1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with C++ code generation of virtual tables.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CGCXXABI.h"
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Basic/CodeGenOptions.h"
20 #include "clang/CodeGen/CGFunctionInfo.h"
21 #include "clang/CodeGen/ConstantInitBuilder.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/Support/Format.h"
24 #include "llvm/Transforms/Utils/Cloning.h"
25 #include <algorithm>
26 #include <cstdio>
27
28 using namespace clang;
29 using namespace CodeGen;
30
CodeGenVTables(CodeGenModule & CGM)31 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM)
32 : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {}
33
GetAddrOfThunk(StringRef Name,llvm::Type * FnTy,GlobalDecl GD)34 llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy,
35 GlobalDecl GD) {
36 return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true,
37 /*DontDefer=*/true, /*IsThunk=*/true);
38 }
39
setThunkProperties(CodeGenModule & CGM,const ThunkInfo & Thunk,llvm::Function * ThunkFn,bool ForVTable,GlobalDecl GD)40 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk,
41 llvm::Function *ThunkFn, bool ForVTable,
42 GlobalDecl GD) {
43 CGM.setFunctionLinkage(GD, ThunkFn);
44 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD,
45 !Thunk.Return.isEmpty());
46
47 // Set the right visibility.
48 CGM.setGVProperties(ThunkFn, GD);
49
50 if (!CGM.getCXXABI().exportThunk()) {
51 ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
52 ThunkFn->setDSOLocal(true);
53 }
54
55 if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker())
56 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
57 }
58
59 #ifndef NDEBUG
similar(const ABIArgInfo & infoL,CanQualType typeL,const ABIArgInfo & infoR,CanQualType typeR)60 static bool similar(const ABIArgInfo &infoL, CanQualType typeL,
61 const ABIArgInfo &infoR, CanQualType typeR) {
62 return (infoL.getKind() == infoR.getKind() &&
63 (typeL == typeR ||
64 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) ||
65 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR))));
66 }
67 #endif
68
PerformReturnAdjustment(CodeGenFunction & CGF,QualType ResultType,RValue RV,const ThunkInfo & Thunk)69 static RValue PerformReturnAdjustment(CodeGenFunction &CGF,
70 QualType ResultType, RValue RV,
71 const ThunkInfo &Thunk) {
72 // Emit the return adjustment.
73 bool NullCheckValue = !ResultType->isReferenceType();
74
75 llvm::BasicBlock *AdjustNull = nullptr;
76 llvm::BasicBlock *AdjustNotNull = nullptr;
77 llvm::BasicBlock *AdjustEnd = nullptr;
78
79 llvm::Value *ReturnValue = RV.getScalarVal();
80
81 if (NullCheckValue) {
82 AdjustNull = CGF.createBasicBlock("adjust.null");
83 AdjustNotNull = CGF.createBasicBlock("adjust.notnull");
84 AdjustEnd = CGF.createBasicBlock("adjust.end");
85
86 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue);
87 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull);
88 CGF.EmitBlock(AdjustNotNull);
89 }
90
91 auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl();
92 auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl);
93 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF,
94 Address(ReturnValue, ClassAlign),
95 Thunk.Return);
96
97 if (NullCheckValue) {
98 CGF.Builder.CreateBr(AdjustEnd);
99 CGF.EmitBlock(AdjustNull);
100 CGF.Builder.CreateBr(AdjustEnd);
101 CGF.EmitBlock(AdjustEnd);
102
103 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2);
104 PHI->addIncoming(ReturnValue, AdjustNotNull);
105 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()),
106 AdjustNull);
107 ReturnValue = PHI;
108 }
109
110 return RValue::get(ReturnValue);
111 }
112
113 /// This function clones a function's DISubprogram node and enters it into
114 /// a value map with the intent that the map can be utilized by the cloner
115 /// to short-circuit Metadata node mapping.
116 /// Furthermore, the function resolves any DILocalVariable nodes referenced
117 /// by dbg.value intrinsics so they can be properly mapped during cloning.
resolveTopLevelMetadata(llvm::Function * Fn,llvm::ValueToValueMapTy & VMap)118 static void resolveTopLevelMetadata(llvm::Function *Fn,
119 llvm::ValueToValueMapTy &VMap) {
120 // Clone the DISubprogram node and put it into the Value map.
121 auto *DIS = Fn->getSubprogram();
122 if (!DIS)
123 return;
124 auto *NewDIS = DIS->replaceWithDistinct(DIS->clone());
125 VMap.MD()[DIS].reset(NewDIS);
126
127 // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes
128 // they are referencing.
129 for (auto &BB : Fn->getBasicBlockList()) {
130 for (auto &I : BB) {
131 if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) {
132 auto *DILocal = DII->getVariable();
133 if (!DILocal->isResolved())
134 DILocal->resolve();
135 }
136 }
137 }
138 }
139
140 // This function does roughly the same thing as GenerateThunk, but in a
141 // very different way, so that va_start and va_end work correctly.
142 // FIXME: This function assumes "this" is the first non-sret LLVM argument of
143 // a function, and that there is an alloca built in the entry block
144 // for all accesses to "this".
145 // FIXME: This function assumes there is only one "ret" statement per function.
146 // FIXME: Cloning isn't correct in the presence of indirect goto!
147 // FIXME: This implementation of thunks bloats codesize by duplicating the
148 // function definition. There are alternatives:
149 // 1. Add some sort of stub support to LLVM for cases where we can
150 // do a this adjustment, then a sibcall.
151 // 2. We could transform the definition to take a va_list instead of an
152 // actual variable argument list, then have the thunks (including a
153 // no-op thunk for the regular definition) call va_start/va_end.
154 // There's a bit of per-call overhead for this solution, but it's
155 // better for codesize if the definition is long.
156 llvm::Function *
GenerateVarArgsThunk(llvm::Function * Fn,const CGFunctionInfo & FnInfo,GlobalDecl GD,const ThunkInfo & Thunk)157 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn,
158 const CGFunctionInfo &FnInfo,
159 GlobalDecl GD, const ThunkInfo &Thunk) {
160 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
161 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
162 QualType ResultType = FPT->getReturnType();
163
164 // Get the original function
165 assert(FnInfo.isVariadic());
166 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo);
167 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
168 llvm::Function *BaseFn = cast<llvm::Function>(Callee);
169
170 // Cloning can't work if we don't have a definition. The Microsoft ABI may
171 // require thunks when a definition is not available. Emit an error in these
172 // cases.
173 if (!MD->isDefined()) {
174 CGM.ErrorUnsupported(MD, "return-adjusting thunk with variadic arguments");
175 return Fn;
176 }
177 assert(!BaseFn->isDeclaration() && "cannot clone undefined variadic method");
178
179 // Clone to thunk.
180 llvm::ValueToValueMapTy VMap;
181
182 // We are cloning a function while some Metadata nodes are still unresolved.
