1 /*
2  * Copyright (c) 2002, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "compiler/oopMap.hpp"
27 #include "opto/addnode.hpp"
28 #include "opto/callnode.hpp"
29 #include "opto/compile.hpp"
30 #include "opto/machnode.hpp"
31 #include "opto/matcher.hpp"
32 #include "opto/phase.hpp"
33 #include "opto/regalloc.hpp"
34 #include "opto/rootnode.hpp"
35 #ifdef TARGET_ARCH_x86
36 # include "vmreg_x86.inline.hpp"
37 #endif
38 #ifdef TARGET_ARCH_aarch64
39 # include "vmreg_aarch64.inline.hpp"
40 #endif
41 #ifdef TARGET_ARCH_sparc
42 # include "vmreg_sparc.inline.hpp"
43 #endif
44 #ifdef TARGET_ARCH_zero
45 # include "vmreg_zero.inline.hpp"
46 #endif
47 #ifdef TARGET_ARCH_arm
48 # include "vmreg_arm.inline.hpp"
49 #endif
50 #ifdef TARGET_ARCH_ppc
51 # include "vmreg_ppc.inline.hpp"
52 #endif
53 
54 // The functions in this file builds OopMaps after all scheduling is done.
55 //
56 // OopMaps contain a list of all registers and stack-slots containing oops (so
57 // they can be updated by GC).  OopMaps also contain a list of derived-pointer
58 // base-pointer pairs.  When the base is moved, the derived pointer moves to
59 // follow it.  Finally, any registers holding callee-save values are also
60 // recorded.  These might contain oops, but only the caller knows.
61 //
62 // BuildOopMaps implements a simple forward reaching-defs solution.  At each
63 // GC point we'll have the reaching-def Nodes.  If the reaching Nodes are
64 // typed as pointers (no offset), then they are oops.  Pointers+offsets are
65 // derived pointers, and bases can be found from them.  Finally, we'll also
66 // track reaching callee-save values.  Note that a copy of a callee-save value
67 // "kills" it's source, so that only 1 copy of a callee-save value is alive at
68 // a time.
69 //
70 // We run a simple bitvector liveness pass to help trim out dead oops.  Due to
71 // irreducible loops, we can have a reaching def of an oop that only reaches
72 // along one path and no way to know if it's valid or not on the other path.
73 // The bitvectors are quite dense and the liveness pass is fast.
74 //
75 // At GC points, we consult this information to build OopMaps.  All reaching
76 // defs typed as oops are added to the OopMap.  Only 1 instance of a
77 // callee-save register can be recorded.  For derived pointers, we'll have to
78 // find and record the register holding the base.
79 //
80 // The reaching def's is a simple 1-pass worklist approach.  I tried a clever
81 // breadth-first approach but it was worse (showed O(n^2) in the
82 // pick-next-block code).
83 //
84 // The relevant data is kept in a struct of arrays (it could just as well be
85 // an array of structs, but the struct-of-arrays is generally a little more
86 // efficient).  The arrays are indexed by register number (including
87 // stack-slots as registers) and so is bounded by 200 to 300 elements in
88 // practice.  One array will map to a reaching def Node (or NULL for
89 // conflict/dead).  The other array will map to a callee-saved register or
90 // OptoReg::Bad for not-callee-saved.
91 
92 
93 // Structure to pass around
94 struct OopFlow : public ResourceObj {
95   short *_callees;              // Array mapping register to callee-saved
96   Node **_defs;                 // array mapping register to reaching def
97                                 // or NULL if dead/conflict
98   // OopFlow structs, when not being actively modified, describe the _end_ of
99   // this block.
100   Block *_b;                    // Block for this struct
101   OopFlow *_next;               // Next free OopFlow
102                                 // or NULL if dead/conflict
103   Compile* C;
104 
OopFlowOopFlow105   OopFlow( short *callees, Node **defs, Compile* c ) : _callees(callees), _defs(defs),
106     _b(NULL), _next(NULL), C(c) { }
107 
108   // Given reaching-defs for this block start, compute it for this block end
109   void compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash );
110 
111   // Merge these two OopFlows into the 'this' pointer.
