1 //===- ASTContext.h - Context to hold long-lived AST nodes ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines the clang::ASTContext interface.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15 #define LLVM_CLANG_AST_ASTCONTEXT_H
16 
17 #include "clang/AST/ASTContextAllocate.h"
18 #include "clang/AST/ASTFwd.h"
19 #include "clang/AST/CanonicalType.h"
20 #include "clang/AST/CommentCommandTraits.h"
21 #include "clang/AST/ComparisonCategories.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclBase.h"
24 #include "clang/AST/DeclarationName.h"
25 #include "clang/AST/ExternalASTSource.h"
26 #include "clang/AST/NestedNameSpecifier.h"
27 #include "clang/AST/PrettyPrinter.h"
28 #include "clang/AST/RawCommentList.h"
29 #include "clang/AST/TemplateName.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/AddressSpaces.h"
32 #include "clang/Basic/AttrKinds.h"
33 #include "clang/Basic/IdentifierTable.h"
34 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/LangOptions.h"
36 #include "clang/Basic/Linkage.h"
37 #include "clang/Basic/NoSanitizeList.h"
38 #include "clang/Basic/OperatorKinds.h"
39 #include "clang/Basic/PartialDiagnostic.h"
40 #include "clang/Basic/ProfileList.h"
41 #include "clang/Basic/SourceLocation.h"
42 #include "clang/Basic/Specifiers.h"
43 #include "clang/Basic/TargetCXXABI.h"
44 #include "clang/Basic/XRayLists.h"
45 #include "llvm/ADT/APSInt.h"
46 #include "llvm/ADT/ArrayRef.h"
47 #include "llvm/ADT/DenseMap.h"
48 #include "llvm/ADT/DenseSet.h"
49 #include "llvm/ADT/FoldingSet.h"
50 #include "llvm/ADT/IntrusiveRefCntPtr.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/None.h"
53 #include "llvm/ADT/Optional.h"
54 #include "llvm/ADT/PointerIntPair.h"
55 #include "llvm/ADT/PointerUnion.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringMap.h"
58 #include "llvm/ADT/StringRef.h"
59 #include "llvm/ADT/TinyPtrVector.h"
60 #include "llvm/ADT/Triple.h"
61 #include "llvm/ADT/iterator_range.h"
62 #include "llvm/Support/AlignOf.h"
63 #include "llvm/Support/Allocator.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/TypeSize.h"
67 #include <cassert>
68 #include <cstddef>
69 #include <cstdint>
70 #include <iterator>
71 #include <memory>
72 #include <string>
73 #include <type_traits>
74 #include <utility>
75 #include <vector>
76 
77 namespace llvm {
78 
79 class APFixedPoint;
80 class FixedPointSemantics;
81 struct fltSemantics;
82 template <typename T, unsigned N> class SmallPtrSet;
83 
84 } // namespace llvm
85 
86 namespace clang {
87 
88 class APValue;
89 class ASTMutationListener;
90 class ASTRecordLayout;
91 class AtomicExpr;
92 class BlockExpr;
93 class BuiltinTemplateDecl;
94 class CharUnits;
95 class ConceptDecl;
96 class CXXABI;
97 class CXXConstructorDecl;
98 class CXXMethodDecl;
99 class CXXRecordDecl;
100 class DiagnosticsEngine;
101 class ParentMapContext;
102 class DynTypedNode;
103 class DynTypedNodeList;
104 class Expr;
105 class GlobalDecl;
106 class ItaniumMangleContext;
107 class MangleContext;
108 class MangleNumberingContext;
109 class MaterializeTemporaryExpr;
110 class MemberSpecializationInfo;
111 class Module;
112 struct MSGuidDeclParts;
113 class ObjCCategoryDecl;
114 class ObjCCategoryImplDecl;
115 class ObjCContainerDecl;
116 class ObjCImplDecl;
117 class ObjCImplementationDecl;
118 class ObjCInterfaceDecl;
119 class ObjCIvarDecl;
120 class ObjCMethodDecl;
121 class ObjCPropertyDecl;
122 class ObjCPropertyImplDecl;
123 class ObjCProtocolDecl;
124 class ObjCTypeParamDecl;
125 class OMPTraitInfo;
126 struct ParsedTargetAttr;
127 class Preprocessor;
128 class Stmt;
129 class StoredDeclsMap;
130 class TargetAttr;
131 class TargetInfo;
132 class TemplateDecl;
133 class TemplateParameterList;
134 class TemplateTemplateParmDecl;
135 class TemplateTypeParmDecl;
136 class UnresolvedSetIterator;
137 class UsingShadowDecl;
138 class VarTemplateDecl;
139 class VTableContextBase;
140 struct BlockVarCopyInit;
141 
142 namespace Builtin {
143 
144 class Context;
145 
146 } // namespace Builtin
147 
148 enum BuiltinTemplateKind : int;
149 enum OpenCLTypeKind : uint8_t;
150 
151 namespace comments {
152 
153 class FullComment;
154 
155 } // namespace comments
156 
157 namespace interp {
158 
159 class Context;
160 
161 } // namespace interp
162 
163 namespace serialization {
164 template <class> class AbstractTypeReader;
165 } // namespace serialization
166 
167 struct TypeInfo {
168   uint64_t Width = 0;
169   unsigned Align = 0;
170   bool AlignIsRequired : 1;
171 
TypeInfoTypeInfo172   TypeInfo() : AlignIsRequired(false) {}
TypeInfoTypeInfo173   TypeInfo(uint64_t Width, unsigned Align, bool AlignIsRequired)
174       : Width(Width), Align(Align), AlignIsRequired(AlignIsRequired) {}
175 };
176 
177 struct TypeInfoChars {
178   CharUnits Width;
179   CharUnits Align;
180   bool AlignIsRequired : 1;
181 
TypeInfoCharsTypeInfoChars182   TypeInfoChars() : AlignIsRequired(false) {}
TypeInfoCharsTypeInfoChars183   TypeInfoChars(CharUnits Width, CharUnits Align, bool AlignIsRequired)
184       : Width(Width), Align(Align), AlignIsRequired(AlignIsRequired) {}
185 };
186 
187 /// Holds long-lived AST nodes (such as types and decls) that can be
188 /// referred to throughout the semantic analysis of a file.
189 class ASTContext : public RefCountedBase<ASTContext> {
190   friend class NestedNameSpecifier;
191 
192   mutable SmallVector<Type *, 0> Types;
193   mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
194   mutable llvm::FoldingSet<ComplexType> ComplexTypes;
195   mutable llvm::FoldingSet<PointerType> PointerTypes;
196   mutable llvm::FoldingSet<AdjustedType> AdjustedTypes;
197   mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
198   mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
199   mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
200   mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
201   mutable llvm::ContextualFoldingSet<ConstantArrayType, ASTContext &>
202       ConstantArrayTypes;
203   mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
204   mutable std::vector<VariableArrayType*> VariableArrayTypes;
205   mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
206   mutable llvm::FoldingSet<DependentSizedExtVectorType>
207     DependentSizedExtVectorTypes;
208   mutable llvm::FoldingSet<DependentAddressSpaceType>
209       DependentAddressSpaceTypes;
210   mutable llvm::FoldingSet<VectorType> VectorTypes;
211   mutable llvm::FoldingSet<DependentVectorType> DependentVectorTypes;
212   mutable llvm::FoldingSet<ConstantMatrixType> MatrixTypes;
213   mutable llvm::FoldingSet<DependentSizedMatrixType> DependentSizedMatrixTypes;
214   mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
215   mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
216     FunctionProtoTypes;
217   mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
218   mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
219   mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
220   mutable llvm::FoldingSet<ObjCTypeParamType> ObjCTypeParamTypes;
221   mutable llvm::FoldingSet<SubstTemplateTypeParmType>
222     SubstTemplateTypeParmTypes;
223   mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
224     SubstTemplateTypeParmPackTypes;
225   mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
226     TemplateSpecializationTypes;
227   mutable llvm::FoldingSet<ParenType> ParenTypes;
228   mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
229   mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
230   mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
231                                      ASTContext&>
232     DependentTemplateSpecializationTypes;
233   llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
234   mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
235   mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
236   mutable llvm::FoldingSet<DependentUnaryTransformType>
237     DependentUnaryTransformTypes;
238   mutable llvm::ContextualFoldingSet<AutoType, ASTContext&> AutoTypes;
239   mutable llvm::FoldingSet<DeducedTemplateSpecializationType>
240     DeducedTemplateSpecializationTypes;
241   mutable llvm::FoldingSet<AtomicType> AtomicTypes;
242   llvm::FoldingSet<AttributedType> AttributedTypes;
243   mutable llvm::FoldingSet<PipeType> PipeTypes;
244   mutable llvm::FoldingSet<ExtIntType> ExtIntTypes;
245   mutable llvm::FoldingSet<DependentExtIntType> DependentExtIntTypes;
246 
247   mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
248   mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
249   mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
250     SubstTemplateTemplateParms;
251   mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
252                                      ASTContext&>
253     SubstTemplateTemplateParmPacks;
254 
255   /// The set of nested name specifiers.
256   ///
257   /// This set is managed by the NestedNameSpecifier class.
258   mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
259   mutable NestedNameSpecifier *GlobalNestedNameSpecifier = nullptr;
260 
261   /// A cache mapping from RecordDecls to ASTRecordLayouts.
262   ///
263   /// This is lazily created.  This is intentionally not serialized.
264   mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
265     ASTRecordLayouts;
266   mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
267     ObjCLayouts;
268 
269   /// A cache from types to size and alignment information.
270   using TypeInfoMap = llvm::DenseMap<const Type *, struct TypeInfo>;
271   mutable TypeInfoMap MemoizedTypeInfo;
272 
273   /// A cache from types to unadjusted alignment information. Only ARM and
274   /// AArch64 targets need this information, keeping it separate prevents
275   /// imposing overhead on TypeInfo size.
276   using UnadjustedAlignMap = llvm::DenseMap<const Type *, unsigned>;
277   mutable UnadjustedAlignMap MemoizedUnadjustedAlign;
278 
279   /// A cache mapping from CXXRecordDecls to key functions.
280   llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
281 
282   /// Mapping from ObjCContainers to their ObjCImplementations.
283   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
284 
285   /// Mapping from ObjCMethod to its duplicate declaration in the same
286   /// interface.
287   llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
288 
289   /// Mapping from __block VarDecls to BlockVarCopyInit.
290   llvm::DenseMap<const VarDecl *, BlockVarCopyInit> BlockVarCopyInits;
291 
292   /// Mapping from GUIDs to the corresponding MSGuidDecl.
293   mutable llvm::FoldingSet<MSGuidDecl> MSGuidDecls;
294 
295   /// Mapping from APValues to the corresponding TemplateParamObjects.
296   mutable llvm::FoldingSet<TemplateParamObjectDecl> TemplateParamObjectDecls;
297 
298   /// A cache mapping a string value to a StringLiteral object with the same
299   /// value.
300   ///
301   /// This is lazily created.  This is intentionally not serialized.
302   mutable llvm::StringMap<StringLiteral *> StringLiteralCache;
303 
304   /// MD5 hash of CUID. It is calculated when first used and cached by this
305   /// data member.
306   mutable std::string CUIDHash;
307 
308   /// Representation of a "canonical" template template parameter that
309   /// is used in canonical template names.
310   class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
311     TemplateTemplateParmDecl *Parm;
312 
313   public:
CanonicalTemplateTemplateParm(TemplateTemplateParmDecl * Parm)314     CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
315         : Parm(Parm) {}
316 
getParam()317     TemplateTemplateParmDecl *getParam() const { return Parm; }
318 
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & C)319     void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &C) {
320       Profile(ID, C, Parm);
321     }
322 
323     static void Profile(llvm::FoldingSetNodeID &ID,
324                         const ASTContext &C,
325                         TemplateTemplateParmDecl *Parm);
326   };
327   mutable llvm::ContextualFoldingSet<CanonicalTemplateTemplateParm,
328                                      const ASTContext&>
329     CanonTemplateTemplateParms;
330 
331   TemplateTemplateParmDecl *
332     getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
333 
334   /// The typedef for the __int128_t type.
335   mutable TypedefDecl *Int128Decl = nullptr;
336 
337   /// The typedef for the __uint128_t type.
338   mutable TypedefDecl *UInt128Decl = nullptr;
339 
340   /// The typedef for the target specific predefined
341   /// __builtin_va_list type.
342   mutable TypedefDecl *BuiltinVaListDecl = nullptr;
343 
344   /// The typedef for the predefined \c __builtin_ms_va_list type.
345   mutable TypedefDecl *BuiltinMSVaListDecl = nullptr;
346 
347   /// The typedef for the predefined \c id type.
348   mutable TypedefDecl *ObjCIdDecl = nullptr;
349 
350   /// The typedef for the predefined \c SEL type.
351   mutable TypedefDecl *ObjCSelDecl = nullptr;
352 
353   /// The typedef for the predefined \c Class type.
354   mutable TypedefDecl *ObjCClassDecl = nullptr;
355 
356   /// The typedef for the predefined \c Protocol class in Objective-C.
357   mutable ObjCInterfaceDecl *ObjCProtocolClassDecl = nullptr;
358 
359   /// The typedef for the predefined 'BOOL' type.
360   mutable TypedefDecl *BOOLDecl = nullptr;
361 
362   // Typedefs which may be provided defining the structure of Objective-C
363   // pseudo-builtins
364   QualType ObjCIdRedefinitionType;
365   QualType ObjCClassRedefinitionType;
366   QualType ObjCSelRedefinitionType;
367 
368   /// The identifier 'bool'.
369   mutable IdentifierInfo *BoolName = nullptr;
370 
371   /// The identifier 'NSObject'.
372   mutable IdentifierInfo *NSObjectName = nullptr;
373 
374   /// The identifier 'NSCopying'.
375   IdentifierInfo *NSCopyingName = nullptr;
376 
377   /// The identifier '__make_integer_seq'.
378   mutable IdentifierInfo *MakeIntegerSeqName = nullptr;
379 
380   /// The identifier '__type_pack_element'.
381   mutable IdentifierInfo *TypePackElementName = nullptr;
382 
383   QualType ObjCConstantStringType;
384   mutable RecordDecl *CFConstantStringTagDecl = nullptr;
385   mutable TypedefDecl *CFConstantStringTypeDecl = nullptr;
386 
387   mutable QualType ObjCSuperType;
388 
389   QualType ObjCNSStringType;
390 
391   /// The typedef declaration for the Objective-C "instancetype" type.
392   TypedefDecl *ObjCInstanceTypeDecl = nullptr;
393 
394   /// The type for the C FILE type.
395   TypeDecl *FILEDecl = nullptr;
396 
397   /// The type for the C jmp_buf type.
398   TypeDecl *jmp_bufDecl = nullptr;
399 
400   /// The type for the C sigjmp_buf type.
401   TypeDecl *sigjmp_bufDecl = nullptr;
402 
403   /// The type for the C ucontext_t type.
404   TypeDecl *ucontext_tDecl = nullptr;
405 
406   /// Type for the Block descriptor for Blocks CodeGen.
407   ///
408   /// Since this is only used for generation of debug info, it is not
409   /// serialized.
410   mutable RecordDecl *BlockDescriptorType = nullptr;
411 
412   /// Type for the Block descriptor for Blocks CodeGen.
413   ///
414   /// Since this is only used for generation of debug info, it is not
415   /// serialized.
416   mutable RecordDecl *BlockDescriptorExtendedType = nullptr;
417 
418   /// Declaration for the CUDA cudaConfigureCall function.
419   FunctionDecl *cudaConfigureCallDecl = nullptr;
420 
421   /// Keeps track of all declaration attributes.
422   ///
423   /// Since so few decls have attrs, we keep them in a hash map instead of
424   /// wasting space in the Decl class.
425   llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
426 
427   /// A mapping from non-redeclarable declarations in modules that were
428   /// merged with other declarations to the canonical declaration that they were
429   /// merged into.
430   llvm::DenseMap<Decl*, Decl*> MergedDecls;
431 
432   /// A mapping from a defining declaration to a list of modules (other
433   /// than the owning module of the declaration) that contain merged
434   /// definitions of that entity.
435   llvm::DenseMap<NamedDecl*, llvm::TinyPtrVector<Module*>> MergedDefModules;
436 
437   /// Initializers for a module, in order. Each Decl will be either
438   /// something that has a semantic effect on startup (such as a variable with
439   /// a non-constant initializer), or an ImportDecl (which recursively triggers
440   /// initialization of another module).
441   struct PerModuleInitializers {
442     llvm::SmallVector<Decl*, 4> Initializers;
443     llvm::SmallVector<uint32_t, 4> LazyInitializers;
444 
445     void resolve(ASTContext &Ctx);
446   };
447   llvm::DenseMap<Module*, PerModuleInitializers*> ModuleInitializers;
448 
this_()449   ASTContext &this_() { return *this; }
450 
451 public:
452   /// A type synonym for the TemplateOrInstantiation mapping.
453   using TemplateOrSpecializationInfo =
454       llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>;
455 
456 private:
457   friend class ASTDeclReader;
458   friend class ASTReader;
459   friend class ASTWriter;
460   template <class> friend class serialization::AbstractTypeReader;
461   friend class CXXRecordDecl;
462   friend class IncrementalParser;
463 
464   /// A mapping to contain the template or declaration that
465   /// a variable declaration describes or was instantiated from,
466   /// respectively.
