1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/Expr.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/StmtObjC.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/CodeGenOptions.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/CodeGen/CGFunctionInfo.h"
35 #include "clang/Frontend/FrontendDiagnostic.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/FPEnv.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/Support/CRC.h"
46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
47 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48 using namespace clang;
49 using namespace CodeGen;
50
51 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
52 /// markers.
shouldEmitLifetimeMarkers(const CodeGenOptions & CGOpts,const LangOptions & LangOpts)53 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
54 const LangOptions &LangOpts) {
55 if (CGOpts.DisableLifetimeMarkers)
56 return false;
57
58 // Sanitizers may use markers.
59 if (CGOpts.SanitizeAddressUseAfterScope ||
60 LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
61 LangOpts.Sanitize.has(SanitizerKind::Memory))
62 return true;
63
64 // For now, only in optimized builds.
65 return CGOpts.OptimizationLevel != 0;
66 }
67
CodeGenFunction(CodeGenModule & cgm,bool suppressNewContext)68 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
69 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
70 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
71 CGBuilderInserterTy(this)),
72 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
73 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
74 ShouldEmitLifetimeMarkers(
75 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
76 if (!suppressNewContext)
77 CGM.getCXXABI().getMangleContext().startNewFunction();
78 EHStack.setCGF(this);
79
80 SetFastMathFlags(CurFPFeatures);
81 SetFPModel();
82 }
83
~CodeGenFunction()84 CodeGenFunction::~CodeGenFunction() {
85 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
86
87 if (getLangOpts().OpenMP && CurFn)
88 CGM.getOpenMPRuntime().functionFinished(*this);
89
90 // If we have an OpenMPIRBuilder we want to finalize functions (incl.
91 // outlining etc) at some point. Doing it once the function codegen is done
92 // seems to be a reasonable spot. We do it here, as opposed to the deletion
93 // time of the CodeGenModule, because we have to ensure the IR has not yet
94 // been "emitted" to the outside, thus, modifications are still sensible.
95 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
96 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
97 }
98
99 // Map the LangOption for exception behavior into
100 // the corresponding enum in the IR.
101 llvm::fp::ExceptionBehavior
ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind)102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
103
104 switch (Kind) {
105 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore;
106 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
107 case LangOptions::FPE_Strict: return llvm::fp::ebStrict;
108 }
109 llvm_unreachable("Unsupported FP Exception Behavior");
110 }
111
SetFPModel()112 void CodeGenFunction::SetFPModel() {
113 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode();
114 auto fpExceptionBehavior = ToConstrainedExceptMD(
115 getLangOpts().getFPExceptionMode());
116
117 Builder.setDefaultConstrainedRounding(RM);
118 Builder.setDefaultConstrainedExcept(fpExceptionBehavior);
119 Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore ||
120 RM != llvm::RoundingMode::NearestTiesToEven);
121 }
122
SetFastMathFlags(FPOptions FPFeatures)123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
124 llvm::FastMathFlags FMF;
125 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
126 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
127 FMF.setNoInfs(FPFeatures.getNoHonorInfs());
128 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
129 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
130 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
131 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
132 Builder.setFastMathFlags(FMF);
133 }
134
CGFPOptionsRAII(CodeGenFunction & CGF,const Expr * E)135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
136 const Expr *E)
137 : CGF(CGF) {
138 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
139 }
140
CGFPOptionsRAII(CodeGenFunction & CGF,FPOptions FPFeatures)141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
142 FPOptions FPFeatures)
143 : CGF(CGF) {
144 ConstructorHelper(FPFeatures);
145 }
146
ConstructorHelper(FPOptions FPFeatures)147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
148 OldFPFeatures = CGF.CurFPFeatures;
149 CGF.CurFPFeatures = FPFeatures;
150
151 OldExcept = CGF.Builder.getDefaultConstrainedExcept();
152 OldRounding = CGF.Builder.getDefaultConstrainedRounding();
153
154 if (OldFPFeatures == FPFeatures)
155 return;
156
157 FMFGuard.emplace(CGF.Builder);
158
159 llvm::RoundingMode NewRoundingBehavior =
160 static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode());
161 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
162 auto NewExceptionBehavior =
163 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
164 FPFeatures.getFPExceptionMode()));
165 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
166
167 CGF.SetFastMathFlags(FPFeatures);
168
169 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
170 isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
171 isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
172 (NewExceptionBehavior == llvm::fp::ebIgnore &&
173 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
174 "FPConstrained should be enabled on entire function");
175
176 auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
177 auto OldValue =
178 CGF.CurFn->getFnAttribute(Name).getValueAsBool();
179 auto NewValue = OldValue & Value;
180 if (OldValue != NewValue)
181 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
182 };
183 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
184 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
185 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
186 mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() &&
187 FPFeatures.getAllowReciprocal() &&
188 FPFeatures.getAllowApproxFunc() &&
189 FPFeatures.getNoSignedZero());
190 }
191
~CGFPOptionsRAII()192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
193 CGF.CurFPFeatures = OldFPFeatures;
194 CGF.Builder.setDefaultConstrainedExcept(OldExcept);
195 CGF.Builder.setDefaultConstrainedRounding(OldRounding);
196 }
197
MakeNaturalAlignAddrLValue(llvm::Value * V,QualType T)198 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
199 LValueBaseInfo BaseInfo;
200 TBAAAccessInfo TBAAInfo;
201 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
202 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
203 TBAAInfo);
204 }
205
206 /// Given a value of type T* that may not be to a complete object,
207 /// construct an l-value with the natural pointee alignment of T.
208 LValue
MakeNaturalAlignPointeeAddrLValue(llvm::Value * V,QualType T)209 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
210 LValueBaseInfo BaseInfo;
211 TBAAAccessInfo TBAAInfo;
212 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
213 /* forPointeeType= */ true);
214 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
215 }
216
217
ConvertTypeForMem(QualType T)218 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
219 return CGM.getTypes().ConvertTypeForMem(T);
220 }
221
ConvertType(QualType T)222 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
223 return CGM.getTypes().ConvertType(T);
224 }
225
getEvaluationKind(QualType type)226 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
227 type = type.getCanonicalType();
228 while (true) {
229 switch (type->getTypeClass()) {
230 #define TYPE(name, parent)
231 #define ABSTRACT_TYPE(name, parent)
232 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
233 #define DEPENDENT_TYPE(name, parent) case Type::name:
234 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
235 #include "clang/AST/TypeNodes.inc"
236 llvm_unreachable("non-canonical or dependent type in IR-generation");
237
238 case Type::Auto:
239 case Type::DeducedTemplateSpecialization:
240 llvm_unreachable("undeduced type in IR-generation");
241
242 // Various scalar types.
243 case Type::Builtin:
244 case Type::Pointer:
245 case Type::BlockPointer:
246 case Type::LValueReference:
247 case Type::RValueReference:
248 case Type::MemberPointer:
249 case Type::Vector:
250 case Type::ExtVector:
251 case Type::ConstantMatrix:
252 case Type::FunctionProto:
253 case Type::FunctionNoProto:
254 case Type::Enum:
255 case Type::ObjCObjectPointer:
256 case Type::Pipe:
257 case Type::ExtInt:
258 return TEK_Scalar;
259
260 // Complexes.
261 case Type::Complex:
262 return TEK_Complex;
263
264 // Arrays, records, and Objective-C objects.
265 case Type::ConstantArray:
266 case Type::IncompleteArray:
267 case Type::VariableArray:
268 case Type::Record:
269 case Type::ObjCObject:
270 case Type::ObjCInterface:
271 return TEK_Aggregate;
272
273 // We operate on atomic values according to their underlying type.
274 case Type::Atomic:
275 type = cast<AtomicType>(type)->getValueType();
276 continue;
277 }
278 llvm_unreachable("unknown type kind!");
279 }
280 }
281
EmitReturnBlock()282 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
283 // For cleanliness, we try to avoid emitting the return block for
284 // simple cases.
285 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
286
287 if (CurBB) {
288 assert(!CurBB->getTerminator() && "Unexpected terminated block.");
289
290 // We have a valid insert point, reuse it if it is empty or there are no
291 // explicit jumps to the return block.
292 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
293 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
294 delete ReturnBlock.getBlock();
295 ReturnBlock = JumpDest();
296 } else
297 EmitBlock(ReturnBlock.getBlock());
298 return llvm::DebugLoc();
299 }
300
301 // Otherwise, if the return block is the target of a single direct
302 // branch then we can just put the code in that block instead. This
303 // cleans up functions which started with a unified return block.
304 if (ReturnBlock.getBlock()->hasOneUse()) {
305 llvm::BranchInst *BI =
306 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
307 if (BI && BI->isUnconditional() &&
308 BI->getSuccessor(0) == ReturnBlock.getBlock()) {
309 // Record/return the DebugLoc of the simple 'return' expression to be used
310 // later by the actual 'ret' instruction.
311 llvm::DebugLoc Loc = BI->getDebugLoc();
312 Builder.SetInsertPoint(BI->getParent());
313 BI->eraseFromParent();
314 delete ReturnBlock.getBlock();
315 ReturnBlock = JumpDest();
316 return Loc;
317 }
318 }
319
320 // FIXME: We are at an unreachable point, there is no reason to emit the block
321 // unless it has uses. However, we still need a place to put the debug
322 // region.end for now.
323
324 EmitBlock(ReturnBlock.getBlock());
325 return llvm::DebugLoc();
326 }
327
EmitIfUsed(CodeGenFunction & CGF,llvm::BasicBlock * BB)328 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
329 if (!BB) return;
330 if (!BB->use_empty())
331 return CGF.CurFn->getBasicBlockList().push_back(BB);
332 delete BB;
333 }
334
FinishFunction(SourceLocation EndLoc)335 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
336 assert(BreakContinueStack.empty() &&
337 "mismatched push/pop in break/continue stack!");
338
339 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
340 && NumSimpleReturnExprs == NumReturnExprs
341 && ReturnBlock.getBlock()->use_empty();
342 // Usually the return expression is evaluated before the cleanup
343 // code. If the function contains only a simple return statement,
344 // such as a constant, the location before the cleanup code becomes
345 // the last useful breakpoint in the function, because the simple
346 // return expression will be evaluated after the cleanup code. To be
347 // safe, set the debug location for cleanup code to the location of
348 // the return statement. Otherwise the cleanup code should be at the
349 // end of the function's lexical scope.
350 //
351 // If there are multiple branches to the return block, the branch
352 // instructions will get the location of the return statements and
353 // all will be fine.
354 if (CGDebugInfo *DI = getDebugInfo()) {
355 if (OnlySimpleReturnStmts)
356 DI->EmitLocation(Builder, LastStopPoint);
357 else
358 DI->EmitLocation(Builder, EndLoc);
359 }
360
361 // Pop any cleanups that might have been associated with the
362 // parameters. Do this in whatever block we're currently in; it's
363 // important to do this before we enter the return block or return
364 // edges will be *really* confused.
365 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
366 bool HasOnlyLifetimeMarkers =
367 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
368 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
369 if (HasCleanups) {
370 // Make sure the line table doesn't jump back into the body for
371 // the ret after it's been at EndLoc.
372 Optional<ApplyDebugLocation> AL;
373 if (CGDebugInfo *DI = getDebugInfo()) {
374 if (OnlySimpleReturnStmts)
375 DI->EmitLocation(Builder, EndLoc);
376 else
377 // We may not have a valid end location. Try to apply it anyway, and
378 // fall back to an artificial location if needed.
