1 //===- BuildTree.cpp ------------------------------------------*- C++ -*-=====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include "clang/Tooling/Syntax/BuildTree.h"
9 #include "clang/AST/ASTFwd.h"
10 #include "clang/AST/Decl.h"
11 #include "clang/AST/DeclBase.h"
12 #include "clang/AST/DeclCXX.h"
13 #include "clang/AST/DeclarationName.h"
14 #include "clang/AST/Expr.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/IgnoreExpr.h"
17 #include "clang/AST/OperationKinds.h"
18 #include "clang/AST/RecursiveASTVisitor.h"
19 #include "clang/AST/Stmt.h"
20 #include "clang/AST/TypeLoc.h"
21 #include "clang/AST/TypeLocVisitor.h"
22 #include "clang/Basic/LLVM.h"
23 #include "clang/Basic/SourceLocation.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "clang/Basic/Specifiers.h"
26 #include "clang/Basic/TokenKinds.h"
27 #include "clang/Lex/Lexer.h"
28 #include "clang/Lex/LiteralSupport.h"
29 #include "clang/Tooling/Syntax/Nodes.h"
30 #include "clang/Tooling/Syntax/Tokens.h"
31 #include "clang/Tooling/Syntax/Tree.h"
32 #include "llvm/ADT/ArrayRef.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/PointerUnion.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/ScopeExit.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/Support/Allocator.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/FormatVariadic.h"
42 #include "llvm/Support/MemoryBuffer.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cstddef>
45 #include <map>
46
47 using namespace clang;
48
49 // Ignores the implicit `CXXConstructExpr` for copy/move constructor calls
50 // generated by the compiler, as well as in implicit conversions like the one
51 // wrapping `1` in `X x = 1;`.
IgnoreImplicitConstructorSingleStep(Expr * E)52 static Expr *IgnoreImplicitConstructorSingleStep(Expr *E) {
53 if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
54 auto NumArgs = C->getNumArgs();
55 if (NumArgs == 1 || (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
56 Expr *A = C->getArg(0);
57 if (C->getParenOrBraceRange().isInvalid())
58 return A;
59 }
60 }
61 return E;
62 }
63
64 // In:
65 // struct X {
66 // X(int)
67 // };
68 // X x = X(1);
69 // Ignores the implicit `CXXFunctionalCastExpr` that wraps
70 // `CXXConstructExpr X(1)`.
IgnoreCXXFunctionalCastExprWrappingConstructor(Expr * E)71 static Expr *IgnoreCXXFunctionalCastExprWrappingConstructor(Expr *E) {
72 if (auto *F = dyn_cast<CXXFunctionalCastExpr>(E)) {
73 if (F->getCastKind() == CK_ConstructorConversion)
74 return F->getSubExpr();
75 }
76 return E;
77 }
78
IgnoreImplicit(Expr * E)79 static Expr *IgnoreImplicit(Expr *E) {
80 return IgnoreExprNodes(E, IgnoreImplicitSingleStep,
81 IgnoreImplicitConstructorSingleStep,
82 IgnoreCXXFunctionalCastExprWrappingConstructor);
83 }
84
85 LLVM_ATTRIBUTE_UNUSED
isImplicitExpr(Expr * E)86 static bool isImplicitExpr(Expr *E) { return IgnoreImplicit(E) != E; }
87
88 namespace {
89 /// Get start location of the Declarator from the TypeLoc.
90 /// E.g.:
91 /// loc of `(` in `int (a)`
92 /// loc of `*` in `int *(a)`
93 /// loc of the first `(` in `int (*a)(int)`
94 /// loc of the `*` in `int *(a)(int)`
95 /// loc of the first `*` in `const int *const *volatile a;`
96 ///
97 /// It is non-trivial to get the start location because TypeLocs are stored
98 /// inside out. In the example above `*volatile` is the TypeLoc returned
99 /// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()`
100 /// returns.
101 struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> {
VisitParenTypeLoc__anond2d5c1520111::GetStartLoc102 SourceLocation VisitParenTypeLoc(ParenTypeLoc T) {
103 auto L = Visit(T.getInnerLoc());
104 if (L.isValid())
105 return L;
106 return T.getLParenLoc();
107 }
108
109 // Types spelled in the prefix part of the declarator.
VisitPointerTypeLoc__anond2d5c1520111::GetStartLoc110 SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) {
111 return HandlePointer(T);
112 }
113
VisitMemberPointerTypeLoc__anond2d5c1520111::GetStartLoc114 SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) {
115 return HandlePointer(T);
116 }
117
VisitBlockPointerTypeLoc__anond2d5c1520111::GetStartLoc118 SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) {
119 return HandlePointer(T);
120 }
121
VisitReferenceTypeLoc__anond2d5c1520111::GetStartLoc122 SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) {
123 return HandlePointer(T);
124 }
125
VisitObjCObjectPointerTypeLoc__anond2d5c1520111::GetStartLoc126 SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) {
127 return HandlePointer(T);
128 }
129
130 // All other cases are not important, as they are either part of declaration
131 // specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on
132 // existing declarators (e.g. QualifiedTypeLoc). They cannot start the
133 // declarator themselves, but their underlying type can.
VisitTypeLoc__anond2d5c1520111::GetStartLoc134 SourceLocation VisitTypeLoc(TypeLoc T) {
135 auto N = T.getNextTypeLoc();
136 if (!N)
137 return SourceLocation();
138 return Visit(N);
139 }
140
VisitFunctionProtoTypeLoc__anond2d5c1520111::GetStartLoc141 SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) {
142 if (T.getTypePtr()->hasTrailingReturn())
143 return SourceLocation(); // avoid recursing into the suffix of declarator.
144 return VisitTypeLoc(T);
145 }
146
147 private:
HandlePointer__anond2d5c1520111::GetStartLoc148 template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) {
149 auto L = Visit(T.getPointeeLoc());
150 if (L.isValid())
151 return L;
152 return T.getLocalSourceRange().getBegin();
153 }
154 };
155 } // namespace
156
dropDefaultArgs(CallExpr::arg_range Args)157 static CallExpr::arg_range dropDefaultArgs(CallExpr::arg_range Args) {
158 auto FirstDefaultArg = std::find_if(Args.begin(), Args.end(), [](auto It) {
159 return isa<CXXDefaultArgExpr>(It);
160 });
161 return llvm::make_range(Args.begin(), FirstDefaultArg);
162 }
163
getOperatorNodeKind(const CXXOperatorCallExpr & E)164 static syntax::NodeKind getOperatorNodeKind(const CXXOperatorCallExpr &E) {
165 switch (E.getOperator()) {
166 // Comparison
167 case OO_EqualEqual:
168 case OO_ExclaimEqual:
169 case OO_Greater:
170 case OO_GreaterEqual:
171 case OO_Less:
172 case OO_LessEqual:
173 case OO_Spaceship:
174 // Assignment
175 case OO_Equal:
176 case OO_SlashEqual:
177 case OO_PercentEqual:
178 case OO_CaretEqual:
179 case OO_PipeEqual:
180 case OO_LessLessEqual:
181 case OO_GreaterGreaterEqual:
182 case OO_PlusEqual:
183 case OO_MinusEqual:
184 case OO_StarEqual:
185 case OO_AmpEqual:
186 // Binary computation
187 case OO_Slash:
188 case OO_Percent:
189 case OO_Caret:
190 case OO_Pipe:
191 case OO_LessLess:
192 case OO_GreaterGreater:
193 case OO_AmpAmp:
194 case OO_PipePipe:
195 case OO_ArrowStar:
196 case OO_Comma:
197 return syntax::NodeKind::BinaryOperatorExpression;
198 case OO_Tilde:
199 case OO_Exclaim:
200 return syntax::NodeKind::PrefixUnaryOperatorExpression;
201 // Prefix/Postfix increment/decrement
202 case OO_PlusPlus:
203 case OO_MinusMinus:
204 switch (E.getNumArgs()) {
205 case 1:
206 return syntax::NodeKind::PrefixUnaryOperatorExpression;
207 case 2:
208 return syntax::NodeKind::PostfixUnaryOperatorExpression;
209 default:
210 llvm_unreachable("Invalid number of arguments for operator");
211 }
212 // Operators that can be unary or binary
213 case OO_Plus:
214 case OO_Minus:
215 case OO_Star:
216 case OO_Amp:
217 switch (E.getNumArgs()) {
218 case 1:
219 return syntax::NodeKind::PrefixUnaryOperatorExpression;
220 case 2:
221 return syntax::NodeKind::BinaryOperatorExpression;
222 default:
223 llvm_unreachable("Invalid number of arguments for operator");
224 }
225 return syntax::NodeKind::BinaryOperatorExpression;
226 // Not yet supported by SyntaxTree
227 case OO_New:
228 case OO_Delete:
229 case OO_Array_New:
230 case OO_Array_Delete:
231 case OO_Coawait:
232 case OO_Subscript:
233 case OO_Arrow:
234 return syntax::NodeKind::UnknownExpression;
235 case OO_Call:
236 return syntax::NodeKind::CallExpression;
237 case OO_Conditional: // not overloadable
238 case NUM_OVERLOADED_OPERATORS:
239 case OO_None:
240 llvm_unreachable("Not an overloadable operator");
241 }
242 llvm_unreachable("Unknown OverloadedOperatorKind enum");
243 }
244
245 /// Get the start of the qualified name. In the examples below it gives the
246 /// location of the `^`:
247 /// `int ^a;`
248 /// `int *^a;`
249 /// `int ^a::S::f(){}`
getQualifiedNameStart(NamedDecl * D)250 static SourceLocation getQualifiedNameStart(NamedDecl *D) {
251 assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) &&
252 "only DeclaratorDecl and TypedefNameDecl are supported.");
253
254 auto DN = D->getDeclName();
255 bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo();
256 if (IsAnonymous)
257 return SourceLocation();
258
259 if (const auto *DD = dyn_cast<DeclaratorDecl>(D)) {
260 if (DD->getQualifierLoc()) {
261 return DD->getQualifierLoc().getBeginLoc();
262 }
263 }
264
265 return D->getLocation();
266 }
267
268 /// Gets the range of the initializer inside an init-declarator C++ [dcl.decl].
