1 /*
2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "c1/c1_Compilation.hpp"
27 #include "c1/c1_FrameMap.hpp"
28 #include "c1/c1_GraphBuilder.hpp"
29 #include "c1/c1_IR.hpp"
30 #include "c1/c1_InstructionPrinter.hpp"
31 #include "c1/c1_Optimizer.hpp"
32 #include "utilities/bitMap.inline.hpp"
33 
34 
35 // Implementation of XHandlers
36 //
37 // Note: This code could eventually go away if we are
38 //       just using the ciExceptionHandlerStream.
39 
XHandlers(ciMethod * method)40 XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
41   ciExceptionHandlerStream s(method);
42   while (!s.is_done()) {
43     _list.append(new XHandler(s.handler()));
44     s.next();
45   }
46   assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
47 }
48 
49 // deep copy of all XHandler contained in list
XHandlers(XHandlers * other)50 XHandlers::XHandlers(XHandlers* other) :
51   _list(other->length())
52 {
53   for (int i = 0; i < other->length(); i++) {
54     _list.append(new XHandler(other->handler_at(i)));
55   }
56 }
57 
58 // Returns whether a particular exception type can be caught.  Also
59 // returns true if klass is unloaded or any exception handler
60 // classes are unloaded.  type_is_exact indicates whether the throw
61 // is known to be exactly that class or it might throw a subtype.
could_catch(ciInstanceKlass * klass,bool type_is_exact) const62 bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
63   // the type is unknown so be conservative
64   if (!klass->is_loaded()) {
65     return true;
66   }
67 
68   for (int i = 0; i < length(); i++) {
69     XHandler* handler = handler_at(i);
70     if (handler->is_catch_all()) {
71       // catch of ANY
72       return true;
73     }
74     ciInstanceKlass* handler_klass = handler->catch_klass();
75     // if it's unknown it might be catchable
76     if (!handler_klass->is_loaded()) {
77       return true;
78     }
79     // if the throw type is definitely a subtype of the catch type
80     // then it can be caught.
81     if (klass->is_subtype_of(handler_klass)) {
82       return true;
83     }
84     if (!type_is_exact) {
85       // If the type isn't exactly known then it can also be caught by
86       // catch statements where the inexact type is a subtype of the
87       // catch type.
88       // given: foo extends bar extends Exception
89       // throw bar can be caught by catch foo, catch bar, and catch
90       // Exception, however it can't be caught by any handlers without
91       // bar in its type hierarchy.
92       if (handler_klass->is_subtype_of(klass)) {
93         return true;
94       }
95     }
96   }
97 
98   return false;
99 }
100 
101 
equals(XHandlers * others) const102 bool XHandlers::equals(XHandlers* others) const {
103   if (others == NULL) return false;
104   if (length() != others->length()) return false;
105 
106   for (int i = 0; i < length(); i++) {
107     if (!handler_at(i)->equals(others->handler_at(i))) return false;
108   }
109   return true;
110 }
111 
equals(XHandler * other) const112 bool XHandler::equals(XHandler* other) const {
113   assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
114 
115   if (entry_pco() != other->entry_pco()) return false;
116   if (scope_count() != other->scope_count()) return false;
117   if (_desc != other->_desc) return false;
118 
119   assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
120   return true;
121 }
122 
123 
124 // Implementation of IRScope
build_graph(Compilation * compilation,int osr_bci)125 BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
126   GraphBuilder gm(compilation, this);
127   NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
128   if (compilation->bailed_out()) return NULL;
129   return gm.start();
130 }
131 
132 
IRScope(Compilation * compilation,IRScope * caller,int caller_bci,ciMethod * method,int osr_bci,bool create_graph)133 IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
134 : _callees(2)
135 , _compilation(compilation)
136 , _requires_phi_function(method->max_locals())
137 {
138   _caller             = caller;
139   _level              = caller == NULL ?  0 : caller->level() + 1;
140   _method             = method;
141   _xhandlers          = new XHandlers(method);
142   _number_of_locks    = 0;
143   _monitor_pairing_ok = method->has_balanced_monitors();
144   _wrote_final        = false;
145   _start              = NULL;
146 
147   if (osr_bci == -1) {
148     _requires_phi_function.clear();
149   } else {
150         // selective creation of phi functions is not possibel in osr-methods
151     _requires_phi_function.set_range(0, method->max_locals());
152   }
153 
154   assert(method->holder()->is_loaded() , "method holder must be loaded");
155 
156   // build graph if monitor pairing is ok
157   if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
158 }
159 
160 
max_stack() const161 int IRScope::max_stack() const {
162   int my_max = method()->max_stack();
163   int callee_max = 0;
164   for (int i = 0; i < number_of_callees(); i++) {
165     callee_max = MAX2(callee_max, callee_no(i)->max_stack());
166   }
167   return my_max + callee_max;
168 }
169 
170 
should_reexecute()171 bool IRScopeDebugInfo::should_reexecute() {
172   ciMethod* cur_method = scope()->method();
173   int       cur_bci    = bci();
174   if (cur_method != NULL && cur_bci != SynchronizationEntryBCI) {
175     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
176     return Interpreter::bytecode_should_reexecute(code);
177   } else
178     return false;
179 }
180 
181 
182 // Implementation of CodeEmitInfo
183 
184 // Stack must be NON-null
CodeEmitInfo(ValueStack * stack,XHandlers * exception_handlers,bool deoptimize_on_exception)185 CodeEmitInfo::CodeEmitInfo(ValueStack* stack, XHandlers* exception_handlers, bool deoptimize_on_exception)
186   : _scope(stack->scope())
187   , _scope_debug_info(NULL)
188   , _oop_map(NULL)
189   , _stack(stack)
190   , _exception_handlers(exception_handlers)
191   , _is_method_handle_invoke(false)
192   , _deoptimize_on_exception(deoptimize_on_exception) {
193   assert(_stack != NULL, "must be non null");
194 }
195 
196 
CodeEmitInfo(CodeEmitInfo * info,ValueStack * stack)197 CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, ValueStack* stack)
198   : _scope(info->_scope)
199   , _exception_handlers(NULL)
200   , _scope_debug_info(NULL)
201   , _oop_map(NULL)
202   , _stack(stack == NULL ? info->_stack : stack)
203   , _is_method_handle_invoke(info->_is_method_handle_invoke)
204   , _deoptimize_on_exception(info->_deoptimize_on_exception) {
205 
206   // deep copy of exception handlers
207   if (info->_exception_handlers != NULL) {
208     _exception_handlers = new XHandlers(info->_exception_handlers);
209   }
210 }
211 
212 
record_debug_info(DebugInformationRecorder * recorder,int pc_offset)213 void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
214   // record the safepoint before recording the debug info for enclosing scopes
215   recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
216   _scope_debug_info->record_debug_info(recorder, pc_offset, true/*topmost*/, _is_method_handle_invoke);
217   recorder->end_safepoint(pc_offset);
218 }
219 
220 
add_register_oop(LIR_Opr opr)221 void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
222   assert(_oop_map != NULL, "oop map must already exist");
223   assert(opr->is_single_cpu(), "should not call otherwise");
224 
225   VMReg name = frame_map()->regname(opr);
226   _oop_map->set_oop(name);
227 }
228 
229 // Mirror the stack size calculation in the deopt code
230 // How much stack space would we need at this point in the program in
231 // case of deoptimization?