467   ///
468   /// For non-templates, this value will be NULL. For variable
469   /// declarations that describe a variable template, this will be a
470   /// pointer to a VarTemplateDecl. For static data members
471   /// of class template specializations, this will be the
472   /// MemberSpecializationInfo referring to the member variable that was
473   /// instantiated or specialized. Thus, the mapping will keep track of
474   /// the static data member templates from which static data members of
475   /// class template specializations were instantiated.
476   ///
477   /// Given the following example:
478   ///
479   /// \code
480   /// template<typename T>
481   /// struct X {
482   ///   static T value;
483   /// };
484   ///
485   /// template<typename T>
486   ///   T X<T>::value = T(17);
487   ///
488   /// int *x = &X<int>::value;
489   /// \endcode
490   ///
491   /// This mapping will contain an entry that maps from the VarDecl for
492   /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
493   /// class template X) and will be marked TSK_ImplicitInstantiation.
494   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
495   TemplateOrInstantiation;
496 
497   /// Keeps track of the declaration from which a using declaration was
498   /// created during instantiation.
499   ///
500   /// The source and target declarations are always a UsingDecl, an
501   /// UnresolvedUsingValueDecl, or an UnresolvedUsingTypenameDecl.
502   ///
503   /// For example:
504   /// \code
505   /// template<typename T>
506   /// struct A {
507   ///   void f();
508   /// };
509   ///
510   /// template<typename T>
511   /// struct B : A<T> {
512   ///   using A<T>::f;
513   /// };
514   ///
515   /// template struct B<int>;
516   /// \endcode
517   ///
518   /// This mapping will contain an entry that maps from the UsingDecl in
519   /// B<int> to the UnresolvedUsingDecl in B<T>.
520   llvm::DenseMap<NamedDecl *, NamedDecl *> InstantiatedFromUsingDecl;
521 
522   /// Like InstantiatedFromUsingDecl, but for using-enum-declarations. Maps
523   /// from the instantiated using-enum to the templated decl from whence it
524   /// came.
525   /// Note that using-enum-declarations cannot be dependent and
526   /// thus will never be instantiated from an "unresolved"
527   /// version thereof (as with using-declarations), so each mapping is from
528   /// a (resolved) UsingEnumDecl to a (resolved) UsingEnumDecl.
529   llvm::DenseMap<UsingEnumDecl *, UsingEnumDecl *>
530       InstantiatedFromUsingEnumDecl;
531 
532   /// Simlarly maps instantiated UsingShadowDecls to their origin.
533   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
534     InstantiatedFromUsingShadowDecl;
535 
536   llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
537 
538   /// Mapping that stores the methods overridden by a given C++
539   /// member function.
540   ///
541   /// Since most C++ member functions aren't virtual and therefore
542   /// don't override anything, we store the overridden functions in
543   /// this map on the side rather than within the CXXMethodDecl structure.
544   using CXXMethodVector = llvm::TinyPtrVector<const CXXMethodDecl *>;
545   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
546 
547   /// Mapping from each declaration context to its corresponding
548   /// mangling numbering context (used for constructs like lambdas which
549   /// need to be consistently numbered for the mangler).
550   llvm::DenseMap<const DeclContext *, std::unique_ptr<MangleNumberingContext>>
551       MangleNumberingContexts;
552   llvm::DenseMap<const Decl *, std::unique_ptr<MangleNumberingContext>>
553       ExtraMangleNumberingContexts;
554 
555   /// Side-table of mangling numbers for declarations which rarely
556   /// need them (like static local vars).
557   llvm::MapVector<const NamedDecl *, unsigned> MangleNumbers;
558   llvm::MapVector<const VarDecl *, unsigned> StaticLocalNumbers;
559   /// Mapping the associated device lambda mangling number if present.
560   mutable llvm::DenseMap<const CXXRecordDecl *, unsigned>
561       DeviceLambdaManglingNumbers;
562 
563   /// Mapping that stores parameterIndex values for ParmVarDecls when
564   /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
565   using ParameterIndexTable = llvm::DenseMap<const VarDecl *, unsigned>;
566   ParameterIndexTable ParamIndices;
567 
568   ImportDecl *FirstLocalImport = nullptr;
569   ImportDecl *LastLocalImport = nullptr;
570 
571   TranslationUnitDecl *TUDecl = nullptr;
572   mutable ExternCContextDecl *ExternCContext = nullptr;
573   mutable BuiltinTemplateDecl *MakeIntegerSeqDecl = nullptr;
574   mutable BuiltinTemplateDecl *TypePackElementDecl = nullptr;
575 
576   /// The associated SourceManager object.
577   SourceManager &SourceMgr;
578 
579   /// The language options used to create the AST associated with
580   ///  this ASTContext object.
581   LangOptions &LangOpts;
582 
583   /// NoSanitizeList object that is used by sanitizers to decide which
584   /// entities should not be instrumented.
585   std::unique_ptr<NoSanitizeList> NoSanitizeL;
586 
587   /// Function filtering mechanism to determine whether a given function
588   /// should be imbued with the XRay "always" or "never" attributes.
589   std::unique_ptr<XRayFunctionFilter> XRayFilter;
590 
591   /// ProfileList object that is used by the profile instrumentation
592   /// to decide which entities should be instrumented.
593   std::unique_ptr<ProfileList> ProfList;
594 
595   /// The allocator used to create AST objects.
596   ///
597   /// AST objects are never destructed; rather, all memory associated with the
598   /// AST objects will be released when the ASTContext itself is destroyed.
599   mutable llvm::BumpPtrAllocator BumpAlloc;
600 
601   /// Allocator for partial diagnostics.
602   PartialDiagnostic::DiagStorageAllocator DiagAllocator;
603 
604   /// The current C++ ABI.
605   std::unique_ptr<CXXABI> ABI;
606   CXXABI *createCXXABI(const TargetInfo &T);
607 
608   /// The logical -> physical address space map.
609   const LangASMap *AddrSpaceMap = nullptr;
610 
611   /// Address space map mangling must be used with language specific
612   /// address spaces (e.g. OpenCL/CUDA)
613   bool AddrSpaceMapMangling;
614 
615   const TargetInfo *Target = nullptr;
616   const TargetInfo *AuxTarget = nullptr;
617   clang::PrintingPolicy PrintingPolicy;
618   std::unique_ptr<interp::Context> InterpContext;
619   std::unique_ptr<ParentMapContext> ParentMapCtx;
620 
621   /// Keeps track of the deallocated DeclListNodes for future reuse.
622   DeclListNode *ListNodeFreeList = nullptr;
623 
624 public:
625   IdentifierTable &Idents;
626   SelectorTable &Selectors;
627   Builtin::Context &BuiltinInfo;
628   const TranslationUnitKind TUKind;
629   mutable DeclarationNameTable DeclarationNames;
630   IntrusiveRefCntPtr<ExternalASTSource> ExternalSource;
631   ASTMutationListener *Listener = nullptr;
632 
633   /// Returns the clang bytecode interpreter context.
634   interp::Context &getInterpContext();
635 
636   /// Returns the dynamic AST node parent map context.
637   ParentMapContext &getParentMapContext();
638 
639   // A traversal scope limits the parts of the AST visible to certain analyses.
640   // RecursiveASTVisitor only visits specified children of TranslationUnitDecl.
641   // getParents() will only observe reachable parent edges.
642   //
643   // The scope is defined by a set of "top-level" declarations which will be
644   // visible under the TranslationUnitDecl.
645   // Initially, it is the entire TU, represented by {getTranslationUnitDecl()}.
646   //
647   // After setTraversalScope({foo, bar}), the exposed AST looks like:
648   // TranslationUnitDecl
649   //  - foo
650   //    - ...
651   //  - bar
652   //    - ...
653   // All other siblings of foo and bar are pruned from the tree.
654   // (However they are still accessible via TranslationUnitDecl->decls())
655   //
656   // Changing the scope clears the parent cache, which is expensive to rebuild.
getTraversalScope()657   std::vector<Decl *> getTraversalScope() const { return TraversalScope; }
658   void setTraversalScope(const std::vector<Decl *> &);
659 
660   /// Forwards to get node parents from the ParentMapContext. New callers should
661   /// use ParentMapContext::getParents() directly.
662   template <typename NodeT> DynTypedNodeList getParents(const NodeT &Node);
663 
getPrintingPolicy()664   const clang::PrintingPolicy &getPrintingPolicy() const {
665     return PrintingPolicy;
666   }
667 
setPrintingPolicy(const clang::PrintingPolicy & Policy)668   void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
669     PrintingPolicy = Policy;
670   }
671 
getSourceManager()672   SourceManager& getSourceManager() { return SourceMgr; }
getSourceManager()673   const SourceManager& getSourceManager() const { return SourceMgr; }
674 
getAllocator()675   llvm::BumpPtrAllocator &getAllocator() const {
676     return BumpAlloc;
677   }
678 
679   void *Allocate(size_t Size, unsigned Align = 8) const {
680     return BumpAlloc.Allocate(Size, Align);
681   }
682   template <typename T> T *Allocate(size_t Num = 1) const {
683     return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
684   }
Deallocate(void * Ptr)685   void Deallocate(void *Ptr) const {}
686 
687   /// Allocates a \c DeclListNode or returns one from the \c ListNodeFreeList
688   /// pool.
AllocateDeclListNode(clang::NamedDecl * ND)689   DeclListNode *AllocateDeclListNode(clang::NamedDecl *ND) {
690     if (DeclListNode *Alloc = ListNodeFreeList) {
691       ListNodeFreeList = Alloc->Rest.dyn_cast<DeclListNode*>();
692       Alloc->D = ND;
693       Alloc->Rest = nullptr;
694       return Alloc;
695     }
696     return new (*this) DeclListNode(ND);
697   }
698   /// Deallcates a \c DeclListNode by returning it to the \c ListNodeFreeList
699   /// pool.
DeallocateDeclListNode(DeclListNode * N)700   void DeallocateDeclListNode(DeclListNode *N) {
701     N->Rest = ListNodeFreeList;
702     ListNodeFreeList = N;
703   }
704 
705   /// Return the total amount of physical memory allocated for representing
706   /// AST nodes and type information.
getASTAllocatedMemory()707   size_t getASTAllocatedMemory() const {
708     return BumpAlloc.getTotalMemory();
709   }
710 
711   /// Return the total memory used for various side tables.
712   size_t getSideTableAllocatedMemory() const;
713 
getDiagAllocator()714   PartialDiagnostic::DiagStorageAllocator &getDiagAllocator() {
715     return DiagAllocator;
716   }
717 
getTargetInfo()718   const TargetInfo &getTargetInfo() const { return *Target; }
getAuxTargetInfo()719   const TargetInfo *getAuxTargetInfo() const { return AuxTarget; }
720 
721   /// getIntTypeForBitwidth -
722   /// sets integer QualTy according to specified details:
723   /// bitwidth, signed/unsigned.
724   /// Returns empty type if there is no appropriate target types.
725   QualType getIntTypeForBitwidth(unsigned DestWidth,
726                                  unsigned Signed) const;
727 
728   /// getRealTypeForBitwidth -
729   /// sets floating point QualTy according to specified bitwidth.
730   /// Returns empty type if there is no appropriate target types.
731   QualType getRealTypeForBitwidth(unsigned DestWidth, bool ExplicitIEEE) const;
732 
733   bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
734 
getLangOpts()735   const LangOptions& getLangOpts() const { return LangOpts; }
736 
737   // If this condition is false, typo correction must be performed eagerly
738   // rather than delayed in many places, as it makes use of dependent types.
739   // the condition is false for clang's C-only codepath, as it doesn't support
740   // dependent types yet.
isDependenceAllowed()741   bool isDependenceAllowed() const {
742     return LangOpts.CPlusPlus || LangOpts.RecoveryAST;
743   }
744 
getNoSanitizeList()745   const NoSanitizeList &getNoSanitizeList() const { return *NoSanitizeL; }
746 
getXRayFilter()747   const XRayFunctionFilter &getXRayFilter() const {
748     return *XRayFilter;
749   }
750 
getProfileList()751   const ProfileList &getProfileList() const { return *ProfList; }
752 
753   DiagnosticsEngine &getDiagnostics() const;
754 
getFullLoc(SourceLocation Loc)755   FullSourceLoc getFullLoc(SourceLocation Loc) const {
756     return FullSourceLoc(Loc,SourceMgr);
757   }
758 
759   /// Return the C++ ABI kind that should be used. The C++ ABI can be overriden
760   /// at compile time with `-fc++-abi=`. If this is not provided, we instead use
761   /// the default ABI set by the target.
762   TargetCXXABI::Kind getCXXABIKind() const;
763 
764   /// All comments in this translation unit.
765   RawCommentList Comments;
766 
767   /// True if comments are already loaded from ExternalASTSource.
768   mutable bool CommentsLoaded = false;
769 
770   /// Mapping from declaration to directly attached comment.
771   ///
772   /// Raw comments are owned by Comments list.  This mapping is populated
773   /// lazily.
774   mutable llvm::DenseMap<const Decl *, const RawComment *> DeclRawComments;
775 
776   /// Mapping from canonical declaration to the first redeclaration in chain
777   /// that has a comment attached.
778   ///
779   /// Raw comments are owned by Comments list.  This mapping is populated
780   /// lazily.
781   mutable llvm::DenseMap<const Decl *, const Decl *> RedeclChainComments;
782 
783   /// Keeps track of redeclaration chains that don't have any comment attached.
784   /// Mapping from canonical declaration to redeclaration chain that has no
785   /// comments attached to any redeclaration. Specifically it's mapping to
786   /// the last redeclaration we've checked.
787   ///
788   /// Shall not contain declarations that have comments attached to any
789   /// redeclaration in their chain.
790   mutable llvm::DenseMap<const Decl *, const Decl *> CommentlessRedeclChains;
791 
792   /// Mapping from declarations to parsed comments attached to any
793   /// redeclaration.
794   mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
795 
796   /// Attaches \p Comment to \p OriginalD and to its redeclaration chain
797   /// and removes the redeclaration chain from the set of commentless chains.
798   ///
799   /// Don't do anything if a comment has already been attached to \p OriginalD
800   /// or its redeclaration chain.
801   void cacheRawCommentForDecl(const Decl &OriginalD,
802                               const RawComment &Comment) const;
803 
804   /// \returns searches \p CommentsInFile for doc comment for \p D.
805   ///
806   /// \p RepresentativeLocForDecl is used as a location for searching doc
807   /// comments. \p CommentsInFile is a mapping offset -> comment of files in the
808   /// same file where \p RepresentativeLocForDecl is.
809   RawComment *getRawCommentForDeclNoCacheImpl(
810       const Decl *D, const SourceLocation RepresentativeLocForDecl,
811       const std::map<unsigned, RawComment *> &CommentsInFile) const;
812 
813   /// Return the documentation comment attached to a given declaration,
814   /// without looking into cache.
815   RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
816 
817 public:
818   void addComment(const RawComment &RC);
819 
820   /// Return the documentation comment attached to a given declaration.
821   /// Returns nullptr if no comment is attached.
822   ///
823   /// \param OriginalDecl if not nullptr, is set to declaration AST node that
824   /// had the comment, if the comment we found comes from a redeclaration.
825   const RawComment *
826   getRawCommentForAnyRedecl(const Decl *D,
827                             const Decl **OriginalDecl = nullptr) const;
828 
829   /// Searches existing comments for doc comments that should be attached to \p
830   /// Decls. If any doc comment is found, it is parsed.
831   ///
832   /// Requirement: All \p Decls are in the same file.
833   ///
834   /// If the last comment in the file is already attached we assume
835   /// there are not comments left to be attached to \p Decls.
836   void attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
837                                        const Preprocessor *PP);
838 
839   /// Return parsed documentation comment attached to a given declaration.
840   /// Returns nullptr if no comment is attached.
841   ///
842   /// \param PP the Preprocessor used with this TU.  Could be nullptr if
843   /// preprocessor is not available.
844   comments::FullComment *getCommentForDecl(const Decl *D,
845                                            const Preprocessor *PP) const;
846 
847   /// Return parsed documentation comment attached to a given declaration.
848   /// Returns nullptr if no comment is attached. Does not look at any
849   /// redeclarations of the declaration.
850   comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
851 
852   comments::FullComment *cloneFullComment(comments::FullComment *FC,
853                                          const Decl *D) const;
854 
855 private:
856   mutable comments::CommandTraits CommentCommandTraits;
857 
858   /// Iterator that visits import declarations.
859   class import_iterator {
860     ImportDecl *Import = nullptr;
861 
862   public:
863     using value_type = ImportDecl *;
864     using reference = ImportDecl *;
865     using pointer = ImportDecl *;
866     using difference_type = int;
867     using iterator_category = std::forward_iterator_tag;
868 
869     import_iterator() = default;
import_iterator(ImportDecl * Import)870     explicit import_iterator(ImportDecl *Import) : Import(Import) {}
871 
872     reference operator*() const { return Import; }
873     pointer operator->() const { return Import; }
874 
875     import_iterator &operator++() {
876       Import = ASTContext::getNextLocalImport(Import);
877       return *this;
878     }
879 
880     import_iterator operator++(int) {
881       import_iterator Other(*this);
882       ++(*this);
883       return Other;
884     }
885 
886     friend bool operator==(import_iterator X, import_iterator Y) {
887       return X.Import == Y.Import;
888     }
889 
890     friend bool operator!=(import_iterator X, import_iterator Y) {
891       return X.Import != Y.Import;
892     }
893   };
894 
895 public:
getCommentCommandTraits()896   comments::CommandTraits &getCommentCommandTraits() const {
897     return CommentCommandTraits;
898   }
899 
900   /// Retrieve the attributes for the given declaration.