379 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
380 }
381
382 PopCleanupBlocks(PrologueCleanupDepth);
383 }
384
385 // Emit function epilog (to return).
386 llvm::DebugLoc Loc = EmitReturnBlock();
387
388 if (ShouldInstrumentFunction()) {
389 if (CGM.getCodeGenOpts().InstrumentFunctions)
390 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
391 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
392 CurFn->addFnAttr("instrument-function-exit-inlined",
393 "__cyg_profile_func_exit");
394 }
395
396 // Emit debug descriptor for function end.
397 if (CGDebugInfo *DI = getDebugInfo())
398 DI->EmitFunctionEnd(Builder, CurFn);
399
400 // Reset the debug location to that of the simple 'return' expression, if any
401 // rather than that of the end of the function's scope '}'.
402 ApplyDebugLocation AL(*this, Loc);
403 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
404 EmitEndEHSpec(CurCodeDecl);
405
406 assert(EHStack.empty() &&
407 "did not remove all scopes from cleanup stack!");
408
409 // If someone did an indirect goto, emit the indirect goto block at the end of
410 // the function.
411 if (IndirectBranch) {
412 EmitBlock(IndirectBranch->getParent());
413 Builder.ClearInsertionPoint();
414 }
415
416 // If some of our locals escaped, insert a call to llvm.localescape in the
417 // entry block.
418 if (!EscapedLocals.empty()) {
419 // Invert the map from local to index into a simple vector. There should be
420 // no holes.
421 SmallVector<llvm::Value *, 4> EscapeArgs;
422 EscapeArgs.resize(EscapedLocals.size());
423 for (auto &Pair : EscapedLocals)
424 EscapeArgs[Pair.second] = Pair.first;
425 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
426 &CGM.getModule(), llvm::Intrinsic::localescape);
427 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
428 }
429
430 // Remove the AllocaInsertPt instruction, which is just a convenience for us.
431 llvm::Instruction *Ptr = AllocaInsertPt;
432 AllocaInsertPt = nullptr;
433 Ptr->eraseFromParent();
434
435 // If someone took the address of a label but never did an indirect goto, we
436 // made a zero entry PHI node, which is illegal, zap it now.
437 if (IndirectBranch) {
438 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
439 if (PN->getNumIncomingValues() == 0) {
440 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
441 PN->eraseFromParent();
442 }
443 }
444
445 EmitIfUsed(*this, EHResumeBlock);
446 EmitIfUsed(*this, TerminateLandingPad);
447 EmitIfUsed(*this, TerminateHandler);
448 EmitIfUsed(*this, UnreachableBlock);
449
450 for (const auto &FuncletAndParent : TerminateFunclets)
451 EmitIfUsed(*this, FuncletAndParent.second);
452
453 if (CGM.getCodeGenOpts().EmitDeclMetadata)
454 EmitDeclMetadata();
455
456 for (const auto &R : DeferredReplacements) {
457 if (llvm::Value *Old = R.first) {
458 Old->replaceAllUsesWith(R.second);
459 cast<llvm::Instruction>(Old)->eraseFromParent();
460 }
461 }
462 DeferredReplacements.clear();
463
464 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
465 // PHIs if the current function is a coroutine. We don't do it for all
466 // functions as it may result in slight increase in numbers of instructions
467 // if compiled with no optimizations. We do it for coroutine as the lifetime
468 // of CleanupDestSlot alloca make correct coroutine frame building very
469 // difficult.
470 if (NormalCleanupDest.isValid() && isCoroutine()) {
471 llvm::DominatorTree DT(*CurFn);
472 llvm::PromoteMemToReg(
473 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
474 NormalCleanupDest = Address::invalid();
475 }
476
477 // Scan function arguments for vector width.
478 for (llvm::Argument &A : CurFn->args())
479 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
480 LargestVectorWidth =
481 std::max((uint64_t)LargestVectorWidth,
482 VT->getPrimitiveSizeInBits().getKnownMinSize());
483
484 // Update vector width based on return type.
485 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
486 LargestVectorWidth =
487 std::max((uint64_t)LargestVectorWidth,
488 VT->getPrimitiveSizeInBits().getKnownMinSize());
489
490 // Add the required-vector-width attribute. This contains the max width from:
491 // 1. min-vector-width attribute used in the source program.
492 // 2. Any builtins used that have a vector width specified.
493 // 3. Values passed in and out of inline assembly.
494 // 4. Width of vector arguments and return types for this function.
495 // 5. Width of vector aguments and return types for functions called by this
496 // function.
497 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
498
499 // Add vscale attribute if appropriate.
500 if (getLangOpts().ArmSveVectorBits) {
501 unsigned VScale = getLangOpts().ArmSveVectorBits / 128;
502 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(getLLVMContext(),
503 VScale, VScale));
504 }
505
506 // If we generated an unreachable return block, delete it now.
507 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
508 Builder.ClearInsertionPoint();
509 ReturnBlock.getBlock()->eraseFromParent();
510 }
511 if (ReturnValue.isValid()) {
512 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
513 if (RetAlloca && RetAlloca->use_empty()) {
514 RetAlloca->eraseFromParent();
515 ReturnValue = Address::invalid();
516 }
517 }
518 }
519
520 /// ShouldInstrumentFunction - Return true if the current function should be
521 /// instrumented with __cyg_profile_func_* calls
ShouldInstrumentFunction()522 bool CodeGenFunction::ShouldInstrumentFunction() {
523 if (!CGM.getCodeGenOpts().InstrumentFunctions &&
524 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
525 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
526 return false;
527 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
528 return false;
529 return true;
530 }
531
532 /// ShouldXRayInstrument - Return true if the current function should be
533 /// instrumented with XRay nop sleds.
ShouldXRayInstrumentFunction() const534 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
535 return CGM.getCodeGenOpts().XRayInstrumentFunctions;
536 }
537
538 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
539 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
AlwaysEmitXRayCustomEvents() const540 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
541 return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
542 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
543 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
544 XRayInstrKind::Custom);
545 }
546
AlwaysEmitXRayTypedEvents() const547 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
548 return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
549 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
550 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
551 XRayInstrKind::Typed);
552 }
553
554 llvm::Constant *
EncodeAddrForUseInPrologue(llvm::Function * F,llvm::Constant * Addr)555 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
556 llvm::Constant *Addr) {
557 // Addresses stored in prologue data can't require run-time fixups and must
558 // be PC-relative. Run-time fixups are undesirable because they necessitate
559 // writable text segments, which are unsafe. And absolute addresses are
560 // undesirable because they break PIE mode.
561
562 // Add a layer of indirection through a private global. Taking its address
563 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
564 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
565 /*isConstant=*/true,
566 llvm::GlobalValue::PrivateLinkage, Addr);
567
568 // Create a PC-relative address.
569 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
570 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
571 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
572 return (IntPtrTy == Int32Ty)
573 ? PCRelAsInt
574 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
575 }
576
577 llvm::Value *
DecodeAddrUsedInPrologue(llvm::Value * F,llvm::Value * EncodedAddr)578 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
579 llvm::Value *EncodedAddr) {
580 // Reconstruct the address of the global.
581 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
582 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
583 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
584 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
585
586 // Load the original pointer through the global.
587 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
588 "decoded_addr");
589 }
590
EmitOpenCLKernelMetadata(const FunctionDecl * FD,llvm::Function * Fn)591 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
592 llvm::Function *Fn)
593 {
594 if (!FD->hasAttr<OpenCLKernelAttr>())
595 return;
596
597 llvm::LLVMContext &Context = getLLVMContext();
598
599 CGM.GenOpenCLArgMetadata(Fn, FD, this);
600
601 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
602 QualType HintQTy = A->getTypeHint();
603 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
604 bool IsSignedInteger =
605 HintQTy->isSignedIntegerType() ||
606 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
607 llvm::Metadata *AttrMDArgs[] = {
608 llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
609 CGM.getTypes().ConvertType(A->getTypeHint()))),
610 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
611 llvm::IntegerType::get(Context, 32),
612 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
613 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
614 }
615
616 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
617 llvm::Metadata *AttrMDArgs[] = {
618 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
619 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
620 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
621 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
622 }
623
624 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
625 llvm::Metadata *AttrMDArgs[] = {
626 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
628 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
629 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
630 }
631
632 if (const OpenCLIntelReqdSubGroupSizeAttr *A =
633 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
634 llvm::Metadata *AttrMDArgs[] = {
635 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
636 Fn->setMetadata("intel_reqd_sub_group_size",
637 llvm::MDNode::get(Context, AttrMDArgs));
638 }
639 }
640
641 /// Determine whether the function F ends with a return stmt.
endsWithReturn(const Decl * F)642 static bool endsWithReturn(const Decl* F) {
643 const Stmt *Body = nullptr;
644 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
645 Body = FD->getBody();
646 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
647 Body = OMD->getBody();
648
649 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
650 auto LastStmt = CS->body_rbegin();
651 if (LastStmt != CS->body_rend())
652 return isa<ReturnStmt>(*LastStmt);
653 }
654 return false;
655 }
656
markAsIgnoreThreadCheckingAtRuntime(llvm::Function * Fn)657 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
658 if (SanOpts.has(SanitizerKind::Thread)) {
659 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
660 Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
661 }
662 }
663
664 /// Check if the return value of this function requires sanitization.
requiresReturnValueCheck() const665 bool CodeGenFunction::requiresReturnValueCheck() const {
666 return requiresReturnValueNullabilityCheck() ||
667 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
668 CurCodeDecl->getAttr<ReturnsNonNullAttr>());
669 }
670
matchesStlAllocatorFn(const Decl * D,const ASTContext & Ctx)671 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
672 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
673 if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
674 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
675 (MD->getNumParams() != 1 && MD->getNumParams() != 2))
676 return false;
677
678 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
679 return false;
680
681 if (MD->getNumParams() == 2) {
682 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
683 if (!PT || !PT->isVoidPointerType() ||
684 !PT->getPointeeType().isConstQualified())
685 return false;
686 }
687
688 return true;
689 }
690
691 /// Return the UBSan prologue signature for \p FD if one is available.
getPrologueSignature(CodeGenModule & CGM,const FunctionDecl * FD)692 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
693 const FunctionDecl *FD) {
694 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
695 if (!MD->isStatic())
696 return nullptr;
697 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
698 }
699
StartFunction(GlobalDecl GD,QualType RetTy,llvm::Function * Fn,const CGFunctionInfo & FnInfo,const FunctionArgList & Args,SourceLocation Loc,SourceLocation StartLoc)700 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
701 llvm::Function *Fn,
702 const CGFunctionInfo &FnInfo,
703 const FunctionArgList &Args,
704 SourceLocation Loc,
705 SourceLocation StartLoc) {
706 assert(!CurFn &&
707 "Do not use a CodeGenFunction object for more than one function");
708
709 const Decl *D = GD.getDecl();
710
711 DidCallStackSave = false;
712 CurCodeDecl = D;
713 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
714 if (FD && FD->usesSEHTry())
715 CurSEHParent = FD;
716 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
717 FnRetTy = RetTy;
718 CurFn = Fn;
719 CurFnInfo = &FnInfo;
720 assert(CurFn->isDeclaration() && "Function already has body?");
721
722 // If this function is ignored for any of the enabled sanitizers,
723 // disable the sanitizer for the function.
