1 /*
2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "classfile/vmSymbols.hpp"
27 #include "jfr/jfrEvents.hpp"
28 #include "jfr/support/jfrThreadId.hpp"
29 #include "memory/resourceArea.hpp"
30 #include "oops/markOop.hpp"
31 #include "oops/oop.inline.hpp"
32 #include "runtime/handles.inline.hpp"
33 #include "runtime/interfaceSupport.hpp"
34 #include "runtime/mutexLocker.hpp"
35 #include "runtime/objectMonitor.hpp"
36 #include "runtime/objectMonitor.inline.hpp"
37 #include "runtime/orderAccess.inline.hpp"
38 #include "runtime/osThread.hpp"
39 #include "runtime/stubRoutines.hpp"
40 #include "runtime/thread.inline.hpp"
41 #include "services/threadService.hpp"
42 #include "utilities/dtrace.hpp"
43 #include "utilities/macros.hpp"
44 #include "utilities/preserveException.hpp"
45 #ifdef TARGET_OS_FAMILY_linux
46 # include "os_linux.inline.hpp"
47 #endif
48 #ifdef TARGET_OS_FAMILY_solaris
49 # include "os_solaris.inline.hpp"
50 #endif
51 #ifdef TARGET_OS_FAMILY_windows
52 # include "os_windows.inline.hpp"
53 #endif
54 #ifdef TARGET_OS_FAMILY_bsd
55 # include "os_bsd.inline.hpp"
56 #endif
57 #if INCLUDE_JFR
58 #include "jfr/support/jfrFlush.hpp"
59 #endif
60 
61 #if defined(__GNUC__) && !defined(IA64) && !defined(PPC64)
62   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
63   #define ATTR __attribute__((noinline))
64 #else
65   #define ATTR
66 #endif
67 
68 
69 #ifdef DTRACE_ENABLED
70 
71 // Only bother with this argument setup if dtrace is available
72 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
73 
74 
75 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
76   char* bytes = NULL;                                                      \
77   int len = 0;                                                             \
78   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
79   Symbol* klassname = ((oop)obj)->klass()->name();                         \
80   if (klassname != NULL) {                                                 \
81     bytes = (char*)klassname->bytes();                                     \
82     len = klassname->utf8_length();                                        \
83   }
84 
85 #ifndef USDT2
86 
87 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
88   jlong, uintptr_t, char*, int);
89 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
90   jlong, uintptr_t, char*, int);
91 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
92   jlong, uintptr_t, char*, int);
93 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
94   jlong, uintptr_t, char*, int);
95 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
96   jlong, uintptr_t, char*, int);
97 
98 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)       \
99   {                                                                        \
100     if (DTraceMonitorProbes) {                                            \
101       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                       \
102       HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
103                        (monitor), bytes, len, (millis));                   \
104     }                                                                      \
105   }
106 
107 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)             \
108   {                                                                        \
109     if (DTraceMonitorProbes) {                                            \
110       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                       \
111       HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
112                        (uintptr_t)(monitor), bytes, len);                  \
113     }                                                                      \
114   }
115 
116 #else /* USDT2 */
117 
118 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
119   {                                                                        \
120     if (DTraceMonitorProbes) {                                            \
121       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
122       HOTSPOT_MONITOR_WAIT(jtid,                                           \
123                        (monitor), bytes, len, (millis));                   \
124     }                                                                      \
125   }
126 
127 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
128 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
129 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
130 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
131 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
132 
133 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
134   {                                                                        \
135     if (DTraceMonitorProbes) {                                            \
136       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
137       HOTSPOT_MONITOR_##probe(jtid,                                               \
138                        (uintptr_t)(monitor), bytes, len);                  \
139     }                                                                      \
140   }
141 
142 #endif /* USDT2 */
143 #else //  ndef DTRACE_ENABLED
144 
145 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
146 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
147 
148 #endif // ndef DTRACE_ENABLED
149 
150 // Tunables ...
151 // The knob* variables are effectively final.  Once set they should
152 // never be modified hence.  Consider using __read_mostly with GCC.
153 
154 int ObjectMonitor::Knob_Verbose    = 0 ;
155 int ObjectMonitor::Knob_SpinLimit  = 5000 ;    // derived by an external tool -
156 static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
157 static int Knob_HandOff            = 0 ;
158 static int Knob_ReportSettings     = 0 ;
159 
160 static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
161 static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
162 static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
163 static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
164 static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
165 static int Knob_SpinEarly          = 1 ;
166 static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
167 static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
168 static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
169 static int Knob_Bonus              = 100 ;     // spin success bonus
170 static int Knob_BonusB             = 100 ;     // spin success bonus
171 static int Knob_Penalty            = 200 ;     // spin failure penalty
172 static int Knob_Poverty            = 1000 ;
173 static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
174 static int Knob_FixedSpin          = 0 ;
175 static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
176 static int Knob_UsePause           = 1 ;
177 static int Knob_ExitPolicy         = 0 ;
178 static int Knob_PreSpin            = 10 ;      // 20-100 likely better
179 static int Knob_ResetEvent         = 0 ;
180 static int BackOffMask             = 0 ;
181 
182 static int Knob_FastHSSEC          = 0 ;
183 static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
184 static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
185 static volatile int InitDone       = 0 ;
186 
187 #define TrySpin TrySpin_VaryDuration
188 
189 // -----------------------------------------------------------------------------
190 // Theory of operations -- Monitors lists, thread residency, etc:
191 //
192 // * A thread acquires ownership of a monitor by successfully
193 //   CAS()ing the _owner field from null to non-null.
194 //
195 // * Invariant: A thread appears on at most one monitor list --
196 //   cxq, EntryList or WaitSet -- at any one time.
197 //
198 // * Contending threads "push" themselves onto the cxq with CAS
199 //   and then spin/park.
200 //
201 // * After a contending thread eventually acquires the lock it must
202 //   dequeue itself from either the EntryList or the cxq.
203 //
204 // * The exiting thread identifies and unparks an "heir presumptive"
205 //   tentative successor thread on the EntryList.  Critically, the
206 //   exiting thread doesn't unlink the successor thread from the EntryList.
207 //   After having been unparked, the wakee will recontend for ownership of
208 //   the monitor.   The successor (wakee) will either acquire the lock or
209 //   re-park itself.
210 //
211 //   Succession is provided for by a policy of competitive handoff.
212 //   The exiting thread does _not_ grant or pass ownership to the
213 //   successor thread.  (This is also referred to as "handoff" succession").
214 //   Instead the exiting thread releases ownership and possibly wakes
215 //   a successor, so the successor can (re)compete for ownership of the lock.
216 //   If the EntryList is empty but the cxq is populated the exiting
217 //   thread will drain the cxq into the EntryList.  It does so by
218 //   by detaching the cxq (installing null with CAS) and folding
219 //   the threads from the cxq into the EntryList.  The EntryList is
220 //   doubly linked, while the cxq is singly linked because of the
221 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
222 //
223 // * Concurrency invariants:
224 //
225 //   -- only the monitor owner may access or mutate the EntryList.
226 //      The mutex property of the monitor itself protects the EntryList
227 //      from concurrent interference.
228 //   -- Only the monitor owner may detach the cxq.
229 //
230 // * The monitor entry list operations avoid locks, but strictly speaking
231 //   they're not lock-free.  Enter is lock-free, exit is not.
232 //   For a description of 'Methods and apparatus providing non-blocking access
233 //   to a resource,' see U.S. Pat. No. 7844973.
234 //
235 // * The cxq can have multiple concurrent "pushers" but only one concurrent
236 //   detaching thread.  This mechanism is immune from the ABA corruption.
237 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
238 //
239 // * Taken together, the cxq and the EntryList constitute or form a
240 //   single logical queue of threads stalled trying to acquire the lock.
241 //   We use two distinct lists to improve the odds of a constant-time
242 //   dequeue operation after acquisition (in the ::enter() epilog) and
243 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
244 //   A key desideratum is to minimize queue & monitor metadata manipulation
245 //   that occurs while holding the monitor lock -- that is, we want to
246 //   minimize monitor lock holds times.  Note that even a small amount of
247 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
248 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
249 //   locks and monitor metadata.
250 //
251 //   Cxq points to the the set of Recently Arrived Threads attempting entry.
252 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
253 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
254 //   the unlocking thread notices that EntryList is null but _cxq is != null.
255 //
256 //   The EntryList is ordered by the prevailing queue discipline and
257 //   can be organized in any convenient fashion, such as a doubly-linked list or
258 //   a circular doubly-linked list.  Critically, we want insert and delete operations
259 //   to operate in constant-time.  If we need a priority queue then something akin
260 //   to Solaris' sleepq would work nicely.  Viz.,
261 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
262 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
263 //   drains the cxq into the EntryList, and orders or reorders the threads on the
264 //   EntryList accordingly.
265 //
266 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
267 //   somewhat similar to an elevator-scan.
268 //
269 // * The monitor synchronization subsystem avoids the use of native
270 //   synchronization primitives except for the narrow platform-specific
271 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
272 //   the semantics of park-unpark.  Put another way, this monitor implementation
273 //   depends only on atomic operations and park-unpark.  The monitor subsystem
274 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
275 //   underlying OS manages the READY<->RUN transitions.
276 //
277 // * Waiting threads reside on the WaitSet list -- wait() puts
278 //   the caller onto the WaitSet.
279 //
280 // * notify() or notifyAll() simply transfers threads from the WaitSet to
281 //   either the EntryList or cxq.  Subsequent exit() operations will
282 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
283 //   it's likely the notifyee would simply impale itself on the lock held
284 //   by the notifier.
285 //
286 // * An interesting alternative is to encode cxq as (List,LockByte) where
287 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
288 //   variable, like _recursions, in the scheme.  The threads or Events that form
289 //   the list would have to be aligned in 256-byte addresses.  A thread would
290 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
291 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
292 //   Note that is is *not* word-tearing, but it does presume that full-word
293 //   CAS operations are coherent with intermix with STB operations.  That's true
294 //   on most common processors.
295 //
296 // * See also http://blogs.sun.com/dave
297 
298 
299 // -----------------------------------------------------------------------------
300 // Enter support
301 
try_enter(Thread * THREAD)302 bool ObjectMonitor::try_enter(Thread* THREAD) {
303   if (THREAD != _owner) {
304     if (THREAD->is_lock_owned ((address)_owner)) {
305        assert(_recursions == 0, "internal state error");
306        _owner = THREAD ;
307        _recursions = 1 ;
308        OwnerIsThread = 1 ;
309        return true;
310     }
311     if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
312       return false;
313     }
314     return true;
315   } else {
316     _recursions++;
317     return true;
318   }
319 }
320 
enter(TRAPS)321 void ATTR ObjectMonitor::enter(TRAPS) {
322   // The following code is ordered to check the most common cases first
323   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
324   Thread * const Self = THREAD ;
325   void * cur ;
326 
327   cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
328   if (cur == NULL) {
329      // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
330      assert (_recursions == 0   , "invariant") ;
331      assert (_owner      == Self, "invariant") ;
332      // CONSIDER: set or assert OwnerIsThread == 1
333      return ;
334   }
335 
336   if (cur == Self) {
337      // TODO-FIXME: check for integer overflow!  BUGID 6557169.
338      _recursions ++ ;
339      return ;
340   }
341 
342   if (Self->is_lock_owned ((address)cur)) {
343     assert (_recursions == 0, "internal state error");
344     _recursions = 1 ;
345     // Commute owner from a thread-specific on-stack BasicLockObject address to
346     // a full-fledged "Thread *".
347     _owner = Self ;
348     OwnerIsThread = 1 ;
349     return ;
350   }
351 
352   // We've encountered genuine contention.
353   assert (Self->_Stalled == 0, "invariant") ;
354   Self->_Stalled = intptr_t(this) ;
355 
356   // Try one round of spinning *before* enqueueing Self
357   // and before going through the awkward and expensive state
358   // transitions.  The following spin is strictly optional ...
359   // Note that if we acquire the monitor from an initial spin
360   // we forgo posting JVMTI events and firing DTRACE probes.
361   if (Knob_SpinEarly && TrySpin (Self) > 0) {
362      assert (_owner == Self      , "invariant") ;
363      assert (_recursions == 0    , "invariant") ;
364      assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
365      Self->_Stalled = 0 ;
366      return ;
367   }
368 
369   assert (_owner != Self          , "invariant") ;
370   assert (_succ  != Self          , "invariant") ;
371   assert (Self->is_Java_thread()  , "invariant") ;
372   JavaThread * jt = (JavaThread *) Self ;
373   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
374   assert (jt->thread_state() != _thread_blocked   , "invariant") ;
375   assert (this->object() != NULL  , "invariant") ;
376   assert (_count >= 0, "invariant") ;
377 
378   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
379   // Ensure the object-monitor relationship remains stable while there's contention.