112   void merge( OopFlow *flow, int max_reg );
113 
114   // Copy a 'flow' over an existing flow
115   void clone( OopFlow *flow, int max_size);
116 
117   // Make a new OopFlow from scratch
118   static OopFlow *make( Arena *A, int max_size, Compile* C );
119 
120   // Build an oopmap from the current flow info
121   OopMap *build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live );
122 };
123 
124 // Given reaching-defs for this block start, compute it for this block end
compute_reach(PhaseRegAlloc * regalloc,int max_reg,Dict * safehash)125 void OopFlow::compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash ) {
126 
127   for( uint i=0; i<_b->number_of_nodes(); i++ ) {
128     Node *n = _b->get_node(i);
129 
130     if( n->jvms() ) {           // Build an OopMap here?
131       JVMState *jvms = n->jvms();
132       // no map needed for leaf calls
133       if( n->is_MachSafePoint() && !n->is_MachCallLeaf() ) {
134         int *live = (int*) (*safehash)[n];
135         assert( live, "must find live" );
136         n->as_MachSafePoint()->set_oop_map( build_oop_map(n,max_reg,regalloc, live) );
137       }
138     }
139 
140     // Assign new reaching def's.
141     // Note that I padded the _defs and _callees arrays so it's legal
142     // to index at _defs[OptoReg::Bad].
143     OptoReg::Name first = regalloc->get_reg_first(n);
144     OptoReg::Name second = regalloc->get_reg_second(n);
145     _defs[first] = n;
146     _defs[second] = n;
147 
148     // Pass callee-save info around copies
149     int idx = n->is_Copy();
150     if( idx ) {                 // Copies move callee-save info
151       OptoReg::Name old_first = regalloc->get_reg_first(n->in(idx));
152       OptoReg::Name old_second = regalloc->get_reg_second(n->in(idx));
153       int tmp_first = _callees[old_first];
154       int tmp_second = _callees[old_second];
155       _callees[old_first] = OptoReg::Bad; // callee-save is moved, dead in old location
156       _callees[old_second] = OptoReg::Bad;
157       _callees[first] = tmp_first;
158       _callees[second] = tmp_second;
159     } else if( n->is_Phi() ) {  // Phis do not mod callee-saves
160       assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(1))], "" );
161       assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(1))], "" );
162       assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(n->req()-1))], "" );
163       assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(n->req()-1))], "" );
164     } else {
165       _callees[first] = OptoReg::Bad; // No longer holding a callee-save value
166       _callees[second] = OptoReg::Bad;
167 
168       // Find base case for callee saves
169       if( n->is_Proj() && n->in(0)->is_Start() ) {
170         if( OptoReg::is_reg(first) &&
171             regalloc->_matcher.is_save_on_entry(first) )
172           _callees[first] = first;
173         if( OptoReg::is_reg(second) &&
174             regalloc->_matcher.is_save_on_entry(second) )
175           _callees[second] = second;
176       }
177     }
178   }
179 }
180 
181 // Merge the given flow into the 'this' flow
merge(OopFlow * flow,int max_reg)182 void OopFlow::merge( OopFlow *flow, int max_reg ) {
183   assert( _b == NULL, "merging into a happy flow" );
184   assert( flow->_b, "this flow is still alive" );
185   assert( flow != this, "no self flow" );
186 
187   // Do the merge.  If there are any differences, drop to 'bottom' which
188   // is OptoReg::Bad or NULL depending.