269 /// `int a;` -> range of ``,
270 /// `int *a = nullptr` -> range of `= nullptr`.
271 /// `int a{}` -> range of `{}`.
272 /// `int a()` -> range of `()`.
getInitializerRange(Decl * D)273 static SourceRange getInitializerRange(Decl *D) {
274 if (auto *V = dyn_cast<VarDecl>(D)) {
275 auto *I = V->getInit();
276 // Initializers in range-based-for are not part of the declarator
277 if (I && !V->isCXXForRangeDecl())
278 return I->getSourceRange();
279 }
280
281 return SourceRange();
282 }
283
284 /// Gets the range of declarator as defined by the C++ grammar. E.g.
285 /// `int a;` -> range of `a`,
286 /// `int *a;` -> range of `*a`,
287 /// `int a[10];` -> range of `a[10]`,
288 /// `int a[1][2][3];` -> range of `a[1][2][3]`,
289 /// `int *a = nullptr` -> range of `*a = nullptr`.
290 /// `int S::f(){}` -> range of `S::f()`.
291 /// FIXME: \p Name must be a source range.
getDeclaratorRange(const SourceManager & SM,TypeLoc T,SourceLocation Name,SourceRange Initializer)292 static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T,
293 SourceLocation Name,
294 SourceRange Initializer) {
295 SourceLocation Start = GetStartLoc().Visit(T);
296 SourceLocation End = T.getEndLoc();
297 if (Name.isValid()) {
298 if (Start.isInvalid())
299 Start = Name;
300 // End of TypeLoc could be invalid if the type is invalid, fallback to the
301 // NameLoc.
302 if (End.isInvalid() || SM.isBeforeInTranslationUnit(End, Name))
303 End = Name;
304 }
305 if (Initializer.isValid()) {
306 auto InitializerEnd = Initializer.getEnd();
307 assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) ||
308 End == InitializerEnd);
309 End = InitializerEnd;
310 }
311 return SourceRange(Start, End);
312 }
313
314 namespace {
315 /// All AST hierarchy roots that can be represented as pointers.
316 using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>;
317 /// Maintains a mapping from AST to syntax tree nodes. This class will get more
318 /// complicated as we support more kinds of AST nodes, e.g. TypeLocs.
319 /// FIXME: expose this as public API.
320 class ASTToSyntaxMapping {
321 public:
add(ASTPtr From,syntax::Tree * To)322 void add(ASTPtr From, syntax::Tree *To) {
323 assert(To != nullptr);
324 assert(!From.isNull());
325
326 bool Added = Nodes.insert({From, To}).second;
327 (void)Added;
328 assert(Added && "mapping added twice");
329 }
330
add(NestedNameSpecifierLoc From,syntax::Tree * To)331 void add(NestedNameSpecifierLoc From, syntax::Tree *To) {
332 assert(To != nullptr);
333 assert(From.hasQualifier());
334
335 bool Added = NNSNodes.insert({From, To}).second;
336 (void)Added;
337 assert(Added && "mapping added twice");
338 }
339
find(ASTPtr P) const340 syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(P); }
341
find(NestedNameSpecifierLoc P) const342 syntax::Tree *find(NestedNameSpecifierLoc P) const {
343 return NNSNodes.lookup(P);
344 }
345
346 private:
347 llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes;
348 llvm::DenseMap<NestedNameSpecifierLoc, syntax::Tree *> NNSNodes;
349 };
350 } // namespace
351
352 /// A helper class for constructing the syntax tree while traversing a clang
353 /// AST.
354 ///
355 /// At each point of the traversal we maintain a list of pending nodes.
356 /// Initially all tokens are added as pending nodes. When processing a clang AST
357 /// node, the clients need to:
358 /// - create a corresponding syntax node,
359 /// - assign roles to all pending child nodes with 'markChild' and
360 /// 'markChildToken',
361 /// - replace the child nodes with the new syntax node in the pending list
362 /// with 'foldNode'.
363 ///
364 /// Note that all children are expected to be processed when building a node.
365 ///
366 /// Call finalize() to finish building the tree and consume the root node.
367 class syntax::TreeBuilder {
368 public:
TreeBuilder(syntax::Arena & Arena)369 TreeBuilder(syntax::Arena &Arena) : Arena(Arena), Pending(Arena) {
370 for (const auto &T : Arena.getTokenBuffer().expandedTokens())
371 LocationToToken.insert({T.location(), &T});
372 }
373
allocator()374 llvm::BumpPtrAllocator &allocator() { return Arena.getAllocator(); }
sourceManager() const375 const SourceManager &sourceManager() const {
376 return Arena.getSourceManager();
377 }
378
379 /// Populate children for \p New node, assuming it covers tokens from \p
380 /// Range.
foldNode(ArrayRef<syntax::Token> Range,syntax::Tree * New,ASTPtr From)381 void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, ASTPtr From) {
382 assert(New);
383 Pending.foldChildren(Arena, Range, New);
384 if (From)
385 Mapping.add(From, New);
386 }
387
foldNode(ArrayRef<syntax::Token> Range,syntax::Tree * New,TypeLoc L)388 void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, TypeLoc L) {
389 // FIXME: add mapping for TypeLocs
390 foldNode(Range, New, nullptr);
391 }
392
foldNode(llvm::ArrayRef<syntax::Token> Range,syntax::Tree * New,NestedNameSpecifierLoc From)393 void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New,
394 NestedNameSpecifierLoc From) {
395 assert(New);
396 Pending.foldChildren(Arena, Range, New);
397 if (From)
398 Mapping.add(From, New);
399 }
400
401 /// Populate children for \p New list, assuming it covers tokens from a
402 /// subrange of \p SuperRange.
foldList(ArrayRef<syntax::Token> SuperRange,syntax::List * New,ASTPtr From)403 void foldList(ArrayRef<syntax::Token> SuperRange, syntax::List *New,
404 ASTPtr From) {
405 assert(New);
406 auto ListRange = Pending.shrinkToFitList(SuperRange);
407 Pending.foldChildren(Arena, ListRange, New);
408 if (From)
409 Mapping.add(From, New);
410 }
411
412 /// Notifies that we should not consume trailing semicolon when computing
413 /// token range of \p D.
414 void noticeDeclWithoutSemicolon(Decl *D);
415
416 /// Mark the \p Child node with a corresponding \p Role. All marked children
417 /// should be consumed by foldNode.
418 /// When called on expressions (clang::Expr is derived from clang::Stmt),
419 /// wraps expressions into expression statement.
420 void markStmtChild(Stmt *Child, NodeRole Role);
421 /// Should be called for expressions in non-statement position to avoid
422 /// wrapping into expression statement.
423 void markExprChild(Expr *Child, NodeRole Role);
424 /// Set role for a token starting at \p Loc.
425 void markChildToken(SourceLocation Loc, NodeRole R);
426 /// Set role for \p T.
427 void markChildToken(const syntax::Token *T, NodeRole R);
428
429 /// Set role for \p N.
430 void markChild(syntax::Node *N, NodeRole R);
431 /// Set role for the syntax node matching \p N.
432 void markChild(ASTPtr N, NodeRole R);
433 /// Set role for the syntax node matching \p N.
434 void markChild(NestedNameSpecifierLoc N, NodeRole R);
435
436 /// Finish building the tree and consume the root node.
finalize()437 syntax::TranslationUnit *finalize() && {
438 auto Tokens = Arena.getTokenBuffer().expandedTokens();
439 assert(!Tokens.empty());
440 assert(Tokens.back().kind() == tok::eof);
441
442 // Build the root of the tree, consuming all the children.
443 Pending.foldChildren(Arena, Tokens.drop_back(),
444 new (Arena.getAllocator()) syntax::TranslationUnit);
445
446 auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize());
447 TU->assertInvariantsRecursive();
448 return TU;
449 }
450
451 /// Finds a token starting at \p L. The token must exist if \p L is valid.
452 const syntax::Token *findToken(SourceLocation L) const;
453
454 /// Finds the syntax tokens corresponding to the \p SourceRange.
getRange(SourceRange Range) const455 ArrayRef<syntax::Token> getRange(SourceRange Range) const {
456 assert(Range.isValid());
457 return getRange(Range.getBegin(), Range.getEnd());
458 }
459
460 /// Finds the syntax tokens corresponding to the passed source locations.
461 /// \p First is the start position of the first token and \p Last is the start
462 /// position of the last token.
getRange(SourceLocation First,SourceLocation Last) const463 ArrayRef<syntax::Token> getRange(SourceLocation First,
464 SourceLocation Last) const {
465 assert(First.isValid());
466 assert(Last.isValid());
467 assert(First == Last ||
468 Arena.getSourceManager().isBeforeInTranslationUnit(First, Last));
469 return llvm::makeArrayRef(findToken(First), std::next(findToken(Last)));
470 }
471
472 ArrayRef<syntax::Token>
getTemplateRange(const ClassTemplateSpecializationDecl * D) const473 getTemplateRange(const ClassTemplateSpecializationDecl *D) const {
474 auto Tokens = getRange(D->getSourceRange());
475 return maybeAppendSemicolon(Tokens, D);
476 }
477
478 /// Returns true if \p D is the last declarator in a chain and is thus
479 /// reponsible for creating SimpleDeclaration for the whole chain.
isResponsibleForCreatingDeclaration(const Decl * D) const480 bool isResponsibleForCreatingDeclaration(const Decl *D) const {
481 assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) &&
482 "only DeclaratorDecl and TypedefNameDecl are supported.");
483
484 const Decl *Next = D->getNextDeclInContext();
485
486 // There's no next sibling, this one is responsible.