183 // Ensure that the value mapper does not encounter any of them.
184 resolveTopLevelMetadata(BaseFn, VMap);
185 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap);
186 Fn->replaceAllUsesWith(NewFn);
187 NewFn->takeName(Fn);
188 Fn->eraseFromParent();
189 Fn = NewFn;
190
191 // "Initialize" CGF (minimally).
192 CurFn = Fn;
193
194 // Get the "this" value
195 llvm::Function::arg_iterator AI = Fn->arg_begin();
196 if (CGM.ReturnTypeUsesSRet(FnInfo))
197 ++AI;
198
199 // Find the first store of "this", which will be to the alloca associated
200 // with "this".
201 Address ThisPtr(&*AI, CGM.getClassPointerAlignment(MD->getParent()));
202 llvm::BasicBlock *EntryBB = &Fn->front();
203 llvm::BasicBlock::iterator ThisStore =
204 std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) {
205 return isa<llvm::StoreInst>(I) &&
206 I.getOperand(0) == ThisPtr.getPointer();
207 });
208 assert(ThisStore != EntryBB->end() &&
209 "Store of this should be in entry block?");
210 // Adjust "this", if necessary.
211 Builder.SetInsertPoint(&*ThisStore);
212 llvm::Value *AdjustedThisPtr =
213 CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This);
214 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr,
215 ThisStore->getOperand(0)->getType());
216 ThisStore->setOperand(0, AdjustedThisPtr);
217
218 if (!Thunk.Return.isEmpty()) {
219 // Fix up the returned value, if necessary.
220 for (llvm::BasicBlock &BB : *Fn) {
221 llvm::Instruction *T = BB.getTerminator();
222 if (isa<llvm::ReturnInst>(T)) {
223 RValue RV = RValue::get(T->getOperand(0));
224 T->eraseFromParent();
225 Builder.SetInsertPoint(&BB);
226 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk);
227 Builder.CreateRet(RV.getScalarVal());
228 break;
229 }
230 }
231 }
232
233 return Fn;
234 }
235
StartThunk(llvm::Function * Fn,GlobalDecl GD,const CGFunctionInfo & FnInfo,bool IsUnprototyped)236 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD,
237 const CGFunctionInfo &FnInfo,
238 bool IsUnprototyped) {
239 assert(!CurGD.getDecl() && "CurGD was already set!");
240 CurGD = GD;
241 CurFuncIsThunk = true;
242
243 // Build FunctionArgs.
244 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
245 QualType ThisType = MD->getThisType();
246 QualType ResultType;
247 if (IsUnprototyped)
248 ResultType = CGM.getContext().VoidTy;
249 else if (CGM.getCXXABI().HasThisReturn(GD))
250 ResultType = ThisType;
251 else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
252 ResultType = CGM.getContext().VoidPtrTy;
253 else
254 ResultType = MD->getType()->castAs<FunctionProtoType>()->getReturnType();
255 FunctionArgList FunctionArgs;
256
257 // Create the implicit 'this' parameter declaration.
258 CGM.getCXXABI().buildThisParam(*this, FunctionArgs);
259
260 // Add the rest of the parameters, if we have a prototype to work with.
261 if (!IsUnprototyped) {
262 FunctionArgs.append(MD->param_begin(), MD->param_end());
263
264 if (isa<CXXDestructorDecl>(MD))
265 CGM.getCXXABI().addImplicitStructorParams(*this, ResultType,
266 FunctionArgs);
267 }
268
269 // Start defining the function.
270 auto NL = ApplyDebugLocation::CreateEmpty(*this);
271 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs,
272 MD->getLocation());
273 // Create a scope with an artificial location for the body of this function.
274 auto AL = ApplyDebugLocation::CreateArtificial(*this);
275
276 // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves.
277 CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
278 CXXThisValue = CXXABIThisValue;
279 CurCodeDecl = MD;
280 CurFuncDecl = MD;
281 }
282
FinishThunk()283 void CodeGenFunction::FinishThunk() {
284 // Clear these to restore the invariants expected by
285 // StartFunction/FinishFunction.
286 CurCodeDecl = nullptr;
287 CurFuncDecl = nullptr;
288
289 FinishFunction();
290 }
291
EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,const ThunkInfo * Thunk,bool IsUnprototyped)292 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
293 const ThunkInfo *Thunk,
294 bool IsUnprototyped) {
295 assert(isa<CXXMethodDecl>(CurGD.getDecl()) &&
296 "Please use a new CGF for this thunk");
297 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl());
298
299 // Adjust the 'this' pointer if necessary
300 llvm::Value *AdjustedThisPtr =
301 Thunk ? CGM.getCXXABI().performThisAdjustment(
302 *this, LoadCXXThisAddress(), Thunk->This)
303 : LoadCXXThis();
304
305 // If perfect forwarding is required a variadic method, a method using
306 // inalloca, or an unprototyped thunk, use musttail. Emit an error if this
307 // thunk requires a return adjustment, since that is impossible with musttail.
308 if (CurFnInfo->usesInAlloca() || CurFnInfo->isVariadic() || IsUnprototyped) {
309 if (Thunk && !Thunk->Return.isEmpty()) {
310 if (IsUnprototyped)
311 CGM.ErrorUnsupported(
312 MD, "return-adjusting thunk with incomplete parameter type");
313 else if (CurFnInfo->isVariadic())
314 llvm_unreachable("shouldn't try to emit musttail return-adjusting "
315 "thunks for variadic functions");
316 else
317 CGM.ErrorUnsupported(
318 MD, "non-trivial argument copy for return-adjusting thunk");
319 }
320 EmitMustTailThunk(CurGD, AdjustedThisPtr, Callee);
321 return;
322 }
323
324 // Start building CallArgs.
325 CallArgList CallArgs;
326 QualType ThisType = MD->getThisType();
327 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType);
328
329 if (isa<CXXDestructorDecl>(MD))
330 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs);
331
332 #ifndef NDEBUG
333 unsigned PrefixArgs = CallArgs.size() - 1;
334 #endif
335 // Add the rest of the arguments.
336 for (const ParmVarDecl *PD : MD->parameters())
337 EmitDelegateCallArg(CallArgs, PD, SourceLocation());
338
339 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
340
341 #ifndef NDEBUG
342 const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall(
343 CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1), PrefixArgs);
344 assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() &&
345 CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() &&
346 CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention());
347 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types
348 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(),
349 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType()));
350 assert(CallFnInfo.arg_size() == CurFnInfo->arg_size());
351 for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i)
352 assert(similar(CallFnInfo.arg_begin()[i].info,
353 CallFnInfo.arg_begin()[i].type,
354 CurFnInfo->arg_begin()[i].info,
355 CurFnInfo->arg_begin()[i].type));
356 #endif
357
358 // Determine whether we have a return value slot to use.
