1 /*
2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "interpreter/interpreter.hpp"
27 #include "interpreter/interpreterGenerator.hpp"
28 #include "interpreter/interpreterRuntime.hpp"
29 #include "interpreter/templateTable.hpp"
30 
31 #ifndef CC_INTERP
32 
33 # define __ _masm->
34 
initialize()35 void TemplateInterpreter::initialize() {
36   if (_code != NULL) return;
37   // assertions
38   assert((int)Bytecodes::number_of_codes <= (int)DispatchTable::length,
39          "dispatch table too small");
40 
41   AbstractInterpreter::initialize();
42 
43   TemplateTable::initialize();
44 
45   // generate interpreter
46   { ResourceMark rm;
47     TraceTime timer("Interpreter generation", TraceStartupTime);
48     int code_size = InterpreterCodeSize;
49     NOT_PRODUCT(code_size *= 4;)  // debug uses extra interpreter code space
50     _code = new StubQueue(new InterpreterCodeletInterface, code_size, NULL,
51                           "Interpreter");
52     InterpreterGenerator g(_code);
53     if (PrintInterpreter) print();
54   }
55 
56   // initialize dispatch table
57   _active_table = _normal_table;
58 }
59 
60 //------------------------------------------------------------------------------------------------------------------------
61 // Implementation of EntryPoint
62 
EntryPoint()63 EntryPoint::EntryPoint() {
64   assert(number_of_states == 10, "check the code below");
65   _entry[btos] = NULL;
66   _entry[ztos] = NULL;
67   _entry[ctos] = NULL;
68   _entry[stos] = NULL;
69   _entry[atos] = NULL;
70   _entry[itos] = NULL;
71   _entry[ltos] = NULL;
72   _entry[ftos] = NULL;
73   _entry[dtos] = NULL;
74   _entry[vtos] = NULL;
75 }
76 
77 
EntryPoint(address bentry,address zentry,address centry,address sentry,address aentry,address ientry,address lentry,address fentry,address dentry,address ventry)78 EntryPoint::EntryPoint(address bentry, address zentry, address centry, address sentry, address aentry, address ientry, address lentry, address fentry, address dentry, address ventry) {
79   assert(number_of_states == 10, "check the code below");
80   _entry[btos] = bentry;
81   _entry[ztos] = zentry;
82   _entry[ctos] = centry;
83   _entry[stos] = sentry;
84   _entry[atos] = aentry;
85   _entry[itos] = ientry;
86   _entry[ltos] = lentry;
87   _entry[ftos] = fentry;
88   _entry[dtos] = dentry;
89   _entry[vtos] = ventry;
90 }
91 
92 
set_entry(TosState state,address entry)93 void EntryPoint::set_entry(TosState state, address entry) {
94   assert(0 <= state && state < number_of_states, "state out of bounds");
95   _entry[state] = entry;
96 }
97 
98 
entry(TosState state) const99 address EntryPoint::entry(TosState state) const {
100   assert(0 <= state && state < number_of_states, "state out of bounds");
101   return _entry[state];
102 }
103 
104 
print()105 void EntryPoint::print() {
106   tty->print("[");
107   for (int i = 0; i < number_of_states; i++) {
108     if (i > 0) tty->print(", ");
109     tty->print(INTPTR_FORMAT, p2i(_entry[i]));
110   }
111   tty->print("]");
112 }
113 
114 
operator ==(const EntryPoint & y)115 bool EntryPoint::operator == (const EntryPoint& y) {
116   int i = number_of_states;
117   while (i-- > 0) {
118     if (_entry[i] != y._entry[i]) return false;
119   }
120   return true;
121 }
122 
123 
124 //------------------------------------------------------------------------------------------------------------------------
125 // Implementation of DispatchTable
126 
entry(int i) const127 EntryPoint DispatchTable::entry(int i) const {
128   assert(0 <= i && i < length, "index out of bounds");
129   return
130     EntryPoint(
131       _table[btos][i],
132       _table[ztos][i],
133       _table[ctos][i],
134       _table[stos][i],
135       _table[atos][i],
136       _table[itos][i],
137       _table[ltos][i],
138       _table[ftos][i],
139       _table[dtos][i],
140       _table[vtos][i]
141     );
142 }
143 