189   for( int i=0; i<max_reg; i++ ) {
190     // Merge the callee-save's
191     if( _callees[i] != flow->_callees[i] )
192       _callees[i] = OptoReg::Bad;
193     // Merge the reaching defs
194     if( _defs[i] != flow->_defs[i] )
195       _defs[i] = NULL;
196   }
197 
198 }
199 
clone(OopFlow * flow,int max_size)200 void OopFlow::clone( OopFlow *flow, int max_size ) {
201   _b = flow->_b;
202   memcpy( _callees, flow->_callees, sizeof(short)*max_size);
203   memcpy( _defs   , flow->_defs   , sizeof(Node*)*max_size);
204 }
205 
make(Arena * A,int max_size,Compile * C)206 OopFlow *OopFlow::make( Arena *A, int max_size, Compile* C ) {
207   short *callees = NEW_ARENA_ARRAY(A,short,max_size+1);
208   Node **defs    = NEW_ARENA_ARRAY(A,Node*,max_size+1);
209   debug_only( memset(defs,0,(max_size+1)*sizeof(Node*)) );
210   OopFlow *flow = new (A) OopFlow(callees+1, defs+1, C);
211   assert( &flow->_callees[OptoReg::Bad] == callees, "Ok to index at OptoReg::Bad" );
212   assert( &flow->_defs   [OptoReg::Bad] == defs   , "Ok to index at OptoReg::Bad" );
213   return flow;
214 }
215 
get_live_bit(int * live,int reg)216 static int get_live_bit( int *live, int reg ) {
217   return live[reg>>LogBitsPerInt] &   (1<<(reg&(BitsPerInt-1))); }
set_live_bit(int * live,int reg)218 static void set_live_bit( int *live, int reg ) {
219          live[reg>>LogBitsPerInt] |=  (1<<(reg&(BitsPerInt-1))); }
clr_live_bit(int * live,int reg)220 static void clr_live_bit( int *live, int reg ) {
221          live[reg>>LogBitsPerInt] &= ~(1<<(reg&(BitsPerInt-1))); }
222 
223 // Build an oopmap from the current flow info
build_oop_map(Node * n,int max_reg,PhaseRegAlloc * regalloc,int * live)224 OopMap *OopFlow::build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live ) {
225   int framesize = regalloc->_framesize;
226   int max_inarg_slot = OptoReg::reg2stack(regalloc->_matcher._new_SP);
227   debug_only( char *dup_check = NEW_RESOURCE_ARRAY(char,OptoReg::stack0());
228               memset(dup_check,0,OptoReg::stack0()) );
229 
230   OopMap *omap = new OopMap( framesize,  max_inarg_slot );
231   MachCallNode *mcall = n->is_MachCall() ? n->as_MachCall() : NULL;
232   JVMState* jvms = n->jvms();
233 
234   // For all registers do...
235   for( int reg=0; reg<max_reg; reg++ ) {
236     if( get_live_bit(live,reg) == 0 )
237       continue;                 // Ignore if not live
238 
239     // %%% C2 can use 2 OptoRegs when the physical register is only one 64bit
240     // register in that case we'll get an non-concrete register for the second
241     // half. We only need to tell the map the register once!
242     //
243     // However for the moment we disable this change and leave things as they
244     // were.
245 
246     VMReg r = OptoReg::as_VMReg(OptoReg::Name(reg), framesize, max_inarg_slot);
247 
248     if (false && r->is_reg() && !r->is_concrete()) {
249       continue;
250     }
251 
252     // See if dead (no reaching def).
253     Node *def = _defs[reg];     // Get reaching def
254     assert( def, "since live better have reaching def" );
255 
256     // Classify the reaching def as oop, derived, callee-save, dead, or other
257     const Type *t = def->bottom_type();
258     if( t->isa_oop_ptr() ) {    // Oop or derived?
259       assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
260 #ifdef _LP64
261       // 64-bit pointers record oop-ishness on 2 aligned adjacent registers.
262       // Make sure both are record from the same reaching def, but do not
263       // put both into the oopmap.
264       if( (reg&1) == 1 ) {      // High half of oop-pair?
265         assert( _defs[reg-1] == _defs[reg], "both halves from same reaching def" );
266         continue;               // Do not record high parts in oopmap
267       }
268 #endif
269 
270       // Check for a legal reg name in the oopMap and bailout if it is not.
271       if (!omap->legal_vm_reg_name(r)) {
272         regalloc->C->record_method_not_compilable("illegal oopMap register name");
273         continue;
274       }
275       if( t->is_ptr()->_offset == 0 ) { // Not derived?
276         if( mcall ) {
277           // Outgoing argument GC mask responsibility belongs to the callee,
278           // not the caller.  Inspect the inputs to the call, to see if
279           // this live-range is one of them.
280           uint cnt = mcall->tf()->domain()->cnt();
281           uint j;
282           for( j = TypeFunc::Parms; j < cnt; j++)
283             if( mcall->in(j) == def )
284               break;            // reaching def is an argument oop
285           if( j < cnt )         // arg oops dont go in GC map
286             continue;           // Continue on to the next register
287         }
288         omap->set_oop(r);
289       } else {                  // Else it's derived.
290         // Find the base of the derived value.