359 QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD)
360 ? ThisType
361 : CGM.getCXXABI().hasMostDerivedReturn(CurGD)
362 ? CGM.getContext().VoidPtrTy
363 : FPT->getReturnType();
364 ReturnValueSlot Slot;
365 if (!ResultType->isVoidType() &&
366 (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect ||
367 hasAggregateEvaluationKind(ResultType)))
368 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified(),
369 /*IsUnused=*/false, /*IsExternallyDestructed=*/true);
370
371 // Now emit our call.
372 llvm::CallBase *CallOrInvoke;
373 RValue RV = EmitCall(*CurFnInfo, CGCallee::forDirect(Callee, CurGD), Slot,
374 CallArgs, &CallOrInvoke);
375
376 // Consider return adjustment if we have ThunkInfo.
377 if (Thunk && !Thunk->Return.isEmpty())
378 RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk);
379 else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke))
380 Call->setTailCallKind(llvm::CallInst::TCK_Tail);
381
382 // Emit return.
383 if (!ResultType->isVoidType() && Slot.isNull())
384 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType);
385
386 // Disable the final ARC autorelease.
387 AutoreleaseResult = false;
388
389 FinishThunk();
390 }
391
EmitMustTailThunk(GlobalDecl GD,llvm::Value * AdjustedThisPtr,llvm::FunctionCallee Callee)392 void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD,
393 llvm::Value *AdjustedThisPtr,
394 llvm::FunctionCallee Callee) {
395 // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery
396 // to translate AST arguments into LLVM IR arguments. For thunks, we know
397 // that the caller prototype more or less matches the callee prototype with
398 // the exception of 'this'.
399 SmallVector<llvm::Value *, 8> Args;
400 for (llvm::Argument &A : CurFn->args())
401 Args.push_back(&A);
402
403 // Set the adjusted 'this' pointer.
404 const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info;
405 if (ThisAI.isDirect()) {
406 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
407 int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0;
408 llvm::Type *ThisType = Args[ThisArgNo]->getType();
409 if (ThisType != AdjustedThisPtr->getType())
410 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
411 Args[ThisArgNo] = AdjustedThisPtr;
412 } else {
413 assert(ThisAI.isInAlloca() && "this is passed directly or inalloca");
414 Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl);
415 llvm::Type *ThisType = ThisAddr.getElementType();
416 if (ThisType != AdjustedThisPtr->getType())
417 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
418 Builder.CreateStore(AdjustedThisPtr, ThisAddr);
419 }
420
421 // Emit the musttail call manually. Even if the prologue pushed cleanups, we
422 // don't actually want to run them.
423 llvm::CallInst *Call = Builder.CreateCall(Callee, Args);
424 Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
425
426 // Apply the standard set of call attributes.
427 unsigned CallingConv;
428 llvm::AttributeList Attrs;
429 CGM.ConstructAttributeList(Callee.getCallee()->getName(), *CurFnInfo, GD,
430 Attrs, CallingConv, /*AttrOnCallSite=*/true,
431 /*IsThunk=*/false);
432 Call->setAttributes(Attrs);
433 Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
434
435 if (Call->getType()->isVoidTy())
436 Builder.CreateRetVoid();
437 else
438 Builder.CreateRet(Call);
439
440 // Finish the function to maintain CodeGenFunction invariants.
441 // FIXME: Don't emit unreachable code.
442 EmitBlock(createBasicBlock());
443
444 FinishThunk();
445 }
446
generateThunk(llvm::Function * Fn,const CGFunctionInfo & FnInfo,GlobalDecl GD,const ThunkInfo & Thunk,bool IsUnprototyped)447 void CodeGenFunction::generateThunk(llvm::Function *Fn,
448 const CGFunctionInfo &FnInfo, GlobalDecl GD,
449 const ThunkInfo &Thunk,
450 bool IsUnprototyped) {
451 StartThunk(Fn, GD, FnInfo, IsUnprototyped);
452 // Create a scope with an artificial location for the body of this function.
453 auto AL = ApplyDebugLocation::CreateArtificial(*this);
454
455 // Get our callee. Use a placeholder type if this method is unprototyped so
456 // that CodeGenModule doesn't try to set attributes.
457 llvm::Type *Ty;
458 if (IsUnprototyped)
459 Ty = llvm::StructType::get(getLLVMContext());
460 else
461 Ty = CGM.getTypes().GetFunctionType(FnInfo);
462
463 llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
464
465 // Fix up the function type for an unprototyped musttail call.
466 if (IsUnprototyped)
467 Callee = llvm::ConstantExpr::getBitCast(Callee, Fn->getType());
468
469 // Make the call and return the result.
470 EmitCallAndReturnForThunk(llvm::FunctionCallee(Fn->getFunctionType(), Callee),
471 &Thunk, IsUnprototyped);
472 }
473
shouldEmitVTableThunk(CodeGenModule & CGM,const CXXMethodDecl * MD,bool IsUnprototyped,bool ForVTable)474 static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD,
475 bool IsUnprototyped, bool ForVTable) {
476 // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to
477 // provide thunks for us.
478 if (CGM.getTarget().getCXXABI().isMicrosoft())
479 return true;
480
481 // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide
482 // definitions of the main method. Therefore, emitting thunks with the vtable
483 // is purely an optimization. Emit the thunk if optimizations are enabled and
484 // all of the parameter types are complete.
485 if (ForVTable)
486 return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped;
487
488 // Always emit thunks along with the method definition.
489 return true;
490 }
491
maybeEmitThunk(GlobalDecl GD,const ThunkInfo & TI,bool ForVTable)492 llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD,
493 const ThunkInfo &TI,
494 bool ForVTable) {
495 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
496
497 // First, get a declaration. Compute the mangled name. Don't worry about
498 // getting the function prototype right, since we may only need this
499 // declaration to fill in a vtable slot.
500 SmallString<256> Name;
501 MangleContext &MCtx = CGM.getCXXABI().getMangleContext();
502 llvm::raw_svector_ostream Out(Name);
503 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD))
504 MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI.This, Out);
505 else
506 MCtx.mangleThunk(MD, TI, Out);
507 llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
508 llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD);
509
510 // If we don't need to emit a definition, return this declaration as is.
511 bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible(
512 MD->getType()->castAs<FunctionType>());
513 if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable))
514 return Thunk;
515
516 // Arrange a function prototype appropriate for a function definition. In some
517 // cases in the MS ABI, we may need to build an unprototyped musttail thunk.
518 const CGFunctionInfo &FnInfo =
519 IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD)
520 : CGM.getTypes().arrangeGlobalDeclaration(GD);
521 llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo);
522
523 // If the type of the underlying GlobalValue is wrong, we'll have to replace
524 // it. It should be a declaration.