487 if (Next == nullptr) {
488 return true;
489 }
490
491 // Next sibling is not the same type, this one is responsible.
492 if (D->getKind() != Next->getKind()) {
493 return true;
494 }
495 // Next sibling doesn't begin at the same loc, it must be a different
496 // declaration, so this declarator is responsible.
497 if (Next->getBeginLoc() != D->getBeginLoc()) {
498 return true;
499 }
500
501 // NextT is a member of the same declaration, and we need the last member to
502 // create declaration. This one is not responsible.
503 return false;
504 }
505
getDeclarationRange(Decl * D)506 ArrayRef<syntax::Token> getDeclarationRange(Decl *D) {
507 ArrayRef<syntax::Token> Tokens;
508 // We want to drop the template parameters for specializations.
509 if (const auto *S = dyn_cast<TagDecl>(D))
510 Tokens = getRange(S->TypeDecl::getBeginLoc(), S->getEndLoc());
511 else
512 Tokens = getRange(D->getSourceRange());
513 return maybeAppendSemicolon(Tokens, D);
514 }
515
getExprRange(const Expr * E) const516 ArrayRef<syntax::Token> getExprRange(const Expr *E) const {
517 return getRange(E->getSourceRange());
518 }
519
520 /// Find the adjusted range for the statement, consuming the trailing
521 /// semicolon when needed.
getStmtRange(const Stmt * S) const522 ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const {
523 auto Tokens = getRange(S->getSourceRange());
524 if (isa<CompoundStmt>(S))
525 return Tokens;
526
527 // Some statements miss a trailing semicolon, e.g. 'return', 'continue' and
528 // all statements that end with those. Consume this semicolon here.
529 if (Tokens.back().kind() == tok::semi)
530 return Tokens;
531 return withTrailingSemicolon(Tokens);
532 }
533
534 private:
maybeAppendSemicolon(ArrayRef<syntax::Token> Tokens,const Decl * D) const535 ArrayRef<syntax::Token> maybeAppendSemicolon(ArrayRef<syntax::Token> Tokens,
536 const Decl *D) const {
537 if (isa<NamespaceDecl>(D))
538 return Tokens;
539 if (DeclsWithoutSemicolons.count(D))
540 return Tokens;
541 // FIXME: do not consume trailing semicolon on function definitions.
542 // Most declarations own a semicolon in syntax trees, but not in clang AST.
543 return withTrailingSemicolon(Tokens);
544 }
545
546 ArrayRef<syntax::Token>
withTrailingSemicolon(ArrayRef<syntax::Token> Tokens) const547 withTrailingSemicolon(ArrayRef<syntax::Token> Tokens) const {
548 assert(!Tokens.empty());
549 assert(Tokens.back().kind() != tok::eof);
550 // We never consume 'eof', so looking at the next token is ok.
551 if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi)
552 return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1);
553 return Tokens;
554 }
555
setRole(syntax::Node * N,NodeRole R)556 void setRole(syntax::Node *N, NodeRole R) {
557 assert(N->getRole() == NodeRole::Detached);
558 N->setRole(R);
559 }
560
561 /// A collection of trees covering the input tokens.
562 /// When created, each tree corresponds to a single token in the file.
563 /// Clients call 'foldChildren' to attach one or more subtrees to a parent
564 /// node and update the list of trees accordingly.
565 ///
566 /// Ensures that added nodes properly nest and cover the whole token stream.
567 struct Forest {
Forestsyntax::TreeBuilder::Forest568 Forest(syntax::Arena &A) {
569 assert(!A.getTokenBuffer().expandedTokens().empty());
570 assert(A.getTokenBuffer().expandedTokens().back().kind() == tok::eof);
571 // Create all leaf nodes.
572 // Note that we do not have 'eof' in the tree.
573 for (const auto &T : A.getTokenBuffer().expandedTokens().drop_back()) {
574 auto *L = new (A.getAllocator()) syntax::Leaf(&T);
575 L->Original = true;
576 L->CanModify = A.getTokenBuffer().spelledForExpanded(T).hasValue();
577 Trees.insert(Trees.end(), {&T, L});
578 }
579 }
580
assignRolesyntax::TreeBuilder::Forest581 void assignRole(ArrayRef<syntax::Token> Range, syntax::NodeRole Role) {
582 assert(!Range.empty());
583 auto It = Trees.lower_bound(Range.begin());
584 assert(It != Trees.end() && "no node found");
585 assert(It->first == Range.begin() && "no child with the specified range");
586 assert((std::next(It) == Trees.end() ||
587 std::next(It)->first == Range.end()) &&
588 "no child with the specified range");
589 assert(It->second->getRole() == NodeRole::Detached &&
590 "re-assigning role for a child");
591 It->second->setRole(Role);
592 }
593
594 /// Shrink \p Range to a subrange that only contains tokens of a list.
595 /// List elements and delimiters should already have correct roles.
shrinkToFitListsyntax::TreeBuilder::Forest596 ArrayRef<syntax::Token> shrinkToFitList(ArrayRef<syntax::Token> Range) {
597 auto BeginChildren = Trees.lower_bound(Range.begin());
598 assert((BeginChildren == Trees.end() ||
599 BeginChildren->first == Range.begin()) &&
600 "Range crosses boundaries of existing subtrees");
601
602 auto EndChildren = Trees.lower_bound(Range.end());
603 assert(
604 (EndChildren == Trees.end() || EndChildren->first == Range.end()) &&
605 "Range crosses boundaries of existing subtrees");
606
607 auto BelongsToList = [](decltype(Trees)::value_type KV) {
608 auto Role = KV.second->getRole();
609 return Role == syntax::NodeRole::ListElement ||
610 Role == syntax::NodeRole::ListDelimiter;
611 };
612
613 auto BeginListChildren =
614 std::find_if(BeginChildren, EndChildren, BelongsToList);
615
616 auto EndListChildren =
617 std::find_if_not(BeginListChildren, EndChildren, BelongsToList);
618
619 return ArrayRef<syntax::Token>(BeginListChildren->first,
620 EndListChildren->first);
621 }
622
623 /// Add \p Node to the forest and attach child nodes based on \p Tokens.
foldChildrensyntax::TreeBuilder::Forest624 void foldChildren(const syntax::Arena &A, ArrayRef<syntax::Token> Tokens,
625 syntax::Tree *Node) {
626 // Attach children to `Node`.
627 assert(Node->getFirstChild() == nullptr && "node already has children");
628
629 auto *FirstToken = Tokens.begin();
630 auto BeginChildren = Trees.lower_bound(FirstToken);
631
632 assert((BeginChildren == Trees.end() ||
633 BeginChildren->first == FirstToken) &&
634 "fold crosses boundaries of existing subtrees");
635 auto EndChildren = Trees.lower_bound(Tokens.end());
636 assert(
637 (EndChildren == Trees.end() || EndChildren->first == Tokens.end()) &&
638 "fold crosses boundaries of existing subtrees");
639
640 for (auto It = BeginChildren; It != EndChildren; ++It) {
641 auto *C = It->second;
642 if (C->getRole() == NodeRole::Detached)
643 C->setRole(NodeRole::Unknown);
644 Node->appendChildLowLevel(C);
645 }
646
647 // Mark that this node came from the AST and is backed by the source code.
648 Node->Original = true;
649 Node->CanModify =
650 A.getTokenBuffer().spelledForExpanded(Tokens).hasValue();
651
652 Trees.erase(BeginChildren, EndChildren);
653 Trees.insert({FirstToken, Node});
654 }
655
656 // EXPECTS: all tokens were consumed and are owned by a single root node.
finalizesyntax::TreeBuilder::Forest657 syntax::Node *finalize() && {
658 assert(Trees.size() == 1);
659 auto *Root = Trees.begin()->second;
660 Trees = {};
661 return Root;
662 }
663
strsyntax::TreeBuilder::Forest664 std::string str(const syntax::Arena &A) const {
665 std::string R;
666 for (auto It = Trees.begin(); It != Trees.end(); ++It) {
667 unsigned CoveredTokens =
668 It != Trees.end()
669 ? (std::next(It)->first - It->first)
670 : A.getTokenBuffer().expandedTokens().end() - It->first;
671
672 R += std::string(
673 formatv("- '{0}' covers '{1}'+{2} tokens\n", It->second->getKind(),
674 It->first->text(A.getSourceManager()), CoveredTokens));
675 R += It->second->dump(A.getSourceManager());
676 }
677 return R;
678 }
679
680 private:
681 /// Maps from the start token to a subtree starting at that token.
682 /// Keys in the map are pointers into the array of expanded tokens, so
683 /// pointer order corresponds to the order of preprocessor tokens.
684 std::map<const syntax::Token *, syntax::Node *> Trees;
685 };
686
687 /// For debugging purposes.
str()688 std::string str() { return Pending.str(Arena); }
689
690 syntax::Arena &Arena;
691 /// To quickly find tokens by their start location.
692 llvm::DenseMap<SourceLocation, const syntax::Token *> LocationToToken;
693 Forest Pending;
694 llvm::DenseSet<Decl *> DeclsWithoutSemicolons;
695 ASTToSyntaxMapping Mapping;
696 };
697
698 namespace {
699 class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> {
700 public:
BuildTreeVisitor(ASTContext & Context,syntax::TreeBuilder & Builder)701 explicit BuildTreeVisitor(ASTContext &Context, syntax::TreeBuilder &Builder)
702 : Builder(Builder), Context(Context) {}
703
shouldTraversePostOrder() const704 bool shouldTraversePostOrder() const { return true; }
705
WalkUpFromDeclaratorDecl(DeclaratorDecl * DD)706 bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) {
707 return processDeclaratorAndDeclaration(DD);
708 }
709
WalkUpFromTypedefNameDecl(TypedefNameDecl * TD)710 bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) {
711 return processDeclaratorAndDeclaration(TD);
712 }
713
VisitDecl(Decl * D)714 bool VisitDecl(Decl *D) {
715 assert(!D->isImplicit());
716 Builder.foldNode(Builder.getDeclarationRange(D),
717 new (allocator()) syntax::UnknownDeclaration(), D);
718 return true;
719 }
720
721 // RAV does not call WalkUpFrom* on explicit instantiations, so we have to
722 // override Traverse.