291         uint i;
292         // Fast, common case, scan
293         for( i = jvms->oopoff(); i < n->req(); i+=2 )
294           if( n->in(i) == def ) break; // Common case
295         if( i == n->req() ) {   // Missed, try a more generous scan
296           // Scan again, but this time peek through copies
297           for( i = jvms->oopoff(); i < n->req(); i+=2 ) {
298             Node *m = n->in(i); // Get initial derived value
299             while( 1 ) {
300               Node *d = def;    // Get initial reaching def
301               while( 1 ) {      // Follow copies of reaching def to end
302                 if( m == d ) goto found; // breaks 3 loops
303                 int idx = d->is_Copy();
304                 if( !idx ) break;
305                 d = d->in(idx);     // Link through copy
306               }
307               int idx = m->is_Copy();
308               if( !idx ) break;
309               m = m->in(idx);
310             }
311           }
312           guarantee( 0, "must find derived/base pair" );
313         }
314       found: ;
315         Node *base = n->in(i+1); // Base is other half of pair
316         int breg = regalloc->get_reg_first(base);
317         VMReg b = OptoReg::as_VMReg(OptoReg::Name(breg), framesize, max_inarg_slot);
318 
319         // I record liveness at safepoints BEFORE I make the inputs
320         // live.  This is because argument oops are NOT live at a
321         // safepoint (or at least they cannot appear in the oopmap).
322         // Thus bases of base/derived pairs might not be in the
323         // liveness data but they need to appear in the oopmap.
324         if( get_live_bit(live,breg) == 0 ) {// Not live?
325           // Flag it, so next derived pointer won't re-insert into oopmap
326           set_live_bit(live,breg);
327           // Already missed our turn?
328           if( breg < reg ) {
329             if (b->is_stack() || b->is_concrete() || true ) {
330               omap->set_oop( b);
331             }
332           }
333         }
334         if (b->is_stack() || b->is_concrete() || true ) {
335           omap->set_derived_oop( r, b);
336         }
337       }
338 
339     } else if( t->isa_narrowoop() ) {
340       assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
341       // Check for a legal reg name in the oopMap and bailout if it is not.
342       if (!omap->legal_vm_reg_name(r)) {
343         regalloc->C->record_method_not_compilable("illegal oopMap register name");
344         continue;
345       }
346       if( mcall ) {
347           // Outgoing argument GC mask responsibility belongs to the callee,
348           // not the caller.  Inspect the inputs to the call, to see if
349           // this live-range is one of them.
350         uint cnt = mcall->tf()->domain()->cnt();
351         uint j;
352         for( j = TypeFunc::Parms; j < cnt; j++)
353           if( mcall->in(j) == def )
354             break;            // reaching def is an argument oop
355         if( j < cnt )         // arg oops dont go in GC map
356           continue;           // Continue on to the next register
357       }
358       omap->set_narrowoop(r);
359     } else if( OptoReg::is_valid(_callees[reg])) { // callee-save?
360       // It's a callee-save value
361       assert( dup_check[_callees[reg]]==0, "trying to callee save same reg twice" );
362       debug_only( dup_check[_callees[reg]]=1; )
363       VMReg callee = OptoReg::as_VMReg(OptoReg::Name(_callees[reg]));
364       if ( callee->is_concrete() || true ) {
365         omap->set_callee_saved( r, callee);
366       }
367 
368     } else {
369       // Other - some reaching non-oop value
370       omap->set_value( r);
371 #ifdef ASSERT
372       if( t->isa_rawptr() && C->cfg()->_raw_oops.member(def) ) {
373         def->dump();
374         n->dump();
375         assert(false, "there should be a oop in OopMap instead of a live raw oop at safepoint");
376       }
377 #endif
378     }
379 
380   }
381 
382 #ifdef ASSERT
383   /* Nice, Intel-only assert
384   int cnt_callee_saves=0;
385   int reg2 = 0;
386   while (OptoReg::is_reg(reg2)) {
387     if( dup_check[reg2] != 0) cnt_callee_saves++;
388     assert( cnt_callee_saves==3 || cnt_callee_saves==5, "missed some callee-save" );
389     reg2++;
390   }
391   */
392 #endif
393 
394 #ifdef ASSERT
395   for( OopMapStream oms1(omap, OopMapValue::derived_oop_value); !oms1.is_done(); oms1.next()) {