380   Atomic::inc_ptr(&_count);
381 
382   JFR_ONLY(JfrConditionalFlushWithStacktrace<EventJavaMonitorEnter> flush(jt);)
383   EventJavaMonitorEnter event;
384   if (event.should_commit()) {
385     event.set_monitorClass(((oop)this->object())->klass());
386     event.set_address((uintptr_t)(this->object_addr()));
387   }
388 
389   { // Change java thread status to indicate blocked on monitor enter.
390     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
391 
392     Self->set_current_pending_monitor(this);
393 
394     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
395     if (JvmtiExport::should_post_monitor_contended_enter()) {
396       JvmtiExport::post_monitor_contended_enter(jt, this);
397 
398       // The current thread does not yet own the monitor and does not
399       // yet appear on any queues that would get it made the successor.
400       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
401       // handler cannot accidentally consume an unpark() meant for the
402       // ParkEvent associated with this ObjectMonitor.
403     }
404 
405     OSThreadContendState osts(Self->osthread());
406     ThreadBlockInVM tbivm(jt);
407 
408     // TODO-FIXME: change the following for(;;) loop to straight-line code.
409     for (;;) {
410       jt->set_suspend_equivalent();
411       // cleared by handle_special_suspend_equivalent_condition()
412       // or java_suspend_self()
413 
414       EnterI (THREAD) ;
415 
416       if (!ExitSuspendEquivalent(jt)) break ;
417 
418       //
419       // We have acquired the contended monitor, but while we were
420       // waiting another thread suspended us. We don't want to enter
421       // the monitor while suspended because that would surprise the
422       // thread that suspended us.
423       //
424           _recursions = 0 ;
425       _succ = NULL ;
426       exit (false, Self) ;
427 
428       jt->java_suspend_self();
429     }
430     Self->set_current_pending_monitor(NULL);
431 
432     // We cleared the pending monitor info since we've just gotten past
433     // the enter-check-for-suspend dance and we now own the monitor free
434     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
435     // destructor can go to a safepoint at the end of this block. If we
436     // do a thread dump during that safepoint, then this thread will show
437     // as having "-locked" the monitor, but the OS and java.lang.Thread
438     // states will still report that the thread is blocked trying to
439     // acquire it.
440   }
441 
442   Atomic::dec_ptr(&_count);
443   assert (_count >= 0, "invariant") ;
444   Self->_Stalled = 0 ;
445 
446   // Must either set _recursions = 0 or ASSERT _recursions == 0.
447   assert (_recursions == 0     , "invariant") ;
448   assert (_owner == Self       , "invariant") ;
449   assert (_succ  != Self       , "invariant") ;
450   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
451 
452   // The thread -- now the owner -- is back in vm mode.
453   // Report the glorious news via TI,DTrace and jvmstat.
454   // The probe effect is non-trivial.  All the reportage occurs
455   // while we hold the monitor, increasing the length of the critical
456   // section.  Amdahl's parallel speedup law comes vividly into play.
457   //
458   // Another option might be to aggregate the events (thread local or
459   // per-monitor aggregation) and defer reporting until a more opportune
460   // time -- such as next time some thread encounters contention but has
461   // yet to acquire the lock.  While spinning that thread could
462   // spinning we could increment JVMStat counters, etc.
463 
464   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
465   if (JvmtiExport::should_post_monitor_contended_entered()) {
466     JvmtiExport::post_monitor_contended_entered(jt, this);
467 
468     // The current thread already owns the monitor and is not going to
469     // call park() for the remainder of the monitor enter protocol. So
470     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
471     // event handler consumed an unpark() issued by the thread that
472     // just exited the monitor.
473   }
474 
475   if (event.should_commit()) {
476     event.set_previousOwner((uintptr_t)_previous_owner_tid);
477     event.commit();
478   }
479 
480   if (ObjectMonitor::_sync_ContendedLockAttempts != NULL) {
481      ObjectMonitor::_sync_ContendedLockAttempts->inc() ;
482   }
483 }
484 
485 
486 // Caveat: TryLock() is not necessarily serializing if it returns failure.
487 // Callers must compensate as needed.
488 
TryLock(Thread * Self)489 int ObjectMonitor::TryLock (Thread * Self) {
490    for (;;) {
491       void * own = _owner ;
492       if (own != NULL) return 0 ;
493       if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
494          // Either guarantee _recursions == 0 or set _recursions = 0.
495          assert (_recursions == 0, "invariant") ;
496          assert (_owner == Self, "invariant") ;
497          // CONSIDER: set or assert that OwnerIsThread == 1
498          return 1 ;
499       }
500       // The lock had been free momentarily, but we lost the race to the lock.
501       // Interference -- the CAS failed.
502       // We can either return -1 or retry.
503       // Retry doesn't make as much sense because the lock was just acquired.
504       if (true) return -1 ;
505    }
506 }
507 
EnterI(TRAPS)508 void ATTR ObjectMonitor::EnterI (TRAPS) {
509     Thread * Self = THREAD ;
510     assert (Self->is_Java_thread(), "invariant") ;
511     assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;
512 
513     // Try the lock - TATAS
514     if (TryLock (Self) > 0) {
515         assert (_succ != Self              , "invariant") ;
516         assert (_owner == Self             , "invariant") ;
517         assert (_Responsible != Self       , "invariant") ;
518         return ;
519     }
520 
521     DeferredInitialize () ;
522 
523     // We try one round of spinning *before* enqueueing Self.
524     //
525     // If the _owner is ready but OFFPROC we could use a YieldTo()
526     // operation to donate the remainder of this thread's quantum
527     // to the owner.  This has subtle but beneficial affinity
528     // effects.
529 
530     if (TrySpin (Self) > 0) {
531         assert (_owner == Self        , "invariant") ;
532         assert (_succ != Self         , "invariant") ;
533         assert (_Responsible != Self  , "invariant") ;
534         return ;
535     }
536 
537     // The Spin failed -- Enqueue and park the thread ...
538     assert (_succ  != Self            , "invariant") ;
539     assert (_owner != Self            , "invariant") ;
540     assert (_Responsible != Self      , "invariant") ;
541 
542     // Enqueue "Self" on ObjectMonitor's _cxq.
543     //
544     // Node acts as a proxy for Self.
545     // As an aside, if were to ever rewrite the synchronization code mostly
546     // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
547     // Java objects.  This would avoid awkward lifecycle and liveness issues,
548     // as well as eliminate a subset of ABA issues.
549     // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
550     //
551 
552     ObjectWaiter node(Self) ;
553     Self->_ParkEvent->reset() ;
554     node._prev   = (ObjectWaiter *) 0xBAD ;
555     node.TState  = ObjectWaiter::TS_CXQ ;
556 
557     // Push "Self" onto the front of the _cxq.
558     // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
559     // Note that spinning tends to reduce the rate at which threads
560     // enqueue and dequeue on EntryList|cxq.
561     ObjectWaiter * nxt ;
562     for (;;) {
563         node._next = nxt = _cxq ;
564         if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
565 
566         // Interference - the CAS failed because _cxq changed.  Just retry.
567         // As an optional optimization we retry the lock.
568         if (TryLock (Self) > 0) {
569             assert (_succ != Self         , "invariant") ;
570             assert (_owner == Self        , "invariant") ;
571             assert (_Responsible != Self  , "invariant") ;
572             return ;
573         }
574     }
575 
576     // Check for cxq|EntryList edge transition to non-null.  This indicates
577     // the onset of contention.  While contention persists exiting threads
578     // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
579     // operations revert to the faster 1-0 mode.  This enter operation may interleave
580     // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
581     // arrange for one of the contending thread to use a timed park() operations
582     // to detect and recover from the race.  (Stranding is form of progress failure
583     // where the monitor is unlocked but all the contending threads remain parked).
584     // That is, at least one of the contended threads will periodically poll _owner.
585     // One of the contending threads will become the designated "Responsible" thread.
586     // The Responsible thread uses a timed park instead of a normal indefinite park
587     // operation -- it periodically wakes and checks for and recovers from potential
588     // strandings admitted by 1-0 exit operations.   We need at most one Responsible
589     // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
590     // be responsible for a monitor.
591     //
592     // Currently, one of the contended threads takes on the added role of "Responsible".
593     // A viable alternative would be to use a dedicated "stranding checker" thread
594     // that periodically iterated over all the threads (or active monitors) and unparked
595     // successors where there was risk of stranding.  This would help eliminate the
596     // timer scalability issues we see on some platforms as we'd only have one thread
597     // -- the checker -- parked on a timer.
598 
599     if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
600         // Try to assume the role of responsible thread for the monitor.
601         // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
602         Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
603     }
604 
605     // The lock have been released while this thread was occupied queueing
606     // itself onto _cxq.  To close the race and avoid "stranding" and
607     // progress-liveness failure we must resample-retry _owner before parking.
608     // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
609     // In this case the ST-MEMBAR is accomplished with CAS().
610     //
611     // TODO: Defer all thread state transitions until park-time.
612     // Since state transitions are heavy and inefficient we'd like
613     // to defer the state transitions until absolutely necessary,
614     // and in doing so avoid some transitions ...
615 
616     TEVENT (Inflated enter - Contention) ;
617     int nWakeups = 0 ;
618     int RecheckInterval = 1 ;
619 
620     for (;;) {
621 
622         if (TryLock (Self) > 0) break ;
623         assert (_owner != Self, "invariant") ;
624 
625         if ((SyncFlags & 2) && _Responsible == NULL) {
626            Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
627         }
628 
629         // park self
630         if (_Responsible == Self || (SyncFlags & 1)) {
631             TEVENT (Inflated enter - park TIMED) ;
632             Self->_ParkEvent->park ((jlong) RecheckInterval) ;
633             // Increase the RecheckInterval, but clamp the value.
634             RecheckInterval *= 8 ;
635             if (RecheckInterval > 1000) RecheckInterval = 1000 ;
636         } else {
637             TEVENT (Inflated enter - park UNTIMED) ;
638             Self->_ParkEvent->park() ;
639         }
640 
641         if (TryLock(Self) > 0) break ;
642 
643         // The lock is still contested.
644         // Keep a tally of the # of futile wakeups.
645         // Note that the counter is not protected by a lock or updated by atomics.
646         // That is by design - we trade "lossy" counters which are exposed to
647         // races during updates for a lower probe effect.
648         TEVENT (Inflated enter - Futile wakeup) ;
649         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
650            ObjectMonitor::_sync_FutileWakeups->inc() ;
651         }
652         ++ nWakeups ;
653 
654         // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
655         // We can defer clearing _succ until after the spin completes
656         // TrySpin() must tolerate being called with _succ == Self.
657         // Try yet another round of adaptive spinning.
658         if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
659 
660         // We can find that we were unpark()ed and redesignated _succ while
661         // we were spinning.  That's harmless.  If we iterate and call park(),
662         // park() will consume the event and return immediately and we'll
663         // just spin again.  This pattern can repeat, leaving _succ to simply
664         // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
665         // Alternately, we can sample fired() here, and if set, forgo spinning
666         // in the next iteration.
667 
668         if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
669            Self->_ParkEvent->reset() ;
670            OrderAccess::fence() ;
671         }
672         if (_succ == Self) _succ = NULL ;
673 
674         // Invariant: after clearing _succ a thread *must* retry _owner before parking.
675         OrderAccess::fence() ;
676     }
677 
678     // Egress :
679     // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
680     // Normally we'll find Self on the EntryList .
681     // From the perspective of the lock owner (this thread), the
682     // EntryList is stable and cxq is prepend-only.
683     // The head of cxq is volatile but the interior is stable.
684     // In addition, Self.TState is stable.
685 
686     assert (_owner == Self      , "invariant") ;
687     assert (object() != NULL    , "invariant") ;
688     // I'd like to write:
689     //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
690     // but as we're at a safepoint that's not safe.
691 
692     UnlinkAfterAcquire (Self, &node) ;
693     if (_succ == Self) _succ = NULL ;
694 
695     assert (_succ != Self, "invariant") ;
696     if (_Responsible == Self) {
697         _Responsible = NULL ;
698         OrderAccess::fence(); // Dekker pivot-point
699 
700         // We may leave threads on cxq|EntryList without a designated
701         // "Responsible" thread.  This is benign.  When this thread subsequently
702         // exits the monitor it can "see" such preexisting "old" threads --
703         // threads that arrived on the cxq|EntryList before the fence, above --
704         // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
705         // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
706         // non-null and elect a new "Responsible" timer thread.