723 // FIXME: make RAV call WalkUpFrom* instead.
724 bool
TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl * C)725 TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) {
726 if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(C))
727 return false;
728 if (C->isExplicitSpecialization())
729 return true; // we are only interested in explicit instantiations.
730 auto *Declaration =
731 cast<syntax::SimpleDeclaration>(handleFreeStandingTagDecl(C));
732 foldExplicitTemplateInstantiation(
733 Builder.getTemplateRange(C), Builder.findToken(C->getExternLoc()),
734 Builder.findToken(C->getTemplateKeywordLoc()), Declaration, C);
735 return true;
736 }
737
WalkUpFromTemplateDecl(TemplateDecl * S)738 bool WalkUpFromTemplateDecl(TemplateDecl *S) {
739 foldTemplateDeclaration(
740 Builder.getDeclarationRange(S),
741 Builder.findToken(S->getTemplateParameters()->getTemplateLoc()),
742 Builder.getDeclarationRange(S->getTemplatedDecl()), S);
743 return true;
744 }
745
WalkUpFromTagDecl(TagDecl * C)746 bool WalkUpFromTagDecl(TagDecl *C) {
747 // FIXME: build the ClassSpecifier node.
748 if (!C->isFreeStanding()) {
749 assert(C->getNumTemplateParameterLists() == 0);
750 return true;
751 }
752 handleFreeStandingTagDecl(C);
753 return true;
754 }
755
handleFreeStandingTagDecl(TagDecl * C)756 syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) {
757 assert(C->isFreeStanding());
758 // Class is a declaration specifier and needs a spanning declaration node.
759 auto DeclarationRange = Builder.getDeclarationRange(C);
760 syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration;
761 Builder.foldNode(DeclarationRange, Result, nullptr);
762
763 // Build TemplateDeclaration nodes if we had template parameters.
764 auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) {
765 const auto *TemplateKW = Builder.findToken(L.getTemplateLoc());
766 auto R = llvm::makeArrayRef(TemplateKW, DeclarationRange.end());
767 Result =
768 foldTemplateDeclaration(R, TemplateKW, DeclarationRange, nullptr);
769 DeclarationRange = R;
770 };
771 if (auto *S = dyn_cast<ClassTemplatePartialSpecializationDecl>(C))
772 ConsumeTemplateParameters(*S->getTemplateParameters());
773 for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I)
774 ConsumeTemplateParameters(*C->getTemplateParameterList(I - 1));
775 return Result;
776 }
777
WalkUpFromTranslationUnitDecl(TranslationUnitDecl * TU)778 bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) {
779 // We do not want to call VisitDecl(), the declaration for translation
780 // unit is built by finalize().
781 return true;
782 }
783
WalkUpFromCompoundStmt(CompoundStmt * S)784 bool WalkUpFromCompoundStmt(CompoundStmt *S) {
785 using NodeRole = syntax::NodeRole;
786
787 Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen);
788 for (auto *Child : S->body())
789 Builder.markStmtChild(Child, NodeRole::Statement);
790 Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen);
791
792 Builder.foldNode(Builder.getStmtRange(S),
793 new (allocator()) syntax::CompoundStatement, S);
794 return true;
795 }
796
797 // Some statements are not yet handled by syntax trees.
WalkUpFromStmt(Stmt * S)798 bool WalkUpFromStmt(Stmt *S) {
799 Builder.foldNode(Builder.getStmtRange(S),
800 new (allocator()) syntax::UnknownStatement, S);
801 return true;
802 }
803
TraverseIfStmt(IfStmt * S)804 bool TraverseIfStmt(IfStmt *S) {
805 bool Result = [&, this]() {
806 if (S->getInit() && !TraverseStmt(S->getInit())) {
807 return false;
808 }
809 // In cases where the condition is an initialized declaration in a
810 // statement, we want to preserve the declaration and ignore the
811 // implicit condition expression in the syntax tree.
812 if (S->hasVarStorage()) {
813 if (!TraverseStmt(S->getConditionVariableDeclStmt()))
814 return false;
815 } else if (S->getCond() && !TraverseStmt(S->getCond()))
816 return false;
817
818 if (S->getThen() && !TraverseStmt(S->getThen()))
819 return false;
820 if (S->getElse() && !TraverseStmt(S->getElse()))
821 return false;
822 return true;
823 }();
824 WalkUpFromIfStmt(S);
825 return Result;
826 }
827
TraverseCXXForRangeStmt(CXXForRangeStmt * S)828 bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) {
829 // We override to traverse range initializer as VarDecl.
830 // RAV traverses it as a statement, we produce invalid node kinds in that
831 // case.
832 // FIXME: should do this in RAV instead?
833 bool Result = [&, this]() {
834 if (S->getInit() && !TraverseStmt(S->getInit()))
835 return false;
836 if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable()))
837 return false;
838 if (S->getRangeInit() && !TraverseStmt(S->getRangeInit()))
839 return false;
840 if (S->getBody() && !TraverseStmt(S->getBody()))
841 return false;
842 return true;
843 }();
844 WalkUpFromCXXForRangeStmt(S);
845 return Result;
846 }
847
TraverseStmt(Stmt * S)848 bool TraverseStmt(Stmt *S) {
849 if (auto *DS = dyn_cast_or_null<DeclStmt>(S)) {
850 // We want to consume the semicolon, make sure SimpleDeclaration does not.
851 for (auto *D : DS->decls())
852 Builder.noticeDeclWithoutSemicolon(D);
853 } else if (auto *E = dyn_cast_or_null<Expr>(S)) {
854 return RecursiveASTVisitor::TraverseStmt(IgnoreImplicit(E));
855 }
856 return RecursiveASTVisitor::TraverseStmt(S);
857 }
858
TraverseOpaqueValueExpr(OpaqueValueExpr * VE)859 bool TraverseOpaqueValueExpr(OpaqueValueExpr *VE) {
860 // OpaqueValue doesn't correspond to concrete syntax, ignore it.
861 return true;
862 }
863
864 // Some expressions are not yet handled by syntax trees.
WalkUpFromExpr(Expr * E)865 bool WalkUpFromExpr(Expr *E) {
866 assert(!isImplicitExpr(E) && "should be handled by TraverseStmt");
867 Builder.foldNode(Builder.getExprRange(E),
868 new (allocator()) syntax::UnknownExpression, E);
869 return true;
870 }
871
TraverseUserDefinedLiteral(UserDefinedLiteral * S)872 bool TraverseUserDefinedLiteral(UserDefinedLiteral *S) {
873 // The semantic AST node `UserDefinedLiteral` (UDL) may have one child node
874 // referencing the location of the UDL suffix (`_w` in `1.2_w`). The
875 // UDL suffix location does not point to the beginning of a token, so we
876 // can't represent the UDL suffix as a separate syntax tree node.
877
878 return WalkUpFromUserDefinedLiteral(S);
879 }
880
881 syntax::UserDefinedLiteralExpression *
buildUserDefinedLiteral(UserDefinedLiteral * S)882 buildUserDefinedLiteral(UserDefinedLiteral *S) {
883 switch (S->getLiteralOperatorKind()) {
884 case UserDefinedLiteral::LOK_Integer:
885 return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
886 case UserDefinedLiteral::LOK_Floating:
887 return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
888 case UserDefinedLiteral::LOK_Character:
889 return new (allocator()) syntax::CharUserDefinedLiteralExpression;
890 case UserDefinedLiteral::LOK_String:
891 return new (allocator()) syntax::StringUserDefinedLiteralExpression;
892 case UserDefinedLiteral::LOK_Raw:
893 case UserDefinedLiteral::LOK_Template:
894 // For raw literal operator and numeric literal operator template we
895 // cannot get the type of the operand in the semantic AST. We get this
896 // information from the token. As integer and floating point have the same
897 // token kind, we run `NumericLiteralParser` again to distinguish them.
898 auto TokLoc = S->getBeginLoc();
899 auto TokSpelling =
900 Builder.findToken(TokLoc)->text(Context.getSourceManager());
901 auto Literal =
902 NumericLiteralParser(TokSpelling, TokLoc, Context.getSourceManager(),
903 Context.getLangOpts(), Context.getTargetInfo(),
904 Context.getDiagnostics());
905 if (Literal.isIntegerLiteral())
906 return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
907 else {
908 assert(Literal.isFloatingLiteral());
909 return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
910 }
911 }
912 llvm_unreachable("Unknown literal operator kind.");
913 }
914
WalkUpFromUserDefinedLiteral(UserDefinedLiteral * S)915 bool WalkUpFromUserDefinedLiteral(UserDefinedLiteral *S) {
916 Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
917 Builder.foldNode(Builder.getExprRange(S), buildUserDefinedLiteral(S), S);
918 return true;
919 }
920
921 // FIXME: Fix `NestedNameSpecifierLoc::getLocalSourceRange` for the
922 // `DependentTemplateSpecializationType` case.
923 /// Given a nested-name-specifier return the range for the last name
924 /// specifier.