901   AttrVec& getDeclAttrs(const Decl *D);
902 
903   /// Erase the attributes corresponding to the given declaration.
904   void eraseDeclAttrs(const Decl *D);
905 
906   /// If this variable is an instantiated static data member of a
907   /// class template specialization, returns the templated static data member
908   /// from which it was instantiated.
909   // FIXME: Remove ?
910   MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
911                                                            const VarDecl *Var);
912 
913   /// Note that the static data member \p Inst is an instantiation of
914   /// the static data member template \p Tmpl of a class template.
915   void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
916                                            TemplateSpecializationKind TSK,
917                         SourceLocation PointOfInstantiation = SourceLocation());
918 
919   TemplateOrSpecializationInfo
920   getTemplateOrSpecializationInfo(const VarDecl *Var);
921 
922   void setTemplateOrSpecializationInfo(VarDecl *Inst,
923                                        TemplateOrSpecializationInfo TSI);
924 
925   /// If the given using decl \p Inst is an instantiation of
926   /// another (possibly unresolved) using decl, return it.
927   NamedDecl *getInstantiatedFromUsingDecl(NamedDecl *Inst);
928 
929   /// Remember that the using decl \p Inst is an instantiation
930   /// of the using decl \p Pattern of a class template.
931   void setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern);
932 
933   /// If the given using-enum decl \p Inst is an instantiation of
934   /// another using-enum decl, return it.
935   UsingEnumDecl *getInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst);
936 
937   /// Remember that the using enum decl \p Inst is an instantiation
938   /// of the using enum decl \p Pattern of a class template.
939   void setInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst,
940                                         UsingEnumDecl *Pattern);
941 
942   UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
943   void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
944                                           UsingShadowDecl *Pattern);
945 
946   FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
947 
948   void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
949 
950   // Access to the set of methods overridden by the given C++ method.
951   using overridden_cxx_method_iterator = CXXMethodVector::const_iterator;
952   overridden_cxx_method_iterator
953   overridden_methods_begin(const CXXMethodDecl *Method) const;
954 
955   overridden_cxx_method_iterator
956   overridden_methods_end(const CXXMethodDecl *Method) const;
957 
958   unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
959 
960   using overridden_method_range =
961       llvm::iterator_range<overridden_cxx_method_iterator>;
962 
963   overridden_method_range overridden_methods(const CXXMethodDecl *Method) const;
964 
965   /// Note that the given C++ \p Method overrides the given \p
966   /// Overridden method.
967   void addOverriddenMethod(const CXXMethodDecl *Method,
968                            const CXXMethodDecl *Overridden);
969 
970   /// Return C++ or ObjC overridden methods for the given \p Method.
971   ///
972   /// An ObjC method is considered to override any method in the class's
973   /// base classes, its protocols, or its categories' protocols, that has
974   /// the same selector and is of the same kind (class or instance).
975   /// A method in an implementation is not considered as overriding the same
976   /// method in the interface or its categories.
977   void getOverriddenMethods(
978                         const NamedDecl *Method,
979                         SmallVectorImpl<const NamedDecl *> &Overridden) const;
980 
981   /// Notify the AST context that a new import declaration has been
982   /// parsed or implicitly created within this translation unit.
983   void addedLocalImportDecl(ImportDecl *Import);
984 
getNextLocalImport(ImportDecl * Import)985   static ImportDecl *getNextLocalImport(ImportDecl *Import) {
986     return Import->getNextLocalImport();
987   }
988 
989   using import_range = llvm::iterator_range<import_iterator>;
990 
local_imports()991   import_range local_imports() const {
992     return import_range(import_iterator(FirstLocalImport), import_iterator());
993   }
994 
getPrimaryMergedDecl(Decl * D)995   Decl *getPrimaryMergedDecl(Decl *D) {
996     Decl *Result = MergedDecls.lookup(D);
997     return Result ? Result : D;
998   }
setPrimaryMergedDecl(Decl * D,Decl * Primary)999   void setPrimaryMergedDecl(Decl *D, Decl *Primary) {
1000     MergedDecls[D] = Primary;
1001   }
1002 
1003   /// Note that the definition \p ND has been merged into module \p M,
1004   /// and should be visible whenever \p M is visible.
1005   void mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
1006                                  bool NotifyListeners = true);
1007 
1008   /// Clean up the merged definition list. Call this if you might have
1009   /// added duplicates into the list.
1010   void deduplicateMergedDefinitonsFor(NamedDecl *ND);
1011 
1012   /// Get the additional modules in which the definition \p Def has
1013   /// been merged.
1014   ArrayRef<Module*> getModulesWithMergedDefinition(const NamedDecl *Def);
1015 
1016   /// Add a declaration to the list of declarations that are initialized
1017   /// for a module. This will typically be a global variable (with internal
1018   /// linkage) that runs module initializers, such as the iostream initializer,
1019   /// or an ImportDecl nominating another module that has initializers.
1020   void addModuleInitializer(Module *M, Decl *Init);
1021 
1022   void addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs);
1023 
1024   /// Get the initializations to perform when importing a module, if any.
1025   ArrayRef<Decl*> getModuleInitializers(Module *M);
1026 
getTranslationUnitDecl()1027   TranslationUnitDecl *getTranslationUnitDecl() const {
1028     return TUDecl->getMostRecentDecl();
1029   }
addTranslationUnitDecl()1030   void addTranslationUnitDecl() {
1031     assert(!TUDecl || TUKind == TU_Incremental);
1032     TranslationUnitDecl *NewTUDecl = TranslationUnitDecl::Create(*this);
1033     if (TraversalScope.empty() || TraversalScope.back() == TUDecl)
1034       TraversalScope = {NewTUDecl};
1035     if (TUDecl)
1036       NewTUDecl->setPreviousDecl(TUDecl);
1037     TUDecl = NewTUDecl;
1038   }
1039 
1040   ExternCContextDecl *getExternCContextDecl() const;
1041   BuiltinTemplateDecl *getMakeIntegerSeqDecl() const;
1042   BuiltinTemplateDecl *getTypePackElementDecl() const;
1043 
1044   // Builtin Types.
1045   CanQualType VoidTy;
1046   CanQualType BoolTy;
1047   CanQualType CharTy;
1048   CanQualType WCharTy;  // [C++ 3.9.1p5].
1049   CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
1050   CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
1051   CanQualType Char8Ty;  // [C++20 proposal]
1052   CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
1053   CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
1054   CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
1055   CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
1056   CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
1057   CanQualType FloatTy, DoubleTy, LongDoubleTy, Float128Ty;
1058   CanQualType ShortAccumTy, AccumTy,
1059       LongAccumTy;  // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1060   CanQualType UnsignedShortAccumTy, UnsignedAccumTy, UnsignedLongAccumTy;
1061   CanQualType ShortFractTy, FractTy, LongFractTy;
1062   CanQualType UnsignedShortFractTy, UnsignedFractTy, UnsignedLongFractTy;
1063   CanQualType SatShortAccumTy, SatAccumTy, SatLongAccumTy;
1064   CanQualType SatUnsignedShortAccumTy, SatUnsignedAccumTy,
1065       SatUnsignedLongAccumTy;
1066   CanQualType SatShortFractTy, SatFractTy, SatLongFractTy;
1067   CanQualType SatUnsignedShortFractTy, SatUnsignedFractTy,
1068       SatUnsignedLongFractTy;
1069   CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
1070   CanQualType BFloat16Ty;
1071   CanQualType Float16Ty; // C11 extension ISO/IEC TS 18661-3
1072   CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
1073   CanQualType Float128ComplexTy;
1074   CanQualType VoidPtrTy, NullPtrTy;
1075   CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
1076   CanQualType BuiltinFnTy;
1077   CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
1078   CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
1079   CanQualType ObjCBuiltinBoolTy;
1080 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1081   CanQualType SingletonId;
1082 #include "clang/Basic/OpenCLImageTypes.def"
1083   CanQualType OCLSamplerTy, OCLEventTy, OCLClkEventTy;
1084   CanQualType OCLQueueTy, OCLReserveIDTy;
1085   CanQualType IncompleteMatrixIdxTy;
1086   CanQualType OMPArraySectionTy, OMPArrayShapingTy, OMPIteratorTy;
1087 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1088   CanQualType Id##Ty;
1089 #include "clang/Basic/OpenCLExtensionTypes.def"
1090 #define SVE_TYPE(Name, Id, SingletonId) \
1091   CanQualType SingletonId;
1092 #include "clang/Basic/AArch64SVEACLETypes.def"
1093 #define PPC_VECTOR_TYPE(Name, Id, Size) \
1094   CanQualType Id##Ty;
1095 #include "clang/Basic/PPCTypes.def"
1096 #define RVV_TYPE(Name, Id, SingletonId) \
1097   CanQualType SingletonId;
1098 #include "clang/Basic/RISCVVTypes.def"
1099 
1100   // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
1101   mutable QualType AutoDeductTy;     // Deduction against 'auto'.
1102   mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
1103 
1104   // Decl used to help define __builtin_va_list for some targets.
1105   // The decl is built when constructing 'BuiltinVaListDecl'.
1106   mutable Decl *VaListTagDecl = nullptr;
1107 
1108   // Implicitly-declared type 'struct _GUID'.
1109   mutable TagDecl *MSGuidTagDecl = nullptr;
1110 
1111   /// Keep track of CUDA/HIP device-side variables ODR-used by host code.
1112   llvm::DenseSet<const VarDecl *> CUDADeviceVarODRUsedByHost;
1113 
1114   ASTContext(LangOptions &LOpts, SourceManager &SM, IdentifierTable &idents,
1115              SelectorTable &sels, Builtin::Context &builtins,
1116              TranslationUnitKind TUKind);
1117   ASTContext(const ASTContext &) = delete;
1118   ASTContext &operator=(const ASTContext &) = delete;
1119   ~ASTContext();
1120 
1121   /// Attach an external AST source to the AST context.
1122   ///
1123   /// The external AST source provides the ability to load parts of
1124   /// the abstract syntax tree as needed from some external storage,
1125   /// e.g., a precompiled header.
1126   void setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source);
1127 
1128   /// Retrieve a pointer to the external AST source associated
1129   /// with this AST context, if any.
getExternalSource()1130   ExternalASTSource *getExternalSource() const {
1131     return ExternalSource.get();
1132   }
1133 
1134   /// Attach an AST mutation listener to the AST context.
1135   ///
1136   /// The AST mutation listener provides the ability to track modifications to
1137   /// the abstract syntax tree entities committed after they were initially
1138   /// created.
setASTMutationListener(ASTMutationListener * Listener)1139   void setASTMutationListener(ASTMutationListener *Listener) {
1140     this->Listener = Listener;
1141   }
1142 
1143   /// Retrieve a pointer to the AST mutation listener associated
1144   /// with this AST context, if any.
getASTMutationListener()1145   ASTMutationListener *getASTMutationListener() const { return Listener; }
1146 
1147   void PrintStats() const;
getTypes()1148   const SmallVectorImpl<Type *>& getTypes() const { return Types; }
1149 
1150   BuiltinTemplateDecl *buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1151                                                 const IdentifierInfo *II) const;
1152 
1153   /// Create a new implicit TU-level CXXRecordDecl or RecordDecl
1154   /// declaration.
1155   RecordDecl *buildImplicitRecord(StringRef Name,
1156                                   RecordDecl::TagKind TK = TTK_Struct) const;
1157 
1158   /// Create a new implicit TU-level typedef declaration.
1159   TypedefDecl *buildImplicitTypedef(QualType T, StringRef Name) const;
1160 
1161   /// Retrieve the declaration for the 128-bit signed integer type.
1162   TypedefDecl *getInt128Decl() const;
1163 
1164   /// Retrieve the declaration for the 128-bit unsigned integer type.
1165   TypedefDecl *getUInt128Decl() const;
1166 
1167   //===--------------------------------------------------------------------===//
1168   //                           Type Constructors
1169   //===--------------------------------------------------------------------===//
1170 
1171 private:
1172   /// Return a type with extended qualifiers.
1173   QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
1174 
1175   QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
1176 
1177   QualType getPipeType(QualType T, bool ReadOnly) const;
1178 
1179 public:
1180   /// Return the uniqued reference to the type for an address space
1181   /// qualified type with the specified type and address space.
1182   ///
1183   /// The resulting type has a union of the qualifiers from T and the address
1184   /// space. If T already has an address space specifier, it is silently
1185   /// replaced.
1186   QualType getAddrSpaceQualType(QualType T, LangAS AddressSpace) const;
1187 
1188   /// Remove any existing address space on the type and returns the type
1189   /// with qualifiers intact (or that's the idea anyway)
1190   ///
1191   /// The return type should be T with all prior qualifiers minus the address
1192   /// space.
1193   QualType removeAddrSpaceQualType(QualType T) const;
1194 
1195   /// Apply Objective-C protocol qualifiers to the given type.
1196   /// \param allowOnPointerType specifies if we can apply protocol
1197   /// qualifiers on ObjCObjectPointerType. It can be set to true when
1198   /// constructing the canonical type of a Objective-C type parameter.
1199   QualType applyObjCProtocolQualifiers(QualType type,
1200       ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
1201       bool allowOnPointerType = false) const;
1202 
1203   /// Return the uniqued reference to the type for an Objective-C
1204   /// gc-qualified type.
1205   ///
1206   /// The resulting type has a union of the qualifiers from T and the gc
1207   /// attribute.
1208   QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
1209 
1210   /// Remove the existing address space on the type if it is a pointer size
1211   /// address space and return the type with qualifiers intact.
1212   QualType removePtrSizeAddrSpace(QualType T) const;
1213 
1214   /// Return the uniqued reference to the type for a \c restrict
1215   /// qualified type.
1216   ///
1217   /// The resulting type has a union of the qualifiers from \p T and
1218   /// \c restrict.
getRestrictType(QualType T)1219   QualType getRestrictType(QualType T) const {
1220     return T.withFastQualifiers(Qualifiers::Restrict);
1221   }
1222 
1223   /// Return the uniqued reference to the type for a \c volatile
1224   /// qualified type.
1225   ///
1226   /// The resulting type has a union of the qualifiers from \p T and
1227   /// \c volatile.
getVolatileType(QualType T)1228   QualType getVolatileType(QualType T) const {
1229     return T.withFastQualifiers(Qualifiers::Volatile);
1230   }
1231 
1232   /// Return the uniqued reference to the type for a \c const
1233   /// qualified type.
1234   ///
1235   /// The resulting type has a union of the qualifiers from \p T and \c const.
1236   ///
1237   /// It can be reasonably expected that this will always be equivalent to
1238   /// calling T.withConst().
getConstType(QualType T)1239   QualType getConstType(QualType T) const { return T.withConst(); }
1240 
1241   /// Change the ExtInfo on a function type.
1242   const FunctionType *adjustFunctionType(const FunctionType *Fn,
1243                                          FunctionType::ExtInfo EInfo);
1244 
1245   /// Adjust the given function result type.
1246   CanQualType getCanonicalFunctionResultType(QualType ResultType) const;
1247 
1248   /// Change the result type of a function type once it is deduced.
1249   void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
1250 
1251   /// Get a function type and produce the equivalent function type with the
1252   /// specified exception specification. Type sugar that can be present on a
1253   /// declaration of a function with an exception specification is permitted
1254   /// and preserved. Other type sugar (for instance, typedefs) is not.
1255   QualType getFunctionTypeWithExceptionSpec(
1256       QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI);
1257 
1258   /// Determine whether two function types are the same, ignoring
1259   /// exception specifications in cases where they're part of the type.
1260   bool hasSameFunctionTypeIgnoringExceptionSpec(QualType T, QualType U);
1261 
1262   /// Change the exception specification on a function once it is
1263   /// delay-parsed, instantiated, or computed.
1264   void adjustExceptionSpec(FunctionDecl *FD,
1265                            const FunctionProtoType::ExceptionSpecInfo &ESI,
1266                            bool AsWritten = false);
1267 
1268   /// Get a function type and produce the equivalent function type where
1269   /// pointer size address spaces in the return type and parameter tyeps are
1270   /// replaced with the default address space.
1271   QualType getFunctionTypeWithoutPtrSizes(QualType T);
1272 
1273   /// Determine whether two function types are the same, ignoring pointer sizes
1274   /// in the return type and parameter types.
1275   bool hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U);
1276 
1277   /// Return the uniqued reference to the type for a complex
1278   /// number with the specified element type.
1279   QualType getComplexType(QualType T) const;
getComplexType(CanQualType T)1280   CanQualType getComplexType(CanQualType T) const {
1281     return CanQualType::CreateUnsafe(getComplexType((QualType) T));
1282   }
1283 
1284   /// Return the uniqued reference to the type for a pointer to
1285   /// the specified type.
1286   QualType getPointerType(QualType T) const;
getPointerType(CanQualType T)1287   CanQualType getPointerType(CanQualType T) const {
1288     return CanQualType::CreateUnsafe(getPointerType((QualType) T));
1289   }
1290 
1291   /// Return the uniqued reference to a type adjusted from the original
1292   /// type to a new type.
1293   QualType getAdjustedType(QualType Orig, QualType New) const;
getAdjustedType(CanQualType Orig,CanQualType New)1294   CanQualType getAdjustedType(CanQualType Orig, CanQualType New) const {
1295     return CanQualType::CreateUnsafe(
1296         getAdjustedType((QualType)Orig, (QualType)New));
1297   }
1298 
1299   /// Return the uniqued reference to the decayed version of the given
1300   /// type.  Can only be called on array and function types which decay to
1301   /// pointer types.