707         //
708         // This thread executes:
709         //    ST Responsible=null; MEMBAR    (in enter epilog - here)
710         //    LD cxq|EntryList               (in subsequent exit)
711         //
712         // Entering threads in the slow/contended path execute:
713         //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
714         //    The (ST cxq; MEMBAR) is accomplished with CAS().
715         //
716         // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
717         // exit operation from floating above the ST Responsible=null.
718     }
719 
720     // We've acquired ownership with CAS().
721     // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
722     // But since the CAS() this thread may have also stored into _succ,
723     // EntryList, cxq or Responsible.  These meta-data updates must be
724     // visible __before this thread subsequently drops the lock.
725     // Consider what could occur if we didn't enforce this constraint --
726     // STs to monitor meta-data and user-data could reorder with (become
727     // visible after) the ST in exit that drops ownership of the lock.
728     // Some other thread could then acquire the lock, but observe inconsistent
729     // or old monitor meta-data and heap data.  That violates the JMM.
730     // To that end, the 1-0 exit() operation must have at least STST|LDST
731     // "release" barrier semantics.  Specifically, there must be at least a
732     // STST|LDST barrier in exit() before the ST of null into _owner that drops
733     // the lock.   The barrier ensures that changes to monitor meta-data and data
734     // protected by the lock will be visible before we release the lock, and
735     // therefore before some other thread (CPU) has a chance to acquire the lock.
736     // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
737     //
738     // Critically, any prior STs to _succ or EntryList must be visible before
739     // the ST of null into _owner in the *subsequent* (following) corresponding
740     // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
741     // execute a serializing instruction.
742 
743     if (SyncFlags & 8) {
744        OrderAccess::fence() ;
745     }
746     return ;
747 }
748 
749 // ReenterI() is a specialized inline form of the latter half of the
750 // contended slow-path from EnterI().  We use ReenterI() only for
751 // monitor reentry in wait().
752 //
753 // In the future we should reconcile EnterI() and ReenterI(), adding
754 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
755 // loop accordingly.
756 
ReenterI(Thread * Self,ObjectWaiter * SelfNode)757 void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
758     assert (Self != NULL                , "invariant") ;
759     assert (SelfNode != NULL            , "invariant") ;
760     assert (SelfNode->_thread == Self   , "invariant") ;
761     assert (_waiters > 0                , "invariant") ;
762     assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
763     assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
764     JavaThread * jt = (JavaThread *) Self ;
765 
766     int nWakeups = 0 ;
767     for (;;) {
768         ObjectWaiter::TStates v = SelfNode->TState ;
769         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
770         assert    (_owner != Self, "invariant") ;
771 
772         if (TryLock (Self) > 0) break ;
773         if (TrySpin (Self) > 0) break ;
774 
775         TEVENT (Wait Reentry - parking) ;
776 
777         // State transition wrappers around park() ...
778         // ReenterI() wisely defers state transitions until
779         // it's clear we must park the thread.
780         {
781            OSThreadContendState osts(Self->osthread());
782            ThreadBlockInVM tbivm(jt);
783 
784            // cleared by handle_special_suspend_equivalent_condition()
785            // or java_suspend_self()
786            jt->set_suspend_equivalent();
787            if (SyncFlags & 1) {
788               Self->_ParkEvent->park ((jlong)1000) ;
789            } else {
790               Self->_ParkEvent->park () ;
791            }
792 
793            // were we externally suspended while we were waiting?
794            for (;;) {
795               if (!ExitSuspendEquivalent (jt)) break ;
796               if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
797               jt->java_suspend_self();
798               jt->set_suspend_equivalent();
799            }
800         }
801 
802         // Try again, but just so we distinguish between futile wakeups and
803         // successful wakeups.  The following test isn't algorithmically
804         // necessary, but it helps us maintain sensible statistics.
805         if (TryLock(Self) > 0) break ;
806 
807         // The lock is still contested.
808         // Keep a tally of the # of futile wakeups.
809         // Note that the counter is not protected by a lock or updated by atomics.
810         // That is by design - we trade "lossy" counters which are exposed to
811         // races during updates for a lower probe effect.
812         TEVENT (Wait Reentry - futile wakeup) ;
813         ++ nWakeups ;
814 
815         // Assuming this is not a spurious wakeup we'll normally
816         // find that _succ == Self.
817         if (_succ == Self) _succ = NULL ;
818 
819         // Invariant: after clearing _succ a contending thread
820         // *must* retry  _owner before parking.
821         OrderAccess::fence() ;
822 
823         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
824           ObjectMonitor::_sync_FutileWakeups->inc() ;
825         }
826     }
827 
828     // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
829     // Normally we'll find Self on the EntryList.
830     // Unlinking from the EntryList is constant-time and atomic-free.
831     // From the perspective of the lock owner (this thread), the
832     // EntryList is stable and cxq is prepend-only.
833     // The head of cxq is volatile but the interior is stable.
834     // In addition, Self.TState is stable.
835 
836     assert (_owner == Self, "invariant") ;
837     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
838     UnlinkAfterAcquire (Self, SelfNode) ;
839     if (_succ == Self) _succ = NULL ;
840     assert (_succ != Self, "invariant") ;
841     SelfNode->TState = ObjectWaiter::TS_RUN ;
842     OrderAccess::fence() ;      // see comments at the end of EnterI()
843 }
844 
845 // after the thread acquires the lock in ::enter().  Equally, we could defer
846 // unlinking the thread until ::exit()-time.
847 
UnlinkAfterAcquire(Thread * Self,ObjectWaiter * SelfNode)848 void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
849 {
850     assert (_owner == Self, "invariant") ;
851     assert (SelfNode->_thread == Self, "invariant") ;
852 
853     if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
854         // Normal case: remove Self from the DLL EntryList .
855         // This is a constant-time operation.
856         ObjectWaiter * nxt = SelfNode->_next ;
857         ObjectWaiter * prv = SelfNode->_prev ;
858         if (nxt != NULL) nxt->_prev = prv ;
859         if (prv != NULL) prv->_next = nxt ;
860         if (SelfNode == _EntryList ) _EntryList = nxt ;
861         assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
862         assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
863         TEVENT (Unlink from EntryList) ;
864     } else {
865         guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
866         // Inopportune interleaving -- Self is still on the cxq.
867         // This usually means the enqueue of self raced an exiting thread.
868         // Normally we'll find Self near the front of the cxq, so
869         // dequeueing is typically fast.  If needbe we can accelerate
870         // this with some MCS/CHL-like bidirectional list hints and advisory
871         // back-links so dequeueing from the interior will normally operate
872         // in constant-time.
873         // Dequeue Self from either the head (with CAS) or from the interior
874         // with a linear-time scan and normal non-atomic memory operations.
875         // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
876         // and then unlink Self from EntryList.  We have to drain eventually,
877         // so it might as well be now.
878 
879         ObjectWaiter * v = _cxq ;
880         assert (v != NULL, "invariant") ;
881         if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
882             // The CAS above can fail from interference IFF a "RAT" arrived.
883             // In that case Self must be in the interior and can no longer be
884             // at the head of cxq.
885             if (v == SelfNode) {
886                 assert (_cxq != v, "invariant") ;
887                 v = _cxq ;          // CAS above failed - start scan at head of list
888             }
889             ObjectWaiter * p ;
890             ObjectWaiter * q = NULL ;
891             for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
892                 q = p ;
893                 assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
894             }
895             assert (v != SelfNode,  "invariant") ;
896             assert (p == SelfNode,  "Node not found on cxq") ;
897             assert (p != _cxq,      "invariant") ;
898             assert (q != NULL,      "invariant") ;
899             assert (q->_next == p,  "invariant") ;
900             q->_next = p->_next ;
901         }
902         TEVENT (Unlink from cxq) ;
903     }
904 
905     // Diagnostic hygiene ...
906     SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
907     SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
908     SelfNode->TState = ObjectWaiter::TS_RUN ;
909 }
910 
911 // -----------------------------------------------------------------------------
912 // Exit support
913 //
914 // exit()
915 // ~~~~~~
916 // Note that the collector can't reclaim the objectMonitor or deflate
917 // the object out from underneath the thread calling ::exit() as the
918 // thread calling ::exit() never transitions to a stable state.
919 // This inhibits GC, which in turn inhibits asynchronous (and
920 // inopportune) reclamation of "this".
921 //
922 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
923 // There's one exception to the claim above, however.  EnterI() can call
924 // exit() to drop a lock if the acquirer has been externally suspended.
925 // In that case exit() is called with _thread_state as _thread_blocked,
926 // but the monitor's _count field is > 0, which inhibits reclamation.
927 //
928 // 1-0 exit
929 // ~~~~~~~~
930 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
931 // the fast-path operators have been optimized so the common ::exit()
932 // operation is 1-0.  See i486.ad fast_unlock(), for instance.
933 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
934 // greatly improves latency -- MEMBAR and CAS having considerable local
935 // latency on modern processors -- but at the cost of "stranding".  Absent the
936 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
937 // ::enter() path, resulting in the entering thread being stranding
938 // and a progress-liveness failure.   Stranding is extremely rare.
939 // We use timers (timed park operations) & periodic polling to detect
940 // and recover from stranding.  Potentially stranded threads periodically
941 // wake up and poll the lock.  See the usage of the _Responsible variable.
942 //
943 // The CAS() in enter provides for safety and exclusion, while the CAS or
944 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
945 // eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
946 // We detect and recover from stranding with timers.
947 //
948 // If a thread transiently strands it'll park until (a) another
949 // thread acquires the lock and then drops the lock, at which time the
950 // exiting thread will notice and unpark the stranded thread, or, (b)
951 // the timer expires.  If the lock is high traffic then the stranding latency
952 // will be low due to (a).  If the lock is low traffic then the odds of
953 // stranding are lower, although the worst-case stranding latency
954 // is longer.  Critically, we don't want to put excessive load in the
955 // platform's timer subsystem.  We want to minimize both the timer injection
956 // rate (timers created/sec) as well as the number of timers active at
957 // any one time.  (more precisely, we want to minimize timer-seconds, which is
958 // the integral of the # of active timers at any instant over time).
959 // Both impinge on OS scalability.  Given that, at most one thread parked on
960 // a monitor will use a timer.
961 
exit(bool not_suspended,TRAPS)962 void ATTR ObjectMonitor::exit(bool not_suspended, TRAPS) {
963    Thread * Self = THREAD ;
964    if (THREAD != _owner) {
965      if (THREAD->is_lock_owned((address) _owner)) {
966        // Transmute _owner from a BasicLock pointer to a Thread address.
967        // We don't need to hold _mutex for this transition.
968        // Non-null to Non-null is safe as long as all readers can
969        // tolerate either flavor.
970        assert (_recursions == 0, "invariant") ;
971        _owner = THREAD ;
972        _recursions = 0 ;
973        OwnerIsThread = 1 ;
974      } else {
975        // NOTE: we need to handle unbalanced monitor enter/exit
976        // in native code by throwing an exception.
977        // TODO: Throw an IllegalMonitorStateException ?
978        TEVENT (Exit - Throw IMSX) ;
979        assert(false, "Non-balanced monitor enter/exit!");
980        if (false) {
981           THROW(vmSymbols::java_lang_IllegalMonitorStateException());
982        }
983        return;
984      }
985    }
986 
987    if (_recursions != 0) {
988      _recursions--;        // this is simple recursive enter
989      TEVENT (Inflated exit - recursive) ;
990      return ;
991    }
992 
993    // Invariant: after setting Responsible=null an thread must execute
994    // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
995    if ((SyncFlags & 4) == 0) {
996       _Responsible = NULL ;
997    }
998 
999 #if INCLUDE_JFR
1000    // get the owner's thread id for the MonitorEnter event
1001    // if it is enabled and the thread isn't suspended
1002    if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
1003     _previous_owner_tid = JFR_THREAD_ID(Self);
1004    }
1005 #endif
1006 
1007    for (;;) {
1008       assert (THREAD == _owner, "invariant") ;
1009 
1010 
1011       if (Knob_ExitPolicy == 0) {
1012          // release semantics: prior loads and stores from within the critical section
1013          // must not float (reorder) past the following store that drops the lock.
1014          // On SPARC that requires MEMBAR #loadstore|#storestore.
1015          // But of course in TSO #loadstore|#storestore is not required.
1016          // I'd like to write one of the following:
1017          // A.  OrderAccess::release() ; _owner = NULL
1018          // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
1019          // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
1020          // store into a _dummy variable.  That store is not needed, but can result
1021          // in massive wasteful coherency traffic on classic SMP systems.