925 ///
926 /// e.g. `std::T::template X<U>::` => `template X<U>::`
getLocalSourceRange(const NestedNameSpecifierLoc & NNSLoc)927 SourceRange getLocalSourceRange(const NestedNameSpecifierLoc &NNSLoc) {
928 auto SR = NNSLoc.getLocalSourceRange();
929
930 // The method `NestedNameSpecifierLoc::getLocalSourceRange` *should*
931 // return the desired `SourceRange`, but there is a corner case. For a
932 // `DependentTemplateSpecializationType` this method returns its
933 // qualifiers as well, in other words in the example above this method
934 // returns `T::template X<U>::` instead of only `template X<U>::`
935 if (auto TL = NNSLoc.getTypeLoc()) {
936 if (auto DependentTL =
937 TL.getAs<DependentTemplateSpecializationTypeLoc>()) {
938 // The 'template' keyword is always present in dependent template
939 // specializations. Except in the case of incorrect code
940 // TODO: Treat the case of incorrect code.
941 SR.setBegin(DependentTL.getTemplateKeywordLoc());
942 }
943 }
944
945 return SR;
946 }
947
getNameSpecifierKind(const NestedNameSpecifier & NNS)948 syntax::NodeKind getNameSpecifierKind(const NestedNameSpecifier &NNS) {
949 switch (NNS.getKind()) {
950 case NestedNameSpecifier::Global:
951 return syntax::NodeKind::GlobalNameSpecifier;
952 case NestedNameSpecifier::Namespace:
953 case NestedNameSpecifier::NamespaceAlias:
954 case NestedNameSpecifier::Identifier:
955 return syntax::NodeKind::IdentifierNameSpecifier;
956 case NestedNameSpecifier::TypeSpecWithTemplate:
957 return syntax::NodeKind::SimpleTemplateNameSpecifier;
958 case NestedNameSpecifier::TypeSpec: {
959 const auto *NNSType = NNS.getAsType();
960 assert(NNSType);
961 if (isa<DecltypeType>(NNSType))
962 return syntax::NodeKind::DecltypeNameSpecifier;
963 if (isa<TemplateSpecializationType, DependentTemplateSpecializationType>(
964 NNSType))
965 return syntax::NodeKind::SimpleTemplateNameSpecifier;
966 return syntax::NodeKind::IdentifierNameSpecifier;
967 }
968 default:
969 // FIXME: Support Microsoft's __super
970 llvm::report_fatal_error("We don't yet support the __super specifier",
971 true);
972 }
973 }
974
975 syntax::NameSpecifier *
buildNameSpecifier(const NestedNameSpecifierLoc & NNSLoc)976 buildNameSpecifier(const NestedNameSpecifierLoc &NNSLoc) {
977 assert(NNSLoc.hasQualifier());
978 auto NameSpecifierTokens =
979 Builder.getRange(getLocalSourceRange(NNSLoc)).drop_back();
980 switch (getNameSpecifierKind(*NNSLoc.getNestedNameSpecifier())) {
981 case syntax::NodeKind::GlobalNameSpecifier:
982 return new (allocator()) syntax::GlobalNameSpecifier;
983 case syntax::NodeKind::IdentifierNameSpecifier: {
984 assert(NameSpecifierTokens.size() == 1);
985 Builder.markChildToken(NameSpecifierTokens.begin(),
986 syntax::NodeRole::Unknown);
987 auto *NS = new (allocator()) syntax::IdentifierNameSpecifier;
988 Builder.foldNode(NameSpecifierTokens, NS, nullptr);
989 return NS;
990 }
991 case syntax::NodeKind::SimpleTemplateNameSpecifier: {
992 // TODO: Build `SimpleTemplateNameSpecifier` children and implement
993 // accessors to them.
994 // Be aware, we cannot do that simply by calling `TraverseTypeLoc`,
995 // some `TypeLoc`s have inside them the previous name specifier and
996 // we want to treat them independently.
997 auto *NS = new (allocator()) syntax::SimpleTemplateNameSpecifier;
998 Builder.foldNode(NameSpecifierTokens, NS, nullptr);
999 return NS;
1000 }
1001 case syntax::NodeKind::DecltypeNameSpecifier: {
1002 const auto TL = NNSLoc.getTypeLoc().castAs<DecltypeTypeLoc>();
1003 if (!RecursiveASTVisitor::TraverseDecltypeTypeLoc(TL))
1004 return nullptr;
1005 auto *NS = new (allocator()) syntax::DecltypeNameSpecifier;
1006 // TODO: Implement accessor to `DecltypeNameSpecifier` inner
1007 // `DecltypeTypeLoc`.
1008 // For that add mapping from `TypeLoc` to `syntax::Node*` then:
1009 // Builder.markChild(TypeLoc, syntax::NodeRole);
1010 Builder.foldNode(NameSpecifierTokens, NS, nullptr);
1011 return NS;
1012 }
1013 default:
1014 llvm_unreachable("getChildKind() does not return this value");
1015 }
1016 }
1017
1018 // To build syntax tree nodes for NestedNameSpecifierLoc we override
1019 // Traverse instead of WalkUpFrom because we want to traverse the children
1020 // ourselves and build a list instead of a nested tree of name specifier
1021 // prefixes.
TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc QualifierLoc)1022 bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc QualifierLoc) {
1023 if (!QualifierLoc)
1024 return true;
1025 for (auto It = QualifierLoc; It; It = It.getPrefix()) {
1026 auto *NS = buildNameSpecifier(It);
1027 if (!NS)
1028 return false;
1029 Builder.markChild(NS, syntax::NodeRole::ListElement);
1030 Builder.markChildToken(It.getEndLoc(), syntax::NodeRole::ListDelimiter);
1031 }
1032 Builder.foldNode(Builder.getRange(QualifierLoc.getSourceRange()),
1033 new (allocator()) syntax::NestedNameSpecifier,
1034 QualifierLoc);
1035 return true;
1036 }
1037
buildIdExpression(NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKeywordLoc,SourceRange UnqualifiedIdLoc,ASTPtr From)1038 syntax::IdExpression *buildIdExpression(NestedNameSpecifierLoc QualifierLoc,
1039 SourceLocation TemplateKeywordLoc,
1040 SourceRange UnqualifiedIdLoc,
1041 ASTPtr From) {
1042 if (QualifierLoc) {
1043 Builder.markChild(QualifierLoc, syntax::NodeRole::Qualifier);
1044 if (TemplateKeywordLoc.isValid())
1045 Builder.markChildToken(TemplateKeywordLoc,
1046 syntax::NodeRole::TemplateKeyword);
1047 }
1048
1049 auto *TheUnqualifiedId = new (allocator()) syntax::UnqualifiedId;
1050 Builder.foldNode(Builder.getRange(UnqualifiedIdLoc), TheUnqualifiedId,
1051 nullptr);
1052 Builder.markChild(TheUnqualifiedId, syntax::NodeRole::UnqualifiedId);
1053
1054 auto IdExpressionBeginLoc =
1055 QualifierLoc ? QualifierLoc.getBeginLoc() : UnqualifiedIdLoc.getBegin();
1056
1057 auto *TheIdExpression = new (allocator()) syntax::IdExpression;
1058 Builder.foldNode(
1059 Builder.getRange(IdExpressionBeginLoc, UnqualifiedIdLoc.getEnd()),
1060 TheIdExpression, From);
1061
1062 return TheIdExpression;
1063 }
1064
WalkUpFromMemberExpr(MemberExpr * S)1065 bool WalkUpFromMemberExpr(MemberExpr *S) {
1066 // For `MemberExpr` with implicit `this->` we generate a simple
1067 // `id-expression` syntax node, beacuse an implicit `member-expression` is
1068 // syntactically undistinguishable from an `id-expression`
1069 if (S->isImplicitAccess()) {
1070 buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1071 SourceRange(S->getMemberLoc(), S->getEndLoc()), S);
1072 return true;
1073 }
1074
1075 auto *TheIdExpression = buildIdExpression(
1076 S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1077 SourceRange(S->getMemberLoc(), S->getEndLoc()), nullptr);
1078
1079 Builder.markChild(TheIdExpression, syntax::NodeRole::Member);
1080
1081 Builder.markExprChild(S->getBase(), syntax::NodeRole::Object);
1082 Builder.markChildToken(S->getOperatorLoc(), syntax::NodeRole::AccessToken);
1083
1084 Builder.foldNode(Builder.getExprRange(S),
1085 new (allocator()) syntax::MemberExpression, S);
1086 return true;
1087 }
1088
WalkUpFromDeclRefExpr(DeclRefExpr * S)1089 bool WalkUpFromDeclRefExpr(DeclRefExpr *S) {
1090 buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1091 SourceRange(S->getLocation(), S->getEndLoc()), S);
1092
1093 return true;
1094 }
1095
1096 // Same logic as DeclRefExpr.