interpreter_frame_size() const232 int CodeEmitInfo::interpreter_frame_size() const {
233   ValueStack* state = _stack;
234   int size = 0;
235   int callee_parameters = 0;
236   int callee_locals = 0;
237   int extra_args = state->scope()->method()->max_stack() - state->stack_size();
238 
239   while (state != NULL) {
240     int locks = state->locks_size();
241     int temps = state->stack_size();
242     bool is_top_frame = (state == _stack);
243     ciMethod* method = state->scope()->method();
244 
245     int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
246                                                                  temps + callee_parameters,
247                                                                  extra_args,
248                                                                  locks,
249                                                                  callee_parameters,
250                                                                  callee_locals,
251                                                                  is_top_frame);
252     size += frame_size;
253 
254     callee_parameters = method->size_of_parameters();
255     callee_locals = method->max_locals();
256     extra_args = 0;
257     state = state->caller_state();
258   }
259   return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
260 }
261 
262 // Implementation of IR
263 
IR(Compilation * compilation,ciMethod * method,int osr_bci)264 IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
265     _locals_size(in_WordSize(-1))
266   , _num_loops(0) {
267   // setup IR fields
268   _compilation = compilation;
269   _top_scope   = new IRScope(compilation, NULL, -1, method, osr_bci, true);
270   _code        = NULL;
271 }
272 
273 
optimize_blocks()274 void IR::optimize_blocks() {
275   Optimizer opt(this);
276   if (!compilation()->profile_branches()) {
277     if (DoCEE) {
278       opt.eliminate_conditional_expressions();
279 #ifndef PRODUCT
280       if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
281       if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
282 #endif
283     }
284     if (EliminateBlocks) {
285       opt.eliminate_blocks();
286 #ifndef PRODUCT
287       if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
288       if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
289 #endif
290     }
291   }
292 }
293 
eliminate_null_checks()294 void IR::eliminate_null_checks() {
295   Optimizer opt(this);
296   if (EliminateNullChecks) {
297     opt.eliminate_null_checks();
298 #ifndef PRODUCT
299     if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
300     if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
301 #endif
302   }
303 }
304 
305 
sort_pairs(BlockPair ** a,BlockPair ** b)306 static int sort_pairs(BlockPair** a, BlockPair** b) {
307   if ((*a)->from() == (*b)->from()) {
308     return (*a)->to()->block_id() - (*b)->to()->block_id();
309   } else {
310     return (*a)->from()->block_id() - (*b)->from()->block_id();
311   }
312 }
313 
314 
315 class CriticalEdgeFinder: public BlockClosure {
316   BlockPairList blocks;
317   IR*       _ir;
318 
319  public:
CriticalEdgeFinder(IR * ir)320   CriticalEdgeFinder(IR* ir): _ir(ir) {}
block_do(BlockBegin * bb)321   void block_do(BlockBegin* bb) {
322     BlockEnd* be = bb->end();
323     int nos = be->number_of_sux();
324     if (nos >= 2) {
325       for (int i = 0; i < nos; i++) {
326         BlockBegin* sux = be->sux_at(i);
327         if (sux->number_of_preds() >= 2) {
328           blocks.append(new BlockPair(bb, sux));
329         }
330       }
331     }
332   }
333 
split_edges()334   void split_edges() {
335     BlockPair* last_pair = NULL;
336     blocks.sort(sort_pairs);
337     for (int i = 0; i < blocks.length(); i++) {
338       BlockPair* pair = blocks.at(i);
339       if (last_pair != NULL && pair->is_same(last_pair)) continue;
340       BlockBegin* from = pair->from();
341       BlockBegin* to = pair->to();
342       BlockBegin* split = from->insert_block_between(to);
343 #ifndef PRODUCT
344       if ((PrintIR || PrintIR1) && Verbose) {
345         tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
346                       from->block_id(), to->block_id(), split->block_id());
347       }
348 #endif
349       last_pair = pair;
350     }
351   }
352 };
353 
split_critical_edges()354 void IR::split_critical_edges() {
355   CriticalEdgeFinder cef(this);
356 
357   iterate_preorder(&cef);
358   cef.split_edges();
359 }
360 
361 
362 class UseCountComputer: public ValueVisitor, BlockClosure {
363  private:
visit(Value * n)364   void visit(Value* n) {
365     // Local instructions and Phis for expression stack values at the
366     // start of basic blocks are not added to the instruction list
367     if (!(*n)->is_linked() && (*n)->can_be_linked()) {
368       assert(false, "a node was not appended to the graph");
369       Compilation::current()->bailout("a node was not appended to the graph");
370     }
371     // use n's input if not visited before
372     if (!(*n)->is_pinned() && !(*n)->has_uses()) {
373       // note: a) if the instruction is pinned, it will be handled by compute_use_count
374       //       b) if the instruction has uses, it was touched before
375       //       => in both cases we don't need to update n's values
376       uses_do(n);
377     }
378     // use n
379     (*n)->_use_count++;
380   }
381 
382   Values* worklist;
383   int depth;
384   enum {
385     max_recurse_depth = 20
386   };
387 
uses_do(Value * n)388   void uses_do(Value* n) {
389     depth++;
390     if (depth > max_recurse_depth) {
391       // don't allow the traversal to recurse too deeply
392       worklist->push(*n);
393     } else {
394       (*n)->input_values_do(this);
395       // special handling for some instructions
396       if ((*n)->as_BlockEnd() != NULL) {
397         // note on BlockEnd:
398         //   must 'use' the stack only if the method doesn't
399         //   terminate, however, in those cases stack is empty
400         (*n)->state_values_do(this);
401       }
402     }
403     depth--;
404   }
405 
block_do(BlockBegin * b)406   void block_do(BlockBegin* b) {
407     depth = 0;
408     // process all pinned nodes as the roots of expression trees
409     for (Instruction* n = b; n != NULL; n = n->next()) {
410       if (n->is_pinned()) uses_do(&n);
411     }
412     assert(depth == 0, "should have counted back down");
413 
414     // now process any unpinned nodes which recursed too deeply
415     while (worklist->length() > 0) {
416       Value t = worklist->pop();
417       if (!t->is_pinned()) {
418         // compute the use count
419         uses_do(&t);
420 
421         // pin the instruction so that LIRGenerator doesn't recurse
422         // too deeply during it's evaluation.