525 llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts());
526 if (ThunkFn->getFunctionType() != ThunkFnTy) {
527 llvm::GlobalValue *OldThunkFn = ThunkFn;
528
529 assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration");
530
531 // Remove the name from the old thunk function and get a new thunk.
532 OldThunkFn->setName(StringRef());
533 ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage,
534 Name.str(), &CGM.getModule());
535 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn, /*IsThunk=*/false);
536
537 // If needed, replace the old thunk with a bitcast.
538 if (!OldThunkFn->use_empty()) {
539 llvm::Constant *NewPtrForOldDecl =
540 llvm::ConstantExpr::getBitCast(ThunkFn, OldThunkFn->getType());
541 OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl);
542 }
543
544 // Remove the old thunk.
545 OldThunkFn->eraseFromParent();
546 }
547
548 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions();
549 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions;
550
551 if (!ThunkFn->isDeclaration()) {
552 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) {
553 // There is already a thunk emitted for this function, do nothing.
554 return ThunkFn;
555 }
556
557 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
558 return ThunkFn;
559 }
560
561 // If this will be unprototyped, add the "thunk" attribute so that LLVM knows
562 // that the return type is meaningless. These thunks can be used to call
563 // functions with differing return types, and the caller is required to cast
564 // the prototype appropriately to extract the correct value.
565 if (IsUnprototyped)
566 ThunkFn->addFnAttr("thunk");
567
568 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn);
569
570 // Thunks for variadic methods are special because in general variadic
571 // arguments cannot be perfectly forwarded. In the general case, clang
572 // implements such thunks by cloning the original function body. However, for
573 // thunks with no return adjustment on targets that support musttail, we can
574 // use musttail to perfectly forward the variadic arguments.
575 bool ShouldCloneVarArgs = false;
576 if (!IsUnprototyped && ThunkFn->isVarArg()) {
577 ShouldCloneVarArgs = true;
578 if (TI.Return.isEmpty()) {
579 switch (CGM.getTriple().getArch()) {
580 case llvm::Triple::x86_64:
581 case llvm::Triple::x86:
582 case llvm::Triple::aarch64:
583 ShouldCloneVarArgs = false;
584 break;
585 default:
586 break;
587 }
588 }
589 }
590
591 if (ShouldCloneVarArgs) {
592 if (UseAvailableExternallyLinkage)
593 return ThunkFn;
594 ThunkFn =
595 CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, TI);
596 } else {
597 // Normal thunk body generation.
598 CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped);
599 }
600
601 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
602 return ThunkFn;
603 }
604
EmitThunks(GlobalDecl GD)605 void CodeGenVTables::EmitThunks(GlobalDecl GD) {
606 const CXXMethodDecl *MD =
607 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl();
608
609 // We don't need to generate thunks for the base destructor.
610 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
611 return;
612
613 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector =
614 VTContext->getThunkInfo(GD);
615
616 if (!ThunkInfoVector)
617 return;
618
619 for (const ThunkInfo& Thunk : *ThunkInfoVector)
620 maybeEmitThunk(GD, Thunk, /*ForVTable=*/false);
621 }
622
addRelativeComponent(ConstantArrayBuilder & builder,llvm::Constant * component,unsigned vtableAddressPoint,bool vtableHasLocalLinkage,bool isCompleteDtor) const623 void CodeGenVTables::addRelativeComponent(ConstantArrayBuilder &builder,
624 llvm::Constant *component,
625 unsigned vtableAddressPoint,
626 bool vtableHasLocalLinkage,
627 bool isCompleteDtor) const {
628 // No need to get the offset of a nullptr.
629 if (component->isNullValue())
630 return builder.add(llvm::ConstantInt::get(CGM.Int32Ty, 0));
631
632 auto *globalVal =
633 cast<llvm::GlobalValue>(component->stripPointerCastsAndAliases());
634 llvm::Module &module = CGM.getModule();
635
636 // We don't want to copy the linkage of the vtable exactly because we still
637 // want the stub/proxy to be emitted for properly calculating the offset.
638 // Examples where there would be no symbol emitted are available_externally
639 // and private linkages.
640 auto stubLinkage = vtableHasLocalLinkage ? llvm::GlobalValue::InternalLinkage
641 : llvm::GlobalValue::ExternalLinkage;
642
643 llvm::Constant *target;
644 if (auto *func = dyn_cast<llvm::Function>(globalVal)) {
645 target = llvm::DSOLocalEquivalent::get(func);
646 } else {
647 llvm::SmallString<16> rttiProxyName(globalVal->getName());
648 rttiProxyName.append(".rtti_proxy");
649
650 // The RTTI component may not always be emitted in the same linkage unit as
651 // the vtable. As a general case, we can make a dso_local proxy to the RTTI
652 // that points to the actual RTTI struct somewhere. This will result in a
653 // GOTPCREL relocation when taking the relative offset to the proxy.
654 llvm::GlobalVariable *proxy = module.getNamedGlobal(rttiProxyName);
655 if (!proxy) {
656 proxy = new llvm::GlobalVariable(module, globalVal->getType(),
657 /*isConstant=*/true, stubLinkage,
658 globalVal, rttiProxyName);
659 proxy->setDSOLocal(true);
660 proxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
661 if (!proxy->hasLocalLinkage()) {
662 proxy->setVisibility(llvm::GlobalValue::HiddenVisibility);
663 proxy->setComdat(module.getOrInsertComdat(rttiProxyName));
664 }
665 }
666 target = proxy;
667 }
668
669 builder.addRelativeOffsetToPosition(CGM.Int32Ty, target,
670 /*position=*/vtableAddressPoint);
671 }
672
useRelativeLayout() const673 bool CodeGenVTables::useRelativeLayout() const {
674 return CGM.getTarget().getCXXABI().isItaniumFamily() &&
675 CGM.getItaniumVTableContext().isRelativeLayout();
676 }
677
getVTableComponentType() const678 llvm::Type *CodeGenVTables::getVTableComponentType() const {
679 if (useRelativeLayout())
680 return CGM.Int32Ty;
681 return CGM.Int8PtrTy;
682 }
683
AddPointerLayoutOffset(const CodeGenModule & CGM,ConstantArrayBuilder & builder,CharUnits offset)684 static void AddPointerLayoutOffset(const CodeGenModule &CGM,
685 ConstantArrayBuilder &builder,
686 CharUnits offset) {
687 builder.add(llvm::ConstantExpr::getIntToPtr(
688 llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()),
689 CGM.Int8PtrTy));
690 }
691
AddRelativeLayoutOffset(const CodeGenModule & CGM,ConstantArrayBuilder & builder,CharUnits offset)692 static void AddRelativeLayoutOffset(const CodeGenModule &CGM,
693 ConstantArrayBuilder &builder,
694 CharUnits offset) {
695 builder.add(llvm::ConstantInt::get(CGM.Int32Ty, offset.getQuantity()));
696 }
697
addVTableComponent(ConstantArrayBuilder & builder,const VTableLayout & layout,unsigned componentIndex,llvm::Constant * rtti,unsigned & nextVTableThunkIndex,unsigned vtableAddressPoint,bool vtableHasLocalLinkage)698 void CodeGenVTables::addVTableComponent(ConstantArrayBuilder &builder,
699 const VTableLayout &layout,
700 unsigned componentIndex,
701 llvm::Constant *rtti,
702 unsigned &nextVTableThunkIndex,
703 unsigned vtableAddressPoint,
704 bool vtableHasLocalLinkage) {
705 auto &component = layout.vtable_components()[componentIndex];
706
707 auto addOffsetConstant =
708 useRelativeLayout() ? AddRelativeLayoutOffset : AddPointerLayoutOffset;
709
710 switch (component.getKind()) {
711 case VTableComponent::CK_VCallOffset:
712 return addOffsetConstant(CGM, builder, component.getVCallOffset());
713
714 case VTableComponent::CK_VBaseOffset:
715 return addOffsetConstant(CGM, builder, component.getVBaseOffset());
716
717 case VTableComponent::CK_OffsetToTop:
718 return addOffsetConstant(CGM, builder, component.getOffsetToTop());
719
720 case VTableComponent::CK_RTTI:
721 if (useRelativeLayout())
722 return addRelativeComponent(builder, rtti, vtableAddressPoint,
723 vtableHasLocalLinkage,
724 /*isCompleteDtor=*/false);
725 else
726 return builder.add(llvm::ConstantExpr::getBitCast(rtti, CGM.Int8PtrTy));
727
728 case VTableComponent::CK_FunctionPointer:
729 case VTableComponent::CK_CompleteDtorPointer:
730 case VTableComponent::CK_DeletingDtorPointer: {
731 GlobalDecl GD = component.getGlobalDecl();
732
733 if (CGM.getLangOpts().CUDA) {
734 // Emit NULL for methods we can't codegen on this
735 // side. Otherwise we'd end up with vtable with unresolved
736 // references.