1022          // Instead, I use release_store(), which is implemented as just a simple
1023          // ST on x64, x86 and SPARC.
1024          OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
1025          OrderAccess::storeload() ;                         // See if we need to wake a successor
1026          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1027             TEVENT (Inflated exit - simple egress) ;
1028             return ;
1029          }
1030          TEVENT (Inflated exit - complex egress) ;
1031 
1032          // Normally the exiting thread is responsible for ensuring succession,
1033          // but if other successors are ready or other entering threads are spinning
1034          // then this thread can simply store NULL into _owner and exit without
1035          // waking a successor.  The existence of spinners or ready successors
1036          // guarantees proper succession (liveness).  Responsibility passes to the
1037          // ready or running successors.  The exiting thread delegates the duty.
1038          // More precisely, if a successor already exists this thread is absolved
1039          // of the responsibility of waking (unparking) one.
1040          //
1041          // The _succ variable is critical to reducing futile wakeup frequency.
1042          // _succ identifies the "heir presumptive" thread that has been made
1043          // ready (unparked) but that has not yet run.  We need only one such
1044          // successor thread to guarantee progress.
1045          // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
1046          // section 3.3 "Futile Wakeup Throttling" for details.
1047          //
1048          // Note that spinners in Enter() also set _succ non-null.
1049          // In the current implementation spinners opportunistically set
1050          // _succ so that exiting threads might avoid waking a successor.
1051          // Another less appealing alternative would be for the exiting thread
1052          // to drop the lock and then spin briefly to see if a spinner managed
1053          // to acquire the lock.  If so, the exiting thread could exit
1054          // immediately without waking a successor, otherwise the exiting
1055          // thread would need to dequeue and wake a successor.
1056          // (Note that we'd need to make the post-drop spin short, but no
1057          // shorter than the worst-case round-trip cache-line migration time.
1058          // The dropped lock needs to become visible to the spinner, and then
1059          // the acquisition of the lock by the spinner must become visible to
1060          // the exiting thread).
1061          //
1062 
1063          // It appears that an heir-presumptive (successor) must be made ready.
1064          // Only the current lock owner can manipulate the EntryList or
1065          // drain _cxq, so we need to reacquire the lock.  If we fail
1066          // to reacquire the lock the responsibility for ensuring succession
1067          // falls to the new owner.
1068          //
1069          if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1070             return ;
1071          }
1072          TEVENT (Exit - Reacquired) ;
1073       } else {
1074          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1075             OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
1076             OrderAccess::storeload() ;
1077             // Ratify the previously observed values.
1078             if (_cxq == NULL || _succ != NULL) {
1079                 TEVENT (Inflated exit - simple egress) ;
1080                 return ;
1081             }
1082 
1083             // inopportune interleaving -- the exiting thread (this thread)
1084             // in the fast-exit path raced an entering thread in the slow-enter
1085             // path.
1086             // We have two choices:
1087             // A.  Try to reacquire the lock.
1088             //     If the CAS() fails return immediately, otherwise
1089             //     we either restart/rerun the exit operation, or simply
1090             //     fall-through into the code below which wakes a successor.
1091             // B.  If the elements forming the EntryList|cxq are TSM
1092             //     we could simply unpark() the lead thread and return
1093             //     without having set _succ.
1094             if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1095                TEVENT (Inflated exit - reacquired succeeded) ;
1096                return ;
1097             }
1098             TEVENT (Inflated exit - reacquired failed) ;
1099          } else {
1100             TEVENT (Inflated exit - complex egress) ;
1101          }
1102       }
1103 
1104       guarantee (_owner == THREAD, "invariant") ;
1105 
1106       ObjectWaiter * w = NULL ;
1107       int QMode = Knob_QMode ;
1108 
1109       if (QMode == 2 && _cxq != NULL) {
1110           // QMode == 2 : cxq has precedence over EntryList.
1111           // Try to directly wake a successor from the cxq.
1112           // If successful, the successor will need to unlink itself from cxq.
1113           w = _cxq ;
1114           assert (w != NULL, "invariant") ;
1115           assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1116           ExitEpilog (Self, w) ;
1117           return ;
1118       }
1119 
1120       if (QMode == 3 && _cxq != NULL) {
1121           // Aggressively drain cxq into EntryList at the first opportunity.
1122           // This policy ensure that recently-run threads live at the head of EntryList.
1123           // Drain _cxq into EntryList - bulk transfer.
1124           // First, detach _cxq.
1125           // The following loop is tantamount to: w = swap (&cxq, NULL)
1126           w = _cxq ;
1127           for (;;) {
1128              assert (w != NULL, "Invariant") ;
1129              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1130              if (u == w) break ;
1131              w = u ;
1132           }
1133           assert (w != NULL              , "invariant") ;
1134 
1135           ObjectWaiter * q = NULL ;
1136           ObjectWaiter * p ;
1137           for (p = w ; p != NULL ; p = p->_next) {
1138               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1139               p->TState = ObjectWaiter::TS_ENTER ;
1140               p->_prev = q ;
1141               q = p ;
1142           }
1143 
1144           // Append the RATs to the EntryList
1145           // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1146           ObjectWaiter * Tail ;
1147           for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
1148           if (Tail == NULL) {
1149               _EntryList = w ;
1150           } else {
1151               Tail->_next = w ;
1152               w->_prev = Tail ;
1153           }
1154 
1155           // Fall thru into code that tries to wake a successor from EntryList
1156       }
1157 
1158       if (QMode == 4 && _cxq != NULL) {
1159           // Aggressively drain cxq into EntryList at the first opportunity.
1160           // This policy ensure that recently-run threads live at the head of EntryList.
1161 
1162           // Drain _cxq into EntryList - bulk transfer.
1163           // First, detach _cxq.
1164           // The following loop is tantamount to: w = swap (&cxq, NULL)
1165           w = _cxq ;
1166           for (;;) {
1167              assert (w != NULL, "Invariant") ;
1168              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1169              if (u == w) break ;
1170              w = u ;
1171           }
1172           assert (w != NULL              , "invariant") ;
1173 
1174           ObjectWaiter * q = NULL ;
1175           ObjectWaiter * p ;
1176           for (p = w ; p != NULL ; p = p->_next) {
1177               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1178               p->TState = ObjectWaiter::TS_ENTER ;
1179               p->_prev = q ;
1180               q = p ;
1181           }
1182 
1183           // Prepend the RATs to the EntryList
1184           if (_EntryList != NULL) {
1185               q->_next = _EntryList ;
1186               _EntryList->_prev = q ;
1187           }
1188           _EntryList = w ;
1189 
1190           // Fall thru into code that tries to wake a successor from EntryList
1191       }
1192 
1193       w = _EntryList  ;
1194       if (w != NULL) {
1195           // I'd like to write: guarantee (w->_thread != Self).
1196           // But in practice an exiting thread may find itself on the EntryList.
1197           // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1198           // then calls exit().  Exit release the lock by setting O._owner to NULL.
1199           // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
1200           // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1201           // release the lock "O".  T2 resumes immediately after the ST of null into
1202           // _owner, above.  T2 notices that the EntryList is populated, so it
1203           // reacquires the lock and then finds itself on the EntryList.
1204           // Given all that, we have to tolerate the circumstance where "w" is
1205           // associated with Self.
1206           assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1207           ExitEpilog (Self, w) ;
1208           return ;
1209       }
1210 
1211       // If we find that both _cxq and EntryList are null then just
1212       // re-run the exit protocol from the top.
1213       w = _cxq ;
1214       if (w == NULL) continue ;
1215 
1216       // Drain _cxq into EntryList - bulk transfer.
1217       // First, detach _cxq.
1218       // The following loop is tantamount to: w = swap (&cxq, NULL)
1219       for (;;) {
1220           assert (w != NULL, "Invariant") ;
1221           ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1222           if (u == w) break ;
1223           w = u ;
1224       }
1225       TEVENT (Inflated exit - drain cxq into EntryList) ;
1226 
1227       assert (w != NULL              , "invariant") ;
1228       assert (_EntryList  == NULL    , "invariant") ;
1229 
1230       // Convert the LIFO SLL anchored by _cxq into a DLL.
1231       // The list reorganization step operates in O(LENGTH(w)) time.
1232       // It's critical that this step operate quickly as
1233       // "Self" still holds the outer-lock, restricting parallelism
1234       // and effectively lengthening the critical section.
1235       // Invariant: s chases t chases u.
1236       // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1237       // we have faster access to the tail.
1238 
1239       if (QMode == 1) {
1240          // QMode == 1 : drain cxq to EntryList, reversing order
1241          // We also reverse the order of the list.
1242          ObjectWaiter * s = NULL ;
1243          ObjectWaiter * t = w ;
1244          ObjectWaiter * u = NULL ;
1245          while (t != NULL) {
1246              guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
1247              t->TState = ObjectWaiter::TS_ENTER ;
1248              u = t->_next ;
1249              t->_prev = u ;
1250              t->_next = s ;
1251              s = t;
1252              t = u ;
1253          }
1254          _EntryList  = s ;
1255          assert (s != NULL, "invariant") ;
1256       } else {
1257          // QMode == 0 or QMode == 2
1258          _EntryList = w ;
1259          ObjectWaiter * q = NULL ;
1260          ObjectWaiter * p ;
1261          for (p = w ; p != NULL ; p = p->_next) {
1262              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1263              p->TState = ObjectWaiter::TS_ENTER ;
1264              p->_prev = q ;
1265              q = p ;
1266          }
1267       }
1268 
1269       // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1270       // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1271 
1272       // See if we can abdicate to a spinner instead of waking a thread.
1273       // A primary goal of the implementation is to reduce the
1274       // context-switch rate.
1275       if (_succ != NULL) continue;
1276 
1277       w = _EntryList  ;
1278       if (w != NULL) {
1279           guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1280           ExitEpilog (Self, w) ;
1281           return ;
1282       }
1283    }
1284 }
1285 
1286 // ExitSuspendEquivalent:
1287 // A faster alternate to handle_special_suspend_equivalent_condition()
1288 //
1289 // handle_special_suspend_equivalent_condition() unconditionally
1290 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1291 // operations have high latency.  Note that in ::enter() we call HSSEC
1292 // while holding the monitor, so we effectively lengthen the critical sections.
1293 //
1294 // There are a number of possible solutions:
1295 //
1296 // A.  To ameliorate the problem we might also defer state transitions
1297 //     to as late as possible -- just prior to parking.
1298 //     Given that, we'd call HSSEC after having returned from park(),
1299 //     but before attempting to acquire the monitor.  This is only a
1300 //     partial solution.  It avoids calling HSSEC while holding the
1301 //     monitor (good), but it still increases successor reacquisition latency --
1302 //     the interval between unparking a successor and the time the successor
1303 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1304 //     If we use this technique we can also avoid EnterI()-exit() loop
1305 //     in ::enter() where we iteratively drop the lock and then attempt
1306 //     to reacquire it after suspending.
1307 //
1308 // B.  In the future we might fold all the suspend bits into a
1309 //     composite per-thread suspend flag and then update it with CAS().
1310 //     Alternately, a Dekker-like mechanism with multiple variables
1311 //     would suffice:
1312 //       ST Self->_suspend_equivalent = false
1313 //       MEMBAR
1314 //       LD Self_>_suspend_flags
1315 //
1316 
1317 
ExitSuspendEquivalent(JavaThread * jSelf)1318 bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
1319    int Mode = Knob_FastHSSEC ;
1320    if (Mode && !jSelf->is_external_suspend()) {
1321       assert (jSelf->is_suspend_equivalent(), "invariant") ;
1322       jSelf->clear_suspend_equivalent() ;
1323       if (2 == Mode) OrderAccess::storeload() ;
1324       if (!jSelf->is_external_suspend()) return false ;
1325       // We raced a suspension -- fall thru into the slow path
1326       TEVENT (ExitSuspendEquivalent - raced) ;
1327       jSelf->set_suspend_equivalent() ;
1328    }
1329    return jSelf->handle_special_suspend_equivalent_condition() ;
1330 }
1331 
1332 
ExitEpilog(Thread * Self,ObjectWaiter * Wakee)1333 void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
1334    assert (_owner == Self, "invariant") ;
1335 
1336    // Exit protocol:
1337    // 1. ST _succ = wakee
1338    // 2. membar #loadstore|#storestore;
1339    // 2. ST _owner = NULL
1340    // 3. unpark(wakee)
1341 
1342    _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
1343    ParkEvent * Trigger = Wakee->_event ;
1344 
1345    // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1346    // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1347    // out-of-scope (non-extant).