144 
set_entry(int i,EntryPoint & entry)145 void DispatchTable::set_entry(int i, EntryPoint& entry) {
146   assert(0 <= i && i < length, "index out of bounds");
147   assert(number_of_states == 10, "check the code below");
148   _table[btos][i] = entry.entry(btos);
149   _table[ztos][i] = entry.entry(ztos);
150   _table[ctos][i] = entry.entry(ctos);
151   _table[stos][i] = entry.entry(stos);
152   _table[atos][i] = entry.entry(atos);
153   _table[itos][i] = entry.entry(itos);
154   _table[ltos][i] = entry.entry(ltos);
155   _table[ftos][i] = entry.entry(ftos);
156   _table[dtos][i] = entry.entry(dtos);
157   _table[vtos][i] = entry.entry(vtos);
158 }
159 
160 
operator ==(DispatchTable & y)161 bool DispatchTable::operator == (DispatchTable& y) {
162   int i = length;
163   while (i-- > 0) {
164     EntryPoint t = y.entry(i); // for compiler compatibility (BugId 4150096)
165     if (!(entry(i) == t)) return false;
166   }
167   return true;
168 }
169 
170 address    TemplateInterpreter::_remove_activation_entry                    = NULL;
171 address    TemplateInterpreter::_remove_activation_preserving_args_entry    = NULL;
172 
173 
174 address    TemplateInterpreter::_throw_ArrayIndexOutOfBoundsException_entry = NULL;
175 address    TemplateInterpreter::_throw_ArrayStoreException_entry            = NULL;
176 address    TemplateInterpreter::_throw_ArithmeticException_entry            = NULL;
177 address    TemplateInterpreter::_throw_ClassCastException_entry             = NULL;
178 address    TemplateInterpreter::_throw_NullPointerException_entry           = NULL;
179 address    TemplateInterpreter::_throw_StackOverflowError_entry             = NULL;
180 address    TemplateInterpreter::_throw_exception_entry                      = NULL;
181 
182 #ifndef PRODUCT
183 EntryPoint TemplateInterpreter::_trace_code;
184 #endif // !PRODUCT
185 EntryPoint TemplateInterpreter::_return_entry[TemplateInterpreter::number_of_return_entries];
186 EntryPoint TemplateInterpreter::_earlyret_entry;
187 EntryPoint TemplateInterpreter::_deopt_entry [TemplateInterpreter::number_of_deopt_entries ];
188 EntryPoint TemplateInterpreter::_continuation_entry;
189 EntryPoint TemplateInterpreter::_safept_entry;
190 
191 address TemplateInterpreter::_invoke_return_entry[TemplateInterpreter::number_of_return_addrs];
192 address TemplateInterpreter::_invokeinterface_return_entry[TemplateInterpreter::number_of_return_addrs];
193 address TemplateInterpreter::_invokedynamic_return_entry[TemplateInterpreter::number_of_return_addrs];
194 
195 DispatchTable TemplateInterpreter::_active_table;
196 DispatchTable TemplateInterpreter::_normal_table;
197 DispatchTable TemplateInterpreter::_safept_table;
198 address    TemplateInterpreter::_wentry_point[DispatchTable::length];
199 
TemplateInterpreterGenerator(StubQueue * _code)200 TemplateInterpreterGenerator::TemplateInterpreterGenerator(StubQueue* _code): AbstractInterpreterGenerator(_code) {
201   _unimplemented_bytecode    = NULL;
202   _illegal_bytecode_sequence = NULL;
203 }
204 
205 static const BasicType types[Interpreter::number_of_result_handlers] = {
206   T_BOOLEAN,
207   T_CHAR   ,
208   T_BYTE   ,
209   T_SHORT  ,
210   T_INT    ,
211   T_LONG   ,
212   T_VOID   ,
213   T_FLOAT  ,
214   T_DOUBLE ,
215   T_OBJECT
216 };
217 
generate_all()218 void TemplateInterpreterGenerator::generate_all() {
219   AbstractInterpreterGenerator::generate_all();
220 
221   { CodeletMark cm(_masm, "error exits");
222     _unimplemented_bytecode    = generate_error_exit("unimplemented bytecode");
223     _illegal_bytecode_sequence = generate_error_exit("illegal bytecode sequence - method not verified");
224   }
225 
226 #ifndef PRODUCT
227   if (TraceBytecodes) {
228     CodeletMark cm(_masm, "bytecode tracing support");
229     Interpreter::_trace_code =
230       EntryPoint(
231         generate_trace_code(btos),
232         generate_trace_code(ztos),