WalkUpFromDependentScopeDeclRefExpr(DependentScopeDeclRefExpr * S)1097 bool WalkUpFromDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *S) {
1098 buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1099 SourceRange(S->getLocation(), S->getEndLoc()), S);
1100
1101 return true;
1102 }
1103
WalkUpFromCXXThisExpr(CXXThisExpr * S)1104 bool WalkUpFromCXXThisExpr(CXXThisExpr *S) {
1105 if (!S->isImplicit()) {
1106 Builder.markChildToken(S->getLocation(),
1107 syntax::NodeRole::IntroducerKeyword);
1108 Builder.foldNode(Builder.getExprRange(S),
1109 new (allocator()) syntax::ThisExpression, S);
1110 }
1111 return true;
1112 }
1113
WalkUpFromParenExpr(ParenExpr * S)1114 bool WalkUpFromParenExpr(ParenExpr *S) {
1115 Builder.markChildToken(S->getLParen(), syntax::NodeRole::OpenParen);
1116 Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::SubExpression);
1117 Builder.markChildToken(S->getRParen(), syntax::NodeRole::CloseParen);
1118 Builder.foldNode(Builder.getExprRange(S),
1119 new (allocator()) syntax::ParenExpression, S);
1120 return true;
1121 }
1122
WalkUpFromIntegerLiteral(IntegerLiteral * S)1123 bool WalkUpFromIntegerLiteral(IntegerLiteral *S) {
1124 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1125 Builder.foldNode(Builder.getExprRange(S),
1126 new (allocator()) syntax::IntegerLiteralExpression, S);
1127 return true;
1128 }
1129
WalkUpFromCharacterLiteral(CharacterLiteral * S)1130 bool WalkUpFromCharacterLiteral(CharacterLiteral *S) {
1131 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1132 Builder.foldNode(Builder.getExprRange(S),
1133 new (allocator()) syntax::CharacterLiteralExpression, S);
1134 return true;
1135 }
1136
WalkUpFromFloatingLiteral(FloatingLiteral * S)1137 bool WalkUpFromFloatingLiteral(FloatingLiteral *S) {
1138 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1139 Builder.foldNode(Builder.getExprRange(S),
1140 new (allocator()) syntax::FloatingLiteralExpression, S);
1141 return true;
1142 }
1143
WalkUpFromStringLiteral(StringLiteral * S)1144 bool WalkUpFromStringLiteral(StringLiteral *S) {
1145 Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
1146 Builder.foldNode(Builder.getExprRange(S),
1147 new (allocator()) syntax::StringLiteralExpression, S);
1148 return true;
1149 }
1150
WalkUpFromCXXBoolLiteralExpr(CXXBoolLiteralExpr * S)1151 bool WalkUpFromCXXBoolLiteralExpr(CXXBoolLiteralExpr *S) {
1152 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1153 Builder.foldNode(Builder.getExprRange(S),
1154 new (allocator()) syntax::BoolLiteralExpression, S);
1155 return true;
1156 }
1157
WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr * S)1158 bool WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *S) {
1159 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1160 Builder.foldNode(Builder.getExprRange(S),
1161 new (allocator()) syntax::CxxNullPtrExpression, S);
1162 return true;
1163 }
1164
WalkUpFromUnaryOperator(UnaryOperator * S)1165 bool WalkUpFromUnaryOperator(UnaryOperator *S) {
1166 Builder.markChildToken(S->getOperatorLoc(),
1167 syntax::NodeRole::OperatorToken);
1168 Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::Operand);
1169
1170 if (S->isPostfix())
1171 Builder.foldNode(Builder.getExprRange(S),
1172 new (allocator()) syntax::PostfixUnaryOperatorExpression,
1173 S);
1174 else
1175 Builder.foldNode(Builder.getExprRange(S),
1176 new (allocator()) syntax::PrefixUnaryOperatorExpression,
1177 S);
1178
1179 return true;
1180 }
1181
WalkUpFromBinaryOperator(BinaryOperator * S)1182 bool WalkUpFromBinaryOperator(BinaryOperator *S) {
1183 Builder.markExprChild(S->getLHS(), syntax::NodeRole::LeftHandSide);
1184 Builder.markChildToken(S->getOperatorLoc(),
1185 syntax::NodeRole::OperatorToken);
1186 Builder.markExprChild(S->getRHS(), syntax::NodeRole::RightHandSide);
1187 Builder.foldNode(Builder.getExprRange(S),
1188 new (allocator()) syntax::BinaryOperatorExpression, S);
1189 return true;
1190 }
1191
1192 /// Builds `CallArguments` syntax node from arguments that appear in source
1193 /// code, i.e. not default arguments.
1194 syntax::CallArguments *
buildCallArguments(CallExpr::arg_range ArgsAndDefaultArgs)1195 buildCallArguments(CallExpr::arg_range ArgsAndDefaultArgs) {
1196 auto Args = dropDefaultArgs(ArgsAndDefaultArgs);
1197 for (auto *Arg : Args) {
1198 Builder.markExprChild(Arg, syntax::NodeRole::ListElement);
1199 const auto *DelimiterToken =
1200 std::next(Builder.findToken(Arg->getEndLoc()));
1201 if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
1202 Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
1203 }
1204
1205 auto *Arguments = new (allocator()) syntax::CallArguments;
1206 if (!Args.empty())
1207 Builder.foldNode(Builder.getRange((*Args.begin())->getBeginLoc(),
1208 (*(Args.end() - 1))->getEndLoc()),
1209 Arguments, nullptr);
1210
1211 return Arguments;
1212 }
1213
WalkUpFromCallExpr(CallExpr * S)1214 bool WalkUpFromCallExpr(CallExpr *S) {
1215 Builder.markExprChild(S->getCallee(), syntax::NodeRole::Callee);
1216
1217 const auto *LParenToken =
1218 std::next(Builder.findToken(S->getCallee()->getEndLoc()));
1219 // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have fixed
1220 // the test on decltype desctructors.
1221 if (LParenToken->kind() == clang::tok::l_paren)
1222 Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen);
1223
1224 Builder.markChild(buildCallArguments(S->arguments()),
1225 syntax::NodeRole::Arguments);
1226
1227 Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen);
1228
1229 Builder.foldNode(Builder.getRange(S->getSourceRange()),
1230 new (allocator()) syntax::CallExpression, S);
1231 return true;
1232 }
1233
WalkUpFromCXXConstructExpr(CXXConstructExpr * S)1234 bool WalkUpFromCXXConstructExpr(CXXConstructExpr *S) {
1235 // Ignore the implicit calls to default constructors.
1236 if ((S->getNumArgs() == 0 || isa<CXXDefaultArgExpr>(S->getArg(0))) &&
1237 S->getParenOrBraceRange().isInvalid())
1238 return true;
1239 return RecursiveASTVisitor::WalkUpFromCXXConstructExpr(S);
1240 }
1241
TraverseCXXOperatorCallExpr(CXXOperatorCallExpr * S)1242 bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
1243 // To construct a syntax tree of the same shape for calls to built-in and
1244 // user-defined operators, ignore the `DeclRefExpr` that refers to the
1245 // operator and treat it as a simple token. Do that by traversing
1246 // arguments instead of children.
1247 for (auto *child : S->arguments()) {
1248 // A postfix unary operator is declared as taking two operands. The
1249 // second operand is used to distinguish from its prefix counterpart. In
1250 // the semantic AST this "phantom" operand is represented as a
1251 // `IntegerLiteral` with invalid `SourceLocation`. We skip visiting this
1252 // operand because it does not correspond to anything written in source
1253 // code.
1254 if (child->getSourceRange().isInvalid()) {
1255 assert(getOperatorNodeKind(*S) ==
1256 syntax::NodeKind::PostfixUnaryOperatorExpression);
1257 continue;
1258 }
1259 if (!TraverseStmt(child))
1260 return false;
1261 }
1262 return WalkUpFromCXXOperatorCallExpr(S);
1263 }
1264
WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr * S)1265 bool WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
1266 switch (getOperatorNodeKind(*S)) {
1267 case syntax::NodeKind::BinaryOperatorExpression:
1268 Builder.markExprChild(S->getArg(0), syntax::NodeRole::LeftHandSide);
1269 Builder.markChildToken(S->getOperatorLoc(),
1270 syntax::NodeRole::OperatorToken);
1271 Builder.markExprChild(S->getArg(1), syntax::NodeRole::RightHandSide);
1272 Builder.foldNode(Builder.getExprRange(S),
1273 new (allocator()) syntax::BinaryOperatorExpression, S);
1274 return true;
1275 case syntax::NodeKind::PrefixUnaryOperatorExpression:
1276 Builder.markChildToken(S->getOperatorLoc(),
1277 syntax::NodeRole::OperatorToken);
1278 Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand);
1279 Builder.foldNode(Builder.getExprRange(S),
1280 new (allocator()) syntax::PrefixUnaryOperatorExpression,
1281 S);
1282 return true;
1283 case syntax::NodeKind::PostfixUnaryOperatorExpression:
1284 Builder.markChildToken(S->getOperatorLoc(),
1285 syntax::NodeRole::OperatorToken);
1286 Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand);
1287 Builder.foldNode(Builder.getExprRange(S),
1288 new (allocator()) syntax::PostfixUnaryOperatorExpression,
1289 S);
1290 return true;
1291 case syntax::NodeKind::CallExpression: {
1292 Builder.markExprChild(S->getArg(0), syntax::NodeRole::Callee);
1293
1294 const auto *LParenToken =
1295 std::next(Builder.findToken(S->getArg(0)->getEndLoc()));
1296 // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have
1297 // fixed the test on decltype desctructors.
1298 if (LParenToken->kind() == clang::tok::l_paren)
1299 Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen);
1300
1301 Builder.markChild(buildCallArguments(CallExpr::arg_range(
1302 S->arg_begin() + 1, S->arg_end())),
1303 syntax::NodeRole::Arguments);
1304
1305 Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen);
1306
1307 Builder.foldNode(Builder.getRange(S->getSourceRange()),
1308 new (allocator()) syntax::CallExpression, S);
1309 return true;
1310 }
1311 case syntax::NodeKind::UnknownExpression:
1312 return WalkUpFromExpr(S);
1313 default:
1314 llvm_unreachable("getOperatorNodeKind() does not return this value");
1315 }
1316 }
1317
WalkUpFromCXXDefaultArgExpr(CXXDefaultArgExpr * S)1318 bool WalkUpFromCXXDefaultArgExpr(CXXDefaultArgExpr *S) { return true; }
1319
WalkUpFromNamespaceDecl(NamespaceDecl * S)1320 bool WalkUpFromNamespaceDecl(NamespaceDecl *S) {
1321 auto Tokens = Builder.getDeclarationRange(S);
1322 if (Tokens.front().kind() == tok::coloncolon) {
1323 // Handle nested namespace definitions. Those start at '::' token, e.g.
1324 // namespace a^::b {}
1325 // FIXME: build corresponding nodes for the name of this namespace.
1326 return true;
1327 }
1328 Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition, S);
1329 return true;
1330 }
1331
1332 // FIXME: Deleting the `TraverseParenTypeLoc` override doesn't change test
1333 // results. Find test coverage or remove it.