1348    Wakee  = NULL ;
1349 
1350    // Drop the lock
1351    OrderAccess::release_store_ptr (&_owner, NULL) ;
1352    OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
1353 
1354    if (SafepointSynchronize::do_call_back()) {
1355       TEVENT (unpark before SAFEPOINT) ;
1356    }
1357 
1358    DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1359    Trigger->unpark() ;
1360 
1361    // Maintain stats and report events to JVMTI
1362    if (ObjectMonitor::_sync_Parks != NULL) {
1363       ObjectMonitor::_sync_Parks->inc() ;
1364    }
1365 }
1366 
1367 
1368 // -----------------------------------------------------------------------------
1369 // Class Loader deadlock handling.
1370 //
1371 // complete_exit exits a lock returning recursion count
1372 // complete_exit/reenter operate as a wait without waiting
1373 // complete_exit requires an inflated monitor
1374 // The _owner field is not always the Thread addr even with an
1375 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1376 // thread due to contention.
complete_exit(TRAPS)1377 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1378    Thread * const Self = THREAD;
1379    assert(Self->is_Java_thread(), "Must be Java thread!");
1380    JavaThread *jt = (JavaThread *)THREAD;
1381 
1382    DeferredInitialize();
1383 
1384    if (THREAD != _owner) {
1385     if (THREAD->is_lock_owned ((address)_owner)) {
1386        assert(_recursions == 0, "internal state error");
1387        _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
1388        _recursions = 0 ;
1389        OwnerIsThread = 1 ;
1390     }
1391    }
1392 
1393    guarantee(Self == _owner, "complete_exit not owner");
1394    intptr_t save = _recursions; // record the old recursion count
1395    _recursions = 0;        // set the recursion level to be 0
1396    exit (true, Self) ;           // exit the monitor
1397    guarantee (_owner != Self, "invariant");
1398    return save;
1399 }
1400 
1401 // reenter() enters a lock and sets recursion count
1402 // complete_exit/reenter operate as a wait without waiting
reenter(intptr_t recursions,TRAPS)1403 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1404    Thread * const Self = THREAD;
1405    assert(Self->is_Java_thread(), "Must be Java thread!");
1406    JavaThread *jt = (JavaThread *)THREAD;
1407 
1408    guarantee(_owner != Self, "reenter already owner");
1409    enter (THREAD);       // enter the monitor
1410    guarantee (_recursions == 0, "reenter recursion");
1411    _recursions = recursions;
1412    return;
1413 }
1414 
1415 
1416 // -----------------------------------------------------------------------------
1417 // A macro is used below because there may already be a pending
1418 // exception which should not abort the execution of the routines
1419 // which use this (which is why we don't put this into check_slow and
1420 // call it with a CHECK argument).
1421 
1422 #define CHECK_OWNER()                                                             \
1423   do {                                                                            \
1424     if (THREAD != _owner) {                                                       \
1425       if (THREAD->is_lock_owned((address) _owner)) {                              \
1426         _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
1427         _recursions = 0;                                                          \
1428         OwnerIsThread = 1 ;                                                       \
1429       } else {                                                                    \
1430         TEVENT (Throw IMSX) ;                                                     \
1431         THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
1432       }                                                                           \
1433     }                                                                             \
1434   } while (false)
1435 
1436 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1437 // TODO-FIXME: remove check_slow() -- it's likely dead.
1438 
check_slow(TRAPS)1439 void ObjectMonitor::check_slow(TRAPS) {
1440   TEVENT (check_slow - throw IMSX) ;
1441   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1442   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1443 }
1444 
Adjust(volatile int * adr,int dx)1445 static int Adjust (volatile int * adr, int dx) {
1446   int v ;
1447   for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
1448   return v ;
1449 }
1450 
1451 // helper method for posting a monitor wait event
post_monitor_wait_event(EventJavaMonitorWait * event,ObjectMonitor * monitor,jlong notifier_tid,jlong timeout,bool timedout)1452 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1453                                     ObjectMonitor* monitor,
1454                                     jlong notifier_tid,
1455                                     jlong timeout,
1456                                     bool timedout) {
1457   assert(monitor != NULL, "invariant");
1458   event->set_monitorClass(((oop)monitor->object())->klass());
1459   event->set_timeout(timeout);
1460   event->set_address((uintptr_t)monitor->object_addr());
1461   event->set_notifier((u8)notifier_tid);
1462   event->set_timedOut(timedout);
1463   event->commit();
1464 }
1465 
1466 // -----------------------------------------------------------------------------
1467 // Wait/Notify/NotifyAll
1468 //
1469 // Note: a subset of changes to ObjectMonitor::wait()
1470 // will need to be replicated in complete_exit above
wait(jlong millis,bool interruptible,TRAPS)1471 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1472    Thread * const Self = THREAD ;
1473    assert(Self->is_Java_thread(), "Must be Java thread!");
1474    JavaThread *jt = (JavaThread *)THREAD;
1475 
1476    DeferredInitialize () ;
1477 
1478    // Throw IMSX or IEX.
1479    CHECK_OWNER();
1480 
1481    EventJavaMonitorWait event;
1482 
1483    // check for a pending interrupt
1484    if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1485      // post monitor waited event.  Note that this is past-tense, we are done waiting.
1486      if (JvmtiExport::should_post_monitor_waited()) {
1487         // Note: 'false' parameter is passed here because the
1488         // wait was not timed out due to thread interrupt.
1489         JvmtiExport::post_monitor_waited(jt, this, false);
1490 
1491         // In this short circuit of the monitor wait protocol, the
1492         // current thread never drops ownership of the monitor and
1493         // never gets added to the wait queue so the current thread
1494         // cannot be made the successor. This means that the
1495         // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1496         // consume an unpark() meant for the ParkEvent associated with
1497         // this ObjectMonitor.
1498      }
1499      if (event.should_commit()) {
1500        post_monitor_wait_event(&event, this, 0, millis, false);
1501      }
1502      TEVENT (Wait - Throw IEX) ;
1503      THROW(vmSymbols::java_lang_InterruptedException());
1504      return ;
1505    }
1506 
1507    TEVENT (Wait) ;
1508 
1509    assert (Self->_Stalled == 0, "invariant") ;
1510    Self->_Stalled = intptr_t(this) ;
1511    jt->set_current_waiting_monitor(this);
1512 
1513    // create a node to be put into the queue
1514    // Critically, after we reset() the event but prior to park(), we must check
1515    // for a pending interrupt.
1516    ObjectWaiter node(Self);
1517    node.TState = ObjectWaiter::TS_WAIT ;
1518    Self->_ParkEvent->reset() ;
1519    OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1520 
1521    // Enter the waiting queue, which is a circular doubly linked list in this case
1522    // but it could be a priority queue or any data structure.
1523    // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1524    // by the the owner of the monitor *except* in the case where park()
1525    // returns because of a timeout of interrupt.  Contention is exceptionally rare
1526    // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1527 
1528    Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
1529    AddWaiter (&node) ;
1530    Thread::SpinRelease (&_WaitSetLock) ;
1531 
1532    if ((SyncFlags & 4) == 0) {
1533       _Responsible = NULL ;
1534    }
1535    intptr_t save = _recursions; // record the old recursion count
1536    _waiters++;                  // increment the number of waiters
1537    _recursions = 0;             // set the recursion level to be 1
1538    exit (true, Self) ;                    // exit the monitor
1539    guarantee (_owner != Self, "invariant") ;
1540 
1541    // The thread is on the WaitSet list - now park() it.
1542    // On MP systems it's conceivable that a brief spin before we park
1543    // could be profitable.
1544    //
1545    // TODO-FIXME: change the following logic to a loop of the form
1546    //   while (!timeout && !interrupted && _notified == 0) park()
1547 
1548    int ret = OS_OK ;
1549    int WasNotified = 0 ;
1550    { // State transition wrappers
1551      OSThread* osthread = Self->osthread();
1552      OSThreadWaitState osts(osthread, true);
1553      {
1554        ThreadBlockInVM tbivm(jt);
1555        // Thread is in thread_blocked state and oop access is unsafe.
1556        jt->set_suspend_equivalent();
1557 
1558        if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1559            // Intentionally empty
1560        } else
1561        if (node._notified == 0) {
1562          if (millis <= 0) {
1563             Self->_ParkEvent->park () ;
1564          } else {
1565             ret = Self->_ParkEvent->park (millis) ;
1566          }
1567        }
1568 
1569        // were we externally suspended while we were waiting?
1570        if (ExitSuspendEquivalent (jt)) {
1571           // TODO-FIXME: add -- if succ == Self then succ = null.
1572           jt->java_suspend_self();
1573        }
1574 
1575      } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1576 
1577 
1578      // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1579      // from the WaitSet to the EntryList.
1580      // See if we need to remove Node from the WaitSet.
1581      // We use double-checked locking to avoid grabbing _WaitSetLock
1582      // if the thread is not on the wait queue.
1583      //
1584      // Note that we don't need a fence before the fetch of TState.
1585      // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1586      // written by the is thread. (perhaps the fetch might even be satisfied
1587      // by a look-aside into the processor's own store buffer, although given
1588      // the length of the code path between the prior ST and this load that's
1589      // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1590      // then we'll acquire the lock and then re-fetch a fresh TState value.
1591      // That is, we fail toward safety.
1592 
1593      if (node.TState == ObjectWaiter::TS_WAIT) {
1594          Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
1595          if (node.TState == ObjectWaiter::TS_WAIT) {
1596             DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
1597             assert(node._notified == 0, "invariant");
1598             node.TState = ObjectWaiter::TS_RUN ;
1599          }
1600          Thread::SpinRelease (&_WaitSetLock) ;
1601      }
1602 
1603      // The thread is now either on off-list (TS_RUN),
1604      // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1605      // The Node's TState variable is stable from the perspective of this thread.
1606      // No other threads will asynchronously modify TState.
1607      guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
1608      OrderAccess::loadload() ;
1609      if (_succ == Self) _succ = NULL ;
1610      WasNotified = node._notified ;
1611 
1612      // Reentry phase -- reacquire the monitor.
1613      // re-enter contended monitor after object.wait().
1614      // retain OBJECT_WAIT state until re-enter successfully completes
1615      // Thread state is thread_in_vm and oop access is again safe,
1616      // although the raw address of the object may have changed.
1617      // (Don't cache naked oops over safepoints, of course).
1618 
1619      // post monitor waited event. Note that this is past-tense, we are done waiting.
1620      if (JvmtiExport::should_post_monitor_waited()) {
1621        JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1622 
1623        if (node._notified != 0 && _succ == Self) {
1624          // In this part of the monitor wait-notify-reenter protocol it
1625          // is possible (and normal) for another thread to do a fastpath
1626          // monitor enter-exit while this thread is still trying to get
1627          // to the reenter portion of the protocol.
1628          //
1629          // The ObjectMonitor was notified and the current thread is
1630          // the successor which also means that an unpark() has already
1631          // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1632          // consume the unpark() that was done when the successor was
1633          // set because the same ParkEvent is shared between Java
1634          // monitors and JVM/TI RawMonitors (for now).
1635          //
1636          // We redo the unpark() to ensure forward progress, i.e., we
1637          // don't want all pending threads hanging (parked) with none
1638          // entering the unlocked monitor.
1639          node._event->unpark();
1640        }
1641      }
1642 
1643      if (event.should_commit()) {
1644        post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1645      }
1646 
1647      OrderAccess::fence() ;
1648 
1649      assert (Self->_Stalled != 0, "invariant") ;
1650      Self->_Stalled = 0 ;
1651 
1652      assert (_owner != Self, "invariant") ;
1653      ObjectWaiter::TStates v = node.TState ;
1654      if (v == ObjectWaiter::TS_RUN) {
1655          enter (Self) ;
1656      } else {
1657          guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
1658          ReenterI (Self, &node) ;
1659          node.wait_reenter_end(this);
1660      }
1661 
1662      // Self has reacquired the lock.
1663      // Lifecycle - the node representing Self must not appear on any queues.
1664      // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1665      // want residual elements associated with this thread left on any lists.
1666      guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
1667      assert    (_owner == Self, "invariant") ;
1668      assert    (_succ != Self , "invariant") ;
1669    } // OSThreadWaitState()
1670 
1671    jt->set_current_waiting_monitor(NULL);
1672 
1673    guarantee (_recursions == 0, "invariant") ;
1674    _recursions = save;     // restore the old recursion count
1675    _waiters--;             // decrement the number of waiters
1676 
1677    // Verify a few postconditions
1678    assert (_owner == Self       , "invariant") ;
1679    assert (_succ  != Self       , "invariant") ;
1680    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
1681 
1682    if (SyncFlags & 32) {
1683       OrderAccess::fence() ;
1684    }
1685 
1686    // check if the notification happened
1687    if (!WasNotified) {
1688      // no, it could be timeout or Thread.interrupt() or both
1689      // check for interrupt event, otherwise it is timeout
1690      if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1691        TEVENT (Wait - throw IEX from epilog) ;
1692        THROW(vmSymbols::java_lang_InterruptedException());
1693      }
1694    }
1695 
1696    // NOTE: Spurious wake up will be consider as timeout.