724 do {
725 #define SANITIZER(NAME, ID) \
726 if (SanOpts.empty()) \
727 break; \
728 if (SanOpts.has(SanitizerKind::ID)) \
729 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \
730 SanOpts.set(SanitizerKind::ID, false);
731
732 #include "clang/Basic/Sanitizers.def"
733 #undef SANITIZER
734 } while (0);
735
736 if (D) {
737 bool NoSanitizeCoverage = false;
738
739 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
740 // Apply the no_sanitize* attributes to SanOpts.
741 SanitizerMask mask = Attr->getMask();
742 SanOpts.Mask &= ~mask;
743 if (mask & SanitizerKind::Address)
744 SanOpts.set(SanitizerKind::KernelAddress, false);
745 if (mask & SanitizerKind::KernelAddress)
746 SanOpts.set(SanitizerKind::Address, false);
747 if (mask & SanitizerKind::HWAddress)
748 SanOpts.set(SanitizerKind::KernelHWAddress, false);
749 if (mask & SanitizerKind::KernelHWAddress)
750 SanOpts.set(SanitizerKind::HWAddress, false);
751
752 // SanitizeCoverage is not handled by SanOpts.
753 if (Attr->hasCoverage())
754 NoSanitizeCoverage = true;
755 }
756
757 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
758 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
759 }
760
761 // Apply sanitizer attributes to the function.
762 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
763 Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
764 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
765 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
766 if (SanOpts.has(SanitizerKind::MemTag))
767 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
768 if (SanOpts.has(SanitizerKind::Thread))
769 Fn->addFnAttr(llvm::Attribute::SanitizeThread);
770 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
771 Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
772 if (SanOpts.has(SanitizerKind::SafeStack))
773 Fn->addFnAttr(llvm::Attribute::SafeStack);
774 if (SanOpts.has(SanitizerKind::ShadowCallStack))
775 Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
776
777 // Apply fuzzing attribute to the function.
778 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
779 Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
780
781 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
782 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
783 if (SanOpts.has(SanitizerKind::Thread)) {
784 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
785 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
786 if (OMD->getMethodFamily() == OMF_dealloc ||
787 OMD->getMethodFamily() == OMF_initialize ||
788 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
789 markAsIgnoreThreadCheckingAtRuntime(Fn);
790 }
791 }
792 }
793
794 // Ignore unrelated casts in STL allocate() since the allocator must cast
795 // from void* to T* before object initialization completes. Don't match on the
796 // namespace because not all allocators are in std::
797 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
798 if (matchesStlAllocatorFn(D, getContext()))
799 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
800 }
801
802 // Ignore null checks in coroutine functions since the coroutines passes
803 // are not aware of how to move the extra UBSan instructions across the split
804 // coroutine boundaries.
805 if (D && SanOpts.has(SanitizerKind::Null))
806 if (FD && FD->getBody() &&
807 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
808 SanOpts.Mask &= ~SanitizerKind::Null;
809
810 // Apply xray attributes to the function (as a string, for now)
811 bool AlwaysXRayAttr = false;
812 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
813 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
814 XRayInstrKind::FunctionEntry) ||
815 CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
816 XRayInstrKind::FunctionExit)) {
817 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
818 Fn->addFnAttr("function-instrument", "xray-always");
819 AlwaysXRayAttr = true;
820 }
821 if (XRayAttr->neverXRayInstrument())
822 Fn->addFnAttr("function-instrument", "xray-never");
823 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
824 if (ShouldXRayInstrumentFunction())
825 Fn->addFnAttr("xray-log-args",
826 llvm::utostr(LogArgs->getArgumentCount()));
827 }
828 } else {
829 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
830 Fn->addFnAttr(
831 "xray-instruction-threshold",
832 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
833 }
834
835 if (ShouldXRayInstrumentFunction()) {
836 if (CGM.getCodeGenOpts().XRayIgnoreLoops)
837 Fn->addFnAttr("xray-ignore-loops");
838
839 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
840 XRayInstrKind::FunctionExit))
841 Fn->addFnAttr("xray-skip-exit");
842
843 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
844 XRayInstrKind::FunctionEntry))
845 Fn->addFnAttr("xray-skip-entry");
846
847 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
848 if (FuncGroups > 1) {
849 auto FuncName = llvm::makeArrayRef<uint8_t>(
850 CurFn->getName().bytes_begin(), CurFn->getName().bytes_end());
851 auto Group = crc32(FuncName) % FuncGroups;
852 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
853 !AlwaysXRayAttr)
854 Fn->addFnAttr("function-instrument", "xray-never");
855 }
856 }
857
858 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone)
859 if (CGM.isProfileInstrExcluded(Fn, Loc))
860 Fn->addFnAttr(llvm::Attribute::NoProfile);
861
862 unsigned Count, Offset;
863 if (const auto *Attr =
864 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
865 Count = Attr->getCount();
866 Offset = Attr->getOffset();
867 } else {
868 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
869 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
870 }
871 if (Count && Offset <= Count) {
872 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
873 if (Offset)
874 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
875 }
876
877 // Add no-jump-tables value.
878 if (CGM.getCodeGenOpts().NoUseJumpTables)
879 Fn->addFnAttr("no-jump-tables", "true");
880
881 // Add no-inline-line-tables value.
882 if (CGM.getCodeGenOpts().NoInlineLineTables)
883 Fn->addFnAttr("no-inline-line-tables");
884
885 // Add profile-sample-accurate value.
886 if (CGM.getCodeGenOpts().ProfileSampleAccurate)
887 Fn->addFnAttr("profile-sample-accurate");
888
889 if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
890 Fn->addFnAttr("use-sample-profile");
891
892 if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
893 Fn->addFnAttr("cfi-canonical-jump-table");
894
895 if (D && D->hasAttr<NoProfileFunctionAttr>())
896 Fn->addFnAttr(llvm::Attribute::NoProfile);
897
898 if (FD && getLangOpts().OpenCL) {
899 // Add metadata for a kernel function.
900 EmitOpenCLKernelMetadata(FD, Fn);
901 }
902
903 // If we are checking function types, emit a function type signature as
904 // prologue data.
905 if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
906 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
907 // Remove any (C++17) exception specifications, to allow calling e.g. a
908 // noexcept function through a non-noexcept pointer.
909 auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec(
910 FD->getType(), EST_None);
911 llvm::Constant *FTRTTIConst =
912 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
913 llvm::Constant *FTRTTIConstEncoded =
914 EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
915 llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded};
916 llvm::Constant *PrologueStructConst =
917 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
918 Fn->setPrologueData(PrologueStructConst);
919 }
920 }
921
922 // If we're checking nullability, we need to know whether we can check the
923 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
924 if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
925 auto Nullability = FnRetTy->getNullability(getContext());
926 if (Nullability && *Nullability == NullabilityKind::NonNull) {
927 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
928 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
929 RetValNullabilityPrecondition =
930 llvm::ConstantInt::getTrue(getLLVMContext());
931 }
932 }
933
934 // If we're in C++ mode and the function name is "main", it is guaranteed
935 // to be norecurse by the standard (3.6.1.3 "The function main shall not be
936 // used within a program").
937 //
938 // OpenCL C 2.0 v2.2-11 s6.9.i:
939 // Recursion is not supported.
940 //
941 // SYCL v1.2.1 s3.10:
942 // kernels cannot include RTTI information, exception classes,
943 // recursive code, virtual functions or make use of C++ libraries that
944 // are not compiled for the device.
945 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
946 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
947 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
948 Fn->addFnAttr(llvm::Attribute::NoRecurse);
949
950 if (FD) {
951 Builder.setIsFPConstrained(FD->hasAttr<StrictFPAttr>());
952 if (FD->hasAttr<StrictFPAttr>())
953 Fn->addFnAttr(llvm::Attribute::StrictFP);
954 }
955
956 // If a custom alignment is used, force realigning to this alignment on
957 // any main function which certainly will need it.
958 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
959 CGM.getCodeGenOpts().StackAlignment))
960 Fn->addFnAttr("stackrealign");
961
962 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
963
964 // Create a marker to make it easy to insert allocas into the entryblock
965 // later. Don't create this with the builder, because we don't want it
966 // folded.
967 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
968 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
969
970 ReturnBlock = getJumpDestInCurrentScope("return");
971
972 Builder.SetInsertPoint(EntryBB);
973
974 // If we're checking the return value, allocate space for a pointer to a
975 // precise source location of the checked return statement.
976 if (requiresReturnValueCheck()) {
977 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
978 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
979 }
980
981 // Emit subprogram debug descriptor.
982 if (CGDebugInfo *DI = getDebugInfo()) {
983 // Reconstruct the type from the argument list so that implicit parameters,
984 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
985 // convention.
986 CallingConv CC = CallingConv::CC_C;
987 if (FD)
988 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
989 CC = SrcFnTy->getCallConv();
990 SmallVector<QualType, 16> ArgTypes;
991 for (const VarDecl *VD : Args)
992 ArgTypes.push_back(VD->getType());
993 QualType FnType = getContext().getFunctionType(
994 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
995 DI->emitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk);
996 }
997
998 if (ShouldInstrumentFunction()) {
999 if (CGM.getCodeGenOpts().InstrumentFunctions)
1000 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1001 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1002 CurFn->addFnAttr("instrument-function-entry-inlined",
1003 "__cyg_profile_func_enter");
1004 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1005 CurFn->addFnAttr("instrument-function-entry-inlined",
1006 "__cyg_profile_func_enter_bare");
1007 }
1008
1009 // Since emitting the mcount call here impacts optimizations such as function
1010 // inlining, we just add an attribute to insert a mcount call in backend.
1011 // The attribute "counting-function" is set to mcount function name which is
1012 // architecture dependent.
1013 if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1014 // Calls to fentry/mcount should not be generated if function has
1015 // the no_instrument_function attribute.
1016 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1017 if (CGM.getCodeGenOpts().CallFEntry)
1018 Fn->addFnAttr("fentry-call", "true");
1019 else {
1020 Fn->addFnAttr("instrument-function-entry-inlined",
1021 getTarget().getMCountName());
1022 }
1023 if (CGM.getCodeGenOpts().MNopMCount) {
1024 if (!CGM.getCodeGenOpts().CallFEntry)
1025 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1026 << "-mnop-mcount" << "-mfentry";
1027 Fn->addFnAttr("mnop-mcount");
1028 }
1029
1030 if (CGM.getCodeGenOpts().RecordMCount) {
1031 if (!CGM.getCodeGenOpts().CallFEntry)
1032 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1033 << "-mrecord-mcount" << "-mfentry";
1034 Fn->addFnAttr("mrecord-mcount");
1035 }
1036 }
1037 }
1038
1039 if (CGM.getCodeGenOpts().PackedStack) {
1040 if (getContext().getTargetInfo().getTriple().getArch() !=
1041 llvm::Triple::systemz)
1042 CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1043 << "-mpacked-stack";
1044 Fn->addFnAttr("packed-stack");
1045 }
1046
1047 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX)
1048 Fn->addFnAttr("warn-stack-size",
1049 std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1050
1051 if (RetTy->isVoidType()) {
1052 // Void type; nothing to return.
1053 ReturnValue = Address::invalid();
1054
1055 // Count the implicit return.
1056 if (!endsWithReturn(D))
1057 ++NumReturnExprs;
1058 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1059 // Indirect return; emit returned value directly into sret slot.
1060 // This reduces code size, and affects correctness in C++.