TraverseParenTypeLoc(ParenTypeLoc L)1334 bool TraverseParenTypeLoc(ParenTypeLoc L) {
1335 // We reverse order of traversal to get the proper syntax structure.
1336 if (!WalkUpFromParenTypeLoc(L))
1337 return false;
1338 return TraverseTypeLoc(L.getInnerLoc());
1339 }
1340
WalkUpFromParenTypeLoc(ParenTypeLoc L)1341 bool WalkUpFromParenTypeLoc(ParenTypeLoc L) {
1342 Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
1343 Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
1344 Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getRParenLoc()),
1345 new (allocator()) syntax::ParenDeclarator, L);
1346 return true;
1347 }
1348
1349 // Declarator chunks, they are produced by type locs and some clang::Decls.
WalkUpFromArrayTypeLoc(ArrayTypeLoc L)1350 bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) {
1351 Builder.markChildToken(L.getLBracketLoc(), syntax::NodeRole::OpenParen);
1352 Builder.markExprChild(L.getSizeExpr(), syntax::NodeRole::Size);
1353 Builder.markChildToken(L.getRBracketLoc(), syntax::NodeRole::CloseParen);
1354 Builder.foldNode(Builder.getRange(L.getLBracketLoc(), L.getRBracketLoc()),
1355 new (allocator()) syntax::ArraySubscript, L);
1356 return true;
1357 }
1358
1359 syntax::ParameterDeclarationList *
buildParameterDeclarationList(ArrayRef<ParmVarDecl * > Params)1360 buildParameterDeclarationList(ArrayRef<ParmVarDecl *> Params) {
1361 for (auto *P : Params) {
1362 Builder.markChild(P, syntax::NodeRole::ListElement);
1363 const auto *DelimiterToken = std::next(Builder.findToken(P->getEndLoc()));
1364 if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
1365 Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
1366 }
1367 auto *Parameters = new (allocator()) syntax::ParameterDeclarationList;
1368 if (!Params.empty())
1369 Builder.foldNode(Builder.getRange(Params.front()->getBeginLoc(),
1370 Params.back()->getEndLoc()),
1371 Parameters, nullptr);
1372 return Parameters;
1373 }
1374
WalkUpFromFunctionTypeLoc(FunctionTypeLoc L)1375 bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) {
1376 Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
1377
1378 Builder.markChild(buildParameterDeclarationList(L.getParams()),
1379 syntax::NodeRole::Parameters);
1380
1381 Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
1382 Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getEndLoc()),
1383 new (allocator()) syntax::ParametersAndQualifiers, L);
1384 return true;
1385 }
1386
WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L)1387 bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) {
1388 if (!L.getTypePtr()->hasTrailingReturn())
1389 return WalkUpFromFunctionTypeLoc(L);
1390
1391 auto *TrailingReturnTokens = buildTrailingReturn(L);
1392 // Finish building the node for parameters.
1393 Builder.markChild(TrailingReturnTokens, syntax::NodeRole::TrailingReturn);
1394 return WalkUpFromFunctionTypeLoc(L);
1395 }
1396
TraverseMemberPointerTypeLoc(MemberPointerTypeLoc L)1397 bool TraverseMemberPointerTypeLoc(MemberPointerTypeLoc L) {
1398 // In the source code "void (Y::*mp)()" `MemberPointerTypeLoc` corresponds
1399 // to "Y::*" but it points to a `ParenTypeLoc` that corresponds to
1400 // "(Y::*mp)" We thus reverse the order of traversal to get the proper
1401 // syntax structure.
1402 if (!WalkUpFromMemberPointerTypeLoc(L))
1403 return false;
1404 return TraverseTypeLoc(L.getPointeeLoc());
1405 }
1406
WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L)1407 bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) {
1408 auto SR = L.getLocalSourceRange();
1409 Builder.foldNode(Builder.getRange(SR),
1410 new (allocator()) syntax::MemberPointer, L);
1411 return true;
1412 }
1413
1414 // The code below is very regular, it could even be generated with some
1415 // preprocessor magic. We merely assign roles to the corresponding children
1416 // and fold resulting nodes.
WalkUpFromDeclStmt(DeclStmt * S)1417 bool WalkUpFromDeclStmt(DeclStmt *S) {
1418 Builder.foldNode(Builder.getStmtRange(S),
1419 new (allocator()) syntax::DeclarationStatement, S);
1420 return true;
1421 }
1422
WalkUpFromNullStmt(NullStmt * S)1423 bool WalkUpFromNullStmt(NullStmt *S) {
1424 Builder.foldNode(Builder.getStmtRange(S),
1425 new (allocator()) syntax::EmptyStatement, S);
1426 return true;
1427 }
1428
WalkUpFromSwitchStmt(SwitchStmt * S)1429 bool WalkUpFromSwitchStmt(SwitchStmt *S) {
1430 Builder.markChildToken(S->getSwitchLoc(),
1431 syntax::NodeRole::IntroducerKeyword);
1432 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1433 Builder.foldNode(Builder.getStmtRange(S),
1434 new (allocator()) syntax::SwitchStatement, S);
1435 return true;
1436 }
1437
WalkUpFromCaseStmt(CaseStmt * S)1438 bool WalkUpFromCaseStmt(CaseStmt *S) {
1439 Builder.markChildToken(S->getKeywordLoc(),
1440 syntax::NodeRole::IntroducerKeyword);
1441 Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseValue);
1442 Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
1443 Builder.foldNode(Builder.getStmtRange(S),
1444 new (allocator()) syntax::CaseStatement, S);
1445 return true;
1446 }
1447
WalkUpFromDefaultStmt(DefaultStmt * S)1448 bool WalkUpFromDefaultStmt(DefaultStmt *S) {
1449 Builder.markChildToken(S->getKeywordLoc(),
1450 syntax::NodeRole::IntroducerKeyword);
1451 Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
1452 Builder.foldNode(Builder.getStmtRange(S),
1453 new (allocator()) syntax::DefaultStatement, S);
1454 return true;
1455 }
1456
WalkUpFromIfStmt(IfStmt * S)1457 bool WalkUpFromIfStmt(IfStmt *S) {
1458 Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword);
1459 Stmt *ConditionStatement = S->getCond();
1460 if (S->hasVarStorage())
1461 ConditionStatement = S->getConditionVariableDeclStmt();
1462 Builder.markStmtChild(ConditionStatement, syntax::NodeRole::Condition);
1463 Builder.markStmtChild(S->getThen(), syntax::NodeRole::ThenStatement);
1464 Builder.markChildToken(S->getElseLoc(), syntax::NodeRole::ElseKeyword);
1465 Builder.markStmtChild(S->getElse(), syntax::NodeRole::ElseStatement);
1466 Builder.foldNode(Builder.getStmtRange(S),
1467 new (allocator()) syntax::IfStatement, S);
1468 return true;
1469 }
1470
WalkUpFromForStmt(ForStmt * S)1471 bool WalkUpFromForStmt(ForStmt *S) {
1472 Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
1473 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1474 Builder.foldNode(Builder.getStmtRange(S),
1475 new (allocator()) syntax::ForStatement, S);
1476 return true;
1477 }
1478
WalkUpFromWhileStmt(WhileStmt * S)1479 bool WalkUpFromWhileStmt(WhileStmt *S) {
1480 Builder.markChildToken(S->getWhileLoc(),
1481 syntax::NodeRole::IntroducerKeyword);
1482 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1483 Builder.foldNode(Builder.getStmtRange(S),
1484 new (allocator()) syntax::WhileStatement, S);
1485 return true;
1486 }
1487
WalkUpFromContinueStmt(ContinueStmt * S)1488 bool WalkUpFromContinueStmt(ContinueStmt *S) {
1489 Builder.markChildToken(S->getContinueLoc(),
1490 syntax::NodeRole::IntroducerKeyword);
1491 Builder.foldNode(Builder.getStmtRange(S),
1492 new (allocator()) syntax::ContinueStatement, S);
1493 return true;
1494 }
1495
WalkUpFromBreakStmt(BreakStmt * S)1496 bool WalkUpFromBreakStmt(BreakStmt *S) {
1497 Builder.markChildToken(S->getBreakLoc(),
1498 syntax::NodeRole::IntroducerKeyword);
1499 Builder.foldNode(Builder.getStmtRange(S),
1500 new (allocator()) syntax::BreakStatement, S);
1501 return true;
1502 }
1503
WalkUpFromReturnStmt(ReturnStmt * S)1504 bool WalkUpFromReturnStmt(ReturnStmt *S) {
1505 Builder.markChildToken(S->getReturnLoc(),
1506 syntax::NodeRole::IntroducerKeyword);
1507 Builder.markExprChild(S->getRetValue(), syntax::NodeRole::ReturnValue);
1508 Builder.foldNode(Builder.getStmtRange(S),
1509 new (allocator()) syntax::ReturnStatement, S);
1510 return true;
1511 }
1512
WalkUpFromCXXForRangeStmt(CXXForRangeStmt * S)1513 bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) {
1514 Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
1515 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1516 Builder.foldNode(Builder.getStmtRange(S),
1517 new (allocator()) syntax::RangeBasedForStatement, S);
1518 return true;
1519 }
1520
WalkUpFromEmptyDecl(EmptyDecl * S)1521 bool WalkUpFromEmptyDecl(EmptyDecl *S) {
1522 Builder.foldNode(Builder.getDeclarationRange(S),
1523 new (allocator()) syntax::EmptyDeclaration, S);
1524 return true;
1525 }
1526
WalkUpFromStaticAssertDecl(StaticAssertDecl * S)1527 bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) {
1528 Builder.markExprChild(S->getAssertExpr(), syntax::NodeRole::Condition);
1529 Builder.markExprChild(S->getMessage(), syntax::NodeRole::Message);
1530 Builder.foldNode(Builder.getDeclarationRange(S),
1531 new (allocator()) syntax::StaticAssertDeclaration, S);
1532 return true;
1533 }
1534
WalkUpFromLinkageSpecDecl(LinkageSpecDecl * S)1535 bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) {
1536 Builder.foldNode(Builder.getDeclarationRange(S),
1537 new (allocator()) syntax::LinkageSpecificationDeclaration,
1538 S);
1539 return true;
1540 }
1541
WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl * S)1542 bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) {
1543 Builder.foldNode(Builder.getDeclarationRange(S),
1544 new (allocator()) syntax::NamespaceAliasDefinition, S);
1545 return true;
1546 }
1547
WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl * S)1548 bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) {
1549 Builder.foldNode(Builder.getDeclarationRange(S),
1550 new (allocator()) syntax::UsingNamespaceDirective, S);
1551 return true;
1552 }
1553
WalkUpFromUsingDecl(UsingDecl * S)1554 bool WalkUpFromUsingDecl(UsingDecl *S) {
1555 Builder.foldNode(Builder.getDeclarationRange(S),
1556 new (allocator()) syntax::UsingDeclaration, S);
1557 return true;
1558 }
1559
WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl * S)1560 bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) {
1561 Builder.foldNode(Builder.getDeclarationRange(S),
1562 new (allocator()) syntax::UsingDeclaration, S);
1563 return true;
1564 }
1565
WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl * S)1566 bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) {
1567 Builder.foldNode(Builder.getDeclarationRange(S),
1568 new (allocator()) syntax::UsingDeclaration, S);
1569 return true;
1570 }
1571
WalkUpFromTypeAliasDecl(TypeAliasDecl * S)1572 bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) {
1573 Builder.foldNode(Builder.getDeclarationRange(S),
1574 new (allocator()) syntax::TypeAliasDeclaration, S);
1575 return true;
1576 }
1577
1578 private:
1579 /// Folds SimpleDeclarator node (if present) and in case this is the last
1580 /// declarator in the chain it also folds SimpleDeclaration node.