233         generate_trace_code(ctos),
234         generate_trace_code(stos),
235         generate_trace_code(atos),
236         generate_trace_code(itos),
237         generate_trace_code(ltos),
238         generate_trace_code(ftos),
239         generate_trace_code(dtos),
240         generate_trace_code(vtos)
241       );
242   }
243 #endif // !PRODUCT
244 
245   { CodeletMark cm(_masm, "return entry points");
246     const int index_size = sizeof(u2);
247     for (int i = 0; i < Interpreter::number_of_return_entries; i++) {
248       Interpreter::_return_entry[i] =
249         EntryPoint(
250           generate_return_entry_for(itos, i, index_size),
251           generate_return_entry_for(itos, i, index_size),
252           generate_return_entry_for(itos, i, index_size),
253           generate_return_entry_for(itos, i, index_size),
254           generate_return_entry_for(atos, i, index_size),
255           generate_return_entry_for(itos, i, index_size),
256           generate_return_entry_for(ltos, i, index_size),
257           generate_return_entry_for(ftos, i, index_size),
258           generate_return_entry_for(dtos, i, index_size),
259           generate_return_entry_for(vtos, i, index_size)
260         );
261     }
262   }
263 
264   { CodeletMark cm(_masm, "invoke return entry points");
265     // These states are in order specified in TosState, except btos/ztos/ctos/stos are
266     // really the same as itos since there is no top of stack optimization for these types
267     const TosState states[] = {itos, itos, itos, itos, itos, ltos, ftos, dtos, atos, vtos, ilgl};
268     const int invoke_length = Bytecodes::length_for(Bytecodes::_invokestatic);
269     const int invokeinterface_length = Bytecodes::length_for(Bytecodes::_invokeinterface);
270     const int invokedynamic_length = Bytecodes::length_for(Bytecodes::_invokedynamic);
271 
272     for (int i = 0; i < Interpreter::number_of_return_addrs; i++) {
273       TosState state = states[i];
274       assert(state != ilgl, "states array is wrong above");
275       Interpreter::_invoke_return_entry[i] = generate_return_entry_for(state, invoke_length, sizeof(u2));
276       Interpreter::_invokeinterface_return_entry[i] = generate_return_entry_for(state, invokeinterface_length, sizeof(u2));
277       Interpreter::_invokedynamic_return_entry[i] = generate_return_entry_for(state, invokedynamic_length, sizeof(u4));
278     }
279   }
280 
281   { CodeletMark cm(_masm, "earlyret entry points");
282     Interpreter::_earlyret_entry =
283       EntryPoint(
284         generate_earlyret_entry_for(btos),
285         generate_earlyret_entry_for(ztos),
286         generate_earlyret_entry_for(ctos),
287         generate_earlyret_entry_for(stos),
288         generate_earlyret_entry_for(atos),
289         generate_earlyret_entry_for(itos),
290         generate_earlyret_entry_for(ltos),
291         generate_earlyret_entry_for(ftos),
292         generate_earlyret_entry_for(dtos),
293         generate_earlyret_entry_for(vtos)
294       );
295   }
296 
297   { CodeletMark cm(_masm, "deoptimization entry points");
298     for (int i = 0; i < Interpreter::number_of_deopt_entries; i++) {
299       Interpreter::_deopt_entry[i] =
300         EntryPoint(
301           generate_deopt_entry_for(itos, i),
302           generate_deopt_entry_for(itos, i),
303           generate_deopt_entry_for(itos, i),
304           generate_deopt_entry_for(itos, i),
305           generate_deopt_entry_for(atos, i),
306           generate_deopt_entry_for(itos, i),
307           generate_deopt_entry_for(ltos, i),
308           generate_deopt_entry_for(ftos, i),
309           generate_deopt_entry_for(dtos, i),
310           generate_deopt_entry_for(vtos, i)
311         );
312     }
313   }
314 
315   { CodeletMark cm(_masm, "result handlers for native calls");
316     // The various result converter stublets.