423         t->pin();
424       }
425     }
426     assert(depth == 0, "should have counted back down");
427   }
428 
UseCountComputer()429   UseCountComputer() {
430     worklist = new Values();
431     depth = 0;
432   }
433 
434  public:
compute(BlockList * blocks)435   static void compute(BlockList* blocks) {
436     UseCountComputer ucc;
437     blocks->iterate_backward(&ucc);
438   }
439 };
440 
441 
442 // helper macro for short definition of trace-output inside code
443 #ifndef PRODUCT
444   #define TRACE_LINEAR_SCAN(level, code)       \
445     if (TraceLinearScanLevel >= level) {       \
446       code;                                    \
447     }
448 #else
449   #define TRACE_LINEAR_SCAN(level, code)
450 #endif
451 
452 class ComputeLinearScanOrder : public StackObj {
453  private:
454   int        _max_block_id;        // the highest block_id of a block
455   int        _num_blocks;          // total number of blocks (smaller than _max_block_id)
456   int        _num_loops;           // total number of loops
457   bool       _iterative_dominators;// method requires iterative computation of dominatiors
458 
459   BlockList* _linear_scan_order;   // the resulting list of blocks in correct order
460 
461   BitMap     _visited_blocks;      // used for recursive processing of blocks
462   BitMap     _active_blocks;       // used for recursive processing of blocks
463   BitMap     _dominator_blocks;    // temproary BitMap used for computation of dominator
464   intArray   _forward_branches;    // number of incoming forward branches for each block
465   BlockList  _loop_end_blocks;     // list of all loop end blocks collected during count_edges
466   BitMap2D   _loop_map;            // two-dimensional bit set: a bit is set if a block is contained in a loop
467   BlockList  _work_list;           // temporary list (used in mark_loops and compute_order)
468   BlockList  _loop_headers;
469 
470   Compilation* _compilation;
471 
472   // accessors for _visited_blocks and _active_blocks
init_visited()473   void init_visited()                     { _active_blocks.clear(); _visited_blocks.clear(); }
is_visited(BlockBegin * b) const474   bool is_visited(BlockBegin* b) const    { return _visited_blocks.at(b->block_id()); }
is_active(BlockBegin * b) const475   bool is_active(BlockBegin* b) const     { return _active_blocks.at(b->block_id()); }
set_visited(BlockBegin * b)476   void set_visited(BlockBegin* b)         { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
set_active(BlockBegin * b)477   void set_active(BlockBegin* b)          { assert(!is_active(b), "already set");  _active_blocks.set_bit(b->block_id()); }
clear_active(BlockBegin * b)478   void clear_active(BlockBegin* b)        { assert(is_active(b), "not already");   _active_blocks.clear_bit(b->block_id()); }
479 
480   // accessors for _forward_branches
inc_forward_branches(BlockBegin * b)481   void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
dec_forward_branches(BlockBegin * b)482   int  dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
483 
484   // accessors for _loop_map
is_block_in_loop(int loop_idx,BlockBegin * b) const485   bool is_block_in_loop   (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
set_block_in_loop(int loop_idx,BlockBegin * b)486   void set_block_in_loop  (int loop_idx, BlockBegin* b)       { _loop_map.set_bit(loop_idx, b->block_id()); }
clear_block_in_loop(int loop_idx,int block_id)487   void clear_block_in_loop(int loop_idx, int block_id)        { _loop_map.clear_bit(loop_idx, block_id); }
488 
489   // count edges between blocks
490   void count_edges(BlockBegin* cur, BlockBegin* parent);
491 
492   // loop detection
493   void mark_loops();
494   void clear_non_natural_loops(BlockBegin* start_block);
495   void assign_loop_depth(BlockBegin* start_block);
496 
497   // computation of final block order
498   BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
499   void compute_dominator(BlockBegin* cur, BlockBegin* parent);
500   int  compute_weight(BlockBegin* cur);
501   bool ready_for_processing(BlockBegin* cur);
502   void sort_into_work_list(BlockBegin* b);
503   void append_block(BlockBegin* cur);
504   void compute_order(BlockBegin* start_block);
505 
506   // fixup of dominators for non-natural loops
507   bool compute_dominators_iter();
508   void compute_dominators();
509 
510   // debug functions
511   NOT_PRODUCT(void print_blocks();)
DEBUG_ONLY(void verify ();)512   DEBUG_ONLY(void verify();)
513 
514   Compilation* compilation() const { return _compilation; }
515  public:
516   ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block);
517 
518   // accessors for final result
linear_scan_order() const519   BlockList* linear_scan_order() const    { return _linear_scan_order; }
num_loops() const520   int        num_loops() const            { return _num_loops; }
521 };
522 
523 
ComputeLinearScanOrder(Compilation * c,BlockBegin * start_block)524 ComputeLinearScanOrder::ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block) :
525   _max_block_id(BlockBegin::number_of_blocks()),
526   _num_blocks(0),
527   _num_loops(0),
528   _iterative_dominators(false),
529   _visited_blocks(_max_block_id),
530   _active_blocks(_max_block_id),
531   _dominator_blocks(_max_block_id),
532   _forward_branches(_max_block_id, 0),
533   _loop_end_blocks(8),
534   _work_list(8),
535   _linear_scan_order(NULL), // initialized later with correct size
536   _loop_map(0, 0),          // initialized later with correct size
537   _compilation(c)
538 {
539   TRACE_LINEAR_SCAN(2, tty->print_cr("***** computing linear-scan block order"));
540 