1302   QualType getDecayedType(QualType T) const;
getDecayedType(CanQualType T)1303   CanQualType getDecayedType(CanQualType T) const {
1304     return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
1305   }
1306 
1307   /// Return the uniqued reference to the atomic type for the specified
1308   /// type.
1309   QualType getAtomicType(QualType T) const;
1310 
1311   /// Return the uniqued reference to the type for a block of the
1312   /// specified type.
1313   QualType getBlockPointerType(QualType T) const;
1314 
1315   /// Gets the struct used to keep track of the descriptor for pointer to
1316   /// blocks.
1317   QualType getBlockDescriptorType() const;
1318 
1319   /// Return a read_only pipe type for the specified type.
1320   QualType getReadPipeType(QualType T) const;
1321 
1322   /// Return a write_only pipe type for the specified type.
1323   QualType getWritePipeType(QualType T) const;
1324 
1325   /// Return an extended integer type with the specified signedness and bit
1326   /// count.
1327   QualType getExtIntType(bool Unsigned, unsigned NumBits) const;
1328 
1329   /// Return a dependent extended integer type with the specified signedness and
1330   /// bit count.
1331   QualType getDependentExtIntType(bool Unsigned, Expr *BitsExpr) const;
1332 
1333   /// Gets the struct used to keep track of the extended descriptor for
1334   /// pointer to blocks.
1335   QualType getBlockDescriptorExtendedType() const;
1336 
1337   /// Map an AST Type to an OpenCLTypeKind enum value.
1338   OpenCLTypeKind getOpenCLTypeKind(const Type *T) const;
1339 
1340   /// Get address space for OpenCL type.
1341   LangAS getOpenCLTypeAddrSpace(const Type *T) const;
1342 
setcudaConfigureCallDecl(FunctionDecl * FD)1343   void setcudaConfigureCallDecl(FunctionDecl *FD) {
1344     cudaConfigureCallDecl = FD;
1345   }
1346 
getcudaConfigureCallDecl()1347   FunctionDecl *getcudaConfigureCallDecl() {
1348     return cudaConfigureCallDecl;
1349   }
1350 
1351   /// Returns true iff we need copy/dispose helpers for the given type.
1352   bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
1353 
1354   /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout
1355   /// is set to false in this case. If HasByrefExtendedLayout returns true,
1356   /// byref variable has extended lifetime.
1357   bool getByrefLifetime(QualType Ty,
1358                         Qualifiers::ObjCLifetime &Lifetime,
1359                         bool &HasByrefExtendedLayout) const;
1360 
1361   /// Return the uniqued reference to the type for an lvalue reference
1362   /// to the specified type.
1363   QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
1364     const;
1365 
1366   /// Return the uniqued reference to the type for an rvalue reference
1367   /// to the specified type.
1368   QualType getRValueReferenceType(QualType T) const;
1369 
1370   /// Return the uniqued reference to the type for a member pointer to
1371   /// the specified type in the specified class.
1372   ///
1373   /// The class \p Cls is a \c Type because it could be a dependent name.
1374   QualType getMemberPointerType(QualType T, const Type *Cls) const;
1375 
1376   /// Return a non-unique reference to the type for a variable array of
1377   /// the specified element type.
1378   QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
1379                                 ArrayType::ArraySizeModifier ASM,
1380                                 unsigned IndexTypeQuals,
1381                                 SourceRange Brackets) const;
1382 
1383   /// Return a non-unique reference to the type for a dependently-sized
1384   /// array of the specified element type.
1385   ///
1386   /// FIXME: We will need these to be uniqued, or at least comparable, at some
1387   /// point.
1388   QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1389                                       ArrayType::ArraySizeModifier ASM,
1390                                       unsigned IndexTypeQuals,
1391                                       SourceRange Brackets) const;
1392 
1393   /// Return a unique reference to the type for an incomplete array of
1394   /// the specified element type.
1395   QualType getIncompleteArrayType(QualType EltTy,
1396                                   ArrayType::ArraySizeModifier ASM,
1397                                   unsigned IndexTypeQuals) const;
1398 
1399   /// Return the unique reference to the type for a constant array of
1400   /// the specified element type.
1401   QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
1402                                 const Expr *SizeExpr,
1403                                 ArrayType::ArraySizeModifier ASM,
1404                                 unsigned IndexTypeQuals) const;
1405 
1406   /// Return a type for a constant array for a string literal of the
1407   /// specified element type and length.
1408   QualType getStringLiteralArrayType(QualType EltTy, unsigned Length) const;
1409 
1410   /// Returns a vla type where known sizes are replaced with [*].
1411   QualType getVariableArrayDecayedType(QualType Ty) const;
1412 
1413   // Convenience struct to return information about a builtin vector type.
1414   struct BuiltinVectorTypeInfo {
1415     QualType ElementType;
1416     llvm::ElementCount EC;
1417     unsigned NumVectors;
BuiltinVectorTypeInfoBuiltinVectorTypeInfo1418     BuiltinVectorTypeInfo(QualType ElementType, llvm::ElementCount EC,
1419                           unsigned NumVectors)
1420         : ElementType(ElementType), EC(EC), NumVectors(NumVectors) {}
1421   };
1422 
1423   /// Returns the element type, element count and number of vectors
1424   /// (in case of tuple) for a builtin vector type.
1425   BuiltinVectorTypeInfo
1426   getBuiltinVectorTypeInfo(const BuiltinType *VecTy) const;
1427 
1428   /// Return the unique reference to a scalable vector type of the specified
1429   /// element type and scalable number of elements.
1430   ///
1431   /// \pre \p EltTy must be a built-in type.
1432   QualType getScalableVectorType(QualType EltTy, unsigned NumElts) const;
1433 
1434   /// Return the unique reference to a vector type of the specified
1435   /// element type and size.
1436   ///
1437   /// \pre \p VectorType must be a built-in type.
1438   QualType getVectorType(QualType VectorType, unsigned NumElts,
1439                          VectorType::VectorKind VecKind) const;
1440   /// Return the unique reference to the type for a dependently sized vector of
1441   /// the specified element type.
1442   QualType getDependentVectorType(QualType VectorType, Expr *SizeExpr,
1443                                   SourceLocation AttrLoc,
1444                                   VectorType::VectorKind VecKind) const;
1445 
1446   /// Return the unique reference to an extended vector type
1447   /// of the specified element type and size.
1448   ///
1449   /// \pre \p VectorType must be a built-in type.
1450   QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
1451 
1452   /// \pre Return a non-unique reference to the type for a dependently-sized
1453   /// vector of the specified element type.
1454   ///
1455   /// FIXME: We will need these to be uniqued, or at least comparable, at some
1456   /// point.
1457   QualType getDependentSizedExtVectorType(QualType VectorType,
1458                                           Expr *SizeExpr,
1459                                           SourceLocation AttrLoc) const;
1460 
1461   /// Return the unique reference to the matrix type of the specified element
1462   /// type and size
1463   ///
1464   /// \pre \p ElementType must be a valid matrix element type (see
1465   /// MatrixType::isValidElementType).
1466   QualType getConstantMatrixType(QualType ElementType, unsigned NumRows,
1467                                  unsigned NumColumns) const;
1468 
1469   /// Return the unique reference to the matrix type of the specified element
1470   /// type and size
1471   QualType getDependentSizedMatrixType(QualType ElementType, Expr *RowExpr,
1472                                        Expr *ColumnExpr,
1473                                        SourceLocation AttrLoc) const;
1474 
1475   QualType getDependentAddressSpaceType(QualType PointeeType,
1476                                         Expr *AddrSpaceExpr,
1477                                         SourceLocation AttrLoc) const;
1478 
1479   /// Return a K&R style C function type like 'int()'.
1480   QualType getFunctionNoProtoType(QualType ResultTy,
1481                                   const FunctionType::ExtInfo &Info) const;
1482 
getFunctionNoProtoType(QualType ResultTy)1483   QualType getFunctionNoProtoType(QualType ResultTy) const {
1484     return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
1485   }
1486 
1487   /// Return a normal function type with a typed argument list.
getFunctionType(QualType ResultTy,ArrayRef<QualType> Args,const FunctionProtoType::ExtProtoInfo & EPI)1488   QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
1489                            const FunctionProtoType::ExtProtoInfo &EPI) const {
1490     return getFunctionTypeInternal(ResultTy, Args, EPI, false);
1491   }
1492 
1493   QualType adjustStringLiteralBaseType(QualType StrLTy) const;
1494 
1495 private:
1496   /// Return a normal function type with a typed argument list.
1497   QualType getFunctionTypeInternal(QualType ResultTy, ArrayRef<QualType> Args,
1498                                    const FunctionProtoType::ExtProtoInfo &EPI,
1499                                    bool OnlyWantCanonical) const;
1500 
1501 public:
1502   /// Return the unique reference to the type for the specified type
1503   /// declaration.
1504   QualType getTypeDeclType(const TypeDecl *Decl,
1505                            const TypeDecl *PrevDecl = nullptr) const {
1506     assert(Decl && "Passed null for Decl param");
1507     if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1508 
1509     if (PrevDecl) {
1510       assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
1511       Decl->TypeForDecl = PrevDecl->TypeForDecl;
1512       return QualType(PrevDecl->TypeForDecl, 0);
1513     }
1514 
1515     return getTypeDeclTypeSlow(Decl);
1516   }
1517 
1518   /// Return the unique reference to the type for the specified
1519   /// typedef-name decl.
1520   QualType getTypedefType(const TypedefNameDecl *Decl,
1521                           QualType Underlying = QualType()) const;
1522 
1523   QualType getRecordType(const RecordDecl *Decl) const;
1524 
1525   QualType getEnumType(const EnumDecl *Decl) const;
1526 
1527   QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1528 
1529   QualType getAttributedType(attr::Kind attrKind,
1530                              QualType modifiedType,
1531                              QualType equivalentType);
1532 
1533   QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
1534                                         QualType Replacement) const;
1535   QualType getSubstTemplateTypeParmPackType(
1536                                           const TemplateTypeParmType *Replaced,
1537                                             const TemplateArgument &ArgPack);
1538 
1539   QualType
1540   getTemplateTypeParmType(unsigned Depth, unsigned Index,
1541                           bool ParameterPack,
1542                           TemplateTypeParmDecl *ParmDecl = nullptr) const;
1543 
1544   QualType getTemplateSpecializationType(TemplateName T,
1545                                          ArrayRef<TemplateArgument> Args,
1546                                          QualType Canon = QualType()) const;
1547 
1548   QualType
1549   getCanonicalTemplateSpecializationType(TemplateName T,
1550                                          ArrayRef<TemplateArgument> Args) const;
1551 
1552   QualType getTemplateSpecializationType(TemplateName T,
1553                                          const TemplateArgumentListInfo &Args,
1554                                          QualType Canon = QualType()) const;
1555 
1556   TypeSourceInfo *
1557   getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1558                                     const TemplateArgumentListInfo &Args,
1559                                     QualType Canon = QualType()) const;
1560 
1561   QualType getParenType(QualType NamedType) const;
1562 
1563   QualType getMacroQualifiedType(QualType UnderlyingTy,
1564                                  const IdentifierInfo *MacroII) const;
1565 
1566   QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1567                              NestedNameSpecifier *NNS, QualType NamedType,
1568                              TagDecl *OwnedTagDecl = nullptr) const;
1569   QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1570                                 NestedNameSpecifier *NNS,
1571                                 const IdentifierInfo *Name,
1572                                 QualType Canon = QualType()) const;
1573 
1574   QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1575                                                   NestedNameSpecifier *NNS,
1576                                                   const IdentifierInfo *Name,
1577                                     const TemplateArgumentListInfo &Args) const;
1578   QualType getDependentTemplateSpecializationType(
1579       ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
1580       const IdentifierInfo *Name, ArrayRef<TemplateArgument> Args) const;
1581 
1582   TemplateArgument getInjectedTemplateArg(NamedDecl *ParamDecl);
1583 
1584   /// Get a template argument list with one argument per template parameter
1585   /// in a template parameter list, such as for the injected class name of
1586   /// a class template.
1587   void getInjectedTemplateArgs(const TemplateParameterList *Params,
1588                                SmallVectorImpl<TemplateArgument> &Args);
1589 
1590   /// Form a pack expansion type with the given pattern.
1591   /// \param NumExpansions The number of expansions for the pack, if known.
1592   /// \param ExpectPackInType If \c false, we should not expect \p Pattern to
1593   ///        contain an unexpanded pack. This only makes sense if the pack
1594   ///        expansion is used in a context where the arity is inferred from
1595   ///        elsewhere, such as if the pattern contains a placeholder type or
1596   ///        if this is the canonical type of another pack expansion type.
1597   QualType getPackExpansionType(QualType Pattern,
1598                                 Optional<unsigned> NumExpansions,
1599                                 bool ExpectPackInType = true);
1600 
1601   QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1602                                 ObjCInterfaceDecl *PrevDecl = nullptr) const;
1603 
1604   /// Legacy interface: cannot provide type arguments or __kindof.
1605   QualType getObjCObjectType(QualType Base,
1606                              ObjCProtocolDecl * const *Protocols,
1607                              unsigned NumProtocols) const;
1608 
1609   QualType getObjCObjectType(QualType Base,
1610                              ArrayRef<QualType> typeArgs,
1611                              ArrayRef<ObjCProtocolDecl *> protocols,
1612                              bool isKindOf) const;
1613 
1614   QualType getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1615                                 ArrayRef<ObjCProtocolDecl *> protocols) const;
1616   void adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
1617                                     ObjCTypeParamDecl *New) const;
1618 
1619   bool ObjCObjectAdoptsQTypeProtocols(QualType QT, ObjCInterfaceDecl *Decl);
1620 
1621   /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
1622   /// QT's qualified-id protocol list adopt all protocols in IDecl's list
1623   /// of protocols.
1624   bool QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
1625                                             ObjCInterfaceDecl *IDecl);
1626 
1627   /// Return a ObjCObjectPointerType type for the given ObjCObjectType.
1628   QualType getObjCObjectPointerType(QualType OIT) const;
1629 
1630   /// GCC extension.
1631   QualType getTypeOfExprType(Expr *e) const;
1632   QualType getTypeOfType(QualType t) const;
1633 
1634   /// C++11 decltype.
1635   QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1636 
1637   /// Unary type transforms
1638   QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1639                                  UnaryTransformType::UTTKind UKind) const;
1640 
1641   /// C++11 deduced auto type.
1642   QualType getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
1643                        bool IsDependent, bool IsPack = false,
1644                        ConceptDecl *TypeConstraintConcept = nullptr,
1645                        ArrayRef<TemplateArgument> TypeConstraintArgs ={}) const;
1646 
1647   /// C++11 deduction pattern for 'auto' type.
1648   QualType getAutoDeductType() const;
1649 
1650   /// C++11 deduction pattern for 'auto &&' type.
1651   QualType getAutoRRefDeductType() const;
1652 
1653   /// C++17 deduced class template specialization type.
1654   QualType getDeducedTemplateSpecializationType(TemplateName Template,
1655                                                 QualType DeducedType,
1656                                                 bool IsDependent) const;
1657 
1658   /// Return the unique reference to the type for the specified TagDecl
1659   /// (struct/union/class/enum) decl.
1660   QualType getTagDeclType(const TagDecl *Decl) const;
1661 
1662   /// Return the unique type for "size_t" (C99 7.17), defined in
1663   /// <stddef.h>.
1664   ///
1665   /// The sizeof operator requires this (C99 6.5.3.4p4).
1666   CanQualType getSizeType() const;
1667 
1668   /// Return the unique signed counterpart of
1669   /// the integer type corresponding to size_t.
1670   CanQualType getSignedSizeType() const;
1671 
1672   /// Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1673   /// <stdint.h>.
1674   CanQualType getIntMaxType() const;
1675 
1676   /// Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1677   /// <stdint.h>.
1678   CanQualType getUIntMaxType() const;
1679 
1680   /// Return the unique wchar_t type available in C++ (and available as
1681   /// __wchar_t as a Microsoft extension).
getWCharType()1682   QualType getWCharType() const { return WCharTy; }
1683 
1684   /// Return the type of wide characters. In C++, this returns the
1685   /// unique wchar_t type. In C99, this returns a type compatible with the type
1686   /// defined in <stddef.h> as defined by the target.
getWideCharType()1687   QualType getWideCharType() const { return WideCharTy; }
1688 
1689   /// Return the type of "signed wchar_t".
1690   ///
1691   /// Used when in C++, as a GCC extension.
1692   QualType getSignedWCharType() const;
1693 
1694   /// Return the type of "unsigned wchar_t".
1695   ///
1696   /// Used when in C++, as a GCC extension.
1697   QualType getUnsignedWCharType() const;
1698 
1699   /// In C99, this returns a type compatible with the type
1700   /// defined in <stddef.h> as defined by the target.
getWIntType()1701   QualType getWIntType() const { return WIntTy; }
1702 
1703   /// Return a type compatible with "intptr_t" (C99 7.18.1.4),
1704   /// as defined by the target.
1705   QualType getIntPtrType() const;
1706 
1707   /// Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1708   /// as defined by the target.
1709   QualType getUIntPtrType() const;
1710 
1711   /// Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1712   /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1713   QualType getPointerDiffType() const;
1714 
1715   /// Return the unique unsigned counterpart of "ptrdiff_t"
1716   /// integer type. The standard (C11 7.21.6.1p7) refers to this type
1717   /// in the definition of %tu format specifier.