396     OopMapValue omv1 = oms1.current();
397     bool found = false;
398     for( OopMapStream oms2(omap,OopMapValue::oop_value); !oms2.is_done(); oms2.next()) {
399       if( omv1.content_reg() == oms2.current().reg() ) {
400         found = true;
401         break;
402       }
403     }
404     assert( found, "derived with no base in oopmap" );
405   }
406 #endif
407 
408   return omap;
409 }
410 
411 // Compute backwards liveness on registers
do_liveness(PhaseRegAlloc * regalloc,PhaseCFG * cfg,Block_List * worklist,int max_reg_ints,Arena * A,Dict * safehash)412 static void do_liveness(PhaseRegAlloc* regalloc, PhaseCFG* cfg, Block_List* worklist, int max_reg_ints, Arena* A, Dict* safehash) {
413   int* live = NEW_ARENA_ARRAY(A, int, (cfg->number_of_blocks() + 1) * max_reg_ints);
414   int* tmp_live = &live[cfg->number_of_blocks() * max_reg_ints];
415   Node* root = cfg->get_root_node();
416   // On CISC platforms, get the node representing the stack pointer  that regalloc
417   // used for spills
418   Node *fp = NodeSentinel;
419   if (UseCISCSpill && root->req() > 1) {
420     fp = root->in(1)->in(TypeFunc::FramePtr);
421   }
422   memset(live, 0, cfg->number_of_blocks() * (max_reg_ints << LogBytesPerInt));
423   // Push preds onto worklist
424   for (uint i = 1; i < root->req(); i++) {
425     Block* block = cfg->get_block_for_node(root->in(i));
426     worklist->push(block);
427   }
428 
429   // ZKM.jar includes tiny infinite loops which are unreached from below.
430   // If we missed any blocks, we'll retry here after pushing all missed
431   // blocks on the worklist.  Normally this outer loop never trips more
432   // than once.
433   while (1) {
434 
435     while( worklist->size() ) { // Standard worklist algorithm
436       Block *b = worklist->rpop();
437 
438       // Copy first successor into my tmp_live space
439       int s0num = b->_succs[0]->_pre_order;
440       int *t = &live[s0num*max_reg_ints];
441       for( int i=0; i<max_reg_ints; i++ )
442         tmp_live[i] = t[i];
443 
444       // OR in the remaining live registers
445       for( uint j=1; j<b->_num_succs; j++ ) {
446         uint sjnum = b->_succs[j]->_pre_order;
447         int *t = &live[sjnum*max_reg_ints];
448         for( int i=0; i<max_reg_ints; i++ )
449           tmp_live[i] |= t[i];
450       }
451 
452       // Now walk tmp_live up the block backwards, computing live
453       for( int k=b->number_of_nodes()-1; k>=0; k-- ) {
454         Node *n = b->get_node(k);
455         // KILL def'd bits
456         int first = regalloc->get_reg_first(n);
457         int second = regalloc->get_reg_second(n);
458         if( OptoReg::is_valid(first) ) clr_live_bit(tmp_live,first);
459         if( OptoReg::is_valid(second) ) clr_live_bit(tmp_live,second);
460 
461         MachNode *m = n->is_Mach() ? n->as_Mach() : NULL;
462 
463         // Check if m is potentially a CISC alternate instruction (i.e, possibly
464         // synthesized by RegAlloc from a conventional instruction and a
465         // spilled input)
466         bool is_cisc_alternate = false;
467         if (UseCISCSpill && m) {
468           is_cisc_alternate = m->is_cisc_alternate();
469         }
470 
471         // GEN use'd bits
472         for( uint l=1; l<n->req(); l++ ) {
473           Node *def = n->in(l);
474           assert(def != 0, "input edge required");
475           int first = regalloc->get_reg_first(def);
476           int second = regalloc->get_reg_second(def);
477           if( OptoReg::is_valid(first) ) set_live_bit(tmp_live,first);
478           if( OptoReg::is_valid(second) ) set_live_bit(tmp_live,second);
479           // If we use the stack pointer in a cisc-alternative instruction,
480           // check for use as a memory operand.  Then reconstruct the RegName
481           // for this stack location, and set the appropriate bit in the
482           // live vector 4987749.
483           if (is_cisc_alternate && def == fp) {
484             const TypePtr *adr_type = NULL;
485             intptr_t offset;
486             const Node* base = m->get_base_and_disp(offset, adr_type);
487             if (base == NodeSentinel) {
488               // Machnode has multiple memory inputs. We are unable to reason
489               // with these, but are presuming (with trepidation) that not any of
490               // them are oops. This can be fixed by making get_base_and_disp()
491               // look at a specific input instead of all inputs.