541   init_visited();
542   count_edges(start_block, NULL);
543 
544   if (compilation()->is_profiling()) {
545     ciMethod *method = compilation()->method();
546     if (!method->is_accessor()) {
547       ciMethodData* md = method->method_data_or_null();
548       assert(md != NULL, "Sanity");
549       md->set_compilation_stats(_num_loops, _num_blocks);
550     }
551   }
552 
553   if (_num_loops > 0) {
554     mark_loops();
555     clear_non_natural_loops(start_block);
556     assign_loop_depth(start_block);
557   }
558 
559   compute_order(start_block);
560   compute_dominators();
561 
562   NOT_PRODUCT(print_blocks());
563   DEBUG_ONLY(verify());
564 }
565 
566 
567 // Traverse the CFG:
568 // * count total number of blocks
569 // * count all incoming edges and backward incoming edges
570 // * number loop header blocks
571 // * create a list with all loop end blocks
count_edges(BlockBegin * cur,BlockBegin * parent)572 void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
573   TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
574   assert(cur->dominator() == NULL, "dominator already initialized");
575 
576   if (is_active(cur)) {
577     TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
578     assert(is_visited(cur), "block must be visisted when block is active");
579     assert(parent != NULL, "must have parent");
580 
581     cur->set(BlockBegin::backward_branch_target_flag);
582 
583     // When a loop header is also the start of an exception handler, then the backward branch is
584     // an exception edge. Because such edges are usually critical edges which cannot be split, the
585     // loop must be excluded here from processing.
586     if (cur->is_set(BlockBegin::exception_entry_flag)) {
587       // Make sure that dominators are correct in this weird situation
588       _iterative_dominators = true;
589       return;
590     }
591 
592     cur->set(BlockBegin::linear_scan_loop_header_flag);
593     parent->set(BlockBegin::linear_scan_loop_end_flag);
594 
595     assert(parent->number_of_sux() == 1 && parent->sux_at(0) == cur,
596            "loop end blocks must have one successor (critical edges are split)");
597 
598     _loop_end_blocks.append(parent);
599     return;
600   }
601 
602   // increment number of incoming forward branches
603   inc_forward_branches(cur);
604 
605   if (is_visited(cur)) {
606     TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
607     return;
608   }
609 
610   _num_blocks++;
611   set_visited(cur);
612   set_active(cur);
613 
614   // recursive call for all successors
615   int i;
616   for (i = cur->number_of_sux() - 1; i >= 0; i--) {
617     count_edges(cur->sux_at(i), cur);
618   }
619   for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
620     count_edges(cur->exception_handler_at(i), cur);
621   }
622 
623   clear_active(cur);
624 
625   // Each loop has a unique number.
626   // When multiple loops are nested, assign_loop_depth assumes that the
627   // innermost loop has the lowest number. This is guaranteed by setting
628   // the loop number after the recursive calls for the successors above
629   // have returned.
630   if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
631     assert(cur->loop_index() == -1, "cannot set loop-index twice");
632     TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
633 
634     cur->set_loop_index(_num_loops);
635     _loop_headers.append(cur);
636     _num_loops++;
637   }
638 
639   TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
640 }
641 
642 
mark_loops()643 void ComputeLinearScanOrder::mark_loops() {
644   TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
645 
646   _loop_map = BitMap2D(_num_loops, _max_block_id);
647   _loop_map.clear();
648 
649   for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
650     BlockBegin* loop_end   = _loop_end_blocks.at(i);
651     BlockBegin* loop_start = loop_end->sux_at(0);
652     int         loop_idx   = loop_start->loop_index();
653 
654     TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
655     assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
656     assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
657     assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
658     assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
659     assert(_work_list.is_empty(), "work list must be empty before processing");
660 
661     // add the end-block of the loop to the working list
662     _work_list.push(loop_end);
663     set_block_in_loop(loop_idx, loop_end);
664     do {
665       BlockBegin* cur = _work_list.pop();
666 
667       TRACE_LINEAR_SCAN(3, tty->print_cr("    processing B%d", cur->block_id()));
668       assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
669 
670       // recursive processing of all predecessors ends when start block of loop is reached
671       if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
672         for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
673           BlockBegin* pred = cur->pred_at(j);
674 
675           if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
676             // this predecessor has not been processed yet, so add it to work list
677             TRACE_LINEAR_SCAN(3, tty->print_cr("    pushing B%d", pred->block_id()));
678             _work_list.push(pred);
679             set_block_in_loop(loop_idx, pred);
680           }
681         }
682       }
683     } while (!_work_list.is_empty());
684   }
685 }
686 
687 
688 // check for non-natural loops (loops where the loop header does not dominate
689 // all other loop blocks = loops with mulitple entries).