1718   QualType getUnsignedPointerDiffType() const;
1719 
1720   /// Return the unique type for "pid_t" defined in
1721   /// <sys/types.h>. We need this to compute the correct type for vfork().
1722   QualType getProcessIDType() const;
1723 
1724   /// Return the C structure type used to represent constant CFStrings.
1725   QualType getCFConstantStringType() const;
1726 
1727   /// Returns the C struct type for objc_super
1728   QualType getObjCSuperType() const;
setObjCSuperType(QualType ST)1729   void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1730 
1731   /// Get the structure type used to representation CFStrings, or NULL
1732   /// if it hasn't yet been built.
getRawCFConstantStringType()1733   QualType getRawCFConstantStringType() const {
1734     if (CFConstantStringTypeDecl)
1735       return getTypedefType(CFConstantStringTypeDecl);
1736     return QualType();
1737   }
1738   void setCFConstantStringType(QualType T);
1739   TypedefDecl *getCFConstantStringDecl() const;
1740   RecordDecl *getCFConstantStringTagDecl() const;
1741 
1742   // This setter/getter represents the ObjC type for an NSConstantString.
1743   void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
getObjCConstantStringInterface()1744   QualType getObjCConstantStringInterface() const {
1745     return ObjCConstantStringType;
1746   }
1747 
getObjCNSStringType()1748   QualType getObjCNSStringType() const {
1749     return ObjCNSStringType;
1750   }
1751 
setObjCNSStringType(QualType T)1752   void setObjCNSStringType(QualType T) {
1753     ObjCNSStringType = T;
1754   }
1755 
1756   /// Retrieve the type that \c id has been defined to, which may be
1757   /// different from the built-in \c id if \c id has been typedef'd.
getObjCIdRedefinitionType()1758   QualType getObjCIdRedefinitionType() const {
1759     if (ObjCIdRedefinitionType.isNull())
1760       return getObjCIdType();
1761     return ObjCIdRedefinitionType;
1762   }
1763 
1764   /// Set the user-written type that redefines \c id.
setObjCIdRedefinitionType(QualType RedefType)1765   void setObjCIdRedefinitionType(QualType RedefType) {
1766     ObjCIdRedefinitionType = RedefType;
1767   }
1768 
1769   /// Retrieve the type that \c Class has been defined to, which may be
1770   /// different from the built-in \c Class if \c Class has been typedef'd.
getObjCClassRedefinitionType()1771   QualType getObjCClassRedefinitionType() const {
1772     if (ObjCClassRedefinitionType.isNull())
1773       return getObjCClassType();
1774     return ObjCClassRedefinitionType;
1775   }
1776 
1777   /// Set the user-written type that redefines 'SEL'.
setObjCClassRedefinitionType(QualType RedefType)1778   void setObjCClassRedefinitionType(QualType RedefType) {
1779     ObjCClassRedefinitionType = RedefType;
1780   }
1781 
1782   /// Retrieve the type that 'SEL' has been defined to, which may be
1783   /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
getObjCSelRedefinitionType()1784   QualType getObjCSelRedefinitionType() const {
1785     if (ObjCSelRedefinitionType.isNull())
1786       return getObjCSelType();
1787     return ObjCSelRedefinitionType;
1788   }
1789 
1790   /// Set the user-written type that redefines 'SEL'.
setObjCSelRedefinitionType(QualType RedefType)1791   void setObjCSelRedefinitionType(QualType RedefType) {
1792     ObjCSelRedefinitionType = RedefType;
1793   }
1794 
1795   /// Retrieve the identifier 'NSObject'.
getNSObjectName()1796   IdentifierInfo *getNSObjectName() const {
1797     if (!NSObjectName) {
1798       NSObjectName = &Idents.get("NSObject");
1799     }
1800 
1801     return NSObjectName;
1802   }
1803 
1804   /// Retrieve the identifier 'NSCopying'.
getNSCopyingName()1805   IdentifierInfo *getNSCopyingName() {
1806     if (!NSCopyingName) {
1807       NSCopyingName = &Idents.get("NSCopying");
1808     }
1809 
1810     return NSCopyingName;
1811   }
1812 
1813   CanQualType getNSUIntegerType() const;
1814 
1815   CanQualType getNSIntegerType() const;
1816 
1817   /// Retrieve the identifier 'bool'.
getBoolName()1818   IdentifierInfo *getBoolName() const {
1819     if (!BoolName)
1820       BoolName = &Idents.get("bool");
1821     return BoolName;
1822   }
1823 
getMakeIntegerSeqName()1824   IdentifierInfo *getMakeIntegerSeqName() const {
1825     if (!MakeIntegerSeqName)
1826       MakeIntegerSeqName = &Idents.get("__make_integer_seq");
1827     return MakeIntegerSeqName;
1828   }
1829 
getTypePackElementName()1830   IdentifierInfo *getTypePackElementName() const {
1831     if (!TypePackElementName)
1832       TypePackElementName = &Idents.get("__type_pack_element");
1833     return TypePackElementName;
1834   }
1835 
1836   /// Retrieve the Objective-C "instancetype" type, if already known;
1837   /// otherwise, returns a NULL type;
getObjCInstanceType()1838   QualType getObjCInstanceType() {
1839     return getTypeDeclType(getObjCInstanceTypeDecl());
1840   }
1841 
1842   /// Retrieve the typedef declaration corresponding to the Objective-C
1843   /// "instancetype" type.
1844   TypedefDecl *getObjCInstanceTypeDecl();
1845 
1846   /// Set the type for the C FILE type.
setFILEDecl(TypeDecl * FILEDecl)1847   void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1848 
1849   /// Retrieve the C FILE type.
getFILEType()1850   QualType getFILEType() const {
1851     if (FILEDecl)
1852       return getTypeDeclType(FILEDecl);
1853     return QualType();
1854   }
1855 
1856   /// Set the type for the C jmp_buf type.
setjmp_bufDecl(TypeDecl * jmp_bufDecl)1857   void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1858     this->jmp_bufDecl = jmp_bufDecl;
1859   }
1860 
1861   /// Retrieve the C jmp_buf type.
getjmp_bufType()1862   QualType getjmp_bufType() const {
1863     if (jmp_bufDecl)
1864       return getTypeDeclType(jmp_bufDecl);
1865     return QualType();
1866   }
1867 
1868   /// Set the type for the C sigjmp_buf type.
setsigjmp_bufDecl(TypeDecl * sigjmp_bufDecl)1869   void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1870     this->sigjmp_bufDecl = sigjmp_bufDecl;
1871   }
1872 
1873   /// Retrieve the C sigjmp_buf type.
getsigjmp_bufType()1874   QualType getsigjmp_bufType() const {
1875     if (sigjmp_bufDecl)
1876       return getTypeDeclType(sigjmp_bufDecl);
1877     return QualType();
1878   }
1879 
1880   /// Set the type for the C ucontext_t type.
setucontext_tDecl(TypeDecl * ucontext_tDecl)1881   void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1882     this->ucontext_tDecl = ucontext_tDecl;
1883   }
1884 
1885   /// Retrieve the C ucontext_t type.
getucontext_tType()1886   QualType getucontext_tType() const {
1887     if (ucontext_tDecl)
1888       return getTypeDeclType(ucontext_tDecl);
1889     return QualType();
1890   }
1891 
1892   /// The result type of logical operations, '<', '>', '!=', etc.
getLogicalOperationType()1893   QualType getLogicalOperationType() const {
1894     return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1895   }
1896 
1897   /// Emit the Objective-CC type encoding for the given type \p T into
1898   /// \p S.
1899   ///
1900   /// If \p Field is specified then record field names are also encoded.
1901   void getObjCEncodingForType(QualType T, std::string &S,
1902                               const FieldDecl *Field=nullptr,
1903                               QualType *NotEncodedT=nullptr) const;
1904 
1905   /// Emit the Objective-C property type encoding for the given
1906   /// type \p T into \p S.
1907   void getObjCEncodingForPropertyType(QualType T, std::string &S) const;
1908 
1909   void getLegacyIntegralTypeEncoding(QualType &t) const;
1910 
1911   /// Put the string version of the type qualifiers \p QT into \p S.
1912   void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1913                                        std::string &S) const;
1914 
1915   /// Emit the encoded type for the function \p Decl into \p S.
1916   ///
1917   /// This is in the same format as Objective-C method encodings.
1918   ///
1919   /// \returns true if an error occurred (e.g., because one of the parameter
1920   /// types is incomplete), false otherwise.
1921   std::string getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const;
1922 
1923   /// Emit the encoded type for the method declaration \p Decl into
1924   /// \p S.
1925   std::string getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
1926                                            bool Extended = false) const;
1927 
1928   /// Return the encoded type for this block declaration.
1929   std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1930 
1931   /// getObjCEncodingForPropertyDecl - Return the encoded type for
1932   /// this method declaration. If non-NULL, Container must be either
1933   /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1934   /// only be NULL when getting encodings for protocol properties.
1935   std::string getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1936                                              const Decl *Container) const;
1937 
1938   bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1939                                       ObjCProtocolDecl *rProto) const;
1940 
1941   ObjCPropertyImplDecl *getObjCPropertyImplDeclForPropertyDecl(
1942                                                   const ObjCPropertyDecl *PD,
1943                                                   const Decl *Container) const;
1944 
1945   /// Return the size of type \p T for Objective-C encoding purpose,
1946   /// in characters.
1947   CharUnits getObjCEncodingTypeSize(QualType T) const;
1948 
1949   /// Retrieve the typedef corresponding to the predefined \c id type
1950   /// in Objective-C.
1951   TypedefDecl *getObjCIdDecl() const;
1952 
1953   /// Represents the Objective-CC \c id type.
1954   ///
1955   /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
1956   /// pointer type, a pointer to a struct.
getObjCIdType()1957   QualType getObjCIdType() const {
1958     return getTypeDeclType(getObjCIdDecl());
1959   }
1960 
1961   /// Retrieve the typedef corresponding to the predefined 'SEL' type
1962   /// in Objective-C.
1963   TypedefDecl *getObjCSelDecl() const;
1964 
1965   /// Retrieve the type that corresponds to the predefined Objective-C
1966   /// 'SEL' type.
getObjCSelType()1967   QualType getObjCSelType() const {
1968     return getTypeDeclType(getObjCSelDecl());
1969   }
1970 
1971   /// Retrieve the typedef declaration corresponding to the predefined
1972   /// Objective-C 'Class' type.
1973   TypedefDecl *getObjCClassDecl() const;
1974 
1975   /// Represents the Objective-C \c Class type.
1976   ///
1977   /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
1978   /// pointer type, a pointer to a struct.
getObjCClassType()1979   QualType getObjCClassType() const {
1980     return getTypeDeclType(getObjCClassDecl());
1981   }
1982 
1983   /// Retrieve the Objective-C class declaration corresponding to
1984   /// the predefined \c Protocol class.
1985   ObjCInterfaceDecl *getObjCProtocolDecl() const;
1986 
1987   /// Retrieve declaration of 'BOOL' typedef
getBOOLDecl()1988   TypedefDecl *getBOOLDecl() const {
1989     return BOOLDecl;
1990   }
1991 
1992   /// Save declaration of 'BOOL' typedef
setBOOLDecl(TypedefDecl * TD)1993   void setBOOLDecl(TypedefDecl *TD) {
1994     BOOLDecl = TD;
1995   }
1996 
1997   /// type of 'BOOL' type.
getBOOLType()1998   QualType getBOOLType() const {
1999     return getTypeDeclType(getBOOLDecl());
2000   }
2001 
2002   /// Retrieve the type of the Objective-C \c Protocol class.
getObjCProtoType()2003   QualType getObjCProtoType() const {
2004     return getObjCInterfaceType(getObjCProtocolDecl());
2005   }
2006 
2007   /// Retrieve the C type declaration corresponding to the predefined
2008   /// \c __builtin_va_list type.
2009   TypedefDecl *getBuiltinVaListDecl() const;
2010 
2011   /// Retrieve the type of the \c __builtin_va_list type.
getBuiltinVaListType()2012   QualType getBuiltinVaListType() const {
2013     return getTypeDeclType(getBuiltinVaListDecl());
2014   }
2015 
2016   /// Retrieve the C type declaration corresponding to the predefined
2017   /// \c __va_list_tag type used to help define the \c __builtin_va_list type
2018   /// for some targets.
2019   Decl *getVaListTagDecl() const;
2020 
2021   /// Retrieve the C type declaration corresponding to the predefined
2022   /// \c __builtin_ms_va_list type.
2023   TypedefDecl *getBuiltinMSVaListDecl() const;
2024 
2025   /// Retrieve the type of the \c __builtin_ms_va_list type.
getBuiltinMSVaListType()2026   QualType getBuiltinMSVaListType() const {
2027     return getTypeDeclType(getBuiltinMSVaListDecl());
2028   }
2029 
2030   /// Retrieve the implicitly-predeclared 'struct _GUID' declaration.
getMSGuidTagDecl()2031   TagDecl *getMSGuidTagDecl() const { return MSGuidTagDecl; }
2032 
2033   /// Retrieve the implicitly-predeclared 'struct _GUID' type.
getMSGuidType()2034   QualType getMSGuidType() const {
2035     assert(MSGuidTagDecl && "asked for GUID type but MS extensions disabled");
2036     return getTagDeclType(MSGuidTagDecl);
2037   }
2038 
2039   /// Return whether a declaration to a builtin is allowed to be
2040   /// overloaded/redeclared.
2041   bool canBuiltinBeRedeclared(const FunctionDecl *) const;
2042 
2043   /// Return a type with additional \c const, \c volatile, or
2044   /// \c restrict qualifiers.
getCVRQualifiedType(QualType T,unsigned CVR)2045   QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
2046     return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
2047   }
2048 
2049   /// Un-split a SplitQualType.
getQualifiedType(SplitQualType split)2050   QualType getQualifiedType(SplitQualType split) const {
2051     return getQualifiedType(split.Ty, split.Quals);
2052   }
2053 
2054   /// Return a type with additional qualifiers.
getQualifiedType(QualType T,Qualifiers Qs)2055   QualType getQualifiedType(QualType T, Qualifiers Qs) const {
2056     if (!Qs.hasNonFastQualifiers())
2057       return T.withFastQualifiers(Qs.getFastQualifiers());
2058     QualifierCollector Qc(Qs);
2059     const Type *Ptr = Qc.strip(T);
2060     return getExtQualType(Ptr, Qc);
2061   }
2062 
2063   /// Return a type with additional qualifiers.
getQualifiedType(const Type * T,Qualifiers Qs)2064   QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
2065     if (!Qs.hasNonFastQualifiers())
2066       return QualType(T, Qs.getFastQualifiers());
2067     return getExtQualType(T, Qs);
2068   }
2069 
2070   /// Return a type with the given lifetime qualifier.
2071   ///
2072   /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
getLifetimeQualifiedType(QualType type,Qualifiers::ObjCLifetime lifetime)2073   QualType getLifetimeQualifiedType(QualType type,
2074                                     Qualifiers::ObjCLifetime lifetime) {
2075     assert(type.getObjCLifetime() == Qualifiers::OCL_None);
2076     assert(lifetime != Qualifiers::OCL_None);
2077 
2078     Qualifiers qs;
2079     qs.addObjCLifetime(lifetime);
2080     return getQualifiedType(type, qs);
2081   }
2082 
2083   /// getUnqualifiedObjCPointerType - Returns version of
2084   /// Objective-C pointer type with lifetime qualifier removed.
getUnqualifiedObjCPointerType(QualType type)2085   QualType getUnqualifiedObjCPointerType(QualType type) const {
2086     if (!type.getTypePtr()->isObjCObjectPointerType() ||
2087         !type.getQualifiers().hasObjCLifetime())
2088       return type;
2089     Qualifiers Qs = type.getQualifiers();
2090     Qs.removeObjCLifetime();
2091     return getQualifiedType(type.getUnqualifiedType(), Qs);
2092   }
2093 
2094   unsigned char getFixedPointScale(QualType Ty) const;
2095   unsigned char getFixedPointIBits(QualType Ty) const;
2096   llvm::FixedPointSemantics getFixedPointSemantics(QualType Ty) const;
2097   llvm::APFixedPoint getFixedPointMax(QualType Ty) const;
2098   llvm::APFixedPoint getFixedPointMin(QualType Ty) const;
2099 
2100   DeclarationNameInfo getNameForTemplate(TemplateName Name,
2101                                          SourceLocation NameLoc) const;
2102 
2103   TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
2104                                          UnresolvedSetIterator End) const;
2105   TemplateName getAssumedTemplateName(DeclarationName Name) const;
2106 
2107   TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
2108                                         bool TemplateKeyword,
2109                                         TemplateDecl *Template) const;
2110 
2111   TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2112                                         const IdentifierInfo *Name) const;
2113   TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2114                                         OverloadedOperatorKind Operator) const;
2115   TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
2116                                             TemplateName replacement) const;
2117   TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
2118                                         const TemplateArgument &ArgPack) const;
2119 
2120   enum GetBuiltinTypeError {
2121     /// No error
2122     GE_None,
2123 
2124     /// Missing a type
2125     GE_Missing_type,
2126 
2127     /// Missing a type from <stdio.h>
2128     GE_Missing_stdio,
2129 
2130     /// Missing a type from <setjmp.h>
2131     GE_Missing_setjmp,
2132 
2133     /// Missing a type from <ucontext.h>
2134     GE_Missing_ucontext
2135   };
2136 
2137   QualType DecodeTypeStr(const char *&Str, const ASTContext &Context,
2138                          ASTContext::GetBuiltinTypeError &Error,
2139                          bool &RequireICE, bool AllowTypeModifiers) const;
2140 
2141   /// Return the type for the specified builtin.