737 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
738 // OK on device side: functions w/ __device__ attribute
739 // OK on host side: anything except __device__-only functions.
740 bool CanEmitMethod =
741 CGM.getLangOpts().CUDAIsDevice
742 ? MD->hasAttr<CUDADeviceAttr>()
743 : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>());
744 if (!CanEmitMethod)
745 return builder.add(llvm::ConstantExpr::getNullValue(CGM.Int8PtrTy));
746 // Method is acceptable, continue processing as usual.
747 }
748
749 auto getSpecialVirtualFn = [&](StringRef name) -> llvm::Constant * {
750 // FIXME(PR43094): When merging comdat groups, lld can select a local
751 // symbol as the signature symbol even though it cannot be accessed
752 // outside that symbol's TU. The relative vtables ABI would make
753 // __cxa_pure_virtual and __cxa_deleted_virtual local symbols, and
754 // depending on link order, the comdat groups could resolve to the one
755 // with the local symbol. As a temporary solution, fill these components
756 // with zero. We shouldn't be calling these in the first place anyway.
757 if (useRelativeLayout())
758 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
759
760 // For NVPTX devices in OpenMP emit special functon as null pointers,
761 // otherwise linking ends up with unresolved references.
762 if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPIsDevice &&
763 CGM.getTriple().isNVPTX())
764 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
765 llvm::FunctionType *fnTy =
766 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
767 llvm::Constant *fn = cast<llvm::Constant>(
768 CGM.CreateRuntimeFunction(fnTy, name).getCallee());
769 if (auto f = dyn_cast<llvm::Function>(fn))
770 f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
771 return llvm::ConstantExpr::getBitCast(fn, CGM.Int8PtrTy);
772 };
773
774 llvm::Constant *fnPtr;
775
776 // Pure virtual member functions.
777 if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) {
778 if (!PureVirtualFn)
779 PureVirtualFn =
780 getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName());
781 fnPtr = PureVirtualFn;
782
783 // Deleted virtual member functions.
784 } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) {
785 if (!DeletedVirtualFn)
786 DeletedVirtualFn =
787 getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName());
788 fnPtr = DeletedVirtualFn;
789
790 // Thunks.
791 } else if (nextVTableThunkIndex < layout.vtable_thunks().size() &&
792 layout.vtable_thunks()[nextVTableThunkIndex].first ==
793 componentIndex) {
794 auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second;
795
796 nextVTableThunkIndex++;
797 fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true);
798
799 // Otherwise we can use the method definition directly.
800 } else {
801 llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
802 fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true);
803 }
804
805 if (useRelativeLayout()) {
806 return addRelativeComponent(
807 builder, fnPtr, vtableAddressPoint, vtableHasLocalLinkage,
808 component.getKind() == VTableComponent::CK_CompleteDtorPointer);
809 } else
810 return builder.add(llvm::ConstantExpr::getBitCast(fnPtr, CGM.Int8PtrTy));
811 }
812
813 case VTableComponent::CK_UnusedFunctionPointer:
814 if (useRelativeLayout())
815 return builder.add(llvm::ConstantExpr::getNullValue(CGM.Int32Ty));
816 else
817 return builder.addNullPointer(CGM.Int8PtrTy);
818 }
819
820 llvm_unreachable("Unexpected vtable component kind");
821 }
822
getVTableType(const VTableLayout & layout)823 llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) {
824 SmallVector<llvm::Type *, 4> tys;
825 llvm::Type *componentType = getVTableComponentType();
826 for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i)
827 tys.push_back(llvm::ArrayType::get(componentType, layout.getVTableSize(i)));
828
829 return llvm::StructType::get(CGM.getLLVMContext(), tys);
830 }
831
createVTableInitializer(ConstantStructBuilder & builder,const VTableLayout & layout,llvm::Constant * rtti,bool vtableHasLocalLinkage)832 void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder,
833 const VTableLayout &layout,
834 llvm::Constant *rtti,
835 bool vtableHasLocalLinkage) {
836 llvm::Type *componentType = getVTableComponentType();
837
838 const auto &addressPoints = layout.getAddressPointIndices();
839 unsigned nextVTableThunkIndex = 0;
840 for (unsigned vtableIndex = 0, endIndex = layout.getNumVTables();
841 vtableIndex != endIndex; ++vtableIndex) {
842 auto vtableElem = builder.beginArray(componentType);
843
844 size_t vtableStart = layout.getVTableOffset(vtableIndex);
845 size_t vtableEnd = vtableStart + layout.getVTableSize(vtableIndex);
846 for (size_t componentIndex = vtableStart; componentIndex < vtableEnd;
847 ++componentIndex) {
848 addVTableComponent(vtableElem, layout, componentIndex, rtti,
849 nextVTableThunkIndex, addressPoints[vtableIndex],
850 vtableHasLocalLinkage);
851 }
852 vtableElem.finishAndAddTo(builder);
853 }
854 }
855
GenerateConstructionVTable(const CXXRecordDecl * RD,const BaseSubobject & Base,bool BaseIsVirtual,llvm::GlobalVariable::LinkageTypes Linkage,VTableAddressPointsMapTy & AddressPoints)856 llvm::GlobalVariable *CodeGenVTables::GenerateConstructionVTable(
857 const CXXRecordDecl *RD, const BaseSubobject &Base, bool BaseIsVirtual,
858 llvm::GlobalVariable::LinkageTypes Linkage,
859 VTableAddressPointsMapTy &AddressPoints) {
860 if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
861 DI->completeClassData(Base.getBase());
862
863 std::unique_ptr<VTableLayout> VTLayout(
864 getItaniumVTableContext().createConstructionVTableLayout(
865 Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD));
866
867 // Add the address points.