1061 auto AI = CurFn->arg_begin();
1062 if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1063 ++AI;
1064 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1065 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1066 ReturnValuePointer =
1067 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1068 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1069 ReturnValue.getPointer(), Int8PtrTy),
1070 ReturnValuePointer);
1071 }
1072 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1073 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1074 // Load the sret pointer from the argument struct and return into that.
1075 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1076 llvm::Function::arg_iterator EI = CurFn->arg_end();
1077 --EI;
1078 llvm::Value *Addr = Builder.CreateStructGEP(
1079 EI->getType()->getPointerElementType(), &*EI, Idx);
1080 llvm::Type *Ty =
1081 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1082 ReturnValuePointer = Address(Addr, getPointerAlign());
1083 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1084 ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy));
1085 } else {
1086 ReturnValue = CreateIRTemp(RetTy, "retval");
1087
1088 // Tell the epilog emitter to autorelease the result. We do this
1089 // now so that various specialized functions can suppress it
1090 // during their IR-generation.
1091 if (getLangOpts().ObjCAutoRefCount &&
1092 !CurFnInfo->isReturnsRetained() &&
1093 RetTy->isObjCRetainableType())
1094 AutoreleaseResult = true;
1095 }
1096
1097 EmitStartEHSpec(CurCodeDecl);
1098
1099 PrologueCleanupDepth = EHStack.stable_begin();
1100
1101 // Emit OpenMP specific initialization of the device functions.
1102 if (getLangOpts().OpenMP && CurCodeDecl)
1103 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1104
1105 EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1106
1107 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1108 CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1109 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1110 if (MD->getParent()->isLambda() &&
1111 MD->getOverloadedOperator() == OO_Call) {
1112 // We're in a lambda; figure out the captures.
1113 MD->getParent()->getCaptureFields(LambdaCaptureFields,
1114 LambdaThisCaptureField);
1115 if (LambdaThisCaptureField) {
1116 // If the lambda captures the object referred to by '*this' - either by
1117 // value or by reference, make sure CXXThisValue points to the correct
1118 // object.
1119
1120 // Get the lvalue for the field (which is a copy of the enclosing object
1121 // or contains the address of the enclosing object).
1122 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1123 if (!LambdaThisCaptureField->getType()->isPointerType()) {
1124 // If the enclosing object was captured by value, just use its address.
1125 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1126 } else {
1127 // Load the lvalue pointed to by the field, since '*this' was captured
1128 // by reference.
1129 CXXThisValue =
1130 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1131 }
1132 }
1133 for (auto *FD : MD->getParent()->fields()) {
1134 if (FD->hasCapturedVLAType()) {
1135 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1136 SourceLocation()).getScalarVal();
1137 auto VAT = FD->getCapturedVLAType();
1138 VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1139 }
1140 }
1141 } else {
1142 // Not in a lambda; just use 'this' from the method.
1143 // FIXME: Should we generate a new load for each use of 'this'? The
1144 // fast register allocator would be happier...
1145 CXXThisValue = CXXABIThisValue;
1146 }
1147
1148 // Check the 'this' pointer once per function, if it's available.
1149 if (CXXABIThisValue) {
1150 SanitizerSet SkippedChecks;
1151 SkippedChecks.set(SanitizerKind::ObjectSize, true);
1152 QualType ThisTy = MD->getThisType();
1153
1154 // If this is the call operator of a lambda with no capture-default, it
1155 // may have a static invoker function, which may call this operator with
1156 // a null 'this' pointer.
1157 if (isLambdaCallOperator(MD) &&
1158 MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1159 SkippedChecks.set(SanitizerKind::Null, true);
1160
1161 EmitTypeCheck(
1162 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1163 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1164 }
1165 }
1166
1167 // If any of the arguments have a variably modified type, make sure to
1168 // emit the type size.
1169 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1170 i != e; ++i) {
1171 const VarDecl *VD = *i;
1172
1173 // Dig out the type as written from ParmVarDecls; it's unclear whether
1174 // the standard (C99 6.9.1p10) requires this, but we're following the
1175 // precedent set by gcc.
1176 QualType Ty;
1177 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1178 Ty = PVD->getOriginalType();
1179 else
1180 Ty = VD->getType();
1181
1182 if (Ty->isVariablyModifiedType())
1183 EmitVariablyModifiedType(Ty);
1184 }
1185 // Emit a location at the end of the prologue.
1186 if (CGDebugInfo *DI = getDebugInfo())
1187 DI->EmitLocation(Builder, StartLoc);
1188
1189 // TODO: Do we need to handle this in two places like we do with
1190 // target-features/target-cpu?
1191 if (CurFuncDecl)
1192 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1193 LargestVectorWidth = VecWidth->getVectorWidth();
1194 }
1195
EmitFunctionBody(const Stmt * Body)1196 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1197 incrementProfileCounter(Body);
1198 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1199 EmitCompoundStmtWithoutScope(*S);
1200 else
1201 EmitStmt(Body);
1202
1203 // This is checked after emitting the function body so we know if there
1204 // are any permitted infinite loops.
1205 if (checkIfFunctionMustProgress())
1206 CurFn->addFnAttr(llvm::Attribute::MustProgress);
1207 }
1208
1209 /// When instrumenting to collect profile data, the counts for some blocks
1210 /// such as switch cases need to not include the fall-through counts, so
1211 /// emit a branch around the instrumentation code. When not instrumenting,
1212 /// this just calls EmitBlock().
EmitBlockWithFallThrough(llvm::BasicBlock * BB,const Stmt * S)1213 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1214 const Stmt *S) {
1215 llvm::BasicBlock *SkipCountBB = nullptr;
1216 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1217 // When instrumenting for profiling, the fallthrough to certain
1218 // statements needs to skip over the instrumentation code so that we
1219 // get an accurate count.
1220 SkipCountBB = createBasicBlock("skipcount");
1221 EmitBranch(SkipCountBB);
1222 }
1223 EmitBlock(BB);
1224 uint64_t CurrentCount = getCurrentProfileCount();
1225 incrementProfileCounter(S);
1226 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1227 if (SkipCountBB)
1228 EmitBlock(SkipCountBB);
1229 }
1230
1231 /// Tries to mark the given function nounwind based on the
1232 /// non-existence of any throwing calls within it. We believe this is
1233 /// lightweight enough to do at -O0.
TryMarkNoThrow(llvm::Function * F)1234 static void TryMarkNoThrow(llvm::Function *F) {
1235 // LLVM treats 'nounwind' on a function as part of the type, so we
1236 // can't do this on functions that can be overwritten.
1237 if (F->isInterposable()) return;
1238
1239 for (llvm::BasicBlock &BB : *F)
1240 for (llvm::Instruction &I : BB)
1241 if (I.mayThrow())
1242 return;
1243
1244 F->setDoesNotThrow();
1245 }
1246
BuildFunctionArgList(GlobalDecl GD,FunctionArgList & Args)1247 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1248 FunctionArgList &Args) {
1249 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1250 QualType ResTy = FD->getReturnType();
1251
1252 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1253 if (MD && MD->isInstance()) {
1254 if (CGM.getCXXABI().HasThisReturn(GD))
1255 ResTy = MD->getThisType();
1256 else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1257 ResTy = CGM.getContext().VoidPtrTy;
1258 CGM.getCXXABI().buildThisParam(*this, Args);
1259 }
1260
1261 // The base version of an inheriting constructor whose constructed base is a
1262 // virtual base is not passed any arguments (because it doesn't actually call
1263 // the inherited constructor).
1264 bool PassedParams = true;
1265 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1266 if (auto Inherited = CD->getInheritedConstructor())
1267 PassedParams =
1268 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1269
1270 if (PassedParams) {
1271 for (auto *Param : FD->parameters()) {
1272 Args.push_back(Param);
1273 if (!Param->hasAttr<PassObjectSizeAttr>())
1274 continue;
1275
1276 auto *Implicit = ImplicitParamDecl::Create(
1277 getContext(), Param->getDeclContext(), Param->getLocation(),
1278 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1279 SizeArguments[Param] = Implicit;
1280 Args.push_back(Implicit);
1281 }
1282 }
1283
1284 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1285 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1286
1287 return ResTy;
1288 }
1289
GenerateCode(GlobalDecl GD,llvm::Function * Fn,const CGFunctionInfo & FnInfo)1290 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1291 const CGFunctionInfo &FnInfo) {
1292 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1293 CurGD = GD;
1294
1295 FunctionArgList Args;
1296 QualType ResTy = BuildFunctionArgList(GD, Args);
1297
1298 // Check if we should generate debug info for this function.
1299 if (FD->hasAttr<NoDebugAttr>()) {
1300 // Clear non-distinct debug info that was possibly attached to the function
1301 // due to an earlier declaration without the nodebug attribute
1302 if (Fn)
1303 Fn->setSubprogram(nullptr);
1304 // Disable debug info indefinitely for this function
1305 DebugInfo = nullptr;
1306 }
1307
1308 // The function might not have a body if we're generating thunks for a
1309 // function declaration.
1310 SourceRange BodyRange;
1311 if (Stmt *Body = FD->getBody())
1312 BodyRange = Body->getSourceRange();
1313 else
1314 BodyRange = FD->getLocation();
1315 CurEHLocation = BodyRange.getEnd();
1316
1317 // Use the location of the start of the function to determine where
1318 // the function definition is located. By default use the location
1319 // of the declaration as the location for the subprogram. A function
1320 // may lack a declaration in the source code if it is created by code
1321 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1322 SourceLocation Loc = FD->getLocation();
1323
1324 // If this is a function specialization then use the pattern body
1325 // as the location for the function.
1326 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1327 if (SpecDecl->hasBody(SpecDecl))
1328 Loc = SpecDecl->getLocation();
1329
1330 Stmt *Body = FD->getBody();
1331
1332 if (Body) {
1333 // Coroutines always emit lifetime markers.
1334 if (isa<CoroutineBodyStmt>(Body))
1335 ShouldEmitLifetimeMarkers = true;
1336
1337 // Initialize helper which will detect jumps which can cause invalid
1338 // lifetime markers.
1339 if (ShouldEmitLifetimeMarkers)
1340 Bypasses.Init(Body);
1341 }
1342
1343 // Emit the standard function prologue.
1344 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1345
1346 // Save parameters for coroutine function.
1347 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1348 for (const auto *ParamDecl : FD->parameters())
1349 FnArgs.push_back(ParamDecl);
1350
1351 // Generate the body of the function.
1352 PGO.assignRegionCounters(GD, CurFn);
1353 if (isa<CXXDestructorDecl>(FD))
1354 EmitDestructorBody(Args);
1355 else if (isa<CXXConstructorDecl>(FD))
1356 EmitConstructorBody(Args);
1357 else if (getLangOpts().CUDA &&
1358 !getLangOpts().CUDAIsDevice &&
1359 FD->hasAttr<CUDAGlobalAttr>())
1360 CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1361 else if (isa<CXXMethodDecl>(FD) &&
1362 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1363 // The lambda static invoker function is special, because it forwards or
1364 // clones the body of the function call operator (but is actually static).
1365 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1366 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1367 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1368 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1369 // Implicit copy-assignment gets the same special treatment as implicit
1370 // copy-constructors.
1371 emitImplicitAssignmentOperatorBody(Args);
1372 } else if (Body) {
1373 EmitFunctionBody(Body);
1374 } else
1375 llvm_unreachable("no definition for emitted function");
1376
1377 // C++11 [stmt.return]p2:
1378 // Flowing off the end of a function [...] results in undefined behavior in
1379 // a value-returning function.