2142   ///
2143   /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
2144   /// arguments to the builtin that are required to be integer constant
2145   /// expressions.
2146   QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
2147                           unsigned *IntegerConstantArgs = nullptr) const;
2148 
2149   /// Types and expressions required to build C++2a three-way comparisons
2150   /// using operator<=>, including the values return by builtin <=> operators.
2151   ComparisonCategories CompCategories;
2152 
2153 private:
2154   CanQualType getFromTargetType(unsigned Type) const;
2155   TypeInfo getTypeInfoImpl(const Type *T) const;
2156 
2157   //===--------------------------------------------------------------------===//
2158   //                         Type Predicates.
2159   //===--------------------------------------------------------------------===//
2160 
2161 public:
2162   /// Return one of the GCNone, Weak or Strong Objective-C garbage
2163   /// collection attributes.
2164   Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
2165 
2166   /// Return true if the given vector types are of the same unqualified
2167   /// type or if they are equivalent to the same GCC vector type.
2168   ///
2169   /// \note This ignores whether they are target-specific (AltiVec or Neon)
2170   /// types.
2171   bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
2172 
2173   /// Return true if the given types are an SVE builtin and a VectorType that
2174   /// is a fixed-length representation of the SVE builtin for a specific
2175   /// vector-length.
2176   bool areCompatibleSveTypes(QualType FirstType, QualType SecondType);
2177 
2178   /// Return true if the given vector types are lax-compatible SVE vector types,
2179   /// false otherwise.
2180   bool areLaxCompatibleSveTypes(QualType FirstType, QualType SecondType);
2181 
2182   /// Return true if the type has been explicitly qualified with ObjC ownership.
2183   /// A type may be implicitly qualified with ownership under ObjC ARC, and in
2184   /// some cases the compiler treats these differently.
2185   bool hasDirectOwnershipQualifier(QualType Ty) const;
2186 
2187   /// Return true if this is an \c NSObject object with its \c NSObject
2188   /// attribute set.
isObjCNSObjectType(QualType Ty)2189   static bool isObjCNSObjectType(QualType Ty) {
2190     return Ty->isObjCNSObjectType();
2191   }
2192 
2193   //===--------------------------------------------------------------------===//
2194   //                         Type Sizing and Analysis
2195   //===--------------------------------------------------------------------===//
2196 
2197   /// Return the APFloat 'semantics' for the specified scalar floating
2198   /// point type.
2199   const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
2200 
2201   /// Get the size and alignment of the specified complete type in bits.
2202   TypeInfo getTypeInfo(const Type *T) const;
getTypeInfo(QualType T)2203   TypeInfo getTypeInfo(QualType T) const { return getTypeInfo(T.getTypePtr()); }
2204 
2205   /// Get default simd alignment of the specified complete type in bits.
2206   unsigned getOpenMPDefaultSimdAlign(QualType T) const;
2207 
2208   /// Return the size of the specified (complete) type \p T, in bits.
getTypeSize(QualType T)2209   uint64_t getTypeSize(QualType T) const { return getTypeInfo(T).Width; }
getTypeSize(const Type * T)2210   uint64_t getTypeSize(const Type *T) const { return getTypeInfo(T).Width; }
2211 
2212   /// Return the size of the character type, in bits.
getCharWidth()2213   uint64_t getCharWidth() const {
2214     return getTypeSize(CharTy);
2215   }
2216 
2217   /// Convert a size in bits to a size in characters.
2218   CharUnits toCharUnitsFromBits(int64_t BitSize) const;
2219 
2220   /// Convert a size in characters to a size in bits.
2221   int64_t toBits(CharUnits CharSize) const;
2222 
2223   /// Return the size of the specified (complete) type \p T, in
2224   /// characters.
2225   CharUnits getTypeSizeInChars(QualType T) const;
2226   CharUnits getTypeSizeInChars(const Type *T) const;
2227 
getTypeSizeInCharsIfKnown(QualType Ty)2228   Optional<CharUnits> getTypeSizeInCharsIfKnown(QualType Ty) const {
2229     if (Ty->isIncompleteType() || Ty->isDependentType())
2230       return None;
2231     return getTypeSizeInChars(Ty);
2232   }
2233 
getTypeSizeInCharsIfKnown(const Type * Ty)2234   Optional<CharUnits> getTypeSizeInCharsIfKnown(const Type *Ty) const {
2235     return getTypeSizeInCharsIfKnown(QualType(Ty, 0));
2236   }
2237 
2238   /// Return the ABI-specified alignment of a (complete) type \p T, in
2239   /// bits.
getTypeAlign(QualType T)2240   unsigned getTypeAlign(QualType T) const { return getTypeInfo(T).Align; }
getTypeAlign(const Type * T)2241   unsigned getTypeAlign(const Type *T) const { return getTypeInfo(T).Align; }
2242 
2243   /// Return the ABI-specified natural alignment of a (complete) type \p T,
2244   /// before alignment adjustments, in bits.
2245   ///
2246   /// This alignment is curently used only by ARM and AArch64 when passing
2247   /// arguments of a composite type.
getTypeUnadjustedAlign(QualType T)2248   unsigned getTypeUnadjustedAlign(QualType T) const {
2249     return getTypeUnadjustedAlign(T.getTypePtr());
2250   }
2251   unsigned getTypeUnadjustedAlign(const Type *T) const;
2252 
2253   /// Return the alignment of a type, in bits, or 0 if
2254   /// the type is incomplete and we cannot determine the alignment (for
2255   /// example, from alignment attributes). The returned alignment is the
2256   /// Preferred alignment if NeedsPreferredAlignment is true, otherwise is the
2257   /// ABI alignment.
2258   unsigned getTypeAlignIfKnown(QualType T,
2259                                bool NeedsPreferredAlignment = false) const;
2260 
2261   /// Return the ABI-specified alignment of a (complete) type \p T, in
2262   /// characters.
2263   CharUnits getTypeAlignInChars(QualType T) const;
2264   CharUnits getTypeAlignInChars(const Type *T) const;
2265 
2266   /// Return the PreferredAlignment of a (complete) type \p T, in
2267   /// characters.
getPreferredTypeAlignInChars(QualType T)2268   CharUnits getPreferredTypeAlignInChars(QualType T) const {
2269     return toCharUnitsFromBits(getPreferredTypeAlign(T));
2270   }
2271 
2272   /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a type,
2273   /// in characters, before alignment adjustments. This method does not work on
2274   /// incomplete types.
2275   CharUnits getTypeUnadjustedAlignInChars(QualType T) const;
2276   CharUnits getTypeUnadjustedAlignInChars(const Type *T) const;
2277 
2278   // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
2279   // type is a record, its data size is returned.
2280   TypeInfoChars getTypeInfoDataSizeInChars(QualType T) const;
2281 
2282   TypeInfoChars getTypeInfoInChars(const Type *T) const;
2283   TypeInfoChars getTypeInfoInChars(QualType T) const;
2284 
2285   /// Determine if the alignment the type has was required using an
2286   /// alignment attribute.
2287   bool isAlignmentRequired(const Type *T) const;
2288   bool isAlignmentRequired(QualType T) const;
2289 
2290   /// Return the "preferred" alignment of the specified type \p T for
2291   /// the current target, in bits.
2292   ///
2293   /// This can be different than the ABI alignment in cases where it is
2294   /// beneficial for performance or backwards compatibility preserving to
2295   /// overalign a data type. (Note: despite the name, the preferred alignment
2296   /// is ABI-impacting, and not an optimization.)
getPreferredTypeAlign(QualType T)2297   unsigned getPreferredTypeAlign(QualType T) const {
2298     return getPreferredTypeAlign(T.getTypePtr());
2299   }
2300   unsigned getPreferredTypeAlign(const Type *T) const;
2301 
2302   /// Return the default alignment for __attribute__((aligned)) on
2303   /// this target, to be used if no alignment value is specified.
2304   unsigned getTargetDefaultAlignForAttributeAligned() const;
2305 
2306   /// Return the alignment in bits that should be given to a
2307   /// global variable with type \p T.
2308   unsigned getAlignOfGlobalVar(QualType T) const;
2309 
2310   /// Return the alignment in characters that should be given to a
2311   /// global variable with type \p T.
2312   CharUnits getAlignOfGlobalVarInChars(QualType T) const;
2313 
2314   /// Return a conservative estimate of the alignment of the specified
2315   /// decl \p D.
2316   ///
2317   /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
2318   /// alignment.
2319   ///
2320   /// If \p ForAlignof, references are treated like their underlying type
2321   /// and  large arrays don't get any special treatment. If not \p ForAlignof
2322   /// it computes the value expected by CodeGen: references are treated like
2323   /// pointers and large arrays get extra alignment.
2324   CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;
2325 
2326   /// Return the alignment (in bytes) of the thrown exception object. This is
2327   /// only meaningful for targets that allocate C++ exceptions in a system
2328   /// runtime, such as those using the Itanium C++ ABI.
2329   CharUnits getExnObjectAlignment() const;
2330 
2331   /// Get or compute information about the layout of the specified
2332   /// record (struct/union/class) \p D, which indicates its size and field
2333   /// position information.
2334   const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
2335 
2336   /// Get or compute information about the layout of the specified
2337   /// Objective-C interface.
2338   const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
2339     const;
2340 
2341   void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
2342                         bool Simple = false) const;
2343 
2344   /// Get or compute information about the layout of the specified
2345   /// Objective-C implementation.
2346   ///
2347   /// This may differ from the interface if synthesized ivars are present.
2348   const ASTRecordLayout &
2349   getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
2350 
2351   /// Get our current best idea for the key function of the
2352   /// given record decl, or nullptr if there isn't one.
2353   ///
2354   /// The key function is, according to the Itanium C++ ABI section 5.2.3:
2355   ///   ...the first non-pure virtual function that is not inline at the
2356   ///   point of class definition.
2357   ///
2358   /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
2359   /// virtual functions that are defined 'inline', which means that
2360   /// the result of this computation can change.
2361   const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
2362 
2363   /// Observe that the given method cannot be a key function.
2364   /// Checks the key-function cache for the method's class and clears it
2365   /// if matches the given declaration.
2366   ///
2367   /// This is used in ABIs where out-of-line definitions marked
2368   /// inline are not considered to be key functions.
2369   ///
2370   /// \param method should be the declaration from the class definition
2371   void setNonKeyFunction(const CXXMethodDecl *method);
2372 
2373   /// Loading virtual member pointers using the virtual inheritance model
2374   /// always results in an adjustment using the vbtable even if the index is
2375   /// zero.
2376   ///
2377   /// This is usually OK because the first slot in the vbtable points
2378   /// backwards to the top of the MDC.  However, the MDC might be reusing a
2379   /// vbptr from an nv-base.  In this case, the first slot in the vbtable
2380   /// points to the start of the nv-base which introduced the vbptr and *not*
2381   /// the MDC.  Modify the NonVirtualBaseAdjustment to account for this.
2382   CharUnits getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const;
2383 
2384   /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
2385   uint64_t getFieldOffset(const ValueDecl *FD) const;
2386 
2387   /// Get the offset of an ObjCIvarDecl in bits.
2388   uint64_t lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
2389                                 const ObjCImplementationDecl *ID,
2390                                 const ObjCIvarDecl *Ivar) const;
2391 
2392   /// Find the 'this' offset for the member path in a pointer-to-member
2393   /// APValue.
2394   CharUnits getMemberPointerPathAdjustment(const APValue &MP) const;
2395 
2396   bool isNearlyEmpty(const CXXRecordDecl *RD) const;
2397 
2398   VTableContextBase *getVTableContext();
2399 
2400   /// If \p T is null pointer, assume the target in ASTContext.
2401   MangleContext *createMangleContext(const TargetInfo *T = nullptr);
2402 
2403   /// Creates a device mangle context to correctly mangle lambdas in a mixed
2404   /// architecture compile by setting the lambda mangling number source to the
2405   /// DeviceLambdaManglingNumber. Currently this asserts that the TargetInfo
2406   /// (from the AuxTargetInfo) is a an itanium target.
2407   MangleContext *createDeviceMangleContext(const TargetInfo &T);
2408 
2409   void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
2410                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
2411 
2412   unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
2413   void CollectInheritedProtocols(const Decl *CDecl,
2414                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
2415 
2416   /// Return true if the specified type has unique object representations
2417   /// according to (C++17 [meta.unary.prop]p9)
2418   bool hasUniqueObjectRepresentations(QualType Ty) const;
2419 
2420   //===--------------------------------------------------------------------===//
2421   //                            Type Operators
2422   //===--------------------------------------------------------------------===//
2423 
2424   /// Return the canonical (structural) type corresponding to the
2425   /// specified potentially non-canonical type \p T.
2426   ///
2427   /// The non-canonical version of a type may have many "decorated" versions of
2428   /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
2429   /// returned type is guaranteed to be free of any of these, allowing two
2430   /// canonical types to be compared for exact equality with a simple pointer
2431   /// comparison.
getCanonicalType(QualType T)2432   CanQualType getCanonicalType(QualType T) const {
2433     return CanQualType::CreateUnsafe(T.getCanonicalType());
2434   }
2435 
getCanonicalType(const Type * T)2436   const Type *getCanonicalType(const Type *T) const {
2437     return T->getCanonicalTypeInternal().getTypePtr();
2438   }
2439 
2440   /// Return the canonical parameter type corresponding to the specific
2441   /// potentially non-canonical one.
2442   ///
2443   /// Qualifiers are stripped off, functions are turned into function
2444   /// pointers, and arrays decay one level into pointers.
2445   CanQualType getCanonicalParamType(QualType T) const;
2446 
2447   /// Determine whether the given types \p T1 and \p T2 are equivalent.
hasSameType(QualType T1,QualType T2)2448   bool hasSameType(QualType T1, QualType T2) const {
2449     return getCanonicalType(T1) == getCanonicalType(T2);
2450   }
hasSameType(const Type * T1,const Type * T2)2451   bool hasSameType(const Type *T1, const Type *T2) const {
2452     return getCanonicalType(T1) == getCanonicalType(T2);
2453   }
2454 
2455   /// Return this type as a completely-unqualified array type,
2456   /// capturing the qualifiers in \p Quals.
2457   ///
2458   /// This will remove the minimal amount of sugaring from the types, similar
2459   /// to the behavior of QualType::getUnqualifiedType().
2460   ///
2461   /// \param T is the qualified type, which may be an ArrayType
2462   ///
2463   /// \param Quals will receive the full set of qualifiers that were
2464   /// applied to the array.
2465   ///
2466   /// \returns if this is an array type, the completely unqualified array type
2467   /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
2468   QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
2469 
2470   /// Determine whether the given types are equivalent after
2471   /// cvr-qualifiers have been removed.
hasSameUnqualifiedType(QualType T1,QualType T2)2472   bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
2473     return getCanonicalType(T1).getTypePtr() ==
2474            getCanonicalType(T2).getTypePtr();
2475   }
2476 
hasSameNullabilityTypeQualifier(QualType SubT,QualType SuperT,bool IsParam)2477   bool hasSameNullabilityTypeQualifier(QualType SubT, QualType SuperT,
2478                                        bool IsParam) const {
2479     auto SubTnullability = SubT->getNullability(*this);
2480     auto SuperTnullability = SuperT->getNullability(*this);
2481     if (SubTnullability.hasValue() == SuperTnullability.hasValue()) {
2482       // Neither has nullability; return true
2483       if (!SubTnullability)
2484         return true;
2485       // Both have nullability qualifier.
2486       if (*SubTnullability == *SuperTnullability ||
2487           *SubTnullability == NullabilityKind::Unspecified ||
2488           *SuperTnullability == NullabilityKind::Unspecified)
2489         return true;
2490 
2491       if (IsParam) {
2492         // Ok for the superclass method parameter to be "nonnull" and the subclass
2493         // method parameter to be "nullable"
2494         return (*SuperTnullability == NullabilityKind::NonNull &&
2495                 *SubTnullability == NullabilityKind::Nullable);
2496       }
2497       // For the return type, it's okay for the superclass method to specify
2498       // "nullable" and the subclass method specify "nonnull"
2499       return (*SuperTnullability == NullabilityKind::Nullable &&
2500               *SubTnullability == NullabilityKind::NonNull);
2501     }
2502     return true;
2503   }
2504 
2505   bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
2506                            const ObjCMethodDecl *MethodImp);
2507 
2508   bool UnwrapSimilarTypes(QualType &T1, QualType &T2);
2509   void UnwrapSimilarArrayTypes(QualType &T1, QualType &T2);
2510 
2511   /// Determine if two types are similar, according to the C++ rules. That is,
2512   /// determine if they are the same other than qualifiers on the initial
2513   /// sequence of pointer / pointer-to-member / array (and in Clang, object
2514   /// pointer) types and their element types.
2515   ///
2516   /// Clang offers a number of qualifiers in addition to the C++ qualifiers;
2517   /// those qualifiers are also ignored in the 'similarity' check.
2518   bool hasSimilarType(QualType T1, QualType T2);
2519 
2520   /// Determine if two types are similar, ignoring only CVR qualifiers.
2521   bool hasCvrSimilarType(QualType T1, QualType T2);
2522 
2523   /// Retrieves the "canonical" nested name specifier for a
2524   /// given nested name specifier.