690 // such loops are ignored
clear_non_natural_loops(BlockBegin * start_block)691 void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
692   for (int i = _num_loops - 1; i >= 0; i--) {
693     if (is_block_in_loop(i, start_block)) {
694       // loop i contains the entry block of the method
695       // -> this is not a natural loop, so ignore it
696       TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
697 
698       BlockBegin *loop_header = _loop_headers.at(i);
699       assert(loop_header->is_set(BlockBegin::linear_scan_loop_header_flag), "Must be loop header");
700 
701       for (int j = 0; j < loop_header->number_of_preds(); j++) {
702         BlockBegin *pred = loop_header->pred_at(j);
703         pred->clear(BlockBegin::linear_scan_loop_end_flag);
704       }
705 
706       loop_header->clear(BlockBegin::linear_scan_loop_header_flag);
707 
708       for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
709         clear_block_in_loop(i, block_id);
710       }
711       _iterative_dominators = true;
712     }
713   }
714 }
715 
assign_loop_depth(BlockBegin * start_block)716 void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
717   TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing loop-depth and weight"));
718   init_visited();
719 
720   assert(_work_list.is_empty(), "work list must be empty before processing");
721   _work_list.append(start_block);
722 
723   do {
724     BlockBegin* cur = _work_list.pop();
725 
726     if (!is_visited(cur)) {
727       set_visited(cur);
728       TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
729 
730       // compute loop-depth and loop-index for the block
731       assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
732       int i;
733       int loop_depth = 0;
734       int min_loop_idx = -1;
735       for (i = _num_loops - 1; i >= 0; i--) {
736         if (is_block_in_loop(i, cur)) {
737           loop_depth++;
738           min_loop_idx = i;
739         }
740       }
741       cur->set_loop_depth(loop_depth);
742       cur->set_loop_index(min_loop_idx);
743 
744       // append all unvisited successors to work list
745       for (i = cur->number_of_sux() - 1; i >= 0; i--) {
746         _work_list.append(cur->sux_at(i));
747       }
748       for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
749         _work_list.append(cur->exception_handler_at(i));
750       }
751     }
752   } while (!_work_list.is_empty());
753 }
754 
755 
common_dominator(BlockBegin * a,BlockBegin * b)756 BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
757   assert(a != NULL && b != NULL, "must have input blocks");
758 
759   _dominator_blocks.clear();
760   while (a != NULL) {
761     _dominator_blocks.set_bit(a->block_id());
762     assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
763     a = a->dominator();
764   }
765   while (b != NULL && !_dominator_blocks.at(b->block_id())) {
766     assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
767     b = b->dominator();
768   }
769 
770   assert(b != NULL, "could not find dominator");
771   return b;
772 }
773 
compute_dominator(BlockBegin * cur,BlockBegin * parent)774 void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
775   if (cur->dominator() == NULL) {
776     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
777     cur->set_dominator(parent);
778 
779   } else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
780     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
781     // Does not hold for exception blocks
782     assert(cur->number_of_preds() > 1 || cur->is_set(BlockBegin::exception_entry_flag), "");
783     cur->set_dominator(common_dominator(cur->dominator(), parent));
784   }
785 
786   // Additional edge to xhandler of all our successors
787   // range check elimination needs that the state at the end of a
788   // block be valid in every block it dominates so cur must dominate
789   // the exception handlers of its successors.
790   int num_cur_xhandler = cur->number_of_exception_handlers();
791   for (int j = 0; j < num_cur_xhandler; j++) {
792     BlockBegin* xhandler = cur->exception_handler_at(j);
793     compute_dominator(xhandler, parent);
794   }
795 }
796 
797 
compute_weight(BlockBegin * cur)798 int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
799   BlockBegin* single_sux = NULL;
800   if (cur->number_of_sux() == 1) {
801     single_sux = cur->sux_at(0);
802   }
803 
804   // limit loop-depth to 15 bit (only for security reason, it will never be so big)
805   int weight = (cur->loop_depth() & 0x7FFF) << 16;
806 
807   // general macro for short definition of weight flags
808   // the first instance of INC_WEIGHT_IF has the highest priority
809   int cur_bit = 15;
810   #define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
811 
812   // this is necessery for the (very rare) case that two successing blocks have
813   // the same loop depth, but a different loop index (can happen for endless loops
814   // with exception handlers)
815   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
816 
817   // loop end blocks (blocks that end with a backward branch) are added
818   // after all other blocks of the loop.
819   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
820 
821   // critical edge split blocks are prefered because than they have a bigger
822   // proability to be completely empty
823   INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
824 
825   // exceptions should not be thrown in normal control flow, so these blocks
826   // are added as late as possible
827   INC_WEIGHT_IF(cur->end()->as_Throw() == NULL  && (single_sux == NULL || single_sux->end()->as_Throw()  == NULL));
828   INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
829 
830   // exceptions handlers are added as late as possible
831   INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
832 
833   // guarantee that weight is > 0
834   weight |= 1;
835 
836   #undef INC_WEIGHT_IF
837   assert(cur_bit >= 0, "too many flags");
838   assert(weight > 0, "weight cannot become negative");
839 
840   return weight;
841 }
842 
ready_for_processing(BlockBegin * cur)843 bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
844   // Discount the edge just traveled.
845   // When the number drops to zero, all forward branches were processed
846   if (dec_forward_branches(cur) != 0) {
847     return false;
848   }
849 
850   assert(_linear_scan_order->index_of(cur) == -1, "block already processed (block can be ready only once)");
851   assert(_work_list.index_of(cur) == -1, "block already in work-list (block can be ready only once)");
852   return true;
853 }
854 
sort_into_work_list(BlockBegin * cur)855 void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
856   assert(_work_list.index_of(cur) == -1, "block already in work list");
857 
858   int cur_weight = compute_weight(cur);
859 
860   // the linear_scan_number is used to cache the weight of a block
861   cur->set_linear_scan_number(cur_weight);
862 
863 #ifndef PRODUCT
864   if (StressLinearScan) {
865     _work_list.insert_before(0, cur);
866     return;
867   }
868 #endif
869 
870   _work_list.append(NULL); // provide space for new element
871 
872   int insert_idx = _work_list.length() - 1;
873   while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
874     _work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
875     insert_idx--;
876   }
877   _work_list.at_put(insert_idx, cur);
878 
879   TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
880   TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d  weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
881 
882 #ifdef ASSERT
883   for (int i = 0; i < _work_list.length(); i++) {
884     assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
885     assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
886   }
887 #endif
888 }
889 
append_block(BlockBegin * cur)890 void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
891   TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
892   assert(_linear_scan_order->index_of(cur) == -1, "cannot add the same block twice");
893 
894   // currently, the linear scan order and code emit order are equal.