1380 // C11 6.9.1p12:
1381 // If the '}' that terminates a function is reached, and the value of the
1382 // function call is used by the caller, the behavior is undefined.
1383 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1384 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1385 bool ShouldEmitUnreachable =
1386 CGM.getCodeGenOpts().StrictReturn ||
1387 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1388 if (SanOpts.has(SanitizerKind::Return)) {
1389 SanitizerScope SanScope(this);
1390 llvm::Value *IsFalse = Builder.getFalse();
1391 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1392 SanitizerHandler::MissingReturn,
1393 EmitCheckSourceLocation(FD->getLocation()), None);
1394 } else if (ShouldEmitUnreachable) {
1395 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1396 EmitTrapCall(llvm::Intrinsic::trap);
1397 }
1398 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1399 Builder.CreateUnreachable();
1400 Builder.ClearInsertionPoint();
1401 }
1402 }
1403
1404 // Emit the standard function epilogue.
1405 FinishFunction(BodyRange.getEnd());
1406
1407 // If we haven't marked the function nothrow through other means, do
1408 // a quick pass now to see if we can.
1409 if (!CurFn->doesNotThrow())
1410 TryMarkNoThrow(CurFn);
1411 }
1412
1413 /// ContainsLabel - Return true if the statement contains a label in it. If
1414 /// this statement is not executed normally, it not containing a label means
1415 /// that we can just remove the code.
ContainsLabel(const Stmt * S,bool IgnoreCaseStmts)1416 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1417 // Null statement, not a label!
1418 if (!S) return false;
1419
1420 // If this is a label, we have to emit the code, consider something like:
1421 // if (0) { ... foo: bar(); } goto foo;
1422 //
1423 // TODO: If anyone cared, we could track __label__'s, since we know that you
1424 // can't jump to one from outside their declared region.
1425 if (isa<LabelStmt>(S))
1426 return true;
1427
1428 // If this is a case/default statement, and we haven't seen a switch, we have
1429 // to emit the code.
1430 if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1431 return true;
1432
1433 // If this is a switch statement, we want to ignore cases below it.
1434 if (isa<SwitchStmt>(S))
1435 IgnoreCaseStmts = true;
1436
1437 // Scan subexpressions for verboten labels.
1438 for (const Stmt *SubStmt : S->children())
1439 if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1440 return true;
1441
1442 return false;
1443 }
1444
1445 /// containsBreak - Return true if the statement contains a break out of it.
1446 /// If the statement (recursively) contains a switch or loop with a break
1447 /// inside of it, this is fine.
containsBreak(const Stmt * S)1448 bool CodeGenFunction::containsBreak(const Stmt *S) {
1449 // Null statement, not a label!
1450 if (!S) return false;
1451
1452 // If this is a switch or loop that defines its own break scope, then we can
1453 // include it and anything inside of it.
1454 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1455 isa<ForStmt>(S))
1456 return false;
1457
1458 if (isa<BreakStmt>(S))
1459 return true;
1460
1461 // Scan subexpressions for verboten breaks.
1462 for (const Stmt *SubStmt : S->children())
1463 if (containsBreak(SubStmt))
1464 return true;
1465
1466 return false;
1467 }
1468
mightAddDeclToScope(const Stmt * S)1469 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1470 if (!S) return false;
1471
1472 // Some statement kinds add a scope and thus never add a decl to the current
1473 // scope. Note, this list is longer than the list of statements that might
1474 // have an unscoped decl nested within them, but this way is conservatively
1475 // correct even if more statement kinds are added.
1476 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1477 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1478 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1479 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1480 return false;
1481
1482 if (isa<DeclStmt>(S))
1483 return true;
1484
1485 for (const Stmt *SubStmt : S->children())
1486 if (mightAddDeclToScope(SubStmt))
1487 return true;
1488
1489 return false;
1490 }
1491
1492 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1493 /// to a constant, or if it does but contains a label, return false. If it
1494 /// constant folds return true and set the boolean result in Result.
ConstantFoldsToSimpleInteger(const Expr * Cond,bool & ResultBool,bool AllowLabels)1495 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1496 bool &ResultBool,
1497 bool AllowLabels) {
1498 llvm::APSInt ResultInt;
1499 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1500 return false;
1501
1502 ResultBool = ResultInt.getBoolValue();
1503 return true;
1504 }
1505
1506 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1507 /// to a constant, or if it does but contains a label, return false. If it
1508 /// constant folds return true and set the folded value.
ConstantFoldsToSimpleInteger(const Expr * Cond,llvm::APSInt & ResultInt,bool AllowLabels)1509 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1510 llvm::APSInt &ResultInt,
1511 bool AllowLabels) {
1512 // FIXME: Rename and handle conversion of other evaluatable things
1513 // to bool.
1514 Expr::EvalResult Result;
1515 if (!Cond->EvaluateAsInt(Result, getContext()))
1516 return false; // Not foldable, not integer or not fully evaluatable.
1517
1518 llvm::APSInt Int = Result.Val.getInt();
1519 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1520 return false; // Contains a label.
1521
1522 ResultInt = Int;
1523 return true;
1524 }
1525
1526 /// Determine whether the given condition is an instrumentable condition
1527 /// (i.e. no "&&" or "||").
isInstrumentedCondition(const Expr * C)1528 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1529 // Bypass simplistic logical-NOT operator before determining whether the
1530 // condition contains any other logical operator.
1531 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens()))
1532 if (UnOp->getOpcode() == UO_LNot)
1533 C = UnOp->getSubExpr();
1534
1535 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens());
1536 return (!BOp || !BOp->isLogicalOp());
1537 }
1538
1539 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1540 /// increments a profile counter based on the semantics of the given logical
1541 /// operator opcode. This is used to instrument branch condition coverage for
1542 /// logical operators.
EmitBranchToCounterBlock(const Expr * Cond,BinaryOperator::Opcode LOp,llvm::BasicBlock * TrueBlock,llvm::BasicBlock * FalseBlock,uint64_t TrueCount,Stmt::Likelihood LH,const Expr * CntrIdx)1543 void CodeGenFunction::EmitBranchToCounterBlock(
1544 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1545 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1546 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1547 // If not instrumenting, just emit a branch.
1548 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1549 if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1550 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1551
1552 llvm::BasicBlock *ThenBlock = NULL;
1553 llvm::BasicBlock *ElseBlock = NULL;
1554 llvm::BasicBlock *NextBlock = NULL;
1555
1556 // Create the block we'll use to increment the appropriate counter.
1557 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1558
1559 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1560 // means we need to evaluate the condition and increment the counter on TRUE:
1561 //
1562 // if (Cond)
1563 // goto CounterIncrBlock;
1564 // else
1565 // goto FalseBlock;
1566 //
1567 // CounterIncrBlock:
1568 // Counter++;
1569 // goto TrueBlock;
1570
1571 if (LOp == BO_LAnd) {
1572 ThenBlock = CounterIncrBlock;
1573 ElseBlock = FalseBlock;
1574 NextBlock = TrueBlock;
1575 }
1576
1577 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1578 // we need to evaluate the condition and increment the counter on FALSE:
1579 //
1580 // if (Cond)
1581 // goto TrueBlock;
1582 // else
1583 // goto CounterIncrBlock;
1584 //
1585 // CounterIncrBlock:
1586 // Counter++;
1587 // goto FalseBlock;
1588
1589 else if (LOp == BO_LOr) {
1590 ThenBlock = TrueBlock;
1591 ElseBlock = CounterIncrBlock;
1592 NextBlock = FalseBlock;
1593 } else {
1594 llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1595 }
1596
1597 // Emit Branch based on condition.
1598 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1599
1600 // Emit the block containing the counter increment(s).
1601 EmitBlock(CounterIncrBlock);
1602
1603 // Increment corresponding counter; if index not provided, use Cond as index.
1604 incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1605
1606 // Go to the next block.
1607 EmitBranch(NextBlock);
1608 }
1609
1610 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1611 /// statement) to the specified blocks. Based on the condition, this might try
1612 /// to simplify the codegen of the conditional based on the branch.
1613 /// \param LH The value of the likelihood attribute on the True branch.
EmitBranchOnBoolExpr(const Expr * Cond,llvm::BasicBlock * TrueBlock,llvm::BasicBlock * FalseBlock,uint64_t TrueCount,Stmt::Likelihood LH)1614 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1615 llvm::BasicBlock *TrueBlock,
1616 llvm::BasicBlock *FalseBlock,
1617 uint64_t TrueCount,
1618 Stmt::Likelihood LH) {
1619 Cond = Cond->IgnoreParens();
1620
1621 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1622
1623 // Handle X && Y in a condition.
1624 if (CondBOp->getOpcode() == BO_LAnd) {
1625 // If we have "1 && X", simplify the code. "0 && X" would have constant
1626 // folded if the case was simple enough.
1627 bool ConstantBool = false;
1628 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1629 ConstantBool) {
1630 // br(1 && X) -> br(X).
1631 incrementProfileCounter(CondBOp);
1632 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1633 FalseBlock, TrueCount, LH);
1634 }
1635
1636 // If we have "X && 1", simplify the code to use an uncond branch.
1637 // "X && 0" would have been constant folded to 0.
1638 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1639 ConstantBool) {
1640 // br(X && 1) -> br(X).
1641 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1642 FalseBlock, TrueCount, LH, CondBOp);
1643 }
1644
1645 // Emit the LHS as a conditional. If the LHS conditional is false, we
1646 // want to jump to the FalseBlock.
1647 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1648 // The counter tells us how often we evaluate RHS, and all of TrueCount
1649 // can be propagated to that branch.
1650 uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1651
1652 ConditionalEvaluation eval(*this);
1653 {
1654 ApplyDebugLocation DL(*this, Cond);
1655 // Propagate the likelihood attribute like __builtin_expect
1656 // __builtin_expect(X && Y, 1) -> X and Y are likely
1657 // __builtin_expect(X && Y, 0) -> only Y is unlikely
1658 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1659 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1660 EmitBlock(LHSTrue);
1661 }
1662
1663 incrementProfileCounter(CondBOp);
1664 setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1665
1666 // Any temporaries created here are conditional.
1667 eval.begin(*this);
1668 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1669 FalseBlock, TrueCount, LH);
1670 eval.end(*this);
1671
1672 return;
1673 }
1674
1675 if (CondBOp->getOpcode() == BO_LOr) {
1676 // If we have "0 || X", simplify the code. "1 || X" would have constant
1677 // folded if the case was simple enough.
1678 bool ConstantBool = false;
1679 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1680 !ConstantBool) {
1681 // br(0 || X) -> br(X).
1682 incrementProfileCounter(CondBOp);
1683 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1684 FalseBlock, TrueCount, LH);
1685 }
1686
1687 // If we have "X || 0", simplify the code to use an uncond branch.
1688 // "X || 1" would have been constant folded to 1.
1689 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1690 !ConstantBool) {
1691 // br(X || 0) -> br(X).
1692 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1693 FalseBlock, TrueCount, LH, CondBOp);
1694 }
1695
1696 // Emit the LHS as a conditional. If the LHS conditional is true, we
1697 // want to jump to the TrueBlock.
1698 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1699 // We have the count for entry to the RHS and for the whole expression
1700 // being true, so we can divy up True count between the short circuit and
1701 // the RHS.