2525   ///
2526   /// The canonical nested name specifier is a nested name specifier
2527   /// that uniquely identifies a type or namespace within the type
2528   /// system. For example, given:
2529   ///
2530   /// \code
2531   /// namespace N {
2532   ///   struct S {
2533   ///     template<typename T> struct X { typename T* type; };
2534   ///   };
2535   /// }
2536   ///
2537   /// template<typename T> struct Y {
2538   ///   typename N::S::X<T>::type member;
2539   /// };
2540   /// \endcode
2541   ///
2542   /// Here, the nested-name-specifier for N::S::X<T>:: will be
2543   /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
2544   /// by declarations in the type system and the canonical type for
2545   /// the template type parameter 'T' is template-param-0-0.
2546   NestedNameSpecifier *
2547   getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
2548 
2549   /// Retrieves the default calling convention for the current target.
2550   CallingConv getDefaultCallingConvention(bool IsVariadic,
2551                                           bool IsCXXMethod,
2552                                           bool IsBuiltin = false) const;
2553 
2554   /// Retrieves the "canonical" template name that refers to a
2555   /// given template.
2556   ///
2557   /// The canonical template name is the simplest expression that can
2558   /// be used to refer to a given template. For most templates, this
2559   /// expression is just the template declaration itself. For example,
2560   /// the template std::vector can be referred to via a variety of
2561   /// names---std::vector, \::std::vector, vector (if vector is in
2562   /// scope), etc.---but all of these names map down to the same
2563   /// TemplateDecl, which is used to form the canonical template name.
2564   ///
2565   /// Dependent template names are more interesting. Here, the
2566   /// template name could be something like T::template apply or
2567   /// std::allocator<T>::template rebind, where the nested name
2568   /// specifier itself is dependent. In this case, the canonical
2569   /// template name uses the shortest form of the dependent
2570   /// nested-name-specifier, which itself contains all canonical
2571   /// types, values, and templates.
2572   TemplateName getCanonicalTemplateName(TemplateName Name) const;
2573 
2574   /// Determine whether the given template names refer to the same
2575   /// template.
2576   bool hasSameTemplateName(TemplateName X, TemplateName Y);
2577 
2578   /// Retrieve the "canonical" template argument.
2579   ///
2580   /// The canonical template argument is the simplest template argument
2581   /// (which may be a type, value, expression, or declaration) that
2582   /// expresses the value of the argument.
2583   TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
2584     const;
2585 
2586   /// Type Query functions.  If the type is an instance of the specified class,
2587   /// return the Type pointer for the underlying maximally pretty type.  This
2588   /// is a member of ASTContext because this may need to do some amount of
2589   /// canonicalization, e.g. to move type qualifiers into the element type.
2590   const ArrayType *getAsArrayType(QualType T) const;
getAsConstantArrayType(QualType T)2591   const ConstantArrayType *getAsConstantArrayType(QualType T) const {
2592     return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
2593   }
getAsVariableArrayType(QualType T)2594   const VariableArrayType *getAsVariableArrayType(QualType T) const {
2595     return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
2596   }
getAsIncompleteArrayType(QualType T)2597   const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
2598     return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
2599   }
getAsDependentSizedArrayType(QualType T)2600   const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
2601     const {
2602     return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
2603   }
2604 
2605   /// Return the innermost element type of an array type.
2606   ///
2607   /// For example, will return "int" for int[m][n]
2608   QualType getBaseElementType(const ArrayType *VAT) const;
2609 
2610   /// Return the innermost element type of a type (which needn't
2611   /// actually be an array type).
2612   QualType getBaseElementType(QualType QT) const;
2613 
2614   /// Return number of constant array elements.
2615   uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
2616 
2617   /// Perform adjustment on the parameter type of a function.
2618   ///
2619   /// This routine adjusts the given parameter type @p T to the actual
2620   /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
2621   /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
2622   QualType getAdjustedParameterType(QualType T) const;
2623 
2624   /// Retrieve the parameter type as adjusted for use in the signature
2625   /// of a function, decaying array and function types and removing top-level
2626   /// cv-qualifiers.
2627   QualType getSignatureParameterType(QualType T) const;
2628 
2629   QualType getExceptionObjectType(QualType T) const;
2630 
2631   /// Return the properly qualified result of decaying the specified
2632   /// array type to a pointer.
2633   ///
2634   /// This operation is non-trivial when handling typedefs etc.  The canonical
2635   /// type of \p T must be an array type, this returns a pointer to a properly
2636   /// qualified element of the array.
2637   ///
2638   /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2639   QualType getArrayDecayedType(QualType T) const;
2640 
2641   /// Return the type that \p PromotableType will promote to: C99
2642   /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
2643   QualType getPromotedIntegerType(QualType PromotableType) const;
2644 
2645   /// Recurses in pointer/array types until it finds an Objective-C
2646   /// retainable type and returns its ownership.
2647   Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
2648 
2649   /// Whether this is a promotable bitfield reference according
2650   /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2651   ///
2652   /// \returns the type this bit-field will promote to, or NULL if no
2653   /// promotion occurs.
2654   QualType isPromotableBitField(Expr *E) const;
2655 
2656   /// Return the highest ranked integer type, see C99 6.3.1.8p1.
2657   ///
2658   /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
2659   /// \p LHS < \p RHS, return -1.
2660   int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
2661 
2662   /// Compare the rank of the two specified floating point types,
2663   /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
2664   ///
2665   /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
2666   /// \p LHS < \p RHS, return -1.
2667   int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
2668 
2669   /// Compare the rank of two floating point types as above, but compare equal
2670   /// if both types have the same floating-point semantics on the target (i.e.
2671   /// long double and double on AArch64 will return 0).
2672   int getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const;
2673 
2674   /// Return a real floating point or a complex type (based on
2675   /// \p typeDomain/\p typeSize).
2676   ///
2677   /// \param typeDomain a real floating point or complex type.
2678   /// \param typeSize a real floating point or complex type.
2679   QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
2680                                              QualType typeDomain) const;
2681 
getTargetAddressSpace(QualType T)2682   unsigned getTargetAddressSpace(QualType T) const {
2683     return getTargetAddressSpace(T.getQualifiers());
2684   }
2685 
getTargetAddressSpace(Qualifiers Q)2686   unsigned getTargetAddressSpace(Qualifiers Q) const {
2687     return getTargetAddressSpace(Q.getAddressSpace());
2688   }
2689 
2690   unsigned getTargetAddressSpace(LangAS AS) const;
2691 
2692   LangAS getLangASForBuiltinAddressSpace(unsigned AS) const;
2693 
2694   /// Get target-dependent integer value for null pointer which is used for
2695   /// constant folding.
2696   uint64_t getTargetNullPointerValue(QualType QT) const;
2697 
addressSpaceMapManglingFor(LangAS AS)2698   bool addressSpaceMapManglingFor(LangAS AS) const {
2699     return AddrSpaceMapMangling || isTargetAddressSpace(AS);
2700   }
2701 
2702 private:
2703   // Helper for integer ordering
2704   unsigned getIntegerRank(const Type *T) const;
2705 
2706 public:
2707   //===--------------------------------------------------------------------===//
2708   //                    Type Compatibility Predicates
2709   //===--------------------------------------------------------------------===//
2710 
2711   /// Compatibility predicates used to check assignment expressions.
2712   bool typesAreCompatible(QualType T1, QualType T2,
2713                           bool CompareUnqualified = false); // C99 6.2.7p1
2714 
2715   bool propertyTypesAreCompatible(QualType, QualType);
2716   bool typesAreBlockPointerCompatible(QualType, QualType);
2717 
isObjCIdType(QualType T)2718   bool isObjCIdType(QualType T) const {
2719     return T == getObjCIdType();
2720   }
2721 
isObjCClassType(QualType T)2722   bool isObjCClassType(QualType T) const {
2723     return T == getObjCClassType();
2724   }
2725 
isObjCSelType(QualType T)2726   bool isObjCSelType(QualType T) const {
2727     return T == getObjCSelType();
2728   }
2729 
2730   bool ObjCQualifiedIdTypesAreCompatible(const ObjCObjectPointerType *LHS,
2731                                          const ObjCObjectPointerType *RHS,
2732                                          bool ForCompare);
2733 
2734   bool ObjCQualifiedClassTypesAreCompatible(const ObjCObjectPointerType *LHS,
2735                                             const ObjCObjectPointerType *RHS);
2736 
2737   // Check the safety of assignment from LHS to RHS
2738   bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
2739                                const ObjCObjectPointerType *RHSOPT);
2740   bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
2741                                const ObjCObjectType *RHS);
2742   bool canAssignObjCInterfacesInBlockPointer(
2743                                           const ObjCObjectPointerType *LHSOPT,
2744                                           const ObjCObjectPointerType *RHSOPT,
2745                                           bool BlockReturnType);
2746   bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
2747   QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
2748                                    const ObjCObjectPointerType *RHSOPT);
2749   bool canBindObjCObjectType(QualType To, QualType From);
2750 
2751   // Functions for calculating composite types
2752   QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
2753                       bool Unqualified = false, bool BlockReturnType = false);
2754   QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
2755                               bool Unqualified = false, bool AllowCXX = false);
2756   QualType mergeFunctionParameterTypes(QualType, QualType,
2757                                        bool OfBlockPointer = false,
2758                                        bool Unqualified = false);
2759   QualType mergeTransparentUnionType(QualType, QualType,
2760                                      bool OfBlockPointer=false,
2761                                      bool Unqualified = false);
2762 
2763   QualType mergeObjCGCQualifiers(QualType, QualType);
2764 
2765   /// This function merges the ExtParameterInfo lists of two functions. It
2766   /// returns true if the lists are compatible. The merged list is returned in
2767   /// NewParamInfos.
2768   ///
2769   /// \param FirstFnType The type of the first function.
2770   ///
2771   /// \param SecondFnType The type of the second function.
2772   ///
2773   /// \param CanUseFirst This flag is set to true if the first function's
2774   /// ExtParameterInfo list can be used as the composite list of
2775   /// ExtParameterInfo.
2776   ///
2777   /// \param CanUseSecond This flag is set to true if the second function's
2778   /// ExtParameterInfo list can be used as the composite list of
2779   /// ExtParameterInfo.
2780   ///
2781   /// \param NewParamInfos The composite list of ExtParameterInfo. The list is
2782   /// empty if none of the flags are set.
2783   ///
2784   bool mergeExtParameterInfo(
2785       const FunctionProtoType *FirstFnType,
2786       const FunctionProtoType *SecondFnType,
2787       bool &CanUseFirst, bool &CanUseSecond,
2788       SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos);
2789 
2790   void ResetObjCLayout(const ObjCContainerDecl *CD);
2791 
2792   //===--------------------------------------------------------------------===//
2793   //                    Integer Predicates
2794   //===--------------------------------------------------------------------===//
2795 
2796   // The width of an integer, as defined in C99 6.2.6.2. This is the number
2797   // of bits in an integer type excluding any padding bits.
2798   unsigned getIntWidth(QualType T) const;
2799 
2800   // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2801   // unsigned integer type.  This method takes a signed type, and returns the
2802   // corresponding unsigned integer type.
2803   // With the introduction of fixed point types in ISO N1169, this method also
2804   // accepts fixed point types and returns the corresponding unsigned type for
2805   // a given fixed point type.
2806   QualType getCorrespondingUnsignedType(QualType T) const;
2807 
2808   // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2809   // unsigned integer type.  This method takes an unsigned type, and returns the
2810   // corresponding signed integer type.
2811   // With the introduction of fixed point types in ISO N1169, this method also
2812   // accepts fixed point types and returns the corresponding signed type for
2813   // a given fixed point type.
2814   QualType getCorrespondingSignedType(QualType T) const;
2815 
2816   // Per ISO N1169, this method accepts fixed point types and returns the
2817   // corresponding saturated type for a given fixed point type.
2818   QualType getCorrespondingSaturatedType(QualType Ty) const;
2819 
2820   // This method accepts fixed point types and returns the corresponding signed
2821   // type. Unlike getCorrespondingUnsignedType(), this only accepts unsigned
2822   // fixed point types because there are unsigned integer types like bool and
2823   // char8_t that don't have signed equivalents.
2824   QualType getCorrespondingSignedFixedPointType(QualType Ty) const;
2825 
2826   //===--------------------------------------------------------------------===//
2827   //                    Integer Values
2828   //===--------------------------------------------------------------------===//
2829 
2830   /// Make an APSInt of the appropriate width and signedness for the
2831   /// given \p Value and integer \p Type.
MakeIntValue(uint64_t Value,QualType Type)2832   llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
2833     // If Type is a signed integer type larger than 64 bits, we need to be sure
2834     // to sign extend Res appropriately.
2835     llvm::APSInt Res(64, !Type->isSignedIntegerOrEnumerationType());
2836     Res = Value;
2837     unsigned Width = getIntWidth(Type);
2838     if (Width != Res.getBitWidth())
2839       return Res.extOrTrunc(Width);
2840     return Res;
2841   }
2842 
2843   bool isSentinelNullExpr(const Expr *E);
2844 
2845   /// Get the implementation of the ObjCInterfaceDecl \p D, or nullptr if
2846   /// none exists.
2847   ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
2848 
2849   /// Get the implementation of the ObjCCategoryDecl \p D, or nullptr if
2850   /// none exists.
2851   ObjCCategoryImplDecl *getObjCImplementation(ObjCCategoryDecl *D);
2852 
2853   /// Return true if there is at least one \@implementation in the TU.
AnyObjCImplementation()2854   bool AnyObjCImplementation() {
2855     return !ObjCImpls.empty();
2856   }
2857 
2858   /// Set the implementation of ObjCInterfaceDecl.
2859   void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2860                              ObjCImplementationDecl *ImplD);
2861 
2862   /// Set the implementation of ObjCCategoryDecl.
2863   void setObjCImplementation(ObjCCategoryDecl *CatD,
2864                              ObjCCategoryImplDecl *ImplD);
2865 
2866   /// Get the duplicate declaration of a ObjCMethod in the same
2867   /// interface, or null if none exists.
2868   const ObjCMethodDecl *
2869   getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const;
2870 
2871   void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2872                                   const ObjCMethodDecl *Redecl);
2873 
2874   /// Returns the Objective-C interface that \p ND belongs to if it is
2875   /// an Objective-C method/property/ivar etc. that is part of an interface,
2876   /// otherwise returns null.
2877   const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
2878 
2879   /// Set the copy initialization expression of a block var decl. \p CanThrow
2880   /// indicates whether the copy expression can throw or not.
2881   void setBlockVarCopyInit(const VarDecl* VD, Expr *CopyExpr, bool CanThrow);
2882 
2883   /// Get the copy initialization expression of the VarDecl \p VD, or
2884   /// nullptr if none exists.
2885   BlockVarCopyInit getBlockVarCopyInit(const VarDecl* VD) const;
2886 
2887   /// Allocate an uninitialized TypeSourceInfo.
2888   ///
2889   /// The caller should initialize the memory held by TypeSourceInfo using
2890   /// the TypeLoc wrappers.
2891   ///
2892   /// \param T the type that will be the basis for type source info. This type
2893   /// should refer to how the declarator was written in source code, not to
2894   /// what type semantic analysis resolved the declarator to.
2895   ///
2896   /// \param Size the size of the type info to create, or 0 if the size
2897   /// should be calculated based on the type.
2898   TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
2899 
2900   /// Allocate a TypeSourceInfo where all locations have been
2901   /// initialized to a given location, which defaults to the empty
2902   /// location.
2903   TypeSourceInfo *
2904   getTrivialTypeSourceInfo(QualType T,
2905                            SourceLocation Loc = SourceLocation()) const;
2906 
2907   /// Add a deallocation callback that will be invoked when the
2908   /// ASTContext is destroyed.
2909   ///
2910   /// \param Callback A callback function that will be invoked on destruction.
2911   ///
2912   /// \param Data Pointer data that will be provided to the callback function
2913   /// when it is called.
2914   void AddDeallocation(void (*Callback)(void *), void *Data) const;
2915 
2916   /// If T isn't trivially destructible, calls AddDeallocation to register it
2917   /// for destruction.
addDestruction(T * Ptr)2918   template <typename T> void addDestruction(T *Ptr) const {
2919     if (!std::is_trivially_destructible<T>::value) {
2920       auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
2921       AddDeallocation(DestroyPtr, Ptr);
2922     }
2923   }
2924 
2925   GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const;
2926   GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
2927 
2928   /// Determines if the decl can be CodeGen'ed or deserialized from PCH
2929   /// lazily, only when used; this is only relevant for function or file scoped
2930   /// var definitions.
2931   ///
2932   /// \returns true if the function/var must be CodeGen'ed/deserialized even if
2933   /// it is not used.
2934   bool DeclMustBeEmitted(const Decl *D);
2935 
2936   /// Visits all versions of a multiversioned function with the passed
2937   /// predicate.
2938   void forEachMultiversionedFunctionVersion(
2939       const FunctionDecl *FD,
2940       llvm::function_ref<void(FunctionDecl *)> Pred) const;
2941 
2942   const CXXConstructorDecl *
2943   getCopyConstructorForExceptionObject(CXXRecordDecl *RD);
2944 
2945   void addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
2946                                             CXXConstructorDecl *CD);
2947 
2948   void addTypedefNameForUnnamedTagDecl(TagDecl *TD, TypedefNameDecl *TND);
2949 
2950   TypedefNameDecl *getTypedefNameForUnnamedTagDecl(const TagDecl *TD);
2951 
2952   void addDeclaratorForUnnamedTagDecl(TagDecl *TD, DeclaratorDecl *DD);
2953 
2954   DeclaratorDecl *getDeclaratorForUnnamedTagDecl(const TagDecl *TD);
2955 
2956   void setManglingNumber(const NamedDecl *ND, unsigned Number);
2957   unsigned getManglingNumber(const NamedDecl *ND) const;
2958 
2959   void setStaticLocalNumber(const VarDecl *VD, unsigned Number);
2960   unsigned getStaticLocalNumber(const VarDecl *VD) const;
2961 
2962   /// Retrieve the context for computing mangling numbers in the given
2963   /// DeclContext.