1697    // Monitor notify has precedence over thread interrupt.
1698 }
1699 
1700 
1701 // Consider:
1702 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1703 // then instead of transferring a thread from the WaitSet to the EntryList
1704 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1705 
notify(TRAPS)1706 void ObjectMonitor::notify(TRAPS) {
1707   CHECK_OWNER();
1708   if (_WaitSet == NULL) {
1709      TEVENT (Empty-Notify) ;
1710      return ;
1711   }
1712   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1713 
1714   int Policy = Knob_MoveNotifyee ;
1715 
1716   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
1717   ObjectWaiter * iterator = DequeueWaiter() ;
1718   if (iterator != NULL) {
1719      TEVENT (Notify1 - Transfer) ;
1720      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1721      guarantee (iterator->_notified == 0, "invariant") ;
1722      if (Policy != 4) {
1723         iterator->TState = ObjectWaiter::TS_ENTER ;
1724      }
1725      iterator->_notified = 1 ;
1726      Thread * Self = THREAD;
1727      iterator->_notifier_tid = JFR_THREAD_ID(Self);
1728 
1729      ObjectWaiter * List = _EntryList ;
1730      if (List != NULL) {
1731         assert (List->_prev == NULL, "invariant") ;
1732         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1733         assert (List != iterator, "invariant") ;
1734      }
1735 
1736      if (Policy == 0) {       // prepend to EntryList
1737          if (List == NULL) {
1738              iterator->_next = iterator->_prev = NULL ;
1739              _EntryList = iterator ;
1740          } else {
1741              List->_prev = iterator ;
1742              iterator->_next = List ;
1743              iterator->_prev = NULL ;
1744              _EntryList = iterator ;
1745         }
1746      } else
1747      if (Policy == 1) {      // append to EntryList
1748          if (List == NULL) {
1749              iterator->_next = iterator->_prev = NULL ;
1750              _EntryList = iterator ;
1751          } else {
1752             // CONSIDER:  finding the tail currently requires a linear-time walk of
1753             // the EntryList.  We can make tail access constant-time by converting to
1754             // a CDLL instead of using our current DLL.
1755             ObjectWaiter * Tail ;
1756             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1757             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1758             Tail->_next = iterator ;
1759             iterator->_prev = Tail ;
1760             iterator->_next = NULL ;
1761         }
1762      } else
1763      if (Policy == 2) {      // prepend to cxq
1764          // prepend to cxq
1765          if (List == NULL) {
1766              iterator->_next = iterator->_prev = NULL ;
1767              _EntryList = iterator ;
1768          } else {
1769             iterator->TState = ObjectWaiter::TS_CXQ ;
1770             for (;;) {
1771                 ObjectWaiter * Front = _cxq ;
1772                 iterator->_next = Front ;
1773                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1774                     break ;
1775                 }
1776             }
1777          }
1778      } else
1779      if (Policy == 3) {      // append to cxq
1780         iterator->TState = ObjectWaiter::TS_CXQ ;
1781         for (;;) {
1782             ObjectWaiter * Tail ;
1783             Tail = _cxq ;
1784             if (Tail == NULL) {
1785                 iterator->_next = NULL ;
1786                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1787                    break ;
1788                 }
1789             } else {
1790                 while (Tail->_next != NULL) Tail = Tail->_next ;
1791                 Tail->_next = iterator ;
1792                 iterator->_prev = Tail ;
1793                 iterator->_next = NULL ;
1794                 break ;
1795             }
1796         }
1797      } else {
1798         ParkEvent * ev = iterator->_event ;
1799         iterator->TState = ObjectWaiter::TS_RUN ;
1800         OrderAccess::fence() ;
1801         ev->unpark() ;
1802      }
1803 
1804      if (Policy < 4) {
1805        iterator->wait_reenter_begin(this);
1806      }
1807 
1808      // _WaitSetLock protects the wait queue, not the EntryList.  We could
1809      // move the add-to-EntryList operation, above, outside the critical section
1810      // protected by _WaitSetLock.  In practice that's not useful.  With the
1811      // exception of  wait() timeouts and interrupts the monitor owner
1812      // is the only thread that grabs _WaitSetLock.  There's almost no contention
1813      // on _WaitSetLock so it's not profitable to reduce the length of the
1814      // critical section.
1815   }
1816 
1817   Thread::SpinRelease (&_WaitSetLock) ;
1818 
1819   if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
1820      ObjectMonitor::_sync_Notifications->inc() ;
1821   }
1822 }
1823 
1824 
notifyAll(TRAPS)1825 void ObjectMonitor::notifyAll(TRAPS) {
1826   CHECK_OWNER();
1827   ObjectWaiter* iterator;
1828   if (_WaitSet == NULL) {
1829       TEVENT (Empty-NotifyAll) ;
1830       return ;
1831   }
1832   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1833 
1834   int Policy = Knob_MoveNotifyee ;
1835   int Tally = 0 ;
1836   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
1837 
1838   for (;;) {
1839      iterator = DequeueWaiter () ;
1840      if (iterator == NULL) break ;
1841      TEVENT (NotifyAll - Transfer1) ;
1842      ++Tally ;
1843 
1844      // Disposition - what might we do with iterator ?
1845      // a.  add it directly to the EntryList - either tail or head.
1846      // b.  push it onto the front of the _cxq.
1847      // For now we use (a).
1848 
1849      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1850      guarantee (iterator->_notified == 0, "invariant") ;
1851      iterator->_notified = 1 ;
1852      Thread * Self = THREAD;
1853      iterator->_notifier_tid = JFR_THREAD_ID(Self);
1854      if (Policy != 4) {
1855         iterator->TState = ObjectWaiter::TS_ENTER ;
1856      }
1857 
1858      ObjectWaiter * List = _EntryList ;
1859      if (List != NULL) {
1860         assert (List->_prev == NULL, "invariant") ;
1861         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1862         assert (List != iterator, "invariant") ;
1863      }
1864 
1865      if (Policy == 0) {       // prepend to EntryList
1866          if (List == NULL) {
1867              iterator->_next = iterator->_prev = NULL ;
1868              _EntryList = iterator ;
1869          } else {
1870              List->_prev = iterator ;
1871              iterator->_next = List ;
1872              iterator->_prev = NULL ;
1873              _EntryList = iterator ;
1874         }
1875      } else
1876      if (Policy == 1) {      // append to EntryList
1877          if (List == NULL) {
1878              iterator->_next = iterator->_prev = NULL ;
1879              _EntryList = iterator ;
1880          } else {
1881             // CONSIDER:  finding the tail currently requires a linear-time walk of
1882             // the EntryList.  We can make tail access constant-time by converting to
1883             // a CDLL instead of using our current DLL.
1884             ObjectWaiter * Tail ;
1885             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1886             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1887             Tail->_next = iterator ;
1888             iterator->_prev = Tail ;
1889             iterator->_next = NULL ;
1890         }
1891      } else
1892      if (Policy == 2) {      // prepend to cxq
1893          // prepend to cxq
1894          iterator->TState = ObjectWaiter::TS_CXQ ;
1895          for (;;) {
1896              ObjectWaiter * Front = _cxq ;
1897              iterator->_next = Front ;
1898              if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1899                  break ;
1900              }
1901          }
1902      } else
1903      if (Policy == 3) {      // append to cxq
1904         iterator->TState = ObjectWaiter::TS_CXQ ;
1905         for (;;) {
1906             ObjectWaiter * Tail ;
1907             Tail = _cxq ;
1908             if (Tail == NULL) {
1909                 iterator->_next = NULL ;
1910                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1911                    break ;
1912                 }
1913             } else {
1914                 while (Tail->_next != NULL) Tail = Tail->_next ;
1915                 Tail->_next = iterator ;
1916                 iterator->_prev = Tail ;
1917                 iterator->_next = NULL ;
1918                 break ;
1919             }
1920         }
1921      } else {
1922         ParkEvent * ev = iterator->_event ;
1923         iterator->TState = ObjectWaiter::TS_RUN ;
1924         OrderAccess::fence() ;
1925         ev->unpark() ;
1926      }
1927 
1928      if (Policy < 4) {
1929        iterator->wait_reenter_begin(this);
1930      }
1931 
1932      // _WaitSetLock protects the wait queue, not the EntryList.  We could
1933      // move the add-to-EntryList operation, above, outside the critical section
1934      // protected by _WaitSetLock.  In practice that's not useful.  With the
1935      // exception of  wait() timeouts and interrupts the monitor owner
1936      // is the only thread that grabs _WaitSetLock.  There's almost no contention
1937      // on _WaitSetLock so it's not profitable to reduce the length of the
1938      // critical section.
1939   }
1940 
1941   Thread::SpinRelease (&_WaitSetLock) ;
1942 
1943   if (Tally != 0 && ObjectMonitor::_sync_Notifications != NULL) {
1944      ObjectMonitor::_sync_Notifications->inc(Tally) ;
1945   }
1946 }
1947 
1948 // -----------------------------------------------------------------------------
1949 // Adaptive Spinning Support
1950 //
1951 // Adaptive spin-then-block - rational spinning
1952 //
1953 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1954 // algorithm.  On high order SMP systems it would be better to start with
1955 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1956 // a contending thread could enqueue itself on the cxq and then spin locally
1957 // on a thread-specific variable such as its ParkEvent._Event flag.
1958 // That's left as an exercise for the reader.  Note that global spinning is
1959 // not problematic on Niagara, as the L2$ serves the interconnect and has both
1960 // low latency and massive bandwidth.
1961 //
1962 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1963 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1964 // (duration) or we can fix the count at approximately the duration of
1965 // a context switch and vary the frequency.   Of course we could also
1966 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1967 // For a description of 'Adaptive spin-then-block mutual exclusion in
1968 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1969 //
1970 // This implementation varies the duration "D", where D varies with
1971 // the success rate of recent spin attempts. (D is capped at approximately
1972 // length of a round-trip context switch).  The success rate for recent
1973 // spin attempts is a good predictor of the success rate of future spin
1974 // attempts.  The mechanism adapts automatically to varying critical
1975 // section length (lock modality), system load and degree of parallelism.
1976 // D is maintained per-monitor in _SpinDuration and is initialized
1977 // optimistically.  Spin frequency is fixed at 100%.
1978 //
1979 // Note that _SpinDuration is volatile, but we update it without locks
1980 // or atomics.  The code is designed so that _SpinDuration stays within
1981 // a reasonable range even in the presence of races.  The arithmetic
1982 // operations on _SpinDuration are closed over the domain of legal values,
1983 // so at worst a race will install and older but still legal value.
1984 // At the very worst this introduces some apparent non-determinism.
1985 // We might spin when we shouldn't or vice-versa, but since the spin
1986 // count are relatively short, even in the worst case, the effect is harmless.
1987 //
1988 // Care must be taken that a low "D" value does not become an
1989 // an absorbing state.  Transient spinning failures -- when spinning
1990 // is overall profitable -- should not cause the system to converge
1991 // on low "D" values.  We want spinning to be stable and predictable
1992 // and fairly responsive to change and at the same time we don't want
1993 // it to oscillate, become metastable, be "too" non-deterministic,
1994 // or converge on or enter undesirable stable absorbing states.
1995 //
1996 // We implement a feedback-based control system -- using past behavior
1997 // to predict future behavior.  We face two issues: (a) if the
1998 // input signal is random then the spin predictor won't provide optimal
1999 // results, and (b) if the signal frequency is too high then the control
2000 // system, which has some natural response lag, will "chase" the signal.
2001 // (b) can arise from multimodal lock hold times.  Transient preemption
2002 // can also result in apparent bimodal lock hold times.
2003 // Although sub-optimal, neither condition is particularly harmful, as
2004 // in the worst-case we'll spin when we shouldn't or vice-versa.
2005 // The maximum spin duration is rather short so the failure modes aren't bad.
2006 // To be conservative, I've tuned the gain in system to bias toward
2007 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
2008 // "rings" or oscillates between spinning and not spinning.  This happens
2009 // when spinning is just on the cusp of profitability, however, so the
2010 // situation is not dire.  The state is benign -- there's no need to add
2011 // hysteresis control to damp the transition rate between spinning and
2012 // not spinning.