317     int is_generated[Interpreter::number_of_result_handlers];
318     memset(is_generated, 0, sizeof(is_generated));
319 
320     for (int i = 0; i < Interpreter::number_of_result_handlers; i++) {
321       BasicType type = types[i];
322       if (!is_generated[Interpreter::BasicType_as_index(type)]++) {
323         Interpreter::_native_abi_to_tosca[Interpreter::BasicType_as_index(type)] = generate_result_handler_for(type);
324       }
325     }
326   }
327 
328   { CodeletMark cm(_masm, "continuation entry points");
329     Interpreter::_continuation_entry =
330       EntryPoint(
331         generate_continuation_for(btos),
332         generate_continuation_for(ztos),
333         generate_continuation_for(ctos),
334         generate_continuation_for(stos),
335         generate_continuation_for(atos),
336         generate_continuation_for(itos),
337         generate_continuation_for(ltos),
338         generate_continuation_for(ftos),
339         generate_continuation_for(dtos),
340         generate_continuation_for(vtos)
341       );
342   }
343 
344   { CodeletMark cm(_masm, "safepoint entry points");
345     Interpreter::_safept_entry =
346       EntryPoint(
347         generate_safept_entry_for(btos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
348         generate_safept_entry_for(ztos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
349         generate_safept_entry_for(ctos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
350         generate_safept_entry_for(stos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
351         generate_safept_entry_for(atos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
352         generate_safept_entry_for(itos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
353         generate_safept_entry_for(ltos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
354         generate_safept_entry_for(ftos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
355         generate_safept_entry_for(dtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
356         generate_safept_entry_for(vtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint))
357       );
358   }
359 
360   { CodeletMark cm(_masm, "exception handling");
361     // (Note: this is not safepoint safe because thread may return to compiled code)
362     generate_throw_exception();
363   }
364 
365   { CodeletMark cm(_masm, "throw exception entrypoints");
366     Interpreter::_throw_ArrayIndexOutOfBoundsException_entry = generate_ArrayIndexOutOfBounds_handler("java/lang/ArrayIndexOutOfBoundsException");
367     Interpreter::_throw_ArrayStoreException_entry            = generate_klass_exception_handler("java/lang/ArrayStoreException"                 );
368     Interpreter::_throw_ArithmeticException_entry            = generate_exception_handler("java/lang/ArithmeticException"           , "/ by zero");
369     Interpreter::_throw_ClassCastException_entry             = generate_ClassCastException_handler();
370     Interpreter::_throw_NullPointerException_entry           = generate_exception_handler("java/lang/NullPointerException"          , NULL       );
371     Interpreter::_throw_StackOverflowError_entry             = generate_StackOverflowError_handler();
372   }
373 
374 
375 
376 #define method_entry(kind)                                                                    \
377   { CodeletMark cm(_masm, "method entry point (kind = " #kind ")");                    \
378     Interpreter::_entry_table[Interpreter::kind] = generate_method_entry(Interpreter::kind);  \
379   }
380 
381   // all non-native method kinds
382   method_entry(zerolocals)
383   method_entry(zerolocals_synchronized)
384   method_entry(empty)
385   method_entry(accessor)
386   method_entry(abstract)
387   method_entry(java_lang_math_sin  )
388   method_entry(java_lang_math_cos  )
389   method_entry(java_lang_math_tan  )
390   method_entry(java_lang_math_abs  )
391   method_entry(java_lang_math_sqrt )
392   method_entry(java_lang_math_log  )
393   method_entry(java_lang_math_log10)
394   method_entry(java_lang_math_exp  )
395   method_entry(java_lang_math_pow  )
396   method_entry(java_lang_ref_reference_get)
397 
398   if (UseCRC32Intrinsics) {
399     method_entry(java_util_zip_CRC32_update)
400     method_entry(java_util_zip_CRC32_updateBytes)
401     method_entry(java_util_zip_CRC32_updateByteBuffer)