895   // therefore the linear_scan_number and the weight of a block must also
896   // be equal.
897   cur->set_linear_scan_number(_linear_scan_order->length());
898   _linear_scan_order->append(cur);
899 }
900 
compute_order(BlockBegin * start_block)901 void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
902   TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing final block order"));
903 
904   // the start block is always the first block in the linear scan order
905   _linear_scan_order = new BlockList(_num_blocks);
906   append_block(start_block);
907 
908   assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
909   BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
910   BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
911 
912   BlockBegin* sux_of_osr_entry = NULL;
913   if (osr_entry != NULL) {
914     // special handling for osr entry:
915     // ignore the edge between the osr entry and its successor for processing
916     // the osr entry block is added manually below
917     assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
918     assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
919 
920     sux_of_osr_entry = osr_entry->sux_at(0);
921     dec_forward_branches(sux_of_osr_entry);
922 
923     compute_dominator(osr_entry, start_block);
924     _iterative_dominators = true;
925   }
926   compute_dominator(std_entry, start_block);
927 
928   // start processing with standard entry block
929   assert(_work_list.is_empty(), "list must be empty before processing");
930 
931   if (ready_for_processing(std_entry)) {
932     sort_into_work_list(std_entry);
933   } else {
934     assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
935   }
936 
937   do {
938     BlockBegin* cur = _work_list.pop();
939 
940     if (cur == sux_of_osr_entry) {
941       // the osr entry block is ignored in normal processing, it is never added to the
942       // work list. Instead, it is added as late as possible manually here.
943       append_block(osr_entry);
944       compute_dominator(cur, osr_entry);
945     }
946     append_block(cur);
947 
948     int i;
949     int num_sux = cur->number_of_sux();
950     // changed loop order to get "intuitive" order of if- and else-blocks
951     for (i = 0; i < num_sux; i++) {
952       BlockBegin* sux = cur->sux_at(i);
953       compute_dominator(sux, cur);
954       if (ready_for_processing(sux)) {
955         sort_into_work_list(sux);
956       }
957     }
958     num_sux = cur->number_of_exception_handlers();
959     for (i = 0; i < num_sux; i++) {
960       BlockBegin* sux = cur->exception_handler_at(i);
961       if (ready_for_processing(sux)) {
962         sort_into_work_list(sux);
963       }
964     }
965   } while (_work_list.length() > 0);
966 }
967 
968 
compute_dominators_iter()969 bool ComputeLinearScanOrder::compute_dominators_iter() {
970   bool changed = false;
971   int num_blocks = _linear_scan_order->length();
972 
973   assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
974   assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
975   for (int i = 1; i < num_blocks; i++) {
976     BlockBegin* block = _linear_scan_order->at(i);
977 
978     BlockBegin* dominator = block->pred_at(0);
979     int num_preds = block->number_of_preds();
980 
981     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: Processing B%d", block->block_id()));
982 
983     for (int j = 0; j < num_preds; j++) {
984 
985       BlockBegin *pred = block->pred_at(j);
986       TRACE_LINEAR_SCAN(4, tty->print_cr("   DOM: Subrocessing B%d", pred->block_id()));
987 
988       if (block->is_set(BlockBegin::exception_entry_flag)) {
989         dominator = common_dominator(dominator, pred);
990         int num_pred_preds = pred->number_of_preds();
991         for (int k = 0; k < num_pred_preds; k++) {
992           dominator = common_dominator(dominator, pred->pred_at(k));
993         }
994       } else {
995         dominator = common_dominator(dominator, pred);
996       }
997     }
998 
999     if (dominator != block->dominator()) {
1000       TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
1001 
1002       block->set_dominator(dominator);
1003       changed = true;
1004     }
1005   }
1006   return changed;
1007 }
1008 
compute_dominators()1009 void ComputeLinearScanOrder::compute_dominators() {
1010   TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
1011 
1012   // iterative computation of dominators is only required for methods with non-natural loops
1013   // and OSR-methods. For all other methods, the dominators computed when generating the
1014   // linear scan block order are correct.