2013 //
2014 
2015 intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
2016 int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
2017 
2018 // Spinning: Fixed frequency (100%), vary duration
2019 
2020 
TrySpin_VaryDuration(Thread * Self)2021 int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
2022 
2023     // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
2024     int ctr = Knob_FixedSpin ;
2025     if (ctr != 0) {
2026         while (--ctr >= 0) {
2027             if (TryLock (Self) > 0) return 1 ;
2028             SpinPause () ;
2029         }
2030         return 0 ;
2031     }
2032 
2033     for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
2034       if (TryLock(Self) > 0) {
2035         // Increase _SpinDuration ...
2036         // Note that we don't clamp SpinDuration precisely at SpinLimit.
2037         // Raising _SpurDuration to the poverty line is key.
2038         int x = _SpinDuration ;
2039         if (x < Knob_SpinLimit) {
2040            if (x < Knob_Poverty) x = Knob_Poverty ;
2041            _SpinDuration = x + Knob_BonusB ;
2042         }
2043         return 1 ;
2044       }
2045       SpinPause () ;
2046     }
2047 
2048     // Admission control - verify preconditions for spinning
2049     //
2050     // We always spin a little bit, just to prevent _SpinDuration == 0 from
2051     // becoming an absorbing state.  Put another way, we spin briefly to
2052     // sample, just in case the system load, parallelism, contention, or lock
2053     // modality changed.
2054     //
2055     // Consider the following alternative:
2056     // Periodically set _SpinDuration = _SpinLimit and try a long/full
2057     // spin attempt.  "Periodically" might mean after a tally of
2058     // the # of failed spin attempts (or iterations) reaches some threshold.
2059     // This takes us into the realm of 1-out-of-N spinning, where we
2060     // hold the duration constant but vary the frequency.
2061 
2062     ctr = _SpinDuration  ;
2063     if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
2064     if (ctr <= 0) return 0 ;
2065 
2066     if (Knob_SuccRestrict && _succ != NULL) return 0 ;
2067     if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
2068        TEVENT (Spin abort - notrunnable [TOP]);
2069        return 0 ;
2070     }
2071 
2072     int MaxSpin = Knob_MaxSpinners ;
2073     if (MaxSpin >= 0) {
2074        if (_Spinner > MaxSpin) {
2075           TEVENT (Spin abort -- too many spinners) ;
2076           return 0 ;
2077        }
2078        // Slighty racy, but benign ...
2079        Adjust (&_Spinner, 1) ;
2080     }
2081 
2082     // We're good to spin ... spin ingress.
2083     // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
2084     // when preparing to LD...CAS _owner, etc and the CAS is likely
2085     // to succeed.
2086     int hits    = 0 ;
2087     int msk     = 0 ;
2088     int caspty  = Knob_CASPenalty ;
2089     int oxpty   = Knob_OXPenalty ;
2090     int sss     = Knob_SpinSetSucc ;
2091     if (sss && _succ == NULL ) _succ = Self ;
2092     Thread * prv = NULL ;
2093 
2094     // There are three ways to exit the following loop:
2095     // 1.  A successful spin where this thread has acquired the lock.
2096     // 2.  Spin failure with prejudice
2097     // 3.  Spin failure without prejudice
2098 
2099     while (--ctr >= 0) {
2100 
2101       // Periodic polling -- Check for pending GC
2102       // Threads may spin while they're unsafe.
2103       // We don't want spinning threads to delay the JVM from reaching
2104       // a stop-the-world safepoint or to steal cycles from GC.
2105       // If we detect a pending safepoint we abort in order that
2106       // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
2107       // this thread, if safe, doesn't steal cycles from GC.
2108       // This is in keeping with the "no loitering in runtime" rule.
2109       // We periodically check to see if there's a safepoint pending.
2110       if ((ctr & 0xFF) == 0) {
2111          if (SafepointSynchronize::do_call_back()) {
2112             TEVENT (Spin: safepoint) ;
2113             goto Abort ;           // abrupt spin egress
2114          }
2115          if (Knob_UsePause & 1) SpinPause () ;
2116 
2117          int (*scb)(intptr_t,int) = SpinCallbackFunction ;
2118          if (hits > 50 && scb != NULL) {
2119             int abend = (*scb)(SpinCallbackArgument, 0) ;
2120          }
2121       }
2122 
2123       if (Knob_UsePause & 2) SpinPause() ;
2124 
2125       // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
2126       // This is useful on classic SMP systems, but is of less utility on
2127       // N1-style CMT platforms.
2128       //
2129       // Trade-off: lock acquisition latency vs coherency bandwidth.
2130       // Lock hold times are typically short.  A histogram
2131       // of successful spin attempts shows that we usually acquire
2132       // the lock early in the spin.  That suggests we want to
2133       // sample _owner frequently in the early phase of the spin,
2134       // but then back-off and sample less frequently as the spin
2135       // progresses.  The back-off makes a good citizen on SMP big
2136       // SMP systems.  Oversampling _owner can consume excessive
2137       // coherency bandwidth.  Relatedly, if we _oversample _owner we
2138       // can inadvertently interfere with the the ST m->owner=null.
2139       // executed by the lock owner.
2140       if (ctr & msk) continue ;
2141       ++hits ;
2142       if ((hits & 0xF) == 0) {
2143         // The 0xF, above, corresponds to the exponent.
2144         // Consider: (msk+1)|msk
2145         msk = ((msk << 2)|3) & BackOffMask ;
2146       }
2147 
2148       // Probe _owner with TATAS
2149       // If this thread observes the monitor transition or flicker
2150       // from locked to unlocked to locked, then the odds that this
2151       // thread will acquire the lock in this spin attempt go down
2152       // considerably.  The same argument applies if the CAS fails
2153       // or if we observe _owner change from one non-null value to
2154       // another non-null value.   In such cases we might abort
2155       // the spin without prejudice or apply a "penalty" to the
2156       // spin count-down variable "ctr", reducing it by 100, say.
2157 
2158       Thread * ox = (Thread *) _owner ;
2159       if (ox == NULL) {
2160          ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
2161          if (ox == NULL) {
2162             // The CAS succeeded -- this thread acquired ownership
2163             // Take care of some bookkeeping to exit spin state.
2164             if (sss && _succ == Self) {
2165                _succ = NULL ;
2166             }
2167             if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
2168 
2169             // Increase _SpinDuration :
2170             // The spin was successful (profitable) so we tend toward
2171             // longer spin attempts in the future.
2172             // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
2173             // If we acquired the lock early in the spin cycle it
2174             // makes sense to increase _SpinDuration proportionally.
2175             // Note that we don't clamp SpinDuration precisely at SpinLimit.
2176             int x = _SpinDuration ;
2177             if (x < Knob_SpinLimit) {
2178                 if (x < Knob_Poverty) x = Knob_Poverty ;
2179                 _SpinDuration = x + Knob_Bonus ;
2180             }
2181             return 1 ;
2182          }
2183 
2184          // The CAS failed ... we can take any of the following actions:
2185          // * penalize: ctr -= Knob_CASPenalty
2186          // * exit spin with prejudice -- goto Abort;
2187          // * exit spin without prejudice.
2188          // * Since CAS is high-latency, retry again immediately.
2189          prv = ox ;
2190          TEVENT (Spin: cas failed) ;
2191          if (caspty == -2) break ;
2192          if (caspty == -1) goto Abort ;
2193          ctr -= caspty ;
2194          continue ;
2195       }
2196 
2197       // Did lock ownership change hands ?
2198       if (ox != prv && prv != NULL ) {
2199           TEVENT (spin: Owner changed)
2200           if (oxpty == -2) break ;
2201           if (oxpty == -1) goto Abort ;
2202           ctr -= oxpty ;
2203       }
2204       prv = ox ;
2205 
2206       // Abort the spin if the owner is not executing.
2207       // The owner must be executing in order to drop the lock.
2208       // Spinning while the owner is OFFPROC is idiocy.
2209       // Consider: ctr -= RunnablePenalty ;
2210       if (Knob_OState && NotRunnable (Self, ox)) {
2211          TEVENT (Spin abort - notrunnable);
2212          goto Abort ;
2213       }
2214       if (sss && _succ == NULL ) _succ = Self ;
2215    }
2216 
2217    // Spin failed with prejudice -- reduce _SpinDuration.
2218    // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2219    // AIMD is globally stable.
2220    TEVENT (Spin failure) ;
2221    {
2222      int x = _SpinDuration ;
2223      if (x > 0) {
2224         // Consider an AIMD scheme like: x -= (x >> 3) + 100
2225         // This is globally sample and tends to damp the response.
2226         x -= Knob_Penalty ;
2227         if (x < 0) x = 0 ;
2228         _SpinDuration = x ;
2229      }
2230    }
2231 
2232  Abort:
2233    if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
2234    if (sss && _succ == Self) {
2235       _succ = NULL ;
2236       // Invariant: after setting succ=null a contending thread
2237       // must recheck-retry _owner before parking.  This usually happens
2238       // in the normal usage of TrySpin(), but it's safest
2239       // to make TrySpin() as foolproof as possible.
2240       OrderAccess::fence() ;
2241       if (TryLock(Self) > 0) return 1 ;
2242    }
2243    return 0 ;
2244 }
2245 
2246 // NotRunnable() -- informed spinning
2247 //
2248 // Don't bother spinning if the owner is not eligible to drop the lock.
2249 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
2250 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2251 // The thread must be runnable in order to drop the lock in timely fashion.
2252 // If the _owner is not runnable then spinning will not likely be
2253 // successful (profitable).
2254 //
2255 // Beware -- the thread referenced by _owner could have died
2256 // so a simply fetch from _owner->_thread_state might trap.
2257 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2258 // Because of the lifecycle issues the schedctl and _thread_state values
2259 // observed by NotRunnable() might be garbage.  NotRunnable must
2260 // tolerate this and consider the observed _thread_state value
2261 // as advisory.
2262 //
2263 // Beware too, that _owner is sometimes a BasicLock address and sometimes
2264 // a thread pointer.  We differentiate the two cases with OwnerIsThread.
2265 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
2266 // with the LSB of _owner.  Another option would be to probablistically probe
2267 // the putative _owner->TypeTag value.
2268 //
2269 // Checking _thread_state isn't perfect.  Even if the thread is
2270 // in_java it might be blocked on a page-fault or have been preempted
2271 // and sitting on a ready/dispatch queue.  _thread state in conjunction
2272 // with schedctl.sc_state gives us a good picture of what the
2273 // thread is doing, however.
2274 //
2275 // TODO: check schedctl.sc_state.
2276 // We'll need to use SafeFetch32() to read from the schedctl block.
2277 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
2278 //
2279 // The return value from NotRunnable() is *advisory* -- the
2280 // result is based on sampling and is not necessarily coherent.
2281 // The caller must tolerate false-negative and false-positive errors.
2282 // Spinning, in general, is probabilistic anyway.
2283 
2284 
NotRunnable(Thread * Self,Thread * ox)2285 int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
2286     // Check either OwnerIsThread or ox->TypeTag == 2BAD.
2287     if (!OwnerIsThread) return 0 ;
2288 
2289     if (ox == NULL) return 0 ;
2290 
2291     // Avoid transitive spinning ...
2292     // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2293     // Immediately after T1 acquires L it's possible that T2, also
2294     // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2295     // This occurs transiently after T1 acquired L but before
2296     // T1 managed to clear T1.Stalled.  T2 does not need to abort
2297     // its spin in this circumstance.
2298     intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
2299 
2300     if (BlockedOn == 1) return 1 ;
2301     if (BlockedOn != 0) {
2302       return BlockedOn != intptr_t(this) && _owner == ox ;
2303     }
2304 
2305     assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
2306     int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
2307     // consider also: jst != _thread_in_Java -- but that's overspecific.
2308     return jst == _thread_blocked || jst == _thread_in_native ;
2309 }
2310 
2311 
2312 // -----------------------------------------------------------------------------
2313 // WaitSet management ...