868 AddressPoints = VTLayout->getAddressPoints();
869
870 // Get the mangled construction vtable name.
871 SmallString<256> OutName;
872 llvm::raw_svector_ostream Out(OutName);
873 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext())
874 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(),
875 Base.getBase(), Out);
876 SmallString<256> Name(OutName);
877
878 bool UsingRelativeLayout = getItaniumVTableContext().isRelativeLayout();
879 bool VTableAliasExists =
880 UsingRelativeLayout && CGM.getModule().getNamedAlias(Name);
881 if (VTableAliasExists) {
882 // We previously made the vtable hidden and changed its name.
883 Name.append(".local");
884 }
885
886 llvm::Type *VTType = getVTableType(*VTLayout);
887
888 // Construction vtable symbols are not part of the Itanium ABI, so we cannot
889 // guarantee that they actually will be available externally. Instead, when
890 // emitting an available_externally VTT, we provide references to an internal
891 // linkage construction vtable. The ABI only requires complete-object vtables
892 // to be the same for all instances of a type, not construction vtables.
893 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
894 Linkage = llvm::GlobalVariable::InternalLinkage;
895
896 unsigned Align = CGM.getDataLayout().getABITypeAlignment(VTType);
897
898 // Create the variable that will hold the construction vtable.
899 llvm::GlobalVariable *VTable =
900 CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align);
901
902 // V-tables are always unnamed_addr.
903 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
904
905 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(
906 CGM.getContext().getTagDeclType(Base.getBase()));
907
908 // Create and set the initializer.
909 ConstantInitBuilder builder(CGM);
910 auto components = builder.beginStruct();
911 createVTableInitializer(components, *VTLayout, RTTI,
912 VTable->hasLocalLinkage());
913 components.finishAndSetAsInitializer(VTable);
914
915 // Set properties only after the initializer has been set to ensure that the
916 // GV is treated as definition and not declaration.
917 assert(!VTable->isDeclaration() && "Shouldn't set properties on declaration");
918 CGM.setGVProperties(VTable, RD);
919
920 CGM.EmitVTableTypeMetadata(RD, VTable, *VTLayout.get());
921
922 if (UsingRelativeLayout && !VTable->isDSOLocal())
923 GenerateRelativeVTableAlias(VTable, OutName);
924
925 return VTable;
926 }
927
928 // If the VTable is not dso_local, then we will not be able to indicate that
929 // the VTable does not need a relocation and move into rodata. A frequent
930 // time this can occur is for classes that should be made public from a DSO
931 // (like in libc++). For cases like these, we can make the vtable hidden or
932 // private and create a public alias with the same visibility and linkage as
933 // the original vtable type.
GenerateRelativeVTableAlias(llvm::GlobalVariable * VTable,llvm::StringRef AliasNameRef)934 void CodeGenVTables::GenerateRelativeVTableAlias(llvm::GlobalVariable *VTable,
935 llvm::StringRef AliasNameRef) {
936 assert(getItaniumVTableContext().isRelativeLayout() &&
937 "Can only use this if the relative vtable ABI is used");
938 assert(!VTable->isDSOLocal() && "This should be called only if the vtable is "
939 "not guaranteed to be dso_local");
940
941 // If the vtable is available_externally, we shouldn't (or need to) generate
942 // an alias for it in the first place since the vtable won't actually by
943 // emitted in this compilation unit.
944 if (VTable->hasAvailableExternallyLinkage())
945 return;
946
947 // Create a new string in the event the alias is already the name of the
948 // vtable. Using the reference directly could lead to use of an inititialized
949 // value in the module's StringMap.
950 llvm::SmallString<256> AliasName(AliasNameRef);
951 VTable->setName(AliasName + ".local");
952
953 auto Linkage = VTable->getLinkage();
954 assert(llvm::GlobalAlias::isValidLinkage(Linkage) &&
955 "Invalid vtable alias linkage");
956
957 llvm::GlobalAlias *VTableAlias = CGM.getModule().getNamedAlias(AliasName);
958 if (!VTableAlias) {
959 VTableAlias = llvm::GlobalAlias::create(VTable->getValueType(),
960 VTable->getAddressSpace(), Linkage,
961 AliasName, &CGM.getModule());
962 } else {
963 assert(VTableAlias->getValueType() == VTable->getValueType());
964 assert(VTableAlias->getLinkage() == Linkage);
965 }
966 VTableAlias->setVisibility(VTable->getVisibility());
967 VTableAlias->setUnnamedAddr(VTable->getUnnamedAddr());
968
969 // Both of these imply dso_local for the vtable.
970 if (!VTable->hasComdat()) {
971 // If this is in a comdat, then we shouldn't make the linkage private due to
972 // an issue in lld where private symbols can be used as the key symbol when
973 // choosing the prevelant group. This leads to "relocation refers to a
974 // symbol in a discarded section".
975 VTable->setLinkage(llvm::GlobalValue::PrivateLinkage);
976 } else {
977 // We should at least make this hidden since we don't want to expose it.
978 VTable->setVisibility(llvm::GlobalValue::HiddenVisibility);
979 }
980
981 VTableAlias->setAliasee(VTable);
982 }
983
shouldEmitAvailableExternallyVTable(const CodeGenModule & CGM,const CXXRecordDecl * RD)984 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM,
985 const CXXRecordDecl *RD) {
986 return CGM.getCodeGenOpts().OptimizationLevel > 0 &&
987 CGM.getCXXABI().canSpeculativelyEmitVTable(RD);
988 }
989
990 /// Compute the required linkage of the vtable for the given class.
991 ///
992 /// Note that we only call this at the end of the translation unit.
993 llvm::GlobalVariable::LinkageTypes
getVTableLinkage(const CXXRecordDecl * RD)994 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
995 if (!RD->isExternallyVisible())
996 return llvm::GlobalVariable::InternalLinkage;
997
998 // We're at the end of the translation unit, so the current key
999 // function is fully correct.