1702 uint64_t LHSCount =
1703 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1704 uint64_t RHSCount = TrueCount - LHSCount;
1705
1706 ConditionalEvaluation eval(*this);
1707 {
1708 // Propagate the likelihood attribute like __builtin_expect
1709 // __builtin_expect(X || Y, 1) -> only Y is likely
1710 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1711 ApplyDebugLocation DL(*this, Cond);
1712 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1713 LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1714 EmitBlock(LHSFalse);
1715 }
1716
1717 incrementProfileCounter(CondBOp);
1718 setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1719
1720 // Any temporaries created here are conditional.
1721 eval.begin(*this);
1722 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1723 RHSCount, LH);
1724
1725 eval.end(*this);
1726
1727 return;
1728 }
1729 }
1730
1731 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1732 // br(!x, t, f) -> br(x, f, t)
1733 if (CondUOp->getOpcode() == UO_LNot) {
1734 // Negate the count.
1735 uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1736 // The values of the enum are chosen to make this negation possible.
1737 LH = static_cast<Stmt::Likelihood>(-LH);
1738 // Negate the condition and swap the destination blocks.
1739 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1740 FalseCount, LH);
1741 }
1742 }
1743
1744 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1745 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1746 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1747 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1748
1749 // The ConditionalOperator itself has no likelihood information for its
1750 // true and false branches. This matches the behavior of __builtin_expect.
1751 ConditionalEvaluation cond(*this);
1752 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1753 getProfileCount(CondOp), Stmt::LH_None);
1754
1755 // When computing PGO branch weights, we only know the overall count for
1756 // the true block. This code is essentially doing tail duplication of the
1757 // naive code-gen, introducing new edges for which counts are not
1758 // available. Divide the counts proportionally between the LHS and RHS of
1759 // the conditional operator.
1760 uint64_t LHSScaledTrueCount = 0;
1761 if (TrueCount) {
1762 double LHSRatio =
1763 getProfileCount(CondOp) / (double)getCurrentProfileCount();
1764 LHSScaledTrueCount = TrueCount * LHSRatio;
1765 }
1766
1767 cond.begin(*this);
1768 EmitBlock(LHSBlock);
1769 incrementProfileCounter(CondOp);
1770 {
1771 ApplyDebugLocation DL(*this, Cond);
1772 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1773 LHSScaledTrueCount, LH);
1774 }
1775 cond.end(*this);
1776
1777 cond.begin(*this);
1778 EmitBlock(RHSBlock);
1779 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1780 TrueCount - LHSScaledTrueCount, LH);
1781 cond.end(*this);
1782
1783 return;
1784 }
1785
1786 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1787 // Conditional operator handling can give us a throw expression as a
1788 // condition for a case like:
1789 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1790 // Fold this to:
1791 // br(c, throw x, br(y, t, f))
1792 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1793 return;
1794 }
1795
1796 // Emit the code with the fully general case.
1797 llvm::Value *CondV;
1798 {
1799 ApplyDebugLocation DL(*this, Cond);
1800 CondV = EvaluateExprAsBool(Cond);
1801 }
1802
1803 llvm::MDNode *Weights = nullptr;
1804 llvm::MDNode *Unpredictable = nullptr;
1805
1806 // If the branch has a condition wrapped by __builtin_unpredictable,
1807 // create metadata that specifies that the branch is unpredictable.
1808 // Don't bother if not optimizing because that metadata would not be used.
1809 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1810 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1811 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1812 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1813 llvm::MDBuilder MDHelper(getLLVMContext());
1814 Unpredictable = MDHelper.createUnpredictable();
1815 }
1816 }
1817
1818 // If there is a Likelihood knowledge for the cond, lower it.
1819 // Note that if not optimizing this won't emit anything.
1820 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
1821 if (CondV != NewCondV)
1822 CondV = NewCondV;
1823 else {
1824 // Otherwise, lower profile counts. Note that we do this even at -O0.
1825 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1826 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1827 }
1828
1829 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1830 }
1831
1832 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1833 /// specified stmt yet.
ErrorUnsupported(const Stmt * S,const char * Type)1834 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1835 CGM.ErrorUnsupported(S, Type);
1836 }
1837
1838 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1839 /// variable-length array whose elements have a non-zero bit-pattern.
1840 ///
1841 /// \param baseType the inner-most element type of the array
1842 /// \param src - a char* pointing to the bit-pattern for a single
1843 /// base element of the array
1844 /// \param sizeInChars - the total size of the VLA, in chars
emitNonZeroVLAInit(CodeGenFunction & CGF,QualType baseType,Address dest,Address src,llvm::Value * sizeInChars)1845 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1846 Address dest, Address src,
1847 llvm::Value *sizeInChars) {
1848 CGBuilderTy &Builder = CGF.Builder;
1849
1850 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1851 llvm::Value *baseSizeInChars
1852 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1853
1854 Address begin =
1855 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1856 llvm::Value *end = Builder.CreateInBoundsGEP(
1857 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end");
1858
1859 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1860 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1861 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1862
1863 // Make a loop over the VLA. C99 guarantees that the VLA element
1864 // count must be nonzero.
1865 CGF.EmitBlock(loopBB);
1866
1867 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1868 cur->addIncoming(begin.getPointer(), originBB);
1869
1870 CharUnits curAlign =
1871 dest.getAlignment().alignmentOfArrayElement(baseSize);
1872
1873 // memcpy the individual element bit-pattern.
1874 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1875 /*volatile*/ false);
1876
1877 // Go to the next element.
1878 llvm::Value *next =
1879 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1880
1881 // Leave if that's the end of the VLA.
1882 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1883 Builder.CreateCondBr(done, contBB, loopBB);
1884 cur->addIncoming(next, loopBB);
1885
1886 CGF.EmitBlock(contBB);
1887 }
1888
1889 void
EmitNullInitialization(Address DestPtr,QualType Ty)1890 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1891 // Ignore empty classes in C++.
1892 if (getLangOpts().CPlusPlus) {
1893 if (const RecordType *RT = Ty->getAs<RecordType>()) {
1894 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1895 return;
1896 }
1897 }
1898
1899 // Cast the dest ptr to the appropriate i8 pointer type.
1900 if (DestPtr.getElementType() != Int8Ty)
1901 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1902
1903 // Get size and alignment info for this aggregate.
1904 CharUnits size = getContext().getTypeSizeInChars(Ty);
1905
1906 llvm::Value *SizeVal;
1907 const VariableArrayType *vla;
1908
1909 // Don't bother emitting a zero-byte memset.
1910 if (size.isZero()) {
1911 // But note that getTypeInfo returns 0 for a VLA.
1912 if (const VariableArrayType *vlaType =
1913 dyn_cast_or_null<VariableArrayType>(
1914 getContext().getAsArrayType(Ty))) {
1915 auto VlaSize = getVLASize(vlaType);
1916 SizeVal = VlaSize.NumElts;
1917 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1918 if (!eltSize.isOne())
1919 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1920 vla = vlaType;
1921 } else {
1922 return;
1923 }
1924 } else {
1925 SizeVal = CGM.getSize(size);
1926 vla = nullptr;
1927 }
1928
1929 // If the type contains a pointer to data member we can't memset it to zero.
1930 // Instead, create a null constant and copy it to the destination.
1931 // TODO: there are other patterns besides zero that we can usefully memset,
1932 // like -1, which happens to be the pattern used by member-pointers.
1933 if (!CGM.getTypes().isZeroInitializable(Ty)) {
1934 // For a VLA, emit a single element, then splat that over the VLA.
1935 if (vla) Ty = getContext().getBaseElementType(vla);
1936
1937 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1938
1939 llvm::GlobalVariable *NullVariable =
1940 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1941 /*isConstant=*/true,
1942 llvm::GlobalVariable::PrivateLinkage,
1943 NullConstant, Twine());
1944 CharUnits NullAlign = DestPtr.getAlignment();
1945 NullVariable->setAlignment(NullAlign.getAsAlign());
1946 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1947 NullAlign);
1948
1949 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1950
1951 // Get and call the appropriate llvm.memcpy overload.
1952 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1953 return;
1954 }
1955
1956 // Otherwise, just memset the whole thing to zero. This is legal
1957 // because in LLVM, all default initializers (other than the ones we just
1958 // handled above) are guaranteed to have a bit pattern of all zeros.
1959 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1960 }
1961
GetAddrOfLabel(const LabelDecl * L)1962 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1963 // Make sure that there is a block for the indirect goto.
1964 if (!IndirectBranch)
1965 GetIndirectGotoBlock();
1966
1967 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1968
1969 // Make sure the indirect branch includes all of the address-taken blocks.
1970 IndirectBranch->addDestination(BB);
1971 return llvm::BlockAddress::get(CurFn, BB);
1972 }
1973
GetIndirectGotoBlock()1974 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1975 // If we already made the indirect branch for indirect goto, return its block.
1976 if (IndirectBranch) return IndirectBranch->getParent();
1977
1978 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1979
1980 // Create the PHI node that indirect gotos will add entries to.
1981 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1982 "indirect.goto.dest");
1983
1984 // Create the indirect branch instruction.
1985 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1986 return IndirectBranch->getParent();
1987 }
1988
1989 /// Computes the length of an array in elements, as well as the base
1990 /// element type and a properly-typed first element pointer.
emitArrayLength(const ArrayType * origArrayType,QualType & baseType,Address & addr)1991 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1992 QualType &baseType,
1993 Address &addr) {
1994 const ArrayType *arrayType = origArrayType;
1995
1996 // If it's a VLA, we have to load the stored size. Note that
1997 // this is the size of the VLA in bytes, not its size in elements.
1998 llvm::Value *numVLAElements = nullptr;
1999 if (isa<VariableArrayType>(arrayType)) {
2000 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2001
2002 // Walk into all VLAs. This doesn't require changes to addr,
2003 // which has type T* where T is the first non-VLA element type.
2004 do {
2005 QualType elementType = arrayType->getElementType();
2006 arrayType = getContext().getAsArrayType(elementType);
2007
2008 // If we only have VLA components, 'addr' requires no adjustment.
2009 if (!arrayType) {
2010 baseType = elementType;
2011 return numVLAElements;
2012 }
2013 } while (isa<VariableArrayType>(arrayType));
2014
2015 // We get out here only if we find a constant array type
2016 // inside the VLA.
2017 }
2018
2019 // We have some number of constant-length arrays, so addr should
2020 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks
2021 // down to the first element of addr.
2022 SmallVector<llvm::Value*, 8> gepIndices;
2023
2024 // GEP down to the array type.
2025 llvm::ConstantInt *zero = Builder.getInt32(0);
2026 gepIndices.push_back(zero);
2027
2028 uint64_t countFromCLAs = 1;
2029 QualType eltType;
2030
2031 llvm::ArrayType *llvmArrayType =
2032 dyn_cast<llvm::ArrayType>(addr.getElementType());
2033 while (llvmArrayType) {
2034 assert(isa<ConstantArrayType>(arrayType));
2035 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
2036 == llvmArrayType->getNumElements());
2037
2038 gepIndices.push_back(zero);
2039 countFromCLAs *= llvmArrayType->getNumElements();
2040 eltType = arrayType->getElementType();
2041
2042 llvmArrayType =
2043 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2044 arrayType = getContext().getAsArrayType(arrayType->getElementType());
2045 assert((!llvmArrayType || arrayType) &&
2046 "LLVM and Clang types are out-of-synch");
2047 }
2048
2049 if (arrayType) {
2050 // From this point onwards, the Clang array type has been emitted
2051 // as some other type (probably a packed struct). Compute the array
2052 // size, and just emit the 'begin' expression as a bitcast.