1015   if (_iterative_dominators) {
1016     do {
1017       TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
1018     } while (compute_dominators_iter());
1019   }
1020 
1021   // check that dominators are correct
1022   assert(!compute_dominators_iter(), "fix point not reached");
1023 
1024   // Add Blocks to dominates-Array
1025   int num_blocks = _linear_scan_order->length();
1026   for (int i = 0; i < num_blocks; i++) {
1027     BlockBegin* block = _linear_scan_order->at(i);
1028 
1029     BlockBegin *dom = block->dominator();
1030     if (dom) {
1031       assert(dom->dominator_depth() != -1, "Dominator must have been visited before");
1032       dom->dominates()->append(block);
1033       block->set_dominator_depth(dom->dominator_depth() + 1);
1034     } else {
1035       block->set_dominator_depth(0);
1036     }
1037   }
1038 }
1039 
1040 
1041 #ifndef PRODUCT
print_blocks()1042 void ComputeLinearScanOrder::print_blocks() {
1043   if (TraceLinearScanLevel >= 2) {
1044     tty->print_cr("----- loop information:");
1045     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
1046       BlockBegin* cur = _linear_scan_order->at(block_idx);
1047 
1048       tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
1049       for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
1050         tty->print ("%d ", is_block_in_loop(loop_idx, cur));
1051       }
1052       tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
1053     }
1054   }
1055 
1056   if (TraceLinearScanLevel >= 1) {
1057     tty->print_cr("----- linear-scan block order:");
1058     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
1059       BlockBegin* cur = _linear_scan_order->at(block_idx);
1060       tty->print("%4d: B%2d    loop: %2d  depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
1061 
1062       tty->print(cur->is_set(BlockBegin::exception_entry_flag)         ? " ex" : "   ");
1063       tty->print(cur->is_set(BlockBegin::critical_edge_split_flag)     ? " ce" : "   ");
1064       tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : "   ");
1065       tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag)    ? " le" : "   ");
1066 
1067       if (cur->dominator() != NULL) {
1068         tty->print("    dom: B%d ", cur->dominator()->block_id());
1069       } else {
1070         tty->print("    dom: NULL ");
1071       }
1072 
1073       if (cur->number_of_preds() > 0) {
1074         tty->print("    preds: ");
1075         for (int j = 0; j < cur->number_of_preds(); j++) {
1076           BlockBegin* pred = cur->pred_at(j);
1077           tty->print("B%d ", pred->block_id());
1078         }
1079       }
1080       if (cur->number_of_sux() > 0) {
1081         tty->print("    sux: ");
1082         for (int j = 0; j < cur->number_of_sux(); j++) {
1083           BlockBegin* sux = cur->sux_at(j);
1084           tty->print("B%d ", sux->block_id());
1085         }
1086       }
1087       if (cur->number_of_exception_handlers() > 0) {
1088         tty->print("    ex: ");
1089         for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
1090           BlockBegin* ex = cur->exception_handler_at(j);
1091           tty->print("B%d ", ex->block_id());
1092         }
1093       }
1094       tty->cr();
1095     }
1096   }
1097 }
1098 #endif
1099 
1100 #ifdef ASSERT
verify()1101 void ComputeLinearScanOrder::verify() {
1102   assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
1103 
1104   if (StressLinearScan) {
1105     // blocks are scrambled when StressLinearScan is used
1106     return;
1107   }
1108 
1109   // check that all successors of a block have a higher linear-scan-number
1110   // and that all predecessors of a block have a lower linear-scan-number
1111   // (only backward branches of loops are ignored)
1112   int i;
1113   for (i = 0; i < _linear_scan_order->length(); i++) {
1114     BlockBegin* cur = _linear_scan_order->at(i);
1115 
1116     assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
1117     assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->index_of(cur), "incorrect linear_scan_number");
1118 
1119     int j;
1120     for (j = cur->number_of_sux() - 1; j >= 0; j--) {
1121       BlockBegin* sux = cur->sux_at(j);
1122 
1123       assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->index_of(sux), "incorrect linear_scan_number");
1124       if (!sux->is_set(BlockBegin::backward_branch_target_flag)) {
1125         assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
1126       }
1127       if (cur->loop_depth() == sux->loop_depth()) {
1128         assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1129       }
1130     }
1131 
1132     for (j = cur->number_of_preds() - 1; j >= 0; j--) {
1133       BlockBegin* pred = cur->pred_at(j);
1134 
1135       assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->index_of(pred), "incorrect linear_scan_number");
1136       if (!cur->is_set(BlockBegin::backward_branch_target_flag)) {
1137         assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
1138       }
1139       if (cur->loop_depth() == pred->loop_depth()) {
1140         assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1141       }
1142 
1143       assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
1144     }
1145 
1146     // check dominator
1147     if (i == 0) {
1148       assert(cur->dominator() == NULL, "first block has no dominator");
1149     } else {
1150       assert(cur->dominator() != NULL, "all but first block must have dominator");
1151     }
1152     // Assertion does not hold for exception handlers
1153     assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0) || cur->is_set(BlockBegin::exception_entry_flag), "Single predecessor must also be dominator");
1154   }
1155 
1156   // check that all loops are continuous
1157   for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
1158     int block_idx = 0;
1159     assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
1160 
1161     // skip blocks before the loop
1162     while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1163       block_idx++;
1164     }
1165     // skip blocks of loop
1166     while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1167       block_idx++;
1168     }
1169     // after the first non-loop block, there must not be another loop-block
1170     while (block_idx < _num_blocks) {
1171       assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
1172       block_idx++;
1173     }
1174   }
1175 }
1176 #endif
1177 
1178 
compute_code()1179 void IR::compute_code() {
1180   assert(is_valid(), "IR must be valid");
1181 
1182   ComputeLinearScanOrder compute_order(compilation(), start());
1183   _num_loops = compute_order.num_loops();
1184   _code = compute_order.linear_scan_order();
1185 }
1186 
1187 
compute_use_counts()1188 void IR::compute_use_counts() {
1189   // make sure all values coming out of this block get evaluated.
