->si_addr;
726   if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) {
727     vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "Out of swap space to map in thread stack.");
728   }
729 
730   VMError err(t, sig, pc, info, ucVoid);
731   err.report_and_die();
732 
733   ShouldNotReachHere();
734   return false;
735 }
736 
print_context(outputStream * st,void * context)737 void os::print_context(outputStream *st, void *context) {
738   if (context == NULL) return;
739 
740   ucontext_t *uc = (ucontext_t*)context;
741   st->print_cr("Registers:");
742 #ifdef AMD64
743   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
744   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
745   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
746   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
747   st->cr();
748   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
749   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
750   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
751   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
752   st->cr();
753   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
754   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
755   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
756   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
757   st->cr();
758   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
759   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
760   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
761   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
762   st->cr();
763   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
764   st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
765 #else
766   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
767   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
768   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
769   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
770   st->cr();
771   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
772   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
773   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
774   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
775   st->cr();
776   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
777   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
778 #endif // AMD64
779   st->cr();
780   st->cr();
781 
782   intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
783   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
784   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
785   st->cr();
786 
787   // Note: it may be unsafe to inspect memory near pc. For example, pc may
788   // point to garbage if entry point in an nmethod is corrupted. Leave
789   // this at the end, and hope for the best.
790   ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
791   address pc = epc.pc();
792   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
793   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
794 }
795 
print_register_info(outputStream * st,void * context)796 void os::print_register_info(outputStream *st, void *context) {
797   if (context == NULL) return;
798 
799   ucontext_t *uc = (ucontext_t*)context;
800 
801   st->print_cr("Register to memory mapping:");
802   st->cr();
803 
804   // this is horrendously verbose but the layout of the registers in the
805   // context does not match how we defined our abstract Register set, so
806   // we can't just iterate through the gregs area
807 
808   // this is only for the "general purpose" registers
809 
810 #ifdef AMD64
811   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
812   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
813   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
814   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
815   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
816   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
817   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
818   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
819   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
820   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
821   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
822   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
823   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
824   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
825   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
826   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
827 #else
828   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]);
829   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]);
830   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]);
831   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]);
832   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]);
833   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]);
834   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]);
835   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]);
836 #endif
837 
838   st->cr();
839 }
840 
841 
842 #ifdef AMD64
init_thread_fpu_state(void)843 void os::Solaris::init_thread_fpu_state(void) {
844   // Nothing to do
845 }
846 #else
847 // From solaris_i486.s
848 extern "C" void fixcw();
849 
init_thread_fpu_state(void)850 void os::Solaris::init_thread_fpu_state(void) {
851   // Set fpu to 53 bit precision. This happens too early to use a stub.
852   fixcw();
853 }
854 
855 // These routines are the initial value of atomic_xchg_entry(),
856 // atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
857 // until initialization is complete.
858 // TODO - replace with .il implementation when compiler supports it.
859 
860 typedef jint  xchg_func_t        (jint,  volatile jint*);
861 typedef jint  cmpxchg_func_t     (jint,  volatile jint*,  jint);
862 typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
863 typedef jint  add_func_t         (jint,  volatile jint*);
864 
atomic_xchg_bootstrap(jint exchange_value,volatile jint * dest)865 jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
866   // try to use the stub:
867   xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
868 
869   if (func != NULL) {
870     os::atomic_xchg_func = func;
871     return (*func)(exchange_value, dest);
872   }
873   assert(Threads::number_of_threads() == 0, "for bootstrap only");
874 
875   jint old_value = *dest;
876   *dest = exchange_value;
877   return old_value;
878 }
879 
atomic_cmpxchg_bootstrap(jint exchange_value,volatile jint * dest,jint compare_value)880 jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
881   // try to use the stub:
882   cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
883 
884   if (func != NULL) {
885     os::atomic_cmpxchg_func = func;
886     return (*func)(exchange_value, dest, compare_value);
887   }
888   assert(Threads::number_of_threads() == 0, "for bootstrap only");
889 
890   jint old_value = *dest;
891   if (old_value == compare_value)
892     *dest = exchange_value;
893   return old_value;
894 }
895 
atomic_cmpxchg_long_bootstrap(jlong exchange_value,volatile jlong * dest,jlong compare_value)896 jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
897   // try to use the stub:
898   cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
899 
900   if (func != NULL) {
901     os::atomic_cmpxchg_long_func = func;
902     return (*func)(exchange_value, dest, compare_value);
903   }
904   assert(Threads::number_of_threads() == 0, "for bootstrap only");
905 
906   jlong old_value = *dest;
907   if (old_value == compare_value)
908     *dest = exchange_value;
909   return old_value;
910 }
911 
atomic_add_bootstrap(jint add_value,volatile jint * dest)912 jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
913   // try to use the stub:
914   add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
915 
916   if (func != NULL) {
917     os::atomic_add_func = func;
918     return (*func)(add_value, dest);
919   }
920   assert(Threads::number_of_threads() == 0, "for bootstrap only");
921 
922   return (*dest) += add_value;
923 }
924 
925 xchg_func_t*         os::atomic_xchg_func         = os::atomic_xchg_bootstrap;
926 cmpxchg_func_t*      os::atomic_cmpxchg_func      = os::atomic_cmpxchg_bootstrap;
927 cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
928 add_func_t*          os::atomic_add_func          = os::atomic_add_bootstrap;
929 
930 extern "C" void _solaris_raw_setup_fpu(address ptr);
setup_fpu()931 void os::setup_fpu() {
932   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
933   _solaris_raw_setup_fpu(fpu_cntrl);
934 }
935 #endif // AMD64
936 
937 #ifndef PRODUCT
verify_stack_alignment()938 void os::verify_stack_alignment() {
939 #ifdef AMD64
940   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
941 #endif
942 }
943 #endif
944