2964   MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
2965   enum NeedExtraManglingDecl_t { NeedExtraManglingDecl };
2966   MangleNumberingContext &getManglingNumberContext(NeedExtraManglingDecl_t,
2967                                                    const Decl *D);
2968 
2969   std::unique_ptr<MangleNumberingContext> createMangleNumberingContext() const;
2970 
2971   /// Used by ParmVarDecl to store on the side the
2972   /// index of the parameter when it exceeds the size of the normal bitfield.
2973   void setParameterIndex(const ParmVarDecl *D, unsigned index);
2974 
2975   /// Used by ParmVarDecl to retrieve on the side the
2976   /// index of the parameter when it exceeds the size of the normal bitfield.
2977   unsigned getParameterIndex(const ParmVarDecl *D) const;
2978 
2979   /// Return a string representing the human readable name for the specified
2980   /// function declaration or file name. Used by SourceLocExpr and
2981   /// PredefinedExpr to cache evaluated results.
2982   StringLiteral *getPredefinedStringLiteralFromCache(StringRef Key) const;
2983 
2984   /// Return a declaration for the global GUID object representing the given
2985   /// GUID value.
2986   MSGuidDecl *getMSGuidDecl(MSGuidDeclParts Parts) const;
2987 
2988   /// Return the template parameter object of the given type with the given
2989   /// value.
2990   TemplateParamObjectDecl *getTemplateParamObjectDecl(QualType T,
2991                                                       const APValue &V) const;
2992 
2993   /// Parses the target attributes passed in, and returns only the ones that are
2994   /// valid feature names.
2995   ParsedTargetAttr filterFunctionTargetAttrs(const TargetAttr *TD) const;
2996 
2997   void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
2998                              const FunctionDecl *) const;
2999   void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
3000                              GlobalDecl GD) const;
3001 
3002   //===--------------------------------------------------------------------===//
3003   //                    Statistics
3004   //===--------------------------------------------------------------------===//
3005 
3006   /// The number of implicitly-declared default constructors.
3007   unsigned NumImplicitDefaultConstructors = 0;
3008 
3009   /// The number of implicitly-declared default constructors for
3010   /// which declarations were built.
3011   unsigned NumImplicitDefaultConstructorsDeclared = 0;
3012 
3013   /// The number of implicitly-declared copy constructors.
3014   unsigned NumImplicitCopyConstructors = 0;
3015 
3016   /// The number of implicitly-declared copy constructors for
3017   /// which declarations were built.
3018   unsigned NumImplicitCopyConstructorsDeclared = 0;
3019 
3020   /// The number of implicitly-declared move constructors.
3021   unsigned NumImplicitMoveConstructors = 0;
3022 
3023   /// The number of implicitly-declared move constructors for
3024   /// which declarations were built.
3025   unsigned NumImplicitMoveConstructorsDeclared = 0;
3026 
3027   /// The number of implicitly-declared copy assignment operators.
3028   unsigned NumImplicitCopyAssignmentOperators = 0;
3029 
3030   /// The number of implicitly-declared copy assignment operators for
3031   /// which declarations were built.
3032   unsigned NumImplicitCopyAssignmentOperatorsDeclared = 0;
3033 
3034   /// The number of implicitly-declared move assignment operators.
3035   unsigned NumImplicitMoveAssignmentOperators = 0;
3036 
3037   /// The number of implicitly-declared move assignment operators for
3038   /// which declarations were built.
3039   unsigned NumImplicitMoveAssignmentOperatorsDeclared = 0;
3040 
3041   /// The number of implicitly-declared destructors.
3042   unsigned NumImplicitDestructors = 0;
3043 
3044   /// The number of implicitly-declared destructors for which
3045   /// declarations were built.
3046   unsigned NumImplicitDestructorsDeclared = 0;
3047 
3048 public:
3049   /// Initialize built-in types.
3050   ///
3051   /// This routine may only be invoked once for a given ASTContext object.
3052   /// It is normally invoked after ASTContext construction.
3053   ///
3054   /// \param Target The target
3055   void InitBuiltinTypes(const TargetInfo &Target,
3056                         const TargetInfo *AuxTarget = nullptr);
3057 
3058 private:
3059   void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
3060 
3061   class ObjCEncOptions {
3062     unsigned Bits;
3063 
ObjCEncOptions(unsigned Bits)3064     ObjCEncOptions(unsigned Bits) : Bits(Bits) {}
3065 
3066   public:
ObjCEncOptions()3067     ObjCEncOptions() : Bits(0) {}
ObjCEncOptions(const ObjCEncOptions & RHS)3068     ObjCEncOptions(const ObjCEncOptions &RHS) : Bits(RHS.Bits) {}
3069 
3070 #define OPT_LIST(V)                                                            \
3071   V(ExpandPointedToStructures, 0)                                              \
3072   V(ExpandStructures, 1)                                                       \
3073   V(IsOutermostType, 2)                                                        \
3074   V(EncodingProperty, 3)                                                       \
3075   V(IsStructField, 4)                                                          \
3076   V(EncodeBlockParameters, 5)                                                  \
3077   V(EncodeClassNames, 6)                                                       \
3078 
3079 #define V(N,I) ObjCEncOptions& set##N() { Bits |= 1 << I; return *this; }
3080 OPT_LIST(V)
3081 #undef V
3082 
3083 #define V(N,I) bool N() const { return Bits & 1 << I; }
OPT_LIST(V)3084 OPT_LIST(V)
3085 #undef V
3086 
3087 #undef OPT_LIST
3088 
3089     LLVM_NODISCARD ObjCEncOptions keepingOnly(ObjCEncOptions Mask) const {
3090       return Bits & Mask.Bits;
3091     }
3092 
forComponentType()3093     LLVM_NODISCARD ObjCEncOptions forComponentType() const {
3094       ObjCEncOptions Mask = ObjCEncOptions()
3095                                 .setIsOutermostType()
3096                                 .setIsStructField();
3097       return Bits & ~Mask.Bits;
3098     }
3099   };
3100 
3101   // Return the Objective-C type encoding for a given type.
3102   void getObjCEncodingForTypeImpl(QualType t, std::string &S,
3103                                   ObjCEncOptions Options,
3104                                   const FieldDecl *Field,
3105                                   QualType *NotEncodedT = nullptr) const;
3106 
3107   // Adds the encoding of the structure's members.
3108   void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
3109                                        const FieldDecl *Field,
3110                                        bool includeVBases = true,
3111                                        QualType *NotEncodedT=nullptr) const;
3112 
3113 public:
3114   // Adds the encoding of a method parameter or return type.
3115   void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
3116                                          QualType T, std::string& S,
3117                                          bool Extended) const;
3118 
3119   /// Returns true if this is an inline-initialized static data member
3120   /// which is treated as a definition for MSVC compatibility.
3121   bool isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const;
3122 
3123   enum class InlineVariableDefinitionKind {
3124     /// Not an inline variable.
3125     None,
3126 
3127     /// Weak definition of inline variable.
3128     Weak,
3129 
3130     /// Weak for now, might become strong later in this TU.
3131     WeakUnknown,
3132 
3133     /// Strong definition.
3134     Strong
3135   };
3136 
3137   /// Determine whether a definition of this inline variable should
3138   /// be treated as a weak or strong definition. For compatibility with
3139   /// C++14 and before, for a constexpr static data member, if there is an
3140   /// out-of-line declaration of the member, we may promote it from weak to
3141   /// strong.
3142   InlineVariableDefinitionKind
3143   getInlineVariableDefinitionKind(const VarDecl *VD) const;
3144 
3145 private:
3146   friend class DeclarationNameTable;
3147   friend class DeclContext;
3148 
3149   const ASTRecordLayout &
3150   getObjCLayout(const ObjCInterfaceDecl *D,
3151                 const ObjCImplementationDecl *Impl) const;
3152 
3153   /// A set of deallocations that should be performed when the
3154   /// ASTContext is destroyed.
3155   // FIXME: We really should have a better mechanism in the ASTContext to
3156   // manage running destructors for types which do variable sized allocation
3157   // within the AST. In some places we thread the AST bump pointer allocator
3158   // into the datastructures which avoids this mess during deallocation but is
3159   // wasteful of memory, and here we require a lot of error prone book keeping
3160   // in order to track and run destructors while we're tearing things down.
3161   using DeallocationFunctionsAndArguments =
3162       llvm::SmallVector<std::pair<void (*)(void *), void *>, 16>;
3163   mutable DeallocationFunctionsAndArguments Deallocations;
3164 
3165   // FIXME: This currently contains the set of StoredDeclMaps used
3166   // by DeclContext objects.  This probably should not be in ASTContext,
3167   // but we include it here so that ASTContext can quickly deallocate them.
3168   llvm::PointerIntPair<StoredDeclsMap *, 1> LastSDM;
3169 
3170   std::vector<Decl *> TraversalScope;
3171 
3172   std::unique_ptr<VTableContextBase> VTContext;
3173 
3174   void ReleaseDeclContextMaps();
3175 
3176 public:
3177   enum PragmaSectionFlag : unsigned {
3178     PSF_None = 0,
3179     PSF_Read = 0x1,
3180     PSF_Write = 0x2,
3181     PSF_Execute = 0x4,
3182     PSF_Implicit = 0x8,
3183     PSF_ZeroInit = 0x10,
3184     PSF_Invalid = 0x80000000U,
3185   };
3186 
3187   struct SectionInfo {
3188     NamedDecl *Decl;
3189     SourceLocation PragmaSectionLocation;
3190     int SectionFlags;
3191 
3192     SectionInfo() = default;
SectionInfoSectionInfo3193     SectionInfo(NamedDecl *Decl, SourceLocation PragmaSectionLocation,
3194                 int SectionFlags)
3195         : Decl(Decl), PragmaSectionLocation(PragmaSectionLocation),
3196           SectionFlags(SectionFlags) {}
3197   };
3198 
3199   llvm::StringMap<SectionInfo> SectionInfos;
3200 
3201   /// Return a new OMPTraitInfo object owned by this context.
3202   OMPTraitInfo &getNewOMPTraitInfo();
3203 
3204   /// Whether a C++ static variable may be externalized.
3205   bool mayExternalizeStaticVar(const Decl *D) const;
3206 
3207   /// Whether a C++ static variable should be externalized.
3208   bool shouldExternalizeStaticVar(const Decl *D) const;
3209 
3210   StringRef getCUIDHash() const;
3211 
3212   void AddSYCLKernelNamingDecl(const CXXRecordDecl *RD);
3213   bool IsSYCLKernelNamingDecl(const NamedDecl *RD) const;
3214   unsigned GetSYCLKernelNamingIndex(const NamedDecl *RD);
3215   /// A SourceLocation to store whether we have evaluated a kernel name already,
3216   /// and where it happened.  If so, we need to diagnose an illegal use of the
3217   /// builtin.
3218   llvm::MapVector<const SYCLUniqueStableNameExpr *, std::string>
3219       SYCLUniqueStableNameEvaluatedValues;
3220 
3221 private:
3222   /// All OMPTraitInfo objects live in this collection, one per
3223   /// `pragma omp [begin] declare variant` directive.
3224   SmallVector<std::unique_ptr<OMPTraitInfo>, 4> OMPTraitInfoVector;
3225 
3226   /// A list of the (right now just lambda decls) declarations required to
3227   /// name all the SYCL kernels in the translation unit, so that we can get the
3228   /// correct kernel name, as well as implement
3229   /// __builtin_sycl_unique_stable_name.
3230   llvm::DenseMap<const DeclContext *,
3231                  llvm::SmallPtrSet<const CXXRecordDecl *, 4>>
3232       SYCLKernelNamingTypes;
3233   std::unique_ptr<ItaniumMangleContext> SYCLKernelFilterContext;
3234   void FilterSYCLKernelNamingDecls(
3235       const CXXRecordDecl *RD,
3236       llvm::SmallVectorImpl<const CXXRecordDecl *> &Decls);
3237 };
3238 
3239 /// Insertion operator for diagnostics.
3240 const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB,
3241                                       const ASTContext::SectionInfo &Section);
3242 
3243 /// Utility function for constructing a nullary selector.
GetNullarySelector(StringRef name,ASTContext & Ctx)3244 inline Selector GetNullarySelector(StringRef name, ASTContext &Ctx) {
3245   IdentifierInfo* II = &Ctx.Idents.get(name);
3246   return Ctx.Selectors.getSelector(0, &II);
3247 }
3248 
3249 /// Utility function for constructing an unary selector.
GetUnarySelector(StringRef name,ASTContext & Ctx)3250 inline Selector GetUnarySelector(StringRef name, ASTContext &Ctx) {
3251   IdentifierInfo* II = &Ctx.Idents.get(name);
3252   return Ctx.Selectors.getSelector(1, &II);
3253 }
3254 
3255 } // namespace clang
3256 
3257 // operator new and delete aren't allowed inside namespaces.
3258 
3259 /// Placement new for using the ASTContext's allocator.
3260 ///
3261 /// This placement form of operator new uses the ASTContext's allocator for
3262 /// obtaining memory.
3263 ///
3264 /// IMPORTANT: These are also declared in clang/AST/ASTContextAllocate.h!
3265 /// Any changes here need to also be made there.
3266 ///
3267 /// We intentionally avoid using a nothrow specification here so that the calls
3268 /// to this operator will not perform a null check on the result -- the
3269 /// underlying allocator never returns null pointers.
3270 ///
3271 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3272 /// @code
3273 /// // Default alignment (8)
3274 /// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
3275 /// // Specific alignment
3276 /// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
3277 /// @endcode
3278 /// Memory allocated through this placement new operator does not need to be
3279 /// explicitly freed, as ASTContext will free all of this memory when it gets
3280 /// destroyed. Please note that you cannot use delete on the pointer.
3281 ///
3282 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3283 /// @param C The ASTContext that provides the allocator.
3284 /// @param Alignment The alignment of the allocated memory (if the underlying
3285 ///                  allocator supports it).
3286 /// @return The allocated memory. Could be nullptr.
new(size_t Bytes,const clang::ASTContext & C,size_t Alignment)3287 inline void *operator new(size_t Bytes, const clang::ASTContext &C,
3288                           size_t Alignment /* = 8 */) {
3289   return C.Allocate(Bytes, Alignment);
3290 }
3291 
3292 /// Placement delete companion to the new above.
3293 ///
3294 /// This operator is just a companion to the new above. There is no way of
3295 /// invoking it directly; see the new operator for more details. This operator
3296 /// is called implicitly by the compiler if a placement new expression using
3297 /// the ASTContext throws in the object constructor.
delete(void * Ptr,const clang::ASTContext & C,size_t)3298 inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
3299   C.Deallocate(Ptr);
3300 }
3301 
3302 /// This placement form of operator new[] uses the ASTContext's allocator for
3303 /// obtaining memory.
3304 ///
3305 /// We intentionally avoid using a nothrow specification here so that the calls
3306 /// to this operator will not perform a null check on the result -- the
3307 /// underlying allocator never returns null pointers.
3308 ///
3309 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3310 /// @code
3311 /// // Default alignment (8)
3312 /// char *data = new (Context) char[10];
3313 /// // Specific alignment
3314 /// char *data = new (Context, 4) char[10];
3315 /// @endcode
3316 /// Memory allocated through this placement new[] operator does not need to be
3317 /// explicitly freed, as ASTContext will free all of this memory when it gets
3318 /// destroyed. Please note that you cannot use delete on the pointer.
3319 ///
3320 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3321 /// @param C The ASTContext that provides the allocator.
3322 /// @param Alignment The alignment of the allocated memory (if the underlying
3323 ///                  allocator supports it).
3324 /// @return The allocated memory. Could be nullptr.
3325 inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
3326                             size_t Alignment /* = 8 */) {
3327   return C.Allocate(Bytes, Alignment);
3328 }
3329 
3330 /// Placement delete[] companion to the new[] above.
3331 ///
3332 /// This operator is just a companion to the new[] above. There is no way of
3333 /// invoking it directly; see the new[] operator for more details. This operator
3334 /// is called implicitly by the compiler if a placement new[] expression using
3335 /// the ASTContext throws in the object constructor.
3336 inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
3337   C.Deallocate(Ptr);
3338 }
3339 
3340 /// Create the representation of a LazyGenerationalUpdatePtr.
3341 template <typename Owner, typename T,
3342           void (clang::ExternalASTSource::*Update)(Owner)>
3343 typename clang::LazyGenerationalUpdatePtr<Owner, T, Update>::ValueType
makeValue(const clang::ASTContext & Ctx,T Value)3344     clang::LazyGenerationalUpdatePtr<Owner, T, Update>::makeValue(
3345         const clang::ASTContext &Ctx, T Value) {
3346   // Note, this is implemented here so that ExternalASTSource.h doesn't need to
3347   // include ASTContext.h. We explicitly instantiate it for all relevant types
3348   // in ASTContext.cpp.
3349   if (auto *Source = Ctx.getExternalSource())
3350     return new (Ctx) LazyData(Source, Value);
3351   return Value;
3352 }
3353 
3354 #endif // LLVM_CLANG_AST_ASTCONTEXT_H
3355