2053 while (arrayType) {
2054 countFromCLAs *=
2055 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
2056 eltType = arrayType->getElementType();
2057 arrayType = getContext().getAsArrayType(eltType);
2058 }
2059
2060 llvm::Type *baseType = ConvertType(eltType);
2061 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
2062 } else {
2063 // Create the actual GEP.
2064 addr = Address(Builder.CreateInBoundsGEP(
2065 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"),
2066 addr.getAlignment());
2067 }
2068
2069 baseType = eltType;
2070
2071 llvm::Value *numElements
2072 = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2073
2074 // If we had any VLA dimensions, factor them in.
2075 if (numVLAElements)
2076 numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2077
2078 return numElements;
2079 }
2080
getVLASize(QualType type)2081 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2082 const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2083 assert(vla && "type was not a variable array type!");
2084 return getVLASize(vla);
2085 }
2086
2087 CodeGenFunction::VlaSizePair
getVLASize(const VariableArrayType * type)2088 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2089 // The number of elements so far; always size_t.
2090 llvm::Value *numElements = nullptr;
2091
2092 QualType elementType;
2093 do {
2094 elementType = type->getElementType();
2095 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2096 assert(vlaSize && "no size for VLA!");
2097 assert(vlaSize->getType() == SizeTy);
2098
2099 if (!numElements) {
2100 numElements = vlaSize;
2101 } else {
2102 // It's undefined behavior if this wraps around, so mark it that way.
2103 // FIXME: Teach -fsanitize=undefined to trap this.
2104 numElements = Builder.CreateNUWMul(numElements, vlaSize);
2105 }
2106 } while ((type = getContext().getAsVariableArrayType(elementType)));
2107
2108 return { numElements, elementType };
2109 }
2110
2111 CodeGenFunction::VlaSizePair
getVLAElements1D(QualType type)2112 CodeGenFunction::getVLAElements1D(QualType type) {
2113 const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2114 assert(vla && "type was not a variable array type!");
2115 return getVLAElements1D(vla);
2116 }
2117
2118 CodeGenFunction::VlaSizePair
getVLAElements1D(const VariableArrayType * Vla)2119 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2120 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2121 assert(VlaSize && "no size for VLA!");
2122 assert(VlaSize->getType() == SizeTy);
2123 return { VlaSize, Vla->getElementType() };
2124 }
2125
EmitVariablyModifiedType(QualType type)2126 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2127 assert(type->isVariablyModifiedType() &&
2128 "Must pass variably modified type to EmitVLASizes!");
2129
2130 EnsureInsertPoint();
2131
2132 // We're going to walk down into the type and look for VLA
2133 // expressions.
2134 do {
2135 assert(type->isVariablyModifiedType());
2136
2137 const Type *ty = type.getTypePtr();
2138 switch (ty->getTypeClass()) {
2139
2140 #define TYPE(Class, Base)
2141 #define ABSTRACT_TYPE(Class, Base)
2142 #define NON_CANONICAL_TYPE(Class, Base)
2143 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2144 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2145 #include "clang/AST/TypeNodes.inc"
2146 llvm_unreachable("unexpected dependent type!");
2147
2148 // These types are never variably-modified.
2149 case Type::Builtin:
2150 case Type::Complex:
2151 case Type::Vector:
2152 case Type::ExtVector:
2153 case Type::ConstantMatrix:
2154 case Type::Record:
2155 case Type::Enum:
2156 case Type::Elaborated:
2157 case Type::TemplateSpecialization:
2158 case Type::ObjCTypeParam:
2159 case Type::ObjCObject:
2160 case Type::ObjCInterface:
2161 case Type::ObjCObjectPointer:
2162 case Type::ExtInt:
2163 llvm_unreachable("type class is never variably-modified!");
2164
2165 case Type::Adjusted:
2166 type = cast<AdjustedType>(ty)->getAdjustedType();
2167 break;
2168
2169 case Type::Decayed:
2170 type = cast<DecayedType>(ty)->getPointeeType();
2171 break;
2172
2173 case Type::Pointer:
2174 type = cast<PointerType>(ty)->getPointeeType();
2175 break;
2176
2177 case Type::BlockPointer:
2178 type = cast<BlockPointerType>(ty)->getPointeeType();
2179 break;
2180
2181 case Type::LValueReference:
2182 case Type::RValueReference:
2183 type = cast<ReferenceType>(ty)->getPointeeType();
2184 break;
2185
2186 case Type::MemberPointer:
2187 type = cast<MemberPointerType>(ty)->getPointeeType();
2188 break;
2189
2190 case Type::ConstantArray:
2191 case Type::IncompleteArray:
2192 // Losing element qualification here is fine.
2193 type = cast<ArrayType>(ty)->getElementType();
2194 break;
2195
2196 case Type::VariableArray: {
2197 // Losing element qualification here is fine.
2198 const VariableArrayType *vat = cast<VariableArrayType>(ty);
2199
2200 // Unknown size indication requires no size computation.
2201 // Otherwise, evaluate and record it.
2202 if (const Expr *size = vat->getSizeExpr()) {
2203 // It's possible that we might have emitted this already,
2204 // e.g. with a typedef and a pointer to it.
2205 llvm::Value *&entry = VLASizeMap[size];
2206 if (!entry) {
2207 llvm::Value *Size = EmitScalarExpr(size);
2208
2209 // C11 6.7.6.2p5:
2210 // If the size is an expression that is not an integer constant
2211 // expression [...] each time it is evaluated it shall have a value
2212 // greater than zero.
2213 if (SanOpts.has(SanitizerKind::VLABound) &&
2214 size->getType()->isSignedIntegerType()) {
2215 SanitizerScope SanScope(this);
2216 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2217 llvm::Constant *StaticArgs[] = {
2218 EmitCheckSourceLocation(size->getBeginLoc()),
2219 EmitCheckTypeDescriptor(size->getType())};
2220 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2221 SanitizerKind::VLABound),
2222 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2223 }
2224
2225 // Always zexting here would be wrong if it weren't
2226 // undefined behavior to have a negative bound.
2227 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2228 }
2229 }
2230 type = vat->getElementType();
2231 break;
2232 }
2233
2234 case Type::FunctionProto:
2235 case Type::FunctionNoProto:
2236 type = cast<FunctionType>(ty)->getReturnType();
2237 break;
2238
2239 case Type::Paren:
2240 case Type::TypeOf:
2241 case Type::UnaryTransform:
2242 case Type::Attributed:
2243 case Type::SubstTemplateTypeParm:
2244 case Type::MacroQualified:
2245 // Keep walking after single level desugaring.
2246 type = type.getSingleStepDesugaredType(getContext());
2247 break;
2248
2249 case Type::Typedef:
2250 case Type::Decltype:
2251 case Type::Auto:
2252 case Type::DeducedTemplateSpecialization:
2253 // Stop walking: nothing to do.
2254 return;
2255
2256 case Type::TypeOfExpr:
2257 // Stop walking: emit typeof expression.
2258 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2259 return;
2260
2261 case Type::Atomic:
2262 type = cast<AtomicType>(ty)->getValueType();
2263 break;
2264
2265 case Type::Pipe:
2266 type = cast<PipeType>(ty)->getElementType();
2267 break;
2268 }
2269 } while (type->isVariablyModifiedType());
2270 }
2271
EmitVAListRef(const Expr * E)2272 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2273 if (getContext().getBuiltinVaListType()->isArrayType())
2274 return EmitPointerWithAlignment(E);
2275 return EmitLValue(E).getAddress(*this);
2276 }
2277
EmitMSVAListRef(const Expr * E)2278 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2279 return EmitLValue(E).getAddress(*this);
2280 }
2281
EmitDeclRefExprDbgValue(const DeclRefExpr * E,const APValue & Init)2282 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2283 const APValue &Init) {
2284 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2285 if (CGDebugInfo *Dbg = getDebugInfo())
2286 if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2287 Dbg->EmitGlobalVariable(E->getDecl(), Init);
2288 }
2289
2290 CodeGenFunction::PeepholeProtection
protectFromPeepholes(RValue rvalue)2291 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2292 // At the moment, the only aggressive peephole we do in IR gen
2293 // is trunc(zext) folding, but if we add more, we can easily
2294 // extend this protection.
2295
2296 if (!rvalue.isScalar()) return PeepholeProtection();
2297 llvm::Value *value = rvalue.getScalarVal();
2298 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2299
2300 // Just make an extra bitcast.
2301 assert(HaveInsertPoint());
2302 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2303 Builder.GetInsertBlock());
2304
2305 PeepholeProtection protection;
2306 protection.Inst = inst;
2307 return protection;
2308 }
2309
unprotectFromPeepholes(PeepholeProtection protection)2310 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2311 if (!protection.Inst) return;
2312
2313 // In theory, we could try to duplicate the peepholes now, but whatever.
2314 protection.Inst->eraseFromParent();
2315 }
2316
emitAlignmentAssumption(llvm::Value * PtrValue,QualType Ty,SourceLocation Loc,SourceLocation AssumptionLoc,llvm::Value * Alignment,llvm::Value * OffsetValue)2317 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2318 QualType Ty, SourceLocation Loc,
2319 SourceLocation AssumptionLoc,
2320 llvm::Value *Alignment,
2321 llvm::Value *OffsetValue) {
2322 if (Alignment->getType() != IntPtrTy)
2323 Alignment =
2324 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2325 if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2326 OffsetValue =
2327 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2328 llvm::Value *TheCheck = nullptr;
2329 if (SanOpts.has(SanitizerKind::Alignment)) {
2330 llvm::Value *PtrIntValue =
2331 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2332
2333 if (OffsetValue) {
2334 bool IsOffsetZero = false;
2335 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2336 IsOffsetZero = CI->isZero();
2337
2338 if (!IsOffsetZero)
2339 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2340 }
2341
2342 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2343 llvm::Value *Mask =
2344 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2345 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2346 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2347 }
2348 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2349 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2350
2351 if (!SanOpts.has(SanitizerKind::Alignment))
2352 return;
2353 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2354 OffsetValue, TheCheck, Assumption);
2355 }
2356
emitAlignmentAssumption(llvm::Value * PtrValue,const Expr * E,SourceLocation AssumptionLoc,llvm::Value * Alignment,llvm::Value * OffsetValue)2357 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2358 const Expr *E,
2359 SourceLocation AssumptionLoc,
2360 llvm::Value *Alignment,
2361 llvm::Value *OffsetValue) {
2362 if (auto *CE = dyn_cast<CastExpr>(E))
2363 E = CE->getSubExprAsWritten();
2364 QualType Ty = E->getType();
2365 SourceLocation Loc = E->getExprLoc();
2366
2367 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2368 OffsetValue);
2369 }
2370
EmitAnnotationCall(llvm::Function * AnnotationFn,llvm::Value * AnnotatedVal,StringRef AnnotationStr,SourceLocation Location,const AnnotateAttr * Attr)2371 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2372 llvm::Value *AnnotatedVal,
2373 StringRef AnnotationStr,
2374 SourceLocation Location,
2375 const AnnotateAttr *Attr) {
2376 SmallVector<llvm::Value *, 5> Args = {
2377 AnnotatedVal,
2378 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2379 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2380 CGM.EmitAnnotationLineNo(Location),
2381 };
2382 if (Attr)
2383 Args.push_back(CGM.EmitAnnotationArgs(Attr));
2384 return Builder.CreateCall(AnnotationFn, Args);
2385 }
2386
EmitVarAnnotations(const VarDecl * D,llvm::Value * V)2387 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2388 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2389 // FIXME We create a new bitcast for every annotation because that's what
2390 // llvm-gcc was doing.