492               assert(!def->bottom_type()->isa_oop_ptr(), "expecting non-oop mem input");
493             } else if (base != fp || offset == Type::OffsetBot) {
494               // Do nothing: the fp operand is either not from a memory use
495               // (base == NULL) OR the fp is used in a non-memory context
496               // (base is some other register) OR the offset is not constant,
497               // so it is not a stack slot.
498             } else {
499               assert(offset >= 0, "unexpected negative offset");
500               offset -= (offset % jintSize);  // count the whole word
501               int stack_reg = regalloc->offset2reg(offset);
502               if (OptoReg::is_stack(stack_reg)) {
503                 set_live_bit(tmp_live, stack_reg);
504               } else {
505                 assert(false, "stack_reg not on stack?");
506               }
507             }
508           }
509         }
510 
511         if( n->jvms() ) {       // Record liveness at safepoint
512 
513           // This placement of this stanza means inputs to calls are
514           // considered live at the callsite's OopMap.  Argument oops are
515           // hence live, but NOT included in the oopmap.  See cutout in
516           // build_oop_map.  Debug oops are live (and in OopMap).
517           int *n_live = NEW_ARENA_ARRAY(A, int, max_reg_ints);
518           for( int l=0; l<max_reg_ints; l++ )
519             n_live[l] = tmp_live[l];
520           safehash->Insert(n,n_live);
521         }
522 
523       }
524 
525       // Now at block top, see if we have any changes.  If so, propagate
526       // to prior blocks.
527       int *old_live = &live[b->_pre_order*max_reg_ints];
528       int l;
529       for( l=0; l<max_reg_ints; l++ )
530         if( tmp_live[l] != old_live[l] )
531           break;
532       if( l<max_reg_ints ) {     // Change!
533         // Copy in new value
534         for( l=0; l<max_reg_ints; l++ )
535           old_live[l] = tmp_live[l];
536         // Push preds onto worklist
537         for (l = 1; l < (int)b->num_preds(); l++) {
538           Block* block = cfg->get_block_for_node(b->pred(l));
539           worklist->push(block);
540         }
541       }
542     }
543 
544     // Scan for any missing safepoints.  Happens to infinite loops
545     // ala ZKM.jar
546     uint i;
547     for (i = 1; i < cfg->number_of_blocks(); i++) {
548       Block* block = cfg->get_block(i);
549       uint j;
550       for (j = 1; j < block->number_of_nodes(); j++) {
551         if (block->get_node(j)->jvms() && (*safehash)[block->get_node(j)] == NULL) {
552            break;
553         }
554       }
555       if (j < block->number_of_nodes()) {
556         break;
557       }
558     }
559     if (i == cfg->number_of_blocks()) {
560       break;                    // Got 'em all
561     }
562 #ifndef PRODUCT
563     if( PrintOpto && Verbose )
564       tty->print_cr("retripping live calc");
565 #endif
566     // Force the issue (expensively): recheck everybody
567     for (i = 1; i < cfg->number_of_blocks(); i++) {
568       worklist->push(cfg->get_block(i));
569     }
570   }
571 }
572 
573 // Collect GC mask info - where are all the OOPs?
BuildOopMaps()574 void Compile::BuildOopMaps() {
575   NOT_PRODUCT( TracePhase t3("bldOopMaps", &_t_buildOopMaps, TimeCompiler); )
576   // Can't resource-mark because I need to leave all those OopMaps around,
577   // or else I need to resource-mark some arena other than the default.