1000 const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD);
1001 if (keyFunction && !RD->hasAttr<DLLImportAttr>()) {
1002 // If this class has a key function, use that to determine the
1003 // linkage of the vtable.
1004 const FunctionDecl *def = nullptr;
1005 if (keyFunction->hasBody(def))
1006 keyFunction = cast<CXXMethodDecl>(def);
1007
1008 switch (keyFunction->getTemplateSpecializationKind()) {
1009 case TSK_Undeclared:
1010 case TSK_ExplicitSpecialization:
1011 assert((def || CodeGenOpts.OptimizationLevel > 0 ||
1012 CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo) &&
1013 "Shouldn't query vtable linkage without key function, "
1014 "optimizations, or debug info");
1015 if (!def && CodeGenOpts.OptimizationLevel > 0)
1016 return llvm::GlobalVariable::AvailableExternallyLinkage;
1017
1018 if (keyFunction->isInlined())
1019 return !Context.getLangOpts().AppleKext ?
1020 llvm::GlobalVariable::LinkOnceODRLinkage :
1021 llvm::Function::InternalLinkage;
1022
1023 return llvm::GlobalVariable::ExternalLinkage;
1024
1025 case TSK_ImplicitInstantiation:
1026 return !Context.getLangOpts().AppleKext ?
1027 llvm::GlobalVariable::LinkOnceODRLinkage :
1028 llvm::Function::InternalLinkage;
1029
1030 case TSK_ExplicitInstantiationDefinition:
1031 return !Context.getLangOpts().AppleKext ?
1032 llvm::GlobalVariable::WeakODRLinkage :
1033 llvm::Function::InternalLinkage;
1034
1035 case TSK_ExplicitInstantiationDeclaration:
1036 llvm_unreachable("Should not have been asked to emit this");
1037 }
1038 }
1039
1040 // -fapple-kext mode does not support weak linkage, so we must use
1041 // internal linkage.
1042 if (Context.getLangOpts().AppleKext)
1043 return llvm::Function::InternalLinkage;
1044
1045 llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage =
1046 llvm::GlobalValue::LinkOnceODRLinkage;
1047 llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage =
1048 llvm::GlobalValue::WeakODRLinkage;
1049 if (RD->hasAttr<DLLExportAttr>()) {
1050 // Cannot discard exported vtables.
1051 DiscardableODRLinkage = NonDiscardableODRLinkage;
1052 } else if (RD->hasAttr<DLLImportAttr>()) {
1053 // Imported vtables are available externally.
1054 DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
1055 NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
1056 }
1057
1058 switch (RD->getTemplateSpecializationKind()) {
1059 case TSK_Undeclared:
1060 case TSK_ExplicitSpecialization:
1061 case TSK_ImplicitInstantiation:
1062 return DiscardableODRLinkage;
1063
1064 case TSK_ExplicitInstantiationDeclaration:
1065 // Explicit instantiations in MSVC do not provide vtables, so we must emit
1066 // our own.
1067 if (getTarget().getCXXABI().isMicrosoft())
1068 return DiscardableODRLinkage;
1069 return shouldEmitAvailableExternallyVTable(*this, RD)
1070 ? llvm::GlobalVariable::AvailableExternallyLinkage
1071 : llvm::GlobalVariable::ExternalLinkage;
1072
1073 case TSK_ExplicitInstantiationDefinition:
1074 return NonDiscardableODRLinkage;
1075 }
1076
1077 llvm_unreachable("Invalid TemplateSpecializationKind!");
1078 }
1079
1080 /// This is a callback from Sema to tell us that a particular vtable is
1081 /// required to be emitted in this translation unit.
1082 ///
1083 /// This is only called for vtables that _must_ be emitted (mainly due to key
1084 /// functions). For weak vtables, CodeGen tracks when they are needed and
1085 /// emits them as-needed.
EmitVTable(CXXRecordDecl * theClass)1086 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) {
1087 VTables.GenerateClassData(theClass);
1088 }
1089
1090 void
GenerateClassData(const CXXRecordDecl * RD)1091 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) {
1092 if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
1093 DI->completeClassData(RD);
1094
1095 if (RD->getNumVBases())
1096 CGM.getCXXABI().emitVirtualInheritanceTables(RD);
1097
1098 CGM.getCXXABI().emitVTableDefinitions(*this, RD);
1099 }
1100
1101 /// At this point in the translation unit, does it appear that can we
1102 /// rely on the vtable being defined elsewhere in the program?
1103 ///
1104 /// The response is really only definitive when called at the end of
1105 /// the translation unit.
1106 ///
1107 /// The only semantic restriction here is that the object file should
1108 /// not contain a vtable definition when that vtable is defined
1109 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting
1110 /// vtables when unnecessary.
isVTableExternal(const CXXRecordDecl * RD)1111 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) {
1112 assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable.");
1113
1114 // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't
1115 // emit them even if there is an explicit template instantiation.
1116 if (CGM.getTarget().getCXXABI().isMicrosoft())
1117 return false;
1118
1119 // If we have an explicit instantiation declaration (and not a
1120 // definition), the vtable is defined elsewhere.
1121 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
1122 if (TSK == TSK_ExplicitInstantiationDeclaration)
1123 return true;
1124
1125 // Otherwise, if the class is an instantiated template, the
1126 // vtable must be defined here.
1127 if (TSK == TSK_ImplicitInstantiation ||
1128 TSK == TSK_ExplicitInstantiationDefinition)
1129 return false;
1130
1131 // Otherwise, if the class doesn't have a key function (possibly
1132 // anymore), the vtable must be defined here.
1133 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD);
1134 if (!keyFunction)
1135 return false;
1136
1137 // Otherwise, if we don't have a definition of the key function, the
1138 // vtable must be defined somewhere else.
1139 return !keyFunction->hasBody();
1140 }
1141
1142 /// Given that we're currently at the end of the translation unit, and
1143 /// we've emitted a reference to the vtable for this class, should
1144 /// we define that vtable?
shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule & CGM,const CXXRecordDecl * RD)1145 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM,
1146 const CXXRecordDecl *RD) {
1147 // If vtable is internal then it has to be done.
1148 if (!CGM.getVTables().isVTableExternal(RD))
1149 return true;
1150
1151 // If it's external then maybe we will need it as available_externally.
1152 return shouldEmitAvailableExternallyVTable(CGM, RD);
1153 }
1154
1155 /// Given that at some point we emitted a reference to one or more
1156 /// vtables, and that we are now at the end of the translation unit,
1157 /// decide whether we should emit them.
EmitDeferredVTables()1158 void CodeGenModule::EmitDeferredVTables() {
1159 #ifndef NDEBUG
1160 // Remember the size of DeferredVTables, because we're going to assume
1161 // that this entire operation doesn't modify it.