402   }
403 
404   initialize_method_handle_entries();
405 
406   // all native method kinds (must be one contiguous block)
407   Interpreter::_native_entry_begin = Interpreter::code()->code_end();
408   method_entry(native)
409   method_entry(native_synchronized)
410   Interpreter::_native_entry_end = Interpreter::code()->code_end();
411 
412 #undef method_entry
413 
414   // Bytecodes
415   set_entry_points_for_all_bytes();
416   set_safepoints_for_all_bytes();
417 }
418 
419 //------------------------------------------------------------------------------------------------------------------------
420 
generate_error_exit(const char * msg)421 address TemplateInterpreterGenerator::generate_error_exit(const char* msg) {
422   address entry = __ pc();
423   __ stop(msg);
424   return entry;
425 }
426 
427 
428 //------------------------------------------------------------------------------------------------------------------------
429 
set_entry_points_for_all_bytes()430 void TemplateInterpreterGenerator::set_entry_points_for_all_bytes() {
431   for (int i = 0; i < DispatchTable::length; i++) {
432     Bytecodes::Code code = (Bytecodes::Code)i;
433     if (Bytecodes::is_defined(code)) {
434       set_entry_points(code);
435     } else {
436       set_unimplemented(i);
437     }
438   }
439 }
440 
441 
set_safepoints_for_all_bytes()442 void TemplateInterpreterGenerator::set_safepoints_for_all_bytes() {
443   for (int i = 0; i < DispatchTable::length; i++) {
444     Bytecodes::Code code = (Bytecodes::Code)i;
445     if (Bytecodes::is_defined(code)) Interpreter::_safept_table.set_entry(code, Interpreter::_safept_entry);
446   }
447 }
448 
449 
set_unimplemented(int i)450 void TemplateInterpreterGenerator::set_unimplemented(int i) {
451   address e = _unimplemented_bytecode;
452   EntryPoint entry(e, e, e, e, e, e, e, e, e, e);
453   Interpreter::_normal_table.set_entry(i, entry);
454   Interpreter::_wentry_point[i] = _unimplemented_bytecode;
455 }
456 
457 
set_entry_points(Bytecodes::Code code)458 void TemplateInterpreterGenerator::set_entry_points(Bytecodes::Code code) {
459   CodeletMark cm(_masm, Bytecodes::name(code), code);
460   // initialize entry points
461   assert(_unimplemented_bytecode    != NULL, "should have been generated before");
462   assert(_illegal_bytecode_sequence != NULL, "should have been generated before");
463   address bep = _illegal_bytecode_sequence;
464   address zep = _illegal_bytecode_sequence;
465   address cep = _illegal_bytecode_sequence;
466   address sep = _illegal_bytecode_sequence;
467   address aep = _illegal_bytecode_sequence;
468   address iep = _illegal_bytecode_sequence;
469   address lep = _illegal_bytecode_sequence;
470   address fep = _illegal_bytecode_sequence;
471   address dep = _illegal_bytecode_sequence;
472   address vep = _unimplemented_bytecode;
473   address wep = _unimplemented_bytecode;
474   // code for short & wide version of bytecode
475   if (Bytecodes::is_defined(code)) {
476     Template* t = TemplateTable::template_for(code);
477     assert(t->is_valid(), "just checking");
478     set_short_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep);
479   }
480   if (Bytecodes::wide_is_defined(code)) {
481     Template* t = TemplateTable::template_for_wide(code);
482     assert(t->is_valid(), "just checking");
483     set_wide_entry_point(t, wep);
484   }
485   // set entry points
486   EntryPoint entry(bep, zep, cep, sep, aep, iep, lep, fep, dep, vep);
487   Interpreter::_normal_table.set_entry(code, entry);
488   Interpreter::_wentry_point[code] = wep;
489 }
490 
491 
set_wide_entry_point(Template * t,address & wep)492 void TemplateInterpreterGenerator::set_wide_entry_point(Template* t, address& wep) {
493   assert(t->is_valid(), "template must exist");
494   assert(t->tos_in() == vtos, "only vtos tos_in supported for wide instructions");
495   wep = __ pc(); generate_and_dispatch(t);
496 }
497 
498 
set_short_entry_points(Template * t,address & bep,address & cep,address & sep,address & aep,address & iep,address & lep,address & fep,address & dep,address & vep)499 void TemplateInterpreterGenerator::set_short_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
500   assert(t->is_valid(), "template must exist");
501   switch (t->tos_in()) {
502     case btos:
503     case ztos:
504     case ctos:
505     case stos:
506       ShouldNotReachHere();  // btos/ctos/stos should use itos.
507       break;
508     case atos: vep = __ pc(); __ pop(atos); aep = __ pc(); generate_and_dispatch(t); break;
509     case itos: vep = __ pc(); __ pop(itos); iep = __ pc(); generate_and_dispatch(t); break;
510     case ltos: vep = __ pc(); __ pop(ltos); lep = __ pc(); generate_and_dispatch(t); break;
511     case ftos: vep = __ pc(); __ pop(ftos); fep = __ pc(); generate_and_dispatch(t); break;
512     case dtos: vep = __ pc(); __ pop(dtos); dep = __ pc(); generate_and_dispatch(t); break;
513     case vtos: set_vtos_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep);     break;
514     default  : ShouldNotReachHere();                                                 break;
515   }
516 }
517 
518 
519 //------------------------------------------------------------------------------------------------------------------------
520 
generate_and_dispatch(Template * t,TosState tos_out)521 void TemplateInterpreterGenerator::generate_and_dispatch(Template* t, TosState tos_out) {
522   if (PrintBytecodeHistogram)                                    histogram_bytecode(t);
523 #ifndef PRODUCT
524   // debugging code
525   if (CountBytecodes || TraceBytecodes || StopInterpreterAt > 0) count_bytecode();
526   if (PrintBytecodePairHistogram)                                histogram_bytecode_pair(t);
527   if (TraceBytecodes)                                            trace_bytecode(t);
528   if (StopInterpreterAt > 0)                                     stop_interpreter_at();
529   __ verify_FPU(1, t->tos_in());
530 #endif // !PRODUCT
531   int step = 0;
532   if (!t->does_dispatch()) {
533     step = t->is_wide() ? Bytecodes::wide_length_for(t->bytecode()) : Bytecodes::length_for(t->bytecode());
534     if (tos_out == ilgl) tos_out = t->tos_out();
535     // compute bytecode size
536     assert(step > 0, "just checkin'");
537     // setup stuff for dispatching next bytecode
538     if (ProfileInterpreter && VerifyDataPointer
539         && MethodData::bytecode_has_profile(t->bytecode())) {
540       __ verify_method_data_pointer();
541     }
542     __ dispatch_prolog(tos_out, step);
543   }
544   // generate template
545   t->generate(_masm);
546   // advance
547   if (t->does_dispatch()) {
548 #ifdef ASSERT
549     // make sure execution doesn't go beyond this point if code is broken
550     __ should_not_reach_here();
551 #endif // ASSERT
552   } else {
553     // dispatch to next bytecode
554     __ dispatch_epilog(tos_out, step);
555   }
556 }
557 
558 //------------------------------------------------------------------------------------------------------------------------
559 // Entry points
560 
561 /**
562  * Returns the return entry table for the given invoke bytecode.
563  */
invoke_return_entry_table_for(Bytecodes::Code code)564 address* TemplateInterpreter::invoke_return_entry_table_for(Bytecodes::Code code) {
565   switch (code) {
566   case Bytecodes::_invokestatic:
567   case Bytecodes::_invokespecial:
568   case Bytecodes::_invokevirtual:
569   case Bytecodes::_invokehandle:
570     return Interpreter::invoke_return_entry_table();
571   case Bytecodes::_invokeinterface:
572     return Interpreter::invokeinterface_return_entry_table();
573   case Bytecodes::_invokedynamic:
574     return Interpreter::invokedynamic_return_entry_table();
575   default:
576     fatal(err_msg("invalid bytecode: %s", Bytecodes::name(code)));
577     return NULL;
578   }
579 }
580 
581 /**
582  * Returns the return entry address for the given top-of-stack state and bytecode.