578   // ResourceMark rm;              // Reclaim all OopFlows when done
579   int max_reg = _regalloc->_max_reg; // Current array extent
580 
581   Arena *A = Thread::current()->resource_area();
582   Block_List worklist;          // Worklist of pending blocks
583 
584   int max_reg_ints = round_to(max_reg, BitsPerInt)>>LogBitsPerInt;
585   Dict *safehash = NULL;        // Used for assert only
586   // Compute a backwards liveness per register.  Needs a bitarray of
587   // #blocks x (#registers, rounded up to ints)
588   safehash = new Dict(cmpkey,hashkey,A);
589   do_liveness( _regalloc, _cfg, &worklist, max_reg_ints, A, safehash );
590   OopFlow *free_list = NULL;    // Free, unused
591 
592   // Array mapping blocks to completed oopflows
593   OopFlow **flows = NEW_ARENA_ARRAY(A, OopFlow*, _cfg->number_of_blocks());
594   memset( flows, 0, _cfg->number_of_blocks() * sizeof(OopFlow*) );
595 
596 
597   // Do the first block 'by hand' to prime the worklist
598   Block *entry = _cfg->get_block(1);
599   OopFlow *rootflow = OopFlow::make(A,max_reg,this);
600   // Initialize to 'bottom' (not 'top')
601   memset( rootflow->_callees, OptoReg::Bad, max_reg*sizeof(short) );
602   memset( rootflow->_defs   ,            0, max_reg*sizeof(Node*) );
603   flows[entry->_pre_order] = rootflow;
604 
605   // Do the first block 'by hand' to prime the worklist
606   rootflow->_b = entry;
607   rootflow->compute_reach( _regalloc, max_reg, safehash );
608   for( uint i=0; i<entry->_num_succs; i++ )
609     worklist.push(entry->_succs[i]);
610 
611   // Now worklist contains blocks which have some, but perhaps not all,
612   // predecessors visited.
613   while( worklist.size() ) {
614     // Scan for a block with all predecessors visited, or any randoms slob
615     // otherwise.  All-preds-visited order allows me to recycle OopFlow
616     // structures rapidly and cut down on the memory footprint.
617     // Note: not all predecessors might be visited yet (must happen for
618     // irreducible loops).  This is OK, since every live value must have the
619     // SAME reaching def for the block, so any reaching def is OK.
620     uint i;
621 
622     Block *b = worklist.pop();
623     // Ignore root block
624     if (b == _cfg->get_root_block()) {
625       continue;
626     }
627     // Block is already done?  Happens if block has several predecessors,
628     // he can get on the worklist more than once.
629     if( flows[b->_pre_order] ) continue;
630 
631     // If this block has a visited predecessor AND that predecessor has this
632     // last block as his only undone child, we can move the OopFlow from the
633     // pred to this block.  Otherwise we have to grab a new OopFlow.
634     OopFlow *flow = NULL;       // Flag for finding optimized flow
635     Block *pred = (Block*)((intptr_t)0xdeadbeef);
636     // Scan this block's preds to find a done predecessor
637     for (uint j = 1; j < b->num_preds(); j++) {
638       Block* p = _cfg->get_block_for_node(b->pred(j));
639       OopFlow *p_flow = flows[p->_pre_order];
640       if( p_flow ) {            // Predecessor is done
641         assert( p_flow->_b == p, "cross check" );
642         pred = p;               // Record some predecessor
643         // If all successors of p are done except for 'b', then we can carry
644         // p_flow forward to 'b' without copying, otherwise we have to draw
645         // from the free_list and clone data.
646         uint k;
647         for( k=0; k<p->_num_succs; k++ )
648           if( !flows[p->_succs[k]->_pre_order] &&
649               p->_succs[k] != b )
650             break;
651 
652         // Either carry-forward the now-unused OopFlow for b's use
653         // or draw a new one from the free list
654         if( k==p->_num_succs ) {
655           flow = p_flow;
656           break;                // Found an ideal pred, use him
657         }
658       }
659     }
660 
661     if( flow ) {
662       // We have an OopFlow that's the last-use of a predecessor.
663       // Carry it forward.
664     } else {                    // Draw a new OopFlow from the freelist
665       if( !free_list )
666         free_list = OopFlow::make(A,max_reg,C);
667       flow = free_list;
668       assert( flow->_b == NULL, "oopFlow is not free" );
669       free_list = flow->_next;
670       flow->_next = NULL;
671 
672       // Copy/clone over the data
673       flow->clone(flows[pred->_pre_order], max_reg);
674     }
675 
676     // Mark flow for block.  Blocks can only be flowed over once,
677     // because after the first time they are guarded from entering
678     // this code again.
679     assert( flow->_b == pred, "have some prior flow" );
680     flow->_b = NULL;
681 
682     // Now push flow forward
683     flows[b->_pre_order] = flow;// Mark flow for this block
684     flow->_b = b;
685     flow->compute_reach( _regalloc, max_reg, safehash );
686 
687     // Now push children onto worklist
688     for( i=0; i<b->_num_succs; i++ )
689       worklist.push(b->_succs[i]);
690 
691   }
692 }
693