1190   int num_blocks = _code->length();
1191   for (int i = 0; i < num_blocks; i++) {
1192     _code->at(i)->end()->state()->pin_stack_for_linear_scan();
1193   }
1194 
1195   // compute use counts
1196   UseCountComputer::compute(_code);
1197 }
1198 
1199 
iterate_preorder(BlockClosure * closure)1200 void IR::iterate_preorder(BlockClosure* closure) {
1201   assert(is_valid(), "IR must be valid");
1202   start()->iterate_preorder(closure);
1203 }
1204 
1205 
iterate_postorder(BlockClosure * closure)1206 void IR::iterate_postorder(BlockClosure* closure) {
1207   assert(is_valid(), "IR must be valid");
1208   start()->iterate_postorder(closure);
1209 }
1210 
iterate_linear_scan_order(BlockClosure * closure)1211 void IR::iterate_linear_scan_order(BlockClosure* closure) {
1212   linear_scan_order()->iterate_forward(closure);
1213 }
1214 
1215 
1216 #ifndef PRODUCT
1217 class BlockPrinter: public BlockClosure {
1218  private:
1219   InstructionPrinter* _ip;
1220   bool                _cfg_only;
1221   bool                _live_only;
1222 
1223  public:
BlockPrinter(InstructionPrinter * ip,bool cfg_only,bool live_only=false)1224   BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
1225     _ip       = ip;
1226     _cfg_only = cfg_only;
1227     _live_only = live_only;
1228   }
1229 
block_do(BlockBegin * block)1230   virtual void block_do(BlockBegin* block) {
1231     if (_cfg_only) {
1232       _ip->print_instr(block); tty->cr();
1233     } else {
1234       block->print_block(*_ip, _live_only);
1235     }
1236   }
1237 };
1238 
1239 
print(BlockBegin * start,bool cfg_only,bool live_only)1240 void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
1241   ttyLocker ttyl;
1242   InstructionPrinter ip(!cfg_only);
1243   BlockPrinter bp(&ip, cfg_only, live_only);
1244   start->iterate_preorder(&bp);
1245   tty->cr();
1246 }
1247 
print(bool cfg_only,bool live_only)1248 void IR::print(bool cfg_only, bool live_only) {
1249   if (is_valid()) {
1250     print(start(), cfg_only, live_only);
1251   } else {
1252     tty->print_cr("invalid IR");
1253   }
1254 }
1255 
1256 
1257 define_array(BlockListArray, BlockList*)
1258 define_stack(BlockListList, BlockListArray)
1259 
1260 class PredecessorValidator : public BlockClosure {
1261  private:
1262   BlockListList* _predecessors;
1263   BlockList*     _blocks;
1264 
cmp(BlockBegin ** a,BlockBegin ** b)1265   static int cmp(BlockBegin** a, BlockBegin** b) {
1266     return (*a)->block_id() - (*b)->block_id();
1267   }
1268 
1269  public:
PredecessorValidator(IR * hir)1270   PredecessorValidator(IR* hir) {
1271     ResourceMark rm;
1272     _predecessors = new BlockListList(BlockBegin::number_of_blocks(), NULL);
1273     _blocks = new BlockList();
1274 
1275     int i;
1276     hir->start()->iterate_preorder(this);
1277     if (hir->code() != NULL) {
1278       assert(hir->code()->length() == _blocks->length(), "must match");
1279       for (i = 0; i < _blocks->length(); i++) {
1280         assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
1281       }
1282     }
1283 
1284     for (i = 0; i < _blocks->length(); i++) {
1285       BlockBegin* block = _blocks->at(i);
1286       BlockList* preds = _predecessors->at(block->block_id());
1287       if (preds == NULL) {
1288         assert(block->number_of_preds() == 0, "should be the same");
1289         continue;
1290       }
1291 
1292       // clone the pred list so we can mutate it
1293       BlockList* pred_copy = new BlockList();
1294       int j;
1295       for (j = 0; j < block->number_of_preds(); j++) {
1296         pred_copy->append(block->pred_at(j));
1297       }
1298       // sort them in the same order
1299       preds->sort(cmp);
1300       pred_copy->sort(cmp);
1301       int length = MIN2(preds->length(), block->number_of_preds());
1302       for (j = 0; j < block->number_of_preds(); j++) {
1303         assert(preds->at(j) == pred_copy->at(j), "must match");
1304       }
1305 
1306       assert(preds->length() == block->number_of_preds(), "should be the same");
1307     }
1308   }
1309 
block_do(BlockBegin * block)1310   virtual void block_do(BlockBegin* block) {
1311     _blocks->append(block);
1312     BlockEnd* be = block->end();
1313     int n = be->number_of_sux();
1314     int i;
1315     for (i = 0; i < n; i++) {
1316       BlockBegin* sux = be->sux_at(i);
1317       assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
1318 
1319       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1320       if (preds == NULL) {
1321         preds = new BlockList();
1322         _predecessors->at_put(sux->block_id(), preds);
1323       }
1324       preds->append(block);
1325     }
1326 
1327     n = block->number_of_exception_handlers();
1328     for (i = 0; i < n; i++) {
1329       BlockBegin* sux = block->exception_handler_at(i);
1330       assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
1331 
1332       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1333       if (preds == NULL) {
1334         preds = new BlockList();
1335         _predecessors->at_put(sux->block_id(), preds);
1336       }
1337       preds->append(block);
1338     }
1339   }
1340 };
1341 
1342 class VerifyBlockBeginField : public BlockClosure {
1343 
1344 public:
1345 
block_do(BlockBegin * block)1346   virtual void block_do(BlockBegin *block) {
1347     for ( Instruction *cur = block; cur != NULL; cur = cur->next()) {
1348       assert(cur->block() == block, "Block begin is not correct");
1349     }
1350   }
1351 };
1352 
verify()1353 void IR::verify() {
1354 #ifdef ASSERT
1355   PredecessorValidator pv(this);
1356   VerifyBlockBeginField verifier;
1357   this->iterate_postorder(&verifier);
1358 #endif
1359 }
1360 
1361 #endif // PRODUCT
1362 
visit(Value * v)1363 void SubstitutionResolver::visit(Value* v) {
1364   Value v0 = *v;
1365   if (v0) {
1366     Value vs = v0->subst();
1367     if (vs != v0) {
1368       *v = v0->subst();
1369     }
1370   }
1371 }
1372 
1373 #ifdef ASSERT
1374 class SubstitutionChecker: public ValueVisitor {
visit(Value * v)1375   void visit(Value* v) {
1376     Value v0 = *v;
1377     if (v0) {
1378       Value vs = v0->subst();
1379       assert(vs == v0, "missed substitution");
1380     }
1381   }
1382 };
1383 #endif
1384 
1385 
block_do(BlockBegin * block)1386 void SubstitutionResolver::block_do(BlockBegin* block) {
1387   Instruction* last = NULL;
1388   for (Instruction* n = block; n != NULL;) {
1389     n->values_do(this);
1390     // need to remove this instruction from the instruction stream
1391     if (n->subst() != n) {
1392       assert(last != NULL, "must have last");
1393       last->set_next(n->next());
1394     } else {
1395       last = n;
1396     }
1397     n = last->next();
1398   }
1399 
1400 #ifdef ASSERT
1401   SubstitutionChecker check_substitute;
1402   if (block->state()) block->state()->values_do(&check_substitute);
1403   block->block_values_do(&check_substitute);
1404   if (block->end() && block->end()->state()) block->end()->state()->values_do(&check_substitute);
1405 #endif
1406 }
1407