processDeclaratorAndDeclaration(T * D)1581 template <class T> bool processDeclaratorAndDeclaration(T *D) {
1582 auto Range = getDeclaratorRange(
1583 Builder.sourceManager(), D->getTypeSourceInfo()->getTypeLoc(),
1584 getQualifiedNameStart(D), getInitializerRange(D));
1585
1586 // There doesn't have to be a declarator (e.g. `void foo(int)` only has
1587 // declaration, but no declarator).
1588 if (!Range.getBegin().isValid()) {
1589 Builder.markChild(new (allocator()) syntax::DeclaratorList,
1590 syntax::NodeRole::Declarators);
1591 Builder.foldNode(Builder.getDeclarationRange(D),
1592 new (allocator()) syntax::SimpleDeclaration, D);
1593 return true;
1594 }
1595
1596 auto *N = new (allocator()) syntax::SimpleDeclarator;
1597 Builder.foldNode(Builder.getRange(Range), N, nullptr);
1598 Builder.markChild(N, syntax::NodeRole::ListElement);
1599
1600 if (!Builder.isResponsibleForCreatingDeclaration(D)) {
1601 // If this is not the last declarator in the declaration we expect a
1602 // delimiter after it.
1603 const auto *DelimiterToken = std::next(Builder.findToken(Range.getEnd()));
1604 if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
1605 Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
1606 } else {
1607 auto *DL = new (allocator()) syntax::DeclaratorList;
1608 auto DeclarationRange = Builder.getDeclarationRange(D);
1609 Builder.foldList(DeclarationRange, DL, nullptr);
1610
1611 Builder.markChild(DL, syntax::NodeRole::Declarators);
1612 Builder.foldNode(DeclarationRange,
1613 new (allocator()) syntax::SimpleDeclaration, D);
1614 }
1615 return true;
1616 }
1617
1618 /// Returns the range of the built node.
buildTrailingReturn(FunctionProtoTypeLoc L)1619 syntax::TrailingReturnType *buildTrailingReturn(FunctionProtoTypeLoc L) {
1620 assert(L.getTypePtr()->hasTrailingReturn());
1621
1622 auto ReturnedType = L.getReturnLoc();
1623 // Build node for the declarator, if any.
1624 auto ReturnDeclaratorRange = SourceRange(GetStartLoc().Visit(ReturnedType),
1625 ReturnedType.getEndLoc());
1626 syntax::SimpleDeclarator *ReturnDeclarator = nullptr;
1627 if (ReturnDeclaratorRange.isValid()) {
1628 ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator;
1629 Builder.foldNode(Builder.getRange(ReturnDeclaratorRange),
1630 ReturnDeclarator, nullptr);
1631 }
1632
1633 // Build node for trailing return type.
1634 auto Return = Builder.getRange(ReturnedType.getSourceRange());
1635 const auto *Arrow = Return.begin() - 1;
1636 assert(Arrow->kind() == tok::arrow);
1637 auto Tokens = llvm::makeArrayRef(Arrow, Return.end());
1638 Builder.markChildToken(Arrow, syntax::NodeRole::ArrowToken);
1639 if (ReturnDeclarator)
1640 Builder.markChild(ReturnDeclarator, syntax::NodeRole::Declarator);
1641 auto *R = new (allocator()) syntax::TrailingReturnType;
1642 Builder.foldNode(Tokens, R, L);
1643 return R;
1644 }
1645
foldExplicitTemplateInstantiation(ArrayRef<syntax::Token> Range,const syntax::Token * ExternKW,const syntax::Token * TemplateKW,syntax::SimpleDeclaration * InnerDeclaration,Decl * From)1646 void foldExplicitTemplateInstantiation(
1647 ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW,
1648 const syntax::Token *TemplateKW,
1649 syntax::SimpleDeclaration *InnerDeclaration, Decl *From) {
1650 assert(!ExternKW || ExternKW->kind() == tok::kw_extern);
1651 assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
1652 Builder.markChildToken(ExternKW, syntax::NodeRole::ExternKeyword);
1653 Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
1654 Builder.markChild(InnerDeclaration, syntax::NodeRole::Declaration);
1655 Builder.foldNode(
1656 Range, new (allocator()) syntax::ExplicitTemplateInstantiation, From);
1657 }
1658
foldTemplateDeclaration(ArrayRef<syntax::Token> Range,const syntax::Token * TemplateKW,ArrayRef<syntax::Token> TemplatedDeclaration,Decl * From)1659 syntax::TemplateDeclaration *foldTemplateDeclaration(
1660 ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW,
1661 ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) {
1662 assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
1663 Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
1664
1665 auto *N = new (allocator()) syntax::TemplateDeclaration;
1666 Builder.foldNode(Range, N, From);
1667 Builder.markChild(N, syntax::NodeRole::Declaration);
1668 return N;
1669 }
1670
1671 /// A small helper to save some typing.
allocator()1672 llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); }
1673
1674 syntax::TreeBuilder &Builder;
1675 const ASTContext &Context;
1676 };
1677 } // namespace
1678
noticeDeclWithoutSemicolon(Decl * D)1679 void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) {
1680 DeclsWithoutSemicolons.insert(D);
1681 }
1682
markChildToken(SourceLocation Loc,NodeRole Role)1683 void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) {
1684 if (Loc.isInvalid())
1685 return;
1686 Pending.assignRole(*findToken(Loc), Role);
1687 }
1688
markChildToken(const syntax::Token * T,NodeRole R)1689 void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) {
1690 if (!T)
1691 return;
1692 Pending.assignRole(*T, R);
1693 }
1694
markChild(syntax::Node * N,NodeRole R)1695 void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) {
1696 assert(N);
1697 setRole(N, R);
1698 }
1699
markChild(ASTPtr N,NodeRole R)1700 void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) {
1701 auto *SN = Mapping.find(N);
1702 assert(SN != nullptr);
1703 setRole(SN, R);
1704 }
markChild(NestedNameSpecifierLoc NNSLoc,NodeRole R)1705 void syntax::TreeBuilder::markChild(NestedNameSpecifierLoc NNSLoc, NodeRole R) {
1706 auto *SN = Mapping.find(NNSLoc);
1707 assert(SN != nullptr);
1708 setRole(SN, R);
1709 }
1710
markStmtChild(Stmt * Child,NodeRole Role)1711 void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) {
1712 if (!Child)
1713 return;
1714
1715 syntax::Tree *ChildNode;
1716 if (Expr *ChildExpr = dyn_cast<Expr>(Child)) {
1717 // This is an expression in a statement position, consume the trailing
1718 // semicolon and form an 'ExpressionStatement' node.
1719 markExprChild(ChildExpr, NodeRole::Expression);
1720 ChildNode = new (allocator()) syntax::ExpressionStatement;
1721 // (!) 'getStmtRange()' ensures this covers a trailing semicolon.
1722 Pending.foldChildren(Arena, getStmtRange(Child), ChildNode);
1723 } else {
1724 ChildNode = Mapping.find(Child);
1725 }
1726 assert(ChildNode != nullptr);
1727 setRole(ChildNode, Role);
1728 }
1729
markExprChild(Expr * Child,NodeRole Role)1730 void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) {
1731 if (!Child)
1732 return;
1733 Child = IgnoreImplicit(Child);
1734
1735 syntax::Tree *ChildNode = Mapping.find(Child);
1736 assert(ChildNode != nullptr);
1737 setRole(ChildNode, Role);
1738 }
1739
findToken(SourceLocation L) const1740 const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const {
1741 if (L.isInvalid())
1742 return nullptr;
1743 auto It = LocationToToken.find(L);
1744 assert(It != LocationToToken.end());
1745 return It->second;
1746 }
1747
buildSyntaxTree(Arena & A,ASTContext & Context)1748 syntax::TranslationUnit *syntax::buildSyntaxTree(Arena &A,
1749 ASTContext &Context) {
1750 TreeBuilder Builder(A);
1751 BuildTreeVisitor(Context, Builder).TraverseAST(Context);
1752 return std::move(Builder).finalize();
1753 }
1754