2314 
ObjectWaiter(Thread * thread)2315 ObjectWaiter::ObjectWaiter(Thread* thread) {
2316   _next     = NULL;
2317   _prev     = NULL;
2318   _notified = 0;
2319   _notifier_tid = 0;
2320   TState    = TS_RUN ;
2321   _thread   = thread;
2322   _event    = thread->_ParkEvent ;
2323   _active   = false;
2324   assert (_event != NULL, "invariant") ;
2325 }
2326 
wait_reenter_begin(ObjectMonitor * mon)2327 void ObjectWaiter::wait_reenter_begin(ObjectMonitor *mon) {
2328   JavaThread *jt = (JavaThread *)this->_thread;
2329   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2330 }
2331 
wait_reenter_end(ObjectMonitor * mon)2332 void ObjectWaiter::wait_reenter_end(ObjectMonitor *mon) {
2333   JavaThread *jt = (JavaThread *)this->_thread;
2334   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2335 }
2336 
AddWaiter(ObjectWaiter * node)2337 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2338   assert(node != NULL, "should not dequeue NULL node");
2339   assert(node->_prev == NULL, "node already in list");
2340   assert(node->_next == NULL, "node already in list");
2341   // put node at end of queue (circular doubly linked list)
2342   if (_WaitSet == NULL) {
2343     _WaitSet = node;
2344     node->_prev = node;
2345     node->_next = node;
2346   } else {
2347     ObjectWaiter* head = _WaitSet ;
2348     ObjectWaiter* tail = head->_prev;
2349     assert(tail->_next == head, "invariant check");
2350     tail->_next = node;
2351     head->_prev = node;
2352     node->_next = head;
2353     node->_prev = tail;
2354   }
2355 }
2356 
DequeueWaiter()2357 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2358   // dequeue the very first waiter
2359   ObjectWaiter* waiter = _WaitSet;
2360   if (waiter) {
2361     DequeueSpecificWaiter(waiter);
2362   }
2363   return waiter;
2364 }
2365 
DequeueSpecificWaiter(ObjectWaiter * node)2366 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2367   assert(node != NULL, "should not dequeue NULL node");
2368   assert(node->_prev != NULL, "node already removed from list");
2369   assert(node->_next != NULL, "node already removed from list");
2370   // when the waiter has woken up because of interrupt,
2371   // timeout or other spurious wake-up, dequeue the
2372   // waiter from waiting list
2373   ObjectWaiter* next = node->_next;
2374   if (next == node) {
2375     assert(node->_prev == node, "invariant check");
2376     _WaitSet = NULL;
2377   } else {
2378     ObjectWaiter* prev = node->_prev;
2379     assert(prev->_next == node, "invariant check");
2380     assert(next->_prev == node, "invariant check");
2381     next->_prev = prev;
2382     prev->_next = next;
2383     if (_WaitSet == node) {
2384       _WaitSet = next;
2385     }
2386   }
2387   node->_next = NULL;
2388   node->_prev = NULL;
2389 }
2390 
2391 // -----------------------------------------------------------------------------
2392 // PerfData support
2393 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL ;
2394 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL ;
2395 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL ;
2396 PerfCounter * ObjectMonitor::_sync_EmptyNotifications          = NULL ;
2397 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL ;
2398 PerfCounter * ObjectMonitor::_sync_PrivateA                    = NULL ;
2399 PerfCounter * ObjectMonitor::_sync_PrivateB                    = NULL ;
2400 PerfCounter * ObjectMonitor::_sync_SlowExit                    = NULL ;
2401 PerfCounter * ObjectMonitor::_sync_SlowEnter                   = NULL ;
2402 PerfCounter * ObjectMonitor::_sync_SlowNotify                  = NULL ;
2403 PerfCounter * ObjectMonitor::_sync_SlowNotifyAll               = NULL ;
2404 PerfCounter * ObjectMonitor::_sync_FailedSpins                 = NULL ;
2405 PerfCounter * ObjectMonitor::_sync_SuccessfulSpins             = NULL ;
2406 PerfCounter * ObjectMonitor::_sync_MonInCirculation            = NULL ;
2407 PerfCounter * ObjectMonitor::_sync_MonScavenged                = NULL ;
2408 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL ;
2409 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL ;
2410 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL ;
2411 
2412 // One-shot global initialization for the sync subsystem.
2413 // We could also defer initialization and initialize on-demand
2414 // the first time we call inflate().  Initialization would
2415 // be protected - like so many things - by the MonitorCache_lock.
2416 
Initialize()2417 void ObjectMonitor::Initialize () {
2418   static int InitializationCompleted = 0 ;
2419   assert (InitializationCompleted == 0, "invariant") ;
2420   InitializationCompleted = 1 ;
2421   if (UsePerfData) {
2422       EXCEPTION_MARK ;
2423       #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
2424       #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
2425       NEWPERFCOUNTER(_sync_Inflations) ;
2426       NEWPERFCOUNTER(_sync_Deflations) ;
2427       NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
2428       NEWPERFCOUNTER(_sync_FutileWakeups) ;
2429       NEWPERFCOUNTER(_sync_Parks) ;
2430       NEWPERFCOUNTER(_sync_EmptyNotifications) ;
2431       NEWPERFCOUNTER(_sync_Notifications) ;
2432       NEWPERFCOUNTER(_sync_SlowEnter) ;
2433       NEWPERFCOUNTER(_sync_SlowExit) ;
2434       NEWPERFCOUNTER(_sync_SlowNotify) ;
2435       NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
2436       NEWPERFCOUNTER(_sync_FailedSpins) ;
2437       NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
2438       NEWPERFCOUNTER(_sync_PrivateA) ;
2439       NEWPERFCOUNTER(_sync_PrivateB) ;
2440       NEWPERFCOUNTER(_sync_MonInCirculation) ;
2441       NEWPERFCOUNTER(_sync_MonScavenged) ;
2442       NEWPERFVARIABLE(_sync_MonExtant) ;
2443       #undef NEWPERFCOUNTER
2444   }
2445 }
2446 
2447 
2448 // Compile-time asserts
2449 // When possible, it's better to catch errors deterministically at
2450 // compile-time than at runtime.  The down-side to using compile-time
2451 // asserts is that error message -- often something about negative array
2452 // indices -- is opaque.
2453 
2454 #define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
2455 
ctAsserts()2456 void ObjectMonitor::ctAsserts() {
2457   CTASSERT(offset_of (ObjectMonitor, _header) == 0);
2458 }
2459 
2460 
kvGet(char * kvList,const char * Key)2461 static char * kvGet (char * kvList, const char * Key) {
2462     if (kvList == NULL) return NULL ;
2463     size_t n = strlen (Key) ;
2464     char * Search ;
2465     for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
2466         if (strncmp (Search, Key, n) == 0) {
2467             if (Search[n] == '=') return Search + n + 1 ;
2468             if (Search[n] == 0)   return (char *) "1" ;
2469         }
2470     }
2471     return NULL ;
2472 }
2473 
kvGetInt(char * kvList,const char * Key,int Default)2474 static int kvGetInt (char * kvList, const char * Key, int Default) {
2475     char * v = kvGet (kvList, Key) ;
2476     int rslt = v ? ::strtol (v, NULL, 0) : Default ;
2477     if (Knob_ReportSettings && v != NULL) {
2478         ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
2479         ::fflush (stdout) ;
2480     }
2481     return rslt ;
2482 }
2483 
DeferredInitialize()2484 void ObjectMonitor::DeferredInitialize () {
2485   if (InitDone > 0) return ;
2486   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2487       while (InitDone != 1) ;
2488       return ;
2489   }
2490 
2491   // One-shot global initialization ...
2492   // The initialization is idempotent, so we don't need locks.
2493   // In the future consider doing this via os::init_2().
2494   // SyncKnobs consist of <Key>=<Value> pairs in the style
2495   // of environment variables.  Start by converting ':' to NUL.
2496 
2497   if (SyncKnobs == NULL) SyncKnobs = "" ;
2498 
2499   size_t sz = strlen (SyncKnobs) ;
2500   char * knobs = (char *) malloc (sz + 2) ;
2501   if (knobs == NULL) {
2502      vm_exit_out_of_memory (sz + 2, OOM_MALLOC_ERROR, "Parse SyncKnobs") ;
2503      guarantee (0, "invariant") ;
2504   }
2505   strcpy (knobs, SyncKnobs) ;
2506   knobs[sz+1] = 0 ;
2507   for (char * p = knobs ; *p ; p++) {
2508      if (*p == ':') *p = 0 ;
2509   }
2510 
2511   #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
2512   SETKNOB(ReportSettings) ;
2513   SETKNOB(Verbose) ;
2514   SETKNOB(FixedSpin) ;
2515   SETKNOB(SpinLimit) ;
2516   SETKNOB(SpinBase) ;
2517   SETKNOB(SpinBackOff);
2518   SETKNOB(CASPenalty) ;
2519   SETKNOB(OXPenalty) ;
2520   SETKNOB(LogSpins) ;
2521   SETKNOB(SpinSetSucc) ;
2522   SETKNOB(SuccEnabled) ;
2523   SETKNOB(SuccRestrict) ;
2524   SETKNOB(Penalty) ;
2525   SETKNOB(Bonus) ;
2526   SETKNOB(BonusB) ;
2527   SETKNOB(Poverty) ;
2528   SETKNOB(SpinAfterFutile) ;
2529   SETKNOB(UsePause) ;
2530   SETKNOB(SpinEarly) ;
2531   SETKNOB(OState) ;
2532   SETKNOB(MaxSpinners) ;
2533   SETKNOB(PreSpin) ;
2534   SETKNOB(ExitPolicy) ;
2535   SETKNOB(QMode);
2536   SETKNOB(ResetEvent) ;
2537   SETKNOB(MoveNotifyee) ;
2538   SETKNOB(FastHSSEC) ;
2539   #undef SETKNOB
2540 
2541   if (Knob_Verbose) {
2542     sanity_checks();
2543   }
2544 
2545   if (os::is_MP()) {
2546      BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
2547      if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
2548      // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
2549   } else {
2550      Knob_SpinLimit = 0 ;
2551      Knob_SpinBase  = 0 ;
2552      Knob_PreSpin   = 0 ;
2553      Knob_FixedSpin = -1 ;
2554   }
2555 
2556   if (Knob_LogSpins == 0) {
2557      ObjectMonitor::_sync_FailedSpins = NULL ;
2558   }
2559 
2560   free (knobs) ;
2561   OrderAccess::fence() ;
2562   InitDone = 1 ;
2563 }
2564 
sanity_checks()2565 void ObjectMonitor::sanity_checks() {
2566   int error_cnt = 0;
2567   int warning_cnt = 0;
2568   bool verbose = Knob_Verbose != 0 NOT_PRODUCT(|| VerboseInternalVMTests);
2569 
2570   if (verbose) {
2571     tty->print_cr("INFO: sizeof(ObjectMonitor)=" SIZE_FORMAT,
2572                   sizeof(ObjectMonitor));
2573   }
2574 
2575   uint cache_line_size = VM_Version::L1_data_cache_line_size();
2576   if (verbose) {
2577     tty->print_cr("INFO: L1_data_cache_line_size=%u", cache_line_size);
2578   }
2579 
2580   ObjectMonitor dummy;
2581   u_char *addr_begin  = (u_char*)&dummy;
2582   u_char *addr_header = (u_char*)&dummy._header;
2583   u_char *addr_owner  = (u_char*)&dummy._owner;
2584 
2585   uint offset_header = (uint)(addr_header - addr_begin);
2586   if (verbose) tty->print_cr("INFO: offset(_header)=%u", offset_header);
2587 
2588   uint offset_owner = (uint)(addr_owner - addr_begin);
2589   if (verbose) tty->print_cr("INFO: offset(_owner)=%u", offset_owner);
2590 
2591   if ((uint)(addr_header - addr_begin) != 0) {
2592     tty->print_cr("ERROR: offset(_header) must be zero (0).");
2593     error_cnt++;
2594   }
2595 
2596   if (cache_line_size != 0) {
2597     // We were able to determine the L1 data cache line size so
2598     // do some cache line specific sanity checks
2599 
2600     if ((offset_owner - offset_header) < cache_line_size) {
2601       tty->print_cr("WARNING: the _header and _owner fields are closer "
2602                     "than a cache line which permits false sharing.");
2603       warning_cnt++;
2604     }
2605 
2606     if ((sizeof(ObjectMonitor) % cache_line_size) != 0) {
2607       tty->print_cr("WARNING: ObjectMonitor size is not a multiple of "
2608                     "a cache line which permits false sharing.");
2609       warning_cnt++;
2610     }
2611   }
2612 
2613   ObjectSynchronizer::sanity_checks(verbose, cache_line_size, &error_cnt,
2614                                     &warning_cnt);
2615 
2616   if (verbose || error_cnt != 0 || warning_cnt != 0) {
2617     tty->print_cr("INFO: error_cnt=%d", error_cnt);
2618     tty->print_cr("INFO: warning_cnt=%d", warning_cnt);
2619   }
2620 
2621   guarantee(error_cnt == 0,
2622             "Fatal error(s) found in ObjectMonitor::sanity_checks()");
2623 }
2624 
2625 #ifndef PRODUCT
verify()2626 void ObjectMonitor::verify() {
2627 }
2628 
print()2629 void ObjectMonitor::print() {
2630 }
2631 #endif
2632