1162 size_t savedSize = DeferredVTables.size();
1163 #endif
1164
1165 for (const CXXRecordDecl *RD : DeferredVTables)
1166 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD))
1167 VTables.GenerateClassData(RD);
1168 else if (shouldOpportunisticallyEmitVTables())
1169 OpportunisticVTables.push_back(RD);
1170
1171 assert(savedSize == DeferredVTables.size() &&
1172 "deferred extra vtables during vtable emission?");
1173 DeferredVTables.clear();
1174 }
1175
HasLTOVisibilityPublicStd(const CXXRecordDecl * RD)1176 bool CodeGenModule::HasLTOVisibilityPublicStd(const CXXRecordDecl *RD) {
1177 if (!getCodeGenOpts().LTOVisibilityPublicStd)
1178 return false;
1179
1180 const DeclContext *DC = RD;
1181 while (1) {
1182 auto *D = cast<Decl>(DC);
1183 DC = DC->getParent();
1184 if (isa<TranslationUnitDecl>(DC->getRedeclContext())) {
1185 if (auto *ND = dyn_cast<NamespaceDecl>(D))
1186 if (const IdentifierInfo *II = ND->getIdentifier())
1187 if (II->isStr("std") || II->isStr("stdext"))
1188 return true;
1189 break;
1190 }
1191 }
1192
1193 return false;
1194 }
1195
HasHiddenLTOVisibility(const CXXRecordDecl * RD)1196 bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) {
1197 LinkageInfo LV = RD->getLinkageAndVisibility();
1198 if (!isExternallyVisible(LV.getLinkage()))
1199 return true;
1200
1201 if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>())
1202 return false;
1203
1204 if (getTriple().isOSBinFormatCOFF()) {
1205 if (RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>())
1206 return false;
1207 } else {
1208 if (LV.getVisibility() != HiddenVisibility)
1209 return false;
1210 }
1211
1212 return !HasLTOVisibilityPublicStd(RD);
1213 }
1214
GetVCallVisibilityLevel(const CXXRecordDecl * RD,llvm::DenseSet<const CXXRecordDecl * > & Visited)1215 llvm::GlobalObject::VCallVisibility CodeGenModule::GetVCallVisibilityLevel(
1216 const CXXRecordDecl *RD, llvm::DenseSet<const CXXRecordDecl *> &Visited) {
1217 // If we have already visited this RD (which means this is a recursive call
1218 // since the initial call should have an empty Visited set), return the max
1219 // visibility. The recursive calls below compute the min between the result
1220 // of the recursive call and the current TypeVis, so returning the max here
1221 // ensures that it will have no effect on the current TypeVis.
1222 if (!Visited.insert(RD).second)
1223 return llvm::GlobalObject::VCallVisibilityTranslationUnit;
1224
1225 LinkageInfo LV = RD->getLinkageAndVisibility();
1226 llvm::GlobalObject::VCallVisibility TypeVis;
1227 if (!isExternallyVisible(LV.getLinkage()))
1228 TypeVis = llvm::GlobalObject::VCallVisibilityTranslationUnit;
1229 else if (HasHiddenLTOVisibility(RD))
1230 TypeVis = llvm::GlobalObject::VCallVisibilityLinkageUnit;
1231 else
1232 TypeVis = llvm::GlobalObject::VCallVisibilityPublic;
1233
1234 for (auto B : RD->bases())
1235 if (B.getType()->getAsCXXRecordDecl()->isDynamicClass())
1236 TypeVis = std::min(
1237 TypeVis,
1238 GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited));
1239
1240 for (auto B : RD->vbases())
1241 if (B.getType()->getAsCXXRecordDecl()->isDynamicClass())
1242 TypeVis = std::min(
1243 TypeVis,
1244 GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited));
1245
1246 return TypeVis;
1247 }
1248
EmitVTableTypeMetadata(const CXXRecordDecl * RD,llvm::GlobalVariable * VTable,const VTableLayout & VTLayout)1249 void CodeGenModule::EmitVTableTypeMetadata(const CXXRecordDecl *RD,
1250 llvm::GlobalVariable *VTable,
1251 const VTableLayout &VTLayout) {
1252 if (!getCodeGenOpts().LTOUnit)
1253 return;
1254
1255 CharUnits PointerWidth =
1256 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
1257
1258 typedef std::pair<const CXXRecordDecl *, unsigned> AddressPoint;
1259 std::vector<AddressPoint> AddressPoints;
1260 for (auto &&AP : VTLayout.getAddressPoints())
1261 AddressPoints.push_back(std::make_pair(
1262 AP.first.getBase(), VTLayout.getVTableOffset(AP.second.VTableIndex) +
1263 AP.second.AddressPointIndex));
1264
1265 // Sort the address points for determinism.
1266 llvm::sort(AddressPoints, [this](const AddressPoint &AP1,
1267 const AddressPoint &AP2) {
1268 if (&AP1 == &AP2)
1269 return false;
1270
1271 std::string S1;
1272 llvm::raw_string_ostream O1(S1);
1273 getCXXABI().getMangleContext().mangleTypeName(
1274 QualType(AP1.first->getTypeForDecl(), 0), O1);
1275 O1.flush();
1276
1277 std::string S2;
1278 llvm::raw_string_ostream O2(S2);
1279 getCXXABI().getMangleContext().mangleTypeName(
1280 QualType(AP2.first->getTypeForDecl(), 0), O2);
1281 O2.flush();
1282
1283 if (S1 < S2)
1284 return true;
1285 if (S1 != S2)
1286 return false;
1287
1288 return AP1.second < AP2.second;
1289 });
1290
1291 ArrayRef<VTableComponent> Comps = VTLayout.vtable_components();
1292 for (auto AP : AddressPoints) {
1293 // Create type metadata for the address point.
1294 AddVTableTypeMetadata(VTable, PointerWidth * AP.second, AP.first);
1295
1296 // The class associated with each address point could also potentially be
1297 // used for indirect calls via a member function pointer, so we need to
1298 // annotate the address of each function pointer with the appropriate member
1299 // function pointer type.
1300 for (unsigned I = 0; I != Comps.size(); ++I) {
1301 if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer)
1302 continue;
1303 llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType(
1304 Context.getMemberPointerType(
1305 Comps[I].getFunctionDecl()->getType(),
1306 Context.getRecordType(AP.first).getTypePtr()));
1307 VTable->addTypeMetadata((PointerWidth * I).getQuantity(), MD);
1308 }
1309 }
1310
1311 if (getCodeGenOpts().VirtualFunctionElimination ||
1312 getCodeGenOpts().WholeProgramVTables) {
1313 llvm::DenseSet<const CXXRecordDecl *> Visited;
1314 llvm::GlobalObject::VCallVisibility TypeVis =
1315 GetVCallVisibilityLevel(RD, Visited);
1316 if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic)
1317 VTable->setVCallVisibilityMetadata(TypeVis);
1318 }
1319 }
1320