583  */
return_entry(TosState state,int length,Bytecodes::Code code)584 address TemplateInterpreter::return_entry(TosState state, int length, Bytecodes::Code code) {
585   guarantee(0 <= length && length < Interpreter::number_of_return_entries, "illegal length");
586   const int index = TosState_as_index(state);
587   switch (code) {
588   case Bytecodes::_invokestatic:
589   case Bytecodes::_invokespecial:
590   case Bytecodes::_invokevirtual:
591   case Bytecodes::_invokehandle:
592     return _invoke_return_entry[index];
593   case Bytecodes::_invokeinterface:
594     return _invokeinterface_return_entry[index];
595   case Bytecodes::_invokedynamic:
596     return _invokedynamic_return_entry[index];
597   default:
598     assert(!Bytecodes::is_invoke(code), err_msg("invoke instructions should be handled separately: %s", Bytecodes::name(code)));
599     return _return_entry[length].entry(state);
600   }
601 }
602 
603 
deopt_entry(TosState state,int length)604 address TemplateInterpreter::deopt_entry(TosState state, int length) {
605   guarantee(0 <= length && length < Interpreter::number_of_deopt_entries, "illegal length");
606   return _deopt_entry[length].entry(state);
607 }
608 
609 //------------------------------------------------------------------------------------------------------------------------
610 // Suport for invokes
611 
TosState_as_index(TosState state)612 int TemplateInterpreter::TosState_as_index(TosState state) {
613   assert( state < number_of_states , "Invalid state in TosState_as_index");
614   assert(0 <= (int)state && (int)state < TemplateInterpreter::number_of_return_addrs, "index out of bounds");
615   return (int)state;
616 }
617 
618 
619 //------------------------------------------------------------------------------------------------------------------------
620 // Safepoint suppport
621 
copy_table(address * from,address * to,int size)622 static inline void copy_table(address* from, address* to, int size) {
623   // Copy non-overlapping tables. The copy has to occur word wise for MT safety.
624   while (size-- > 0) *to++ = *from++;
625 }
626 
notice_safepoints()627 void TemplateInterpreter::notice_safepoints() {
628   if (!_notice_safepoints) {
629     // switch to safepoint dispatch table
630     _notice_safepoints = true;
631     copy_table((address*)&_safept_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
632   }
633 }
634 
635 // switch from the dispatch table which notices safepoints back to the
636 // normal dispatch table.  So that we can notice single stepping points,
637 // keep the safepoint dispatch table if we are single stepping in JVMTI.
638 // Note that the should_post_single_step test is exactly as fast as the
639 // JvmtiExport::_enabled test and covers both cases.
ignore_safepoints()640 void TemplateInterpreter::ignore_safepoints() {
641   if (_notice_safepoints) {
642     if (!JvmtiExport::should_post_single_step()) {
643       // switch to normal dispatch table
644       _notice_safepoints = false;
645       copy_table((address*)&_normal_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
646     }
647   }
648 }
649 
650 //------------------------------------------------------------------------------------------------------------------------
651 // Deoptimization support
652 
653 // If deoptimization happens, this function returns the point of next bytecode to continue execution
deopt_continue_after_entry(Method * method,address bcp,int callee_parameters,bool is_top_frame)654 address TemplateInterpreter::deopt_continue_after_entry(Method* method, address bcp, int callee_parameters, bool is_top_frame) {
655   return AbstractInterpreter::deopt_continue_after_entry(method, bcp, callee_parameters, is_top_frame);
656 }
657 
658 // If deoptimization happens, this function returns the point where the interpreter reexecutes
659 // the bytecode.
660 // Note: Bytecodes::_athrow (C1 only) and Bytecodes::_return are the special cases
661 //       that do not return "Interpreter::deopt_entry(vtos, 0)"
deopt_reexecute_entry(Method * method,address bcp)662 address TemplateInterpreter::deopt_reexecute_entry(Method* method, address bcp) {
663   assert(method->contains(bcp), "just checkin'");
664   Bytecodes::Code code   = Bytecodes::java_code_at(method, bcp);
665   if (code == Bytecodes::_return) {
666     // This is used for deopt during registration of finalizers
667     // during Object.<init>.  We simply need to resume execution at
668     // the standard return vtos bytecode to pop the frame normally.
669     // reexecuting the real bytecode would cause double registration
670     // of the finalizable object.
671     return _normal_table.entry(Bytecodes::_return).entry(vtos);
672   } else {
673     return AbstractInterpreter::deopt_reexecute_entry(method, bcp);
674   }
675 }
676 
677 // If deoptimization happens, the interpreter should reexecute this bytecode.
678 // This function mainly helps the compilers to set up the reexecute bit.
bytecode_should_reexecute(Bytecodes::Code code)679 bool TemplateInterpreter::bytecode_should_reexecute(Bytecodes::Code code) {
680   if (code == Bytecodes::_return) {
681     //Yes, we consider Bytecodes::_return as a special case of reexecution
682     return true;
683   } else {
684     return AbstractInterpreter::bytecode_should_reexecute(code);
685   }
686 }
687 
688 #endif // !CC_INTERP
689