2391 for (const auto *I : D->specific_attrs<AnnotateAttr>())
2392 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2393 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2394 I->getAnnotation(), D->getLocation(), I);
2395 }
2396
EmitFieldAnnotations(const FieldDecl * D,Address Addr)2397 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2398 Address Addr) {
2399 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2400 llvm::Value *V = Addr.getPointer();
2401 llvm::Type *VTy = V->getType();
2402 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2403 CGM.Int8PtrTy);
2404
2405 for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2406 // FIXME Always emit the cast inst so we can differentiate between
2407 // annotation on the first field of a struct and annotation on the struct
2408 // itself.
2409 if (VTy != CGM.Int8PtrTy)
2410 V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2411 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2412 V = Builder.CreateBitCast(V, VTy);
2413 }
2414
2415 return Address(V, Addr.getAlignment());
2416 }
2417
~CGCapturedStmtInfo()2418 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2419
SanitizerScope(CodeGenFunction * CGF)2420 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2421 : CGF(CGF) {
2422 assert(!CGF->IsSanitizerScope);
2423 CGF->IsSanitizerScope = true;
2424 }
2425
~SanitizerScope()2426 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2427 CGF->IsSanitizerScope = false;
2428 }
2429
InsertHelper(llvm::Instruction * I,const llvm::Twine & Name,llvm::BasicBlock * BB,llvm::BasicBlock::iterator InsertPt) const2430 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2431 const llvm::Twine &Name,
2432 llvm::BasicBlock *BB,
2433 llvm::BasicBlock::iterator InsertPt) const {
2434 LoopStack.InsertHelper(I);
2435 if (IsSanitizerScope)
2436 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2437 }
2438
InsertHelper(llvm::Instruction * I,const llvm::Twine & Name,llvm::BasicBlock * BB,llvm::BasicBlock::iterator InsertPt) const2439 void CGBuilderInserter::InsertHelper(
2440 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2441 llvm::BasicBlock::iterator InsertPt) const {
2442 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2443 if (CGF)
2444 CGF->InsertHelper(I, Name, BB, InsertPt);
2445 }
2446
2447 // Emits an error if we don't have a valid set of target features for the
2448 // called function.
checkTargetFeatures(const CallExpr * E,const FunctionDecl * TargetDecl)2449 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2450 const FunctionDecl *TargetDecl) {
2451 return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2452 }
2453
2454 // Emits an error if we don't have a valid set of target features for the
2455 // called function.
checkTargetFeatures(SourceLocation Loc,const FunctionDecl * TargetDecl)2456 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2457 const FunctionDecl *TargetDecl) {
2458 // Early exit if this is an indirect call.
2459 if (!TargetDecl)
2460 return;
2461
2462 // Get the current enclosing function if it exists. If it doesn't
2463 // we can't check the target features anyhow.
2464 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2465 if (!FD)
2466 return;
2467
2468 // Grab the required features for the call. For a builtin this is listed in
2469 // the td file with the default cpu, for an always_inline function this is any
2470 // listed cpu and any listed features.
2471 unsigned BuiltinID = TargetDecl->getBuiltinID();
2472 std::string MissingFeature;
2473 llvm::StringMap<bool> CallerFeatureMap;
2474 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2475 if (BuiltinID) {
2476 StringRef FeatureList(
2477 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2478 // Return if the builtin doesn't have any required features.
2479 if (FeatureList.empty())
2480 return;
2481 assert(FeatureList.find(' ') == StringRef::npos &&
2482 "Space in feature list");
2483 TargetFeatures TF(CallerFeatureMap);
2484 if (!TF.hasRequiredFeatures(FeatureList))
2485 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2486 << TargetDecl->getDeclName() << FeatureList;
2487 } else if (!TargetDecl->isMultiVersion() &&
2488 TargetDecl->hasAttr<TargetAttr>()) {
2489 // Get the required features for the callee.
2490
2491 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2492 ParsedTargetAttr ParsedAttr =
2493 CGM.getContext().filterFunctionTargetAttrs(TD);
2494
2495 SmallVector<StringRef, 1> ReqFeatures;
2496 llvm::StringMap<bool> CalleeFeatureMap;
2497 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2498
2499 for (const auto &F : ParsedAttr.Features) {
2500 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2501 ReqFeatures.push_back(StringRef(F).substr(1));
2502 }
2503
2504 for (const auto &F : CalleeFeatureMap) {
2505 // Only positive features are "required".
2506 if (F.getValue())
2507 ReqFeatures.push_back(F.getKey());
2508 }
2509 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2510 if (!CallerFeatureMap.lookup(Feature)) {
2511 MissingFeature = Feature.str();
2512 return false;
2513 }
2514 return true;
2515 }))
2516 CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2517 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2518 }
2519 }
2520
EmitSanitizerStatReport(llvm::SanitizerStatKind SSK)2521 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2522 if (!CGM.getCodeGenOpts().SanitizeStats)
2523 return;
2524
2525 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2526 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2527 CGM.getSanStats().create(IRB, SSK);
2528 }
2529
2530 llvm::Value *
FormResolverCondition(const MultiVersionResolverOption & RO)2531 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2532 llvm::Value *Condition = nullptr;
2533
2534 if (!RO.Conditions.Architecture.empty())
2535 Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2536
2537 if (!RO.Conditions.Features.empty()) {
2538 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2539 Condition =
2540 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2541 }
2542 return Condition;
2543 }
2544
CreateMultiVersionResolverReturn(CodeGenModule & CGM,llvm::Function * Resolver,CGBuilderTy & Builder,llvm::Function * FuncToReturn,bool SupportsIFunc)2545 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2546 llvm::Function *Resolver,
2547 CGBuilderTy &Builder,
2548 llvm::Function *FuncToReturn,
2549 bool SupportsIFunc) {
2550 if (SupportsIFunc) {
2551 Builder.CreateRet(FuncToReturn);
2552 return;
2553 }
2554
2555 llvm::SmallVector<llvm::Value *, 10> Args;
2556 llvm::for_each(Resolver->args(),
2557 [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2558
2559 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2560 Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2561
2562 if (Resolver->getReturnType()->isVoidTy())
2563 Builder.CreateRetVoid();
2564 else
2565 Builder.CreateRet(Result);
2566 }
2567
EmitMultiVersionResolver(llvm::Function * Resolver,ArrayRef<MultiVersionResolverOption> Options)2568 void CodeGenFunction::EmitMultiVersionResolver(
2569 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2570 assert(getContext().getTargetInfo().getTriple().isX86() &&
2571 "Only implemented for x86 targets");
2572
2573 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2574
2575 // Main function's basic block.
2576 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2577 Builder.SetInsertPoint(CurBlock);
2578 EmitX86CpuInit();
2579
2580 for (const MultiVersionResolverOption &RO : Options) {
2581 Builder.SetInsertPoint(CurBlock);
2582 llvm::Value *Condition = FormResolverCondition(RO);
2583
2584 // The 'default' or 'generic' case.
2585 if (!Condition) {
2586 assert(&RO == Options.end() - 1 &&
2587 "Default or Generic case must be last");
2588 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2589 SupportsIFunc);
2590 return;
2591 }
2592
2593 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2594 CGBuilderTy RetBuilder(*this, RetBlock);
2595 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2596 SupportsIFunc);
2597 CurBlock = createBasicBlock("resolver_else", Resolver);
2598 Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2599 }
2600
2601 // If no generic/default, emit an unreachable.
2602 Builder.SetInsertPoint(CurBlock);
2603 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2604 TrapCall->setDoesNotReturn();
2605 TrapCall->setDoesNotThrow();
2606 Builder.CreateUnreachable();
2607 Builder.ClearInsertionPoint();
2608 }
2609
2610 // Loc - where the diagnostic will point, where in the source code this
2611 // alignment has failed.
2612 // SecondaryLoc - if present (will be present if sufficiently different from
2613 // Loc), the diagnostic will additionally point a "Note:" to this location.
2614 // It should be the location where the __attribute__((assume_aligned))
2615 // was written e.g.
emitAlignmentAssumptionCheck(llvm::Value * Ptr,QualType Ty,SourceLocation Loc,SourceLocation SecondaryLoc,llvm::Value * Alignment,llvm::Value * OffsetValue,llvm::Value * TheCheck,llvm::Instruction * Assumption)2616 void CodeGenFunction::emitAlignmentAssumptionCheck(
2617 llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2618 SourceLocation SecondaryLoc, llvm::Value *Alignment,
2619 llvm::Value *OffsetValue, llvm::Value *TheCheck,
2620 llvm::Instruction *Assumption) {
2621 assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2622 cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2623 llvm::Intrinsic::getDeclaration(
2624 Builder.GetInsertBlock()->getParent()->getParent(),
2625 llvm::Intrinsic::assume) &&
2626 "Assumption should be a call to llvm.assume().");
2627 assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2628 "Assumption should be the last instruction of the basic block, "
2629 "since the basic block is still being generated.");
2630
2631 if (!SanOpts.has(SanitizerKind::Alignment))
2632 return;
2633
2634 // Don't check pointers to volatile data. The behavior here is implementation-
2635 // defined.
2636 if (Ty->getPointeeType().isVolatileQualified())
2637 return;
2638
2639 // We need to temorairly remove the assumption so we can insert the
2640 // sanitizer check before it, else the check will be dropped by optimizations.
2641 Assumption->removeFromParent();
2642
2643 {
2644 SanitizerScope SanScope(this);
2645
2646 if (!OffsetValue)
2647 OffsetValue = Builder.getInt1(0); // no offset.
2648
2649 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2650 EmitCheckSourceLocation(SecondaryLoc),
2651 EmitCheckTypeDescriptor(Ty)};
2652 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2653 EmitCheckValue(Alignment),
2654 EmitCheckValue(OffsetValue)};
2655 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2656 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2657 }
2658
2659 // We are now in the (new, empty) "cont" basic block.
2660 // Reintroduce the assumption.
2661 Builder.Insert(Assumption);
2662 // FIXME: Assumption still has it's original basic block as it's Parent.
2663 }
2664
SourceLocToDebugLoc(SourceLocation Location)2665 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2666 if (CGDebugInfo *DI = getDebugInfo())
2667 return DI->SourceLocToDebugLoc(Location);
2668
2669 return llvm::DebugLoc();
2670 }
2671
2672 llvm::Value *
emitCondLikelihoodViaExpectIntrinsic(llvm::Value * Cond,Stmt::Likelihood LH)2673 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
2674 Stmt::Likelihood LH) {
2675 switch (LH) {
2676 case Stmt::LH_None:
2677 return Cond;
2678 case Stmt::LH_Likely:
2679 case Stmt::LH_Unlikely:
2680 // Don't generate llvm.expect on -O0 as the backend won't use it for
2681 // anything.
2682 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2683 return Cond;
2684 llvm::Type *CondTy = Cond->getType();
2685 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
2686 llvm::Function *FnExpect =
2687 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
2688 llvm::Value *ExpectedValueOfCond =
2689 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
2690 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
2691 Cond->getName() + ".expval");
2692 }
2693 llvm_unreachable("Unknown Likelihood");